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Abstract
Many authors have used higher-order spatial discretizations to reduce numerical diffusion, which can be particularly
pronounced when simulating EOR processes involving active chemical substances that are transported by linear or weakly
nonlinear waves. Most high-resolution methods reported in the literature are based on explicit temporal discretizations.
This imposes severe time-step restrictions when applied to the type of grids seen in industry-standard simulation models of
real assets, which usually have orders-of-magnitude variations in porosities and Darcy velocities that necessitate the use of
implicit discretization. Herein, we propose a second-order WENO discretization suitable for complex grids with polyhedral
cell geometries, unstructured topologies, large aspect ratios, and large variations in interface areas. The WENO scheme is
developed as part of a standard, fully implicit formulation that solves for pressure and transported quantities simultaneously.
We investigate the accuracy and utility of the WENO scheme for a series of test cases that involve corner-point and 2D/3D
Voronoi grids and black-oil and compositional flow models.

Keywords Reservoir simulation · WENO scheme · Fully implicit discretization · Unstructured grids · Corner-point grids

1 Introduction

The workhorse in reservoir simulation is a first-order finite-
volume method with implicit temporal discretization and
intercell fluxes computed by a single-point, upstream-
mobility weighting scheme. The method is flexible and
robust, but can suffer from (severe) grid-orientation effects
and excessive numerical diffusion. Numerical diffusion can
be particularly detrimental in compositional simulations,
which tend to contain many displacement fronts that can
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be difficult to distinguish when smeared out, and in
simulation of chemical EOR, in which the active chemical
components propagate as linear or weakly linear waves that
are particularly susceptible to numerical diffusion.

Many authors have proposed the use of high-resolution
spatial discretizations reduce numerical smearing, see,
e.g., [3–5, 9, 10, 13, 14, 21, 22, 25, 28, 29, 36, 40,
42, 55]. TVD methods based on flux- and slope-limiter
approaches dating back to the early work of [56] and
(W)ENO reconstructions both rely on local polynomial
reconstructions computed from the cell average of each
grid cell and its adjacent cell neighbors and are designed
to maintain high-order accuracy on smooth parts of the
solution and at the same time minimize the creation of
spurious oscillations around discontinuities. Such methods
are readily applicable to Cartesian grids and similar grids
with structured topology, but have also been extended to
unstructured grids consisting of simplices (triangles and
tetrahedrons) or prismatic elements, e.g., as discussed in
[27, 61] and references therein. Another approach is to use
discontinuous Galerkin [23, 24, 47, 51] and similar methods
in which the higher-order approximation relies entirely on
unknowns localized inside each cell.

Except for [52], little work has been devoted to develop
and analyze high-resolution methods for the type of grids
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found in contemporary reservoir models, which are often
characterized by large aspect ratios, large differences in
cell volumes, nonmatching cells, and various types of
degenerate cell geometries. In particular, their extension
to fully unstructured grids with general polyhedral cell
geometries is unclear.

The widely used corner-point format [50] was introduced
to represent the stratigraphy and structure of reservoirs with
high accuracy. The stratigraphy of the rock is represented
through a rectangular ijk topology, in which cells with
the same k index typically represent rock units that have
been deposited in the same period. Each grid cell is by
default a hexahedral volume delimited by its eight corner
points. The eight corner points are placed in pairs of two on
four vertical/inclined coordinate lines that extend downward
from a rectilinear (or curvilinear) areal mesh. Each pair of
points specifies the depth of the top and bottom surface of
the grid along a given coordinate line and can collapse to
a single point to model erosion of the deposited sediments,
effectively leading to various forms of degenerate cell
geometries. Corner points of lateral cell neighbors (i.e.,
same i and k or j and k index) are specified on the same
coordinate lines, but need not coincide. This is used to
model fault displacement and generally gives nonmatching
cell faces and an unstructured topology in which each cell
may have (significantly) more than four lateral neighbors.
This, combined with large aspect ratios and orders-of-
magnitude variations in the area of the cell interface shared
by neighboring cells, can cause severe difficulties for spatial
reconstruction methods (slope-limiter, WENO, etc.) that
have been developed for simpler geometries and topologies.

Corner-point grids constitute just one example of the
many grid formats used in reservoir simulation. Another
popular format is the perpendicular bisector (PEBI) grids
[20, 49, 57], which in other fields of science are known
as Voronoi grids. The stratigraphic or 2.5D form of these
grids is constructed along the same lines as corner-point
grids by extrusion along vertical/inclined coordinate lines,
except that these coordinate lines now extend downward
from the vertices of an areal Voronoi mesh and not from
a rectilinear mesh. Use of polygonal tessellations offers
improved resolution control in the lateral direction, but
2.5D PEBI grids have more lateral neighbors that must be
accounted for in a spatial reconstruction and pose the same
challenges as corner-point grids in the vertical direction.
Several methods have also been proposed to construct truly
3D PEBI grids adapting to various types of geological
objects and curvilinear well paths [6, 43]. Such grids will
have a fully unstructured topology and general polyhedral
cell geometries.

Another example of unstructured formats is the so-called
cut-cell grids [39], which consist of hexahedral, highly
orthogonal cells that are arranged in a structured manner

way from faults. Near faults, the hexahedral cells have
been clipped against the triangulated fault surfaces and
thus are converted into general polyhedra. If the clipping
surfaces represent sealing faults, one can argue that having
an accurate higher-order reconstruction may not be very
important since flow will mostly be stagnant. In other cases,
however, faults or fractures may be the main flow conducts
and having accurate spatial reconstructions in the polyhedral
cells may be essential to accurately resolve the flow.

A second challenge is the temporal discretization.
With a few exceptions [7, 8, 15, 37, 47, 48], high-
resolution schemes applied in reservoir simulation have
primarily relied on explicit temporal discretizations. This
requires that the multiphase flow equations are solved
using a sequential solution procedure that computes the
flow (pressure and fluxes) and transport of saturations
and component concentrations in separate steps. Coupling
of between fluid pressure and transport of phases and
components can be strong, e.g., in systems with significant
compressibility, and sequential solution procedures are
generally not as robust as methods that seek to solve for all
primary variables simultaneously. More important, sector
and field-scale models tend to have large variations in time
constants arising because of high local flow rates in the near-
well zone, cells with small pore volumes, etc. This means
that the well-known CFL condition will impose severe
time-step restrictions that quickly can render an explicit
high-resolution scheme computationally infeasible. [19] and
[62] showed that implicit five-point TVD schemes are
conservative and unconditionally stable for a scalar equation
in 1D if the discrete nonlinear equations are solved exactly,
whereas [17] showed that implicit time-integration schemes
of order higher than one are only conditionally TVD. To be
efficient, the cost of solving the nonlinear equations, e.g.,
by a Newton method, must be offset with the ability to take
larger time steps.

Herein, we develop weighted essentially nonoscillatory
(WENO) high-resolution schemes for all the classes of
unstructured grids discussed above, formulated so that they
can be applied in a fully implicit or a sequentially implicit
setting. WENO schemes compute a set of local polygonal
interpolations with accompanying nonlinear smoothness
indicators that are used to compute a local reconstruction
in each cell that introduces as few spurious oscillations
as possible. The development and application of WENO
schemes on unstructured grids is still ongoing, see, e.g.,
[16, 33, 35, 54, 58, 59]. In previous research [46], we
have developed fully implicit WENO schemes and slope-
limiter schemes for rectilinear grids and showed how one
can easily overcome the cumbersome task of linearizing
the discrete flow equations and computing the Jacobian
matrix necessary in a Newton-type nonlinear solver by use
of automatic differentiation. To apply these schemes to
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realistic reservoir models, we can reuse most of the same
ideas, but need to develop compact and effective sets of
local polynomials and nonlinear interpolation weights that
are sufficiently robust to large aspect ratios, significant
variations in cell sizes and the number of cell neighbors, and
various forms of geometrical degeneracies.

In the following, we restrict ourselves to demonstrating
a proof-of-concept in MRST [34, 45] and validating the
new WENO schemes by applying them to various types of
black-oil and compositional problems posed on a variety of
grid types that are representative of contemporary models
of real petroleum assets. Local WENO reconstructions can
be computed in many different ways. Herein, we only
consider a simple pragmatic choice that gives a relatively
small stencil and seems to work well on representative grids.
A deeper analysis is needed to assess the level of grid-
orientation effects (for adverse mobility displacements),
investigate and compare various strategies for reducing the
local stencil (e.g., by setting the weights of the least smooth
polynomials to zero), and compare the efficacy of WENO
schemes with slope-limiter schemes. Likewise, we only
consider cases with a single rock type (i.e., a single set of
relative permeability and capillary pressure curves), so that
we avoid the problem of interpolating saturations between
regions with different capillary pressure curves.

2 Governing equations

In reservoir simulation, one is generally interested in flow
systems consisting of N fluid phases that may contain
M different components. Each component can either refer
to a single chemical species or be a pseudo-component
that consists of a collection of different chemical species
that are lumped together and assumed to have a distinct
behavior. For simplicity, we will disregard diffusion. The
mass conservation of component � = 1, . . . , M then reads

∂

∂t

(
φ

∑
α

c�
αραSα

)
+ ∇ ·

(∑
α

c�
αραv�

α

)
=

∑
α

c�
αραqα .

(1)

Here, φ is rock porosity; Sα , ρα , and qα denote the
saturation, density, and source term of fluid phase α; and
c�
α is the mass fraction and v�

α the superficial velocity of
component � in phase α. The velocities are given by Darcy’s
law,

v�
α = Kkrα

μ�
α

(∇pα − gρα∇z), (2)

where K is the absolute permeability; pα is pressure
and krα the relative permeability of phase α; μ�

α is the
effective viscosity of component � in phase α; g is gravity

acceleration; and z the vertical coordinate. The fluid phases
are assumed to fill the void space completely, so that∑

α Sα = 1. In addition, we need closure relationships for
the phase densities, mass fractions, and phase pressures, as
well as models for the relative permeabilities and effective
viscosities.

The standard black-oil equations describe a system
consisting of three phases (an aqueous, an oleic, and a gas
phase) and three pseudo-components (water, oil, and gas).
At surface conditions, oil is only found in the oleic phase
and gas only in the gaseous phase. At reservoir conditions,
however, oil can be vaporized in the gaseous phase, and
gas can be dissolved in the oleic phase. To describe the
fluid behavior, one uses a relatively simple PVT model that
consists of pressure-dependent shrinkage/expansion factors
b� = V �

s /V � that relate the volume V �
s of component � at

surface condition to the volume V � at reservoir conditions.
Solubility of gas in oil is modeled through the solution gas-
oil ratio, Rs = Vgs/Vos defined as the volume of gas,
measured at standard conditions, that at reservoir conditions
is dissolved in a unit of stock-tank oil. The solubility of
oil in gas is modeled similarly by a factor Rv , defined
as the amount of surface oil that can be vaporized in a
unit volume of surface gas at reservoir conditions. Phase
pressures are related through saturation-dependent capillary
pressure functions, po −pw = Pcow(Sw, So) and pg −po =
Pcgo(So, Sg). The effective viscosities are the same for all
components within each phase and are uniquely given by
pressure. There are several possible choices for primary
unknowns; herein, we use pressure of the oleic phase po,
water saturation Sw, and gas saturation Sg when all three
phases are present, and Rs if all gas is dissolved or Rv if all
oil is vaporized.

As an example of enhanced oil recovery, we also
consider a basic model for polymer flooding, which is a
model consisting of a single-component oleic phase and
an aqueous phase that contains a mixture of water and
dissolved polymer. Here, the primary unknowns are (oil)
pressure p, water saturation Sw, and polymer concentration
c. Effective viscosities for water and polymer are given by
a Todd–Longstaff mixture rule. The model also contains an
additional accumulation term that accounts for adsorption
of polymer onto the reservoir rock, and reduced effective
permeability of long-chained polymer molecules, which
makes K depend on c. Full details are given in [46].

Compositional models describe the same general three-
phase system as the standard black-oil equations, but allow
the oleic and gaseous phases to consist of any number
of hydrocarbon components. Mass exchange between the
two hydrocarbon phases is governed by the isofugacity
relation for each component (f l

g = f l
o) if both phases are

present. MRST uses a generalized cubic equation-of-state
[41], and in the following we use Peng–Robinson for the
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oleic and gaseous phases with viscosities calculated from
the correlation in [38]. The aqueous phase is described as in
the black-oil case and only consists of the water component;
see [44] for a detailed description of the implementation of
natural variables in MRST.

3 Discretizations and solutionmethod

We start by subdividing the spatial domain Ω into a set
of finite volumes (cells) Ωi . In a stratigraphic grid, the
basic shape of these cells will typically be a hexahedron
or a triangular or hexahedral prism, and each cell may
potentially have nonmatching faces with its neighbors.
Herein, we subdivide nonmatching faces and assume that
all grids are fully unstructured and consist of cells with
general polyhedral geometry. Let N (i) denote the indices of
all neighbors of cell i, and let the interface �ij between two
neighboring cells i and j have normal vector nij pointing
from Ωi to Ωj .

We use a finite-volume discretization so that each
unknown quantity u is represented as discrete cell averages,

ui(t) = 1

|Ωi |
∫ ∫

Ωi

u(x, t)dx. (3)

For brevity, we only present the discretization for a simple
two-phase, two-component system (α = {w, n}, c1

w = c2
n =

1, and c2
w = c1

n = 0) in the absence of gravity and capillary
forces. Picking the wetting phase, integrating (1) over cell
Ωi from time tn to tn+1, and inserting Eq. 2 gives the flow
equation on residual form,

Rw = [ρwφSw]n+1 − [ρwφSw]n

+ 	t

|Ωi |
∑

j∈N (i)

∫
�ij

(ρwλw K∇p · n)mij ds = 0. (4)

Setting m = n gives an explicit scheme whereas m = n + 1
gives a fully implicit scheme. The two accumulation terms
can be computed directly from cell-averaged quantities if
we approximate each term by a product of cell averages.
The flux integral is more difficult, since any numerical
quadrature rule will require point values of the unknown
quantities along �ij . Herein, we only consider schemes
of order two or less and it is hence sufficient to apply
the midpoint rule. For the density at the interface, we
simply use the arithmetic average of the cell averages
ρij = 1

2

(
ρi + ρj

)
in the case of immiscible flow. For

compositional models, phase properties use the saturation-
weighted average to account for the possibility of an absent

phase: (ρij )α =
(

siρi+sj ρj

si+sj

)
α

. For the gradient term, we use

a standard two-point flux approximation:

(K∇p · n)ij = pi − pj

T −1
i,j + T −1

j,i

,

Ti,j = Ki

(
xij − xi

) · nij

|xij − xi |2 , Tj,i = Kj

(
xij − xj

) · nji

|xij − xj |2 ,

(5)

where xi , xj , and xij denote the centroids of Ωi , Ωj ,
and �ij , respectively, and nji = −nij . The difference
between first- and second-order schemes lies in how we
compute the mobility term, λw = krw/μw, which governs
how the flux depends upon saturations (and component
concentrations). For a first-order scheme, we reconstruct
point values by assuming that the mobility is constant inside
each cell and can be computed from the cell-averaged
saturation (and component concentration) values. This gives
two values at the midpoint, a value λ− reconstructed
inside the cell the normal vector n is pointing from, and a
value λ+ reconstructed inside the cell the normal vector is
pointing to. Given these one-sided point values, we use the
standard upstream method to evaluate the integrand at each
integration point,

λij =
{

λ−, if (K∇p · n)ij ≥ 0,

λ+, otherwise.
(6)

Higher accuracy is achieved if we use a higher-order
reconstruction of the point values. To this end, we can
either reconstruct point values for the primary variables
and evaluate one-sided mobilities at each interface or we
can first compute mobilities from cell averages and use
these “cell-averaged” values to reconstruct point values. To
not distinguish between the two, the following discussion
considers the reconstruction of point values û from a set
of cell averages ui . To keep the presentation as simple as
possible, we start by outlining the basic concepts in 2D.

3.1 Local polynomial reconstruction

To obtain a second-order reconstruction, we start by forming
linear planes that interpolate the cell averages in xi and
at the centroids for any two neighbors from N (i). For
a cell with N neighbors, it is possible to construct

(
N
2

)
different planes. Figure 1 shows all stencils that can be
used to compute local interpolation planes for a cell with
five faces. In practice, one only chooses a subset k =
{1, 2, . . . , Ni} of the possible stencils to form the basis of
the reconstruction inside each cell Ωi . As an example, we
could use the five primary stencils in Fig. 1 and disregard
the five ancillary ones. We will return to this discussion later
for 3D stratigraphic grids.
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Fig. 1 Example of a cell with
five neighbors with a common
face and the ten corresponding
stencils. Red dots indicate the
cell centers and blue dots
indicate faces centers (used in
the two-point flux
approximation). Primary stencils
are formed from cells that share
a common vertex, whereas
ancillary stencils involve three
cells that do not share a single
vertex

To compute the local interpolation corresponding to
stencil k, we let xk

� = (xk
� , yk

� ) and uk
� denote the centroids

and the cell averages of the corresponding three cells. If
we introduce barycentric coordinates, the local plane is
constructed as follows:

ûk(x, y) = [
uk

1 uk
2 uk

3

]
⎡
⎢⎣

xk
1 xk

2 xk
3

yk
1 yk

2 yk
3

1 1 1

⎤
⎥⎦

−1

︸ ︷︷ ︸
C

⎡
⎢⎣

x

y

1

⎤
⎥⎦ . (7)

One possibility to get a multidimensional slope-limiter
method would now be to use the minimum-angle-plane
reconstruction [12], which picks the local plane having the
minimum magnitude gradient. See [30] for an up-to-date
discussion of alternative slope-limiter reconstructions.

3.2 General WENO reconstruction in 2D

The next step is to write the reconstruction as a convex
combination of the local interpolation planes

ûi (x) =
Ni∑

k=1

wk
i û

k
i (x). (8)

To get optimal order of reconstruction, the weights wk
i

should be chosen so that the overall polynomial has the
same formal order on smooth data as we would get if
we had used the Ni + 1 data points to directly form a
single polynomial. For a fully unstructured grid with general
polyhedral cells, these weights will have to be computed
uniquely for each unique cell geometry.

In the WENO reconstruction, the linear weights are
replaced by nonlinear weights that try to put less emphasis
on nonsmooth parts of the solution. These weights are
defined as follows,

wk
i = βk

i /

Ni∑
k=1

βk
i , βk

i = γ k
i /(ε + ISk

i )2. (9)

Here, γ k
i are linear weights that sum to unity and ε is a

small positive parameter to avoid division by zero (herein:
ε = 10−7 or ε = 10−12). The smoothness indicator ISk

i

measures how smooth the kth local polynomial ûk
i (x) is

on the cell [26]; the smaller the smoothness indicator, the
smoother the function ûk

i is on Ωi . The general expression
for an mth order polynomial on an unstructured grid is given
by [35] as (here η = (η1, η2) is a multi index)

ISk
i =

∑
1≤|η|≤m

∫
Ωi

|Ωi ||η|−1(Dηûk
i (x))

2dx,

Dηûk
i (x) = ∂ |η|ûk

i (x, y)

∂xη1∂yη2
. (10)

This formula applies to meshes with uniform cell sizes. In
3D, the scaling factor is |Ωi |2|η|/3−1. The purpose of the
scaling factor is to make the smoothness indicator invariant
under spatial scaling [54].

For our linear polynomials (m = 1) and the smoothness
indicator for cell Ωi simplifies to:

ISk
i =

∫
Ωi

((
D(1,0)ûk

i (x)
)2 +

(
D(0,1)ûk

i (x)
)2

)
dx

=
∫
Ωi

|∇ûk
i (x)|2dx. (11)

This gradient is quick to compute. Referring back to Eq. 7
and let C̃ denote the first two columns of the inverse
coordinate matrix C, the local gradient is given as a simple
vector-matrix product

σ k
i =

(
∇ûk

i (x)
)T = [

uk
1 uk

2 uk
3

]
C̃. (12)

With this, the weights are

wk
i = βk

i /

Ni∑
k=1

βk
i , βk

i = γ k
i /(ε + |σ k

i |2 |Ωi |)2. (13)
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Using that the weights sum to unity, the reconstruction of
the one-sided point value u−

ij at the centroid xij of �ij is
another simple vector-vector product

u−
ij =

Ni∑
k=1

wk
i

(
ui + σ k

i (xij − xi )
)

= ui +
⎛
⎝ Ni∑

k=1

wk
i σ

k
i

⎞
⎠ (

xij − xi )
)

. (14)

3.3 Changes required by complex stratigraphic grids

The construction is analogous in 3D with the obvious mod-
ifications necessary for four points and coordinate/gradient
vectors with three components and works robustly as long
as the polygonal grid is sufficiently regular. In the follow-
ing, we will discuss in detail some of the extra precau-
tions and modifications we have found necessary to ensure
robust reconstructions for the type of complex grids seen in
industry-standard models of petroleum reservoirs. To illus-
trate a few of the typical issues, we use the grid geometry
from the simulation model of Norne as an example, see
github.com/OPM/opm-data. There are several other public
data sets that contain similar complexities, but we chose
Norne since it is the only one that has been made specifically
to represent a real asset.

By default, each cell in a corner-point grid is hexahedral
and thus has six logical neighbors. Exceptions occur for
cells that are adjacent to external boundaries, adjacent to
faults, or have degenerate faces that have collapsed entirely.
To ensure that the complex layering of the reservoir is
represented with as few cells as possible, each cell may be
tilted axially and have large aspect ratios. Because the eight
corner points can be shifted independently up and down
the four coordinate lines that deliminate each pillar, the cell

faces will generally be bilinear and can deviate far from
being planar. Pairs of corner points can also collapse to a
single point so that the cell faces reduce to a triangle or
disappear entirely. These effects are illustrated in Fig. 2.

Each cell in a stratigraphic grid will only have a
single neighbor above and below but may have multiple
neighbors in each of the four lateral directions if any of the
corresponding hexahedral faces are adjacent to a fault. This
can complicate the geometry and topology significantly,
as seen in Fig. 3. Even if we restrict the number of local
polynomials to primary quadruples defined analogously
to the primary triples in Fig. 1, the number of local
polynomials can be very large, which results in a dense
local stencil. There is also the risk of putting too much
emphasis on polynomials that interpolate across subfaces
with small areas. Herein, we simplify the reconstruction
by limiting the local stencils so that they only include a
single neighboring cell in any of the six logical directions
(up, down, north, south, east, west). That is, if a face of
the original hexahedral cell has been subdivided to create a
matching grid, we pick the neighboring cell with the largest
subface and disregard the others when forming the local
polynomials. This is done as part of a preprocessing step.
Our approach is obviously a significant simplification and
it is not difficult to come up with special cases where this
choice is not optimal. However, we are more concerned with
robustness for complex grids, which has been verified in a
number of challenging test cases.

Cell faces defined by four or more points will generally
not be planar, and this introduces a certain ambiguity in
how to define geometrical quantities such as face areas, cell
volumes, and face/cell centroids. Herein, these quantities
are computed by use of a tetrahedral subdivision described
in more detail in [34]. The resulting cells are not necessarily
convex so that cell centroids may lie outside of the cell itself,
as illustrated in Fig. 4.

Fig. 2 Illustration of cell geometry and local topology for a stratigraphic corner-point grid, here shown for two cells from the Norne simulation
model
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Fig. 3 Illustration of the complex geometry and topology arising
near faults in real reservoir models, here represented by two cells
from the Norne simulation model. The left figure shows a cell at the
top of the reservoir that lies adjacent to three fault faces. Altogether,
the cell shares faces with twenty other cells, which together with the
external top boundary means that the cell has 21 unique faces. The

right figure shows another cell along with the neighboring cells above,
below, and to the south, where the vertical pillar of cells contains an
inactive cell; this inaccessible rock volume is shown as void space in
the figure. No-flow boundary conditions must be imposed on faces
marked in white color

3.4 Robust scaling of the smoothness indicator

In our experience, nonconvex cells with high aspect ratios,
such as the one shown in Fig. 4, do not seem to adversely

affect the construction of the local polynomials. However,
the smoothness indicator (10) is not invariant to aspect ratios
and cannot be used directly, since interpolation using a small
gradient can give a large overshoot when multiplied by a

Fig. 4 A single grid cell from the Norne model shown in three different coordinate systems: original coordinates, z-direction scaled by a factor
10, and a coordinate system defined from a singular-value decomposition of the vectors from cell to face centroids
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large coordinate distance. To make the indicator more robust
and invariant under spatial scaling and stretching, we make
an affine transformation into the local coordinate space
defined by a singular-value decomposition of the vectors
from the cell centroid to the face centroids of the cell under
consideration, computed as part of the preprocessing.

The transformed cell, shown to the upper-right in Fig. 4,
is scaled, rotated, and shifted so that the centroids fit
into a unit cube, where smoothness is naturally defined.
Interpolating in this space only affects the smoothness
indicators and not the values of each local polynomial. The
local coordinate space is defined by an affine transformation
g(x) = S(x − z), where S is linear map onto the new
coordinate axes and z is the origin of the new coordinate
system. If we let X be the matrix of all vectors from cell
centroid to face centroids for a given cell in d dimensions,
the singular-value decomposition UDV T = X has d

nonzero singular values in D, with corresponding right-
singular vectors in V . These vectors are the major axes of
variation in the set of interpolation points, giving us the
affine transformation S = D̃V −1, where D̃ corresponds
to the top square part of D. After rotation, translation, and
scaling, the transformed set of face points local to each
cell are contained in a cube with approximately equal axes,
with the cell centroid as origin. As a simple demonstration
of the effect large aspect ratios can have on the general
smoothness indicator Eq. 10, we consider interpolation
inside a parallelogram with sides L and H that connects the
midpoints of four cells, as in the left plot of Fig. 5. The right
plot shows the error in the interpolated value at the midpoint
of the interface between two of the cells, compared with the
(constant) interpolated value computed in SVD-coordinates,
for a span of L and H values. This error increases rapidly
as the aspect ratio deviates from unity. (We note in passing
that the original smoothness indicator for Cartesian grid in
[32] is scale-invariant under axis-aligned changes in aspect
ratio.)

For simplicity, we define the linear weights γ k
i in Eq. 13

to be proportional to the volume of the triangle/tetrahedron
spanned by the centroids that define the corresponding
polynomial. This ensures that very small, degenerate triplets
or quadruples do not adversely impact the interpolation
quality. Another option would be to select linear weights
to obtain a third-order reconstruction in regions where
the interpolated quantity is smooth, but requires additional
treatment for negative linear weights and we thus leave this
for future work.

3.5 Linearization and solution of the nonlinear
discrete problems

Inserting the reconstructions discussed above into the
residual equations of the type shown in Eq. 4 for each
conserved component gives a nonlinear system of discrete
equations, F(y) = 0, where the vector y collects all
the unknown cell averages in all cells of the model. For
compressible rock and fluids, the system will generally be
nonlinear also if we use an explicit discretization (i.e., set
m = n in Eq. 4). To solve the nonlinear system, we use a
standard Newton method iterative solver,

0 ≈ F(yn) + Jδy, yn+1 = yn + δy, (15)

where J is the Jacobian matrix evaluated at y0. The
linearized system does not explicitly enforce saturations
to be in the unit interval and to mitigate this and to
ensure sufficient convergence rates for nonlinear fluxes,
we only allow for a maximum saturation update of 0.2 in
each Newton update for the examples with nonlinear flux
functions. If convergence issues are detected by oscillating
or stagnant maximum residuals, the solver employs a global
relaxation for the remainder of the current Newton loop.
Another option is to use a line-search, but this may require
a large number of costly WENO evaluations. Likewise, we

Fig. 5 Illustration of reconstruction of point values for cells with large
aspect ratios. Here, cell averages from four cells are used to recon-
struct a point value at the interface between the red and green cells.
The left and middle plots show how the quadrilateral interpolation
region, which is not aligned with the major axes (left), is transformed

to square in the local coordinate system by an affine transforma-
tion. The right plot shows the error in the interpolated value when
using unscaled variables as a function of height and length. The error
increases significantly even for modest deviations from unit aspect
ratio
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may have to halve the time step to obtain convergence when
the prescribed number of nonlinear iterations is insufficient
(in the explicit case, the time step is limited by a standard
CFL condition).

A main difficulty in developing a fully implicit,
high-resolution simulator is to derive and compute the
Jacobian matrix. The combination of complex constitutive
relationships and the high-order reconstruction can lead
to very intricate nonlinearities, and deriving the required
linearizations analytically and then coding them is a time-
consuming and error-prone process. To avoid this problem,
we use automatic differentiation (AD) as explained in [46].
AD relies on the premise that the evaluation of any residual
equation can be broken down to a nested sequence of
elementary binary operations (addition, multiplication, etc.)
and unary operations (logarithm, exponential, etc.). These
operations satisfy known derivative rules, and we can use
these rules in combination with the chain rule to analytically
evaluate the derivatives of any function evaluation. In the
AD-OO framework of MRST [31], this is done by operator
overloading, and as a user, all you have to do is code
the residual evaluation, and then the Jacobian matrix is
computed simultaneously with the residual by the software.

4 Numerical examples

This section reports a series of numerical examples that
compare the performance of the fully implicit WENO
method with a first-order, single-point upwind (SPU)
method. The study is a continuation of [46], and if not stated
explicitly otherwise, all two-phase cases with polymer or
waterflooding use the same fluid model. In all simulations
reported herein, we only reconstruct primary variables;
we have run a number of test cases to verify that the
discrepancy between reconstructing mobilities and primary
variables is negligible. Likewise, we have already presented
several comparisons between explicit and implicit schemes
in [46], and explained in detail why implicit schemes should
generally be preferred. In the following, we therefore only
present results from the implicit versions of the WENO and
first-order schemes.

4.1 Example 1: Convergence study

We start by studying the numerical error and the order of
convergence for the method. In many EOR scenarios, the
chemical fronts will propagate as linear or weakly nonlinear
waves. Such waves contain no or very little self-sharpening
and are thus more susceptible to numerical smearing than
leading nonlinear displacement fronts. To illustrate typical
behavior, it is sufficient to study a 1D, single-phase, two-
component displacement process. That is, we consider a

L = 100-m-wide reservoir initially filled with a “blue” fluid
except for a “chemical bank” containing “red” fluid to the
left in the reservoir. We displace the bank of “red” fluid by
injecting “blue” fluid from the left boundary, assuming a
constant pressure drop 	p over the reservoir. The governing
equations reduce to a linear advection equation

ut + aux = 0, u(x, 0) = u0, a = μK	p/(Lφ),

which has exact solution u(x, t) = u0(x − at). Here,
however, we solve the problem as a two-phase model
with equal fluid properties for the two phases. This setup
represents a worst-case scenario since the linear wave lacks
the self-sharpening mechanisms that tend to counteract
numerical smearing for nonlinear waves.

It is simple to show that the numerical smearing for the
SPU scheme is proportional to 	x + a	t . Introducing the
CFL number ν = a	t/	x that relates the time step to
the spatial discretization, we get a smearing (1 + ν)	x,
which for a fixed spatial discretization decreases with the
time step. (This is in contrast to explicit schemes, for which
the smearing increases with reduced CFL number.) For the
WENO scheme, we expect a formal L1 error to have a
O(	x2) contribution from the spatial discretization and a
O(	t) contribution from the temporal discretization.

Figure 6 reports the L1 error on a sequence of refined,
uniform Cartesian meshes for two different initial data.
For a smooth Gauss-pulse, the SPU scheme exhibits the
expected linear convergence. The order of convergence
for the WENO scheme is dictated by the choice of the
time step, and we can only expect to observe quadratic
convergence if we choose 	t ∝ 	x2 or introduce a
second-order temporal discretization. It is more interesting
to observe the improvement in accuracy for ν ∼ 1. For
many EOR models, linear waves are typically trailing waves
that move slower than leading displacement fronts. Thus, if
the CFL number of the leading nonlinear waves are chosen
to be moderately above unity, the effective CFL number
of the linear wave would be in a range where the second-
order WENO discretization would give significantly better
resolution than the standard first-order SPU scheme. For the
discontinuous double-step profile, the convergence order is
one-half for both schemes, as expected. For both initial
conditions, the nonlinear solver converged in one iteration
for all time steps for SPU and WENO.

4.2 Example 2: Quarter five-spot

To compare how the SPU and WENO schemes perform for a
full displacement profile, we consider the well-known quar-
ter five-spot setup for a displacement of oil by water contai-
ning polymer. Instead of using a full well model, we model
the injector placed in the south-west corner as a source
term with constant injection rate and represent the producer
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Fig. 6 Convergence study of the L1-error of the SPU (blue) and WENO (red) schemes for smooth and discontinuous initial data

placed in the north-east corner as a boundary condition with
fixed pressure. We compare how the two schemes perform
on a simple Cartesian grid, a Voronoi grid, and a triangle
grid, which all have a comparable number of cells.

Figure 7 reports saturation profiles at a fixed time, chosen
so that water has just broken through at the producer in all
three grids. The leading water front and the trailing chemical
front are both resolved more sharply by the second-order
WENO scheme. The computed saturations are more patchy
on the two unstructured grids than on the Cartesian grid. The
effect is somewhat exaggerated for WENO since we plot
cell averages and not the piecewise bilinear reconstruction.
A simple grid-refinement study on the Voronoi grid shows
that the first-order scheme needs approximately four times
as many grid cells as WENO to achieve the same accuracy.
This is consistent with observations made for Cartesian
grids in [46].

4.3 Example 3: Layer from SPE 10

To see how the difference in resolution between SPU and
WENO translates to a highly heterogeneous setting, we
consider a fluvial formation consisting of high-permeable
sandstone channels embedded in a low-permeable back-
ground of shale and coal, modeled by a 60 × 220 Cartesian
grid with permeability sampled from Layer 45 of the SPE 10
benchmark [11]. We inject water with polymer from a point
source placed in grid cell (36, 1) and produce fluids at con-
stant bottom-hole pressure from a producer located in cell
(1, 217). From the contours of cell-averaged saturations in
Fig. 8, sampled 3000 days after injection started, it is evi-
dent that WENO scheme captures the displacement fronts
with approximately the same accuracy as SPU on a 2 × 2
refined grid. We observed the same trend for similar simu-
lations on other layers of the SPE 10 model, including the
more smoothly varying, shallow-marine, Tarbert formation.

For this example, we have used a time-step control
built into MRST, which, in its simplest form, takes a
set of time-step targets (control steps) and a desired
number of nonlinear iterations as input. Here, we have
used five iterations as our target and a step target that
consists of 30 equally spaced time steps of 100 days. To
avoid a large initial error, the first step is replaced by a
( 1

32 , 1
32 , 1

16 , 1
16 , 1

4 , 1
2 ) subdivision to form a gradual ramp-

up. For some control steps, the time-step controller will
reduce the actual time step to achieve convergence within
the specified number of nonlinear iterations. The bar graphs
in Fig. 8 report the number of nonlinear iterations for the
two schemes. For SPU, most steps require three iterations
and all control steps complete without chopping. This gives
an average time step of 81 days and a minimum step size of
3 days (CFL number 50 and 1.87, respectively). For WENO,
the Newton solver struggles more and requires three times
as many iterations as SPU in total, giving an average step
size of 68 days and a minimum step size of 2 days (CFL
number 42.5 and 1.25, respectively).

4.4 Example 4: Norne fieldmodel

This example seeks to demonstrate how the WENO scheme
can significantly improve the resolution of linear or weakly
linear waves at the typical grid resolution seen in field-scale
models by considering the conceptual fluid model from
Example 2 posed on the grid from the Norne simulation
model. We impose a constant injection rate at the end of
the reservoir, with no-flow conditions elsewhere, and place
two producer wells operating at fixed bottom-hole pressure
on the opposite end of the domain. This simple piston-
like displacement of a “blue” fluid by an identical “red”
fluid, see Fig. 9, clearly exhibits how WENO reduces the
numerical smearing significantly compared with the SPU
scheme for the same time step. In fact, WENO reduces
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Fig. 7 Quarter five-spot with polymer flooding computed on three different grids with constant (first-order) and WENO (second-order)
reconstruction. The color plots show cell-averaged saturation values

the smearing more than if we let SPU use ten times as
many time steps. Comparing water-cuts from the three
simulations, we see how the smearing effect causes SPU to
predict almost 80 days earlier breakthrough than WENO.
We now repeat the same experiment with permeability and
porosity from the original field model. In this case, we
observe less discrepancy between the water cut for SPU
and the two other simulations. This is to be expected,
as the layering of the real model leads to very different
flow paths through the model, which reduces the impact of
numerical diffusion on the aggregate water production in a
long well, as the first arrival time varies between layers. We
use 300 time steps to simulate 2000 days of displacement
with maximum CFL numbers of 185.5 and 161.8 for the

homogeneous and heterogeneous cases, respectively. The
cell-average CFL numbers are 1.32 and 0.88. When we
examine the nonlinear iterations used by WENO in Fig. 10,
we note that WENO uses more iterations (3.58 on average)
or the heterogeneous permeability than for homogeneous
permeability (1.56 on average), largely because of a number
of time-step cuts. As this is a linear problem, SPU uses a
single iteration per time step.

4.5 Example 5: Unstructured grids

The examples discussed so far have focused on illustrating
how the WENO scheme improves the resolution of linear
and nonlinear waves. To illustrate the utility of WENO

Fig. 8 Polymer injection into a fluvial reservoir (Layer 45
from SPE 10). The contours show water saturation at values
0.22:0.030:0.78. The bar graphs show the number of nonlinear itera-
tions per targeted time step (control step) for SPU (left) and WENO

(right) schemes. Some steps have been divided to ensure that the num-
ber of iterations per step (green bars) do not exceed five. Steps that
have not converged within 10 iterations are considered to fail and
illustrated by a red bar
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on fully unstructured grids, we consider a case from [2]
that describes a vertical cross-section with a producer rep-
resented by a single point and an injector whose curved
trajectory spans a relatively large part of the domain. The
setup consists of four grids:

G1: a coarse Cartesian grid with 231 cells;
G2: a composite grid in which the coarse Cartesian grid

is refined locally around the wells by adding Voronoi
cells, giving in total 939 cells;

G3: an unstructured Voronoi grid with 1926 cells, which
is adaptively refined near the wells; the grid is
constructed so that the centroids of the perforated
cells are placed exactly on the well trajectory;

G4: a fine Cartesian grid with 20,000 cells.

Figure 11 verifies that WENO gives improved resolu-
tion of the leading saturation front as well as the weakly
nonlinear chemical front for the two unstructured polyhe-
dral grids. On grid G3, in particular, WENO seems able to
capture the shape of the chemical front with much higher
accuracy. Unlike the first-order scheme, WENO captures

small undulations in the trailing rarefaction waves caused by
the tabulated relative permeabilities on G3 and G4, see [46].

Looking at the oil and water production, we see that the
finest grid (G4) has so high resolution that both methods
seem to capture the fluid production with almost similar
accuracy. On all the other grids, WENO gives much sharper
resolution of the water breakthrough and the corresponding
decay in oil production. This effect would be even more
pronounced if the simulations were continued past the time
the chemical displacement front breaks through. Trailing
chemical fronts generally have weaker self-sharpening
mechanisms than the primary displacement front and are
thus more difficult to capture accurately. Use of a higher-
order reconstruction can therefore be a feasible alternative
to increasing the grid resolution.

4.6 Example 6: Grid effects

The two previous examples demonstrated that the WENO
scheme is applicable to grids with the complexity seen in
contemporary simulation models. The method nevertheless
has two features that may create numerical artifacts. First
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Fig. 9 The two upper rows report water saturations for a piston dis-
placement on the Norne field model with homogeneous permeability
simulated by SPU and WENO with the same time step and by SPU
with ten times as many time step; locations of the producer wells are

plotted in red. The lower row shows water cut for homogeneous and
original petrophysical data, as well as a histogram of the number of
faces per cell
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Fig. 10 Number of nonlinear iterations per time step used by WENO for the Norne model with uniform permeability and porosity (left) and
original petrophysical data (right)

of all, like in most commercial simulators, we compute
intercell fluxes K∇p · n using a two-point discretization,
which is only consistent on K-orthogonal grids [1, 60]. To
illustrate the resulting single-phase errors, we use the same
setup as in Example 1, except that we now simulate the 1D
advection on a 2D quadrilateral mesh in which the nodes
have been perturbed so that none of the cells satisfy the
condition for K-orthogonality.

The 2D plots in Fig. 12 report cell-averaged values for
both schemes, whereas the scatter plots report reconstructed
point values at the cell centroids for SPU and at
face centroids for WENO, plotted as function of the
corresponding x-coordinates. In the absence of grid effects,
the dots should all fall on a single curve. Here, they do
not, and both schemes obviously suffer from errors induced
by the inconsistent pressure discretization. On the positive
side, WENO resolves the width and the height of the
“chemical bank” significantly more accurately than SPU.
This is very important in EOR studies in which enhanced
local displacements tend to depend strongly and nonlinearly
on the concentration of the active chemical substances.
The nonlinear solver uses two iterations in the first time
step and one iteration for the remaining time steps for the
SPU scheme. For WENO, the nonlinear solver needs two
iterations in all time steps.

The type of error illustrated in Fig. 12 is a single-phase
phenomenon that stems from an incorrect discretization
of the linear operator K∇ and should not be confused
by grid-orientation errors that arise because of insuffi-
cient multidimensional approximation of the (nonlinear)
multiphase phase flux, which can give particularly severe
grid-orientation errors for adverse mobility displacements
also on K-orthogonal grids; see, e.g., [18] and references
therein. Experiments reported in [46] indicate that second-
order TVD and WENO discretizations are somewhat less
susceptible to such errors compared with the SPU scheme
for a (rotated) quarter five-spot problem posed on Cartesian
grids. On the other hand, using a higher-order reconstruction
will reduce the stabilizing role of numerical diffusion, and

more numerical experiments are needed to assess whether
WENO mitigates or enhances this nonlinear error mecha-
nism in general.

Secondly, one could imagine that the stencil reduction
discussed in Section 3.3 will introduce artifacts. To
investigate this, we consider a nonmatching interface
between two rectilinear meshes of different resolution, see
Fig. 13. At the interface between the two submeshes, the
eastern faces of some of the fine cells to the left are split
in two. Likewise, the western faces of all the coarser cells
to the right are subdivided into three or four subfaces with
largely different areas. This introduces grid effects both
for the SPU scheme and for the WENO scheme with full
stencil. On the other hand, reducing the stencil to only
involve cell pairs on opposite sides of the subfaces with
the largest area does not introduce any notable adverse
effect on the scatter plot. For SPU, the nonlinear solver uses
two iterations for the first time step and one iteration for
the remaining time steps, whereas it requires one or two
iterations for all time steps when using WENO with full or
compact stencil.

4.7 Example 7: Compositional flow

We consider a gas injection case described using a two-
phase, three-component compositional model with Peng–
Robinson equation-of-state. The reservoir is a rectangular
block with homogeneous properties and no-flow boundaries
and produced by a pair of vertical injector/producer wells
placed in the southwest/northeast corners. We consider
two different variations of the same injection scenario. In
both cases, the compositional fluid model is comprised of
methane, CO2, and n-decane. Initially, the reservoir contains
a mixture of C1 and C10 in a pure liquid phase. One
pore volume of a gas with a mixture of 10% C1 and
90% CO2 by moles is injected. The first scenario is at
a high pressure of 400 bar at datum depth. The resulting
injection is completely miscible with no free gas and gives
a displacement profile consisting of a single shock. Gravity
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Fig. 11 Example taken from [2] with a point well and a curved well path with the perforated cells marked in blue and red color, respectively. The
lower plots show oil and water production rates. In the production plots, solid lines are the first-order method and dashed lines the WENO scheme
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Fig. 12 Simulation of a 1D
displacement on a 2D
quadrilateral grid that does not
satisfy the condition for
K-orthogonality

forces have limited effect on this single-phase flow scenario.
For the second scenario, the initial reservoir pressure is 120
bar at datum depth. Now, the injection gives rise to free
gas upon injection and significant gravity segregation and

multiphase behavior. High viscosity of the resident liquid
results in a weak and unstable displacement profile.

The basic setup is a 2.5D Voronoi grid with 2470 cells,
i.e., a grid that is laterally unstructured, but vertically

Fig. 13 Simulation of a 1D displacement across a nonmatching grid interface
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Fig. 14 Snapshots of the CO2 front part-way during the simulation of the compositional case for two different pressure regimes

structured. For comparison, we consider three refined grids
with twice the vertical resolution and/or approximately
2 × 2 the lateral resolution. To keep the CFL number
approximately the same, we also use twice the number of
time steps. To assess the spatial contribution to the smearing
for SPU, we also run a simulation with the time step reduced
by a factor one hundred. Figure 14 shows 3D snapshots of
the CO2 fraction for some of the simulations.

For the high-pressure scenario, we observe the same
behavior as in the other cases above: WENO gives much
sharper resolution than SPU on the same grid, and slightly

better resolution than SPU on all the refined grids. This is
particularly evident when looking at the production rate of
CO2 shown in Fig. 15. Because the CO2 front travels faster
the higher you are in the reservoir, the breakthrough will
be sharper and occur earlier when the vertical resolution
is increased for WENO. Figure 16 shows that the WENO
scheme only requires slightly more iterations than SPU on
the same grid. At low pressure, we see a much bigger
change for both discretizations when the vertical resolution
is increased. The stair-stepping artifact is likely a result
of mobility contrasts between different layers. Using a
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Fig. 15 CO2 production in unit tonnes per day for the compositional test cases
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Fig. 16 Number of nonlinear iterations for the compositional gas
injection test cases

high-resolution reconstruction does not significantly reduce
this artifact. For this, and comparable scenarios, the most
efficient method would be to use a high-resolution method
on a grid with relatively coarse lateral resolution and high
vertical resolution.

5 Concluding remarks

We have presented the formulation of a fully implicit
WENO scheme, which is applicable to black-oil type
and compositional simulations, and discussed some special
adaptations necessary to obtain an efficient and robust
scheme on the types of grids found in contemporary
reservoir models. In particular, we promote the use of a
local coordinate transformation to robustly handle cells
with high aspect ratios and nonconvex geometries and the
use of automatic differentiation to overcome the challenge
of linearizing the resulting system of discrete nonlinear
equations.

A series of numerical tests, some of which are reported
herein, show that the WENO scheme improves the
resolution of both linear and nonlinear waves significantly,
typically giving the same resolution as the standard SPU
scheme with twice as many grid cells in each spatial
direction or ten times as many time steps. The results
presented herein should nonetheless only be considered
as preliminary proof-of-concept. We believe that one can
obtain even better results by optimizing the choice of
local polynomials and linear weights for each cells. More
research is required to this end.

The computational cost of WENO is obviously higher
than SPU, not only because of the reconstruction procedure
and the denser local stencil, which incurs more evaluations

of partial derivatives, but also because the scheme
requires more iterations. One can reduce the cost of the
reconstruction somewhat by precomputing all geometric
parts of the stencil (the local SVD coordinate transformation
and the inverse matrix C̃ in Eq. 12). In [46], we also
discussed lagged evaluation of the nonlinear weights βk

i

to reduce the nonlinearity of the discrete stencil. Lagging
the evaluation over the whole time step seems to work
well for imbibition or drainage processes with monotone
displacement profiles, but breaks down almost immediately
in water-alternating-gas (WAG) type scenarios. Lagging
the evaluation in the nonlinear iteration process does not
seem to cause similar breakdown, but has little effect
on the computational efficiency. We believe a better
approach would be to localize reconstruction to regions with
significant fluid movement (see, e.g., [53]) and try to reuse
previous nonlinear weights for stencils where changes in
cell averages are below a prescribed value. This requires
more research.
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