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Abstract
Standard compositional simulators use composition-dependent cubic equations of state (EoS), but saturation-dependent
relative permeability and capillary pressure. This discrepancy causes discontinuities, increasing computational time and
reducing accuracy. In addition, commonly used empirical correlations, such as the Corey relative permeability model, show
a sole dependence of relative permeability on phase saturation, lumping the effect of other pore-scale phenomena into
one tuning exponent. To rectify this problem, relative permeability has been recently defined as a state function, so that it
becomes compositional dependent and single valued. Such a form of the relative permeability EoS can significantly improve
the convergence in compositional simulation for both two- and three-phase flows. This paper revisits the recently developed
EoS for relative permeability by defining relevant state variables and deriving functional forms of the partial derivatives in
the state function. The state variables include phase saturation, phase connectivity, wettability index, capillary number, and
pore topology. The developed EoS is constrained to key physical boundary conditions. The model coefficients are estimated
through linear regression on data collected from a pore-scale simulation study that estimates relative permeability based
on micro-CT image analysis. The results show that a simple quadratic expression with few calibration coefficients gives
an excellent match to two-phase flow simulation measurements from the literature. The goodness of fit, represented by the
coefficient of determination (R2) value, is 0.97 for relative permeability at variable phase saturation and phase connectivity,
and constant wettability, pore structure, and capillary number (∼ 10−4). The quadratic response for relative permeability
also shows excellent predictive capabilities.

Keywords Relative permeability · Phase connectivity · Equation of state · State function · Fluid flow in porous media ·
Two-phase flow

1 Introduction

Multiphase flow in porous media is of great interest in a
wide array of applications including hydrocarbon recovery,
groundwater resource utilization [1, 2], CO2 storage [3],
aquifer remediation [4, 5], and two-phase flow in proton-
exchange membrane fuel cells [6, 7]. Each of these
applications is governed by a multitude of underlying pore-
scale phenomena, such as Haines jumps [8, 9], snap-offs
[10, 11], corner flow [12], capillary and viscous fingering
[2], diffusion and dispersion [13], dissolution/precipitation
[14, 15], and wettability alteration [16–18].
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Considering the breadth of multiphase-flow literature,
studies can be classified into two categories: macroscopic
and microscopic. In macroscopic studies, averaged transport
properties, such as relative permeabilities and capillary
pressure, are measured on core samples to capture the
effect of these flow properties on macro-scale properties
of interest, such as oil recovery. The averaged transport
properties at the core scale act as a proxy to pore-scale
processes, which govern the multiphase-flow process.

Standard compositional simulation employs the princi-
ples of continuum mechanics to model multiphase flow in
complex porous media, using averaged transport properties.
The most commonly used two-phase relative permeability
model in commercial compositional simulators is the Corey
model, which is an empirical correlation that assumes sole
dependence of relative permeability on phase saturation. As
explained in Khorsandi et al. [19], this has several lim-
itations, including the necessity of phase labeling, which
causes discontinuities as a phase disappears or changes to
another phase, causing serious convergence and stability
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problems [19]. In addition, in order to include the effect of
hysteresis, modification of the Corey model is used [20].
The modified model, however, assumes that phase satu-
ration follows a particular path. Saturation history is not
sufficient to consider the effect of phase distribution on
multiphase flow [21]. Khorsandi et al. [22] proposed a
new functional form for compositionally dependent relative
permeability based on the state function concept that elim-
inates the need for phase labeling [22]. They demonstrated
excellent predictive capability even for complex hysteretic
flow. Khorsandi et al. [19] then proposed a new com-
positional simulation approach that eliminated the incon-
sistencies caused by saturation-based transport properties,
demonstrating significant improvement compared to current
commercial simulators, resolving stability and convergence
issues, as well as increased robustness and accuracy [19].

With the advancement in X-ray micro-computed tomog-
raphy (CT), the technology is utilized in several microscopic
multiphase flow studies, allowing for visualization and
quantification of previously theorized pore-scale processes
[23–29]. Fast synchrotron-based X-ray tomography allows
for real-time visualization of phenomena like cooperative
pore filling, corner filling, droplet fragmentation, snap-off,
and coalescence [23, 30, 31]. Avraam and Payatakes [30]
were among the first to propose four main flow regimes
observed during multiphase flow through porous media
via 2D micromodel experiments. These included small and
large ganglion dynamics, drop traffic flow, and connected
pathway flow. It was observed that as the flow rate of
the wetting phase increased, the flow regime shifted from
large ganglion dynamics to small ganglion dynamics to drop
traffic flow to connected pathway flow. A simultaneous
increase in relative permeabilities was observed [30]. These
findings have been recently corroborated through experi-
ments and simulation studies by Armstrong and coworkers
[31, 32].

In more recent studies by Pak et al. [29] and Khishvand
et al. [33], the authors conducted micro-CT experiments
to visualize and quantify the trapped non-wetting phase
structures at variable capillary numbers. In addition, it was
observed during drainage cycles that at higher flow rates, the
number of individual non-wetting phase clusters increases.
The authors also noted the importance of the pore structure
by observing that droplet fragmentation was not severe in
homogenous rocks like sandstones compared to the more
complex carbonate pore structures [29]. In such studies,
researchers have adopted various quantitative approaches
for characterizing phase connectivity, including Euler
characteristic, coordination number, percolation threshold,
fractal dimension [34], and specific fluid-fluid and fluid-
solid interfacial areas [27, 35].

There is enough evidence in the literature that sug-
gests that multiphase flow in porous media is affected by

rock properties: rock mineralogy, surface roughness, pore
geometry, pore topology, and heterogeneity; fluid proper-
ties: viscosity and density; and rock-fluid and fluid-fluid
interactions: wettability, adsorption, precipitation, chemical
dissolution, and interfacial tension [34]. Avraam and Pay-
atakes [36], recognized the importance of the dependence
of relative permeability on various parameters, in addition
to fluid saturation, such as capillary number, viscosity ratio
between injected and displaced fluid, bond number, advanc-
ing and receding contact angles, coalescence factor, pore
geometrical and topological factor, and the history of flow.
Within reason, a number of these parameters were varied
to evaluate their impact on fluid distribution and relative
permeabilities [36].

Khorsandi et al. [22] proposed an equation-of-state (EoS)
approach for modeling relative permeabilities as a state
function. The main advantage of this approach is that it
is physically based and ensures a single valued solution
for relative permeability. The contributing parameters that
affect relative permeabilities were saturation of the fluid
phases, phase connectivity, capillary number, wettability of
the medium, and the pore structure of the medium. The
authors evaluated the importance of phase saturation and
connectivity on relative permeabilities and found a good
match against experimentally published data [22]. However,
there was no discussion about the verification of the EoS
being a valid state function nor its validity at limiting
boundaries of the state variables.

In this research, we present a structured workflow
for the development of an equation of state (EoS) for
relative permeability using a response surface modeling
approach. We define relevant boundary conditions to
physically constrain the EoS under limiting conditions and
derive functional forms for the partial derivatives. For
this development, we implement similar state variables
proposed by Khorsandi et al. [22]. The calibrating
parameters in the final form of the EoS are determined
through linear regression on the data presented in the recent
literature that presents measurements of phase saturation,
phase connectivity, and relative permeabilities. In the
following sections, we outline the development of the
model, provide the description of the boundary conditions,
and present the results that show the fit of the model to the
literature data.

2Methodology

2.1 Development of a state function

A state function, by definition, is a property whose value
depends only on the condition or state of the system
irrespective of the path taken to reach that state [37, 38].
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This implies that for relative permeability to be a state
function, it must only have one value at a given set of
the variables considered. To satisfy this condition, the
developed relative permeability function must be an exact
differential. For an exact differential, the partial derivative
coefficients must satisfy the Euler reciprocity relation [39].
In thermodynamics, for a property that is a function of n

variables to be an exact differential, it must satisfy NE

reciprocity relations, where NE is the number of conditions
given by

NE =
n−1∑

i=1

i. (1)

For a state function dQ = f1dx1 + f2dx2 . . . + fndxn, the
conditions will be of the form

∂fi

∂xj

∣∣∣∣
xk,k �=j

= ∂fj

∂xi

∣∣∣∣
xk,k �=i

, for i ∀[1 : n−1]; j ∀[i+1 : n];k ∀[1 : n]. (2)

Another condition contributing to the validity of a state
function is whether the state variables considered are
independent. Properties are considered independent of each
other when one property can be varied while all other input
properties are held constant. On analyzing microscopic
multiphase flow experimental studies in the literature, it
is observed that saturation and phase connectivity are
independent variables except when saturation is exactly one
(e.g., [40]). At the same saturation value, multiple fluid
configurations can exist leading to widely different phase
connectivity.

As discussed previously, there are numerous pore-
scale variables that may contribute to changes in relative
permeability. Hence, given the complex nature of the
problem, there are many degrees of freedom that can
be specified to fully define relative permeability as an
EoS. Including all the parameters that contribute to
changes in transport properties in the state function would
theoretically result in an exact match of the literature
data. Practically, however, a very complex model would
be required to account for all state variables that affect
relative permeability. Therefore, in this research, we
use the minimum number of variables that sufficiently
define the state of the system, exhibiting a good match
with literature data, and allowing for reliable relative
permeability predictions, with an acceptable degree of
accuracy.

Khorsandi et al. [22] proposed an equation-of-state
approach (Eqs. 3 and 4) to calculate the change in relative
permeability as a function of five measurable, pore-scale
state variables [22].

krj = f
(
Sj , χ̂j , Ij , Nca, λ

)
. (3)

Expressing Eq. 3 in exact differential form,

dkrj=
∂krj

∂Sj

dSj+
∂krj

∂χ̂j

dχ̂j+
∂krj

∂Ij

dIj+
∂krj

∂Nca
dNca+

∂krj

∂λ
dλ.

(4)

where Sj represents saturation of phase j , χ̂j represents
connectivity in terms of the normalized Euler characteristic
of phase j , Ij is the wettability index of phase j, Nca is the
capillary number and λ is the pore structure.

At constant wettability (dIj = 0), constant pore structure
(dλ = 0), and constant flow rate and fluid properties (i.e.,
dNca = 0), Eq. 4 reduces to Eq. 5.

dkrj =
(

∂krj

∂Sj

)

χ̂j

dSj +
(

∂krj

∂χ̂j

)

Sj

dχ̂j . (5)

For the simplified relative permeability state function
defined in Eq. 5, only one reciprocity condition (see Eq. 1)
must be honored as shown by Eq. 6.

∂

∂χ̂j

(
∂krj

∂Sj

)

χ̂j

= ∂

∂Sj

(
∂krj

∂χ̂j

)

Sj

. (6)

By forcing relative permeability to satisfy Eq. 5, we ensure
that there is only one value of relative permeability as a
function of two variables, while simultaneously capturing
the essential physics. The error introduced by this approach
is minimized by tuning to literature data.

2.2 Phase connectivity

Finding a unique mathematical definition for connectivity
in porous media has been an active point of research
[41]. A number of connectivity parameters have been
discussed in the literature such as the Euler characteristic
[42], percolation threshold [43], connectivity function [44],
contour tree connectivity [41], coordination number, and
fractal dimension [34]. Out of these measures, the Euler
characteristic (χ) has been the simplest and most widely
used measure of connectivity in porous media [44, 45].

The Euler characteristic is a topological invariant
originally proposed by Leonhard Euler for a polyhedron
as the alternating sum of vertices (V ), edges (E), faces
(F), and objects (O) as shown in Eq. 7 [46]. Extending
the concept to more complex structures, the Euler Poincaré
formula (Eq. 8) has been widely used for quantifying
connectivity of microstructures. The Euler characteristic
values range from −∞ to + ∞ where a highly connected
phase has a large negative value and a highly disconnected
phase has a large positive value.

χ = V − E + F − O. (7)

χ = β0 − β1 + β2. (8)
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The parameters β0, β1, andβ2 are the zeroth, first, and
second Betti numbers, respectively. β0 represents the
number of clusters, β1 is the number of holes or redundant
loops (the maximum number of breaks that can be made
without having the cluster split into two as explained by
Herring et al. [47], and β2 is the number of enclosed voids.

The Euler characteristic depends on saturation, saturation
history, pore topology, and the scale of the measurement.
To allow for better comparison based on phase connectivity
only, we must normalize the Euler characteristic to elimi-
nate such effects. Herring et al. developed a normalization
scheme that eliminated the effect of pore structure by divid-
ing χnon-wetting phase by χpore structure, which is equivalent to
the Euler characteristic at 100% phase saturation [47]. How-
ever, this only sets an upper bound to the value of the
normalized Euler characteristic, χ̂ , where −∞ < χ̂ < 1.
Khorsandi et al. [22] modified this normalization scheme
to eliminate the effect of measurement scale and phase sat-
uration, as well as to set a lower bound to the value of χ̂

[22]. In this paper, we use a simpler expression for the nor-
malization of the Euler characteristic (Eq. 9) such that χ̂ is
bounded between 0 and 1.

χ̂j = χj − χmax

χmin − χmax
, (9)

where χmax represents the limiting case for a completely
dispersed phase which is expected to occur when all the
pores in the porous medium are filled with the phase but no
throats are filled to connect the pores and χmin represents
the case where a phase is fully connected, occupying 100%
of the pore space. χmin can be easily estimated as the
Euler number of the pore space from its micro-CT image,
whereas χmax can be estimated as the number of pores
from the extracted pore network of the pore space, or from
the coordination number of the rock type and its χmin

value. These minimum and maximum values of the Euler
characteristic are independent of the fluid type.

Equation 9 defines an intrinsic connectivity parameter for
a homogeneous medium that is no longer dependent on the
pore volume considered. A value of zero for the dimension-
less phase connectivity means the phase is disconnected
completely, while a value of one is perfect connectivity.

2.3 Development of relative permeability EoS

For the development, the EoS (i) must satisfy the reciprocity
relation shown in Eq. 6, (ii) must honor physical boundary
conditions, and (iii) must be the simplest functional form
possible to minimize overfitting of test data. Therefore, we
consider that the relative permeability state function takes
a simple form, such that the partial differential coefficients
are linear in χ̂j and Sj . Thus, we make the relative

permeability state function a quadratic response to Sj and
χ̂j expressed by Eq. 10.

krj = α0 +α1χ̂j +α2Sj +α11χ̂
2
j +α22S

2
j +α12χ̂j Sj . (10)

Next, we describe the principle limiting conditions pre-
sented in Table 1 to constrain the EoS. The first constraint is
that for both saturation and phase connectivity equal to 1.0,
the relative permeability must be 1.0. At phase saturation
just below 1.0, the phase connectivity can theoretically vary
over its entire range, although physically only a small range
is likely for a given set of variables.

We set the phase connectivity to be 1.0 and saturation to
be 0.0 for the second constraint. At low phase saturation,
in general, the phase connectivity should be low; however,
for a wetting phase under extreme wetting conditions, the
connectivity could be high as well. Also, for a non-wetting
phase (say oil), the region near χ̂j = 0 and Sj = 0 is
a plausible physical region for cases such as film drainage
when two other phases are present (say gas and water).
Otherwise, it is unlikely to achieve flow near this region.

The third and fourth constraints are set to ensure that
the partial derivatives are positive over the entire χ̂j and
Sj space. These constraints could be removed if more
experimental data is available to improve the values of
relative permeability in regions near these limits. We
found it necessary to include these constraints for the data
examined in this paper.

We did not constrain the relative permeability function at
Sj = 1 and χ̂j = 0, as it is not physical to reach this value of
connectivity. That is, at exactly a saturation of 1.0, the phase
connectivity must be 1.0 in that it is no longer independent,
but at a saturation of 0.99 and χ̂j = 0, the relative
permeability should be zero. We omitted this constraint
from the fitting procedure based on the recognition that
complex porous media would likely never have values near
this region. It is likely that there is a limiting value of χ̂j as a
function of saturation based on pore morphology and other
state variables.

Upon implementing these physical constraints, we
obtained the final form of the model shown below.

krj= α11

(
1−2χ̂j +χ̂2

j

)
+ α22

(
−2Sj +S2

j +χ̂j Sj

)
+ χ̂j Sj .

(11)

The coefficients α11 and α22 are determined through linear
regression on measured data. Evaluation of the partial
derivatives of Eq. 11 gives
(

∂krj

∂χ̂j

)

Sj

= 2α11χ̂j + Sj (1 + α22) − 2α11, (12)

(
∂krj

∂Sj

)

χ̂j

= χ̂j (1 + α22) + 2α22Sj − 2α22. (13)
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Table 1 Physical constraints imposed on the relative permeability response by considering 683 key limiting conditions that affect relative
permeability as a function of phase saturation and 684 phase connectivity

Physical constraint Remarks

krj = 1 at Sj = 1 and χ̂j = 1 Relative permeability at 100% saturation must be 1

krj = 1 at Sj = 0 and χ̂j = 1 Relative permeability with low phase saturation should be negligible
∂krj

∂χ̂j

∣∣∣
Sj =0

= 0 at χ̂j = 1 The change in relative permeability with full phase connectivity should be negligible near full phase connectivity

∂krj

∂Sj

∣∣∣
χ̂j =0

= 0 at Sj = 1 The change in relative permeability with full phase saturation should be negligible near 100% saturation

The phase is assumed nonwetting, although extensions to other phases are easily possible

Euler reciprocity shows that these derivatives define a state
function (Eq. 6). That is,

∂

∂χ̂j

(
∂krj

∂Sj

)

χ̂j

= ∂

∂Sj

(
∂krj

∂χ̂j

)

Sj

= 1 + α22. (14)

The exact differential form (Eq. 5) then becomes from
Eqs. 12 and 13,

dkrj = [
2α11χ̂j + Sj (1 + α22) − 2α11

]
dχ̂j + [

χ̂j (1 + α22)

+2α22Sj − 2α22

]
dSj . (15)

2.4 Comparison to the development in Khorsandi
et al. [22]

The relative permeability EoS proposed by Khorsandi et al.
is shown in Eq. 16 [22]

krj = Ck

(
φj − φrj

)nk , (16)

where φj is the phase distribution term defined as Sj+αϕχj ;
φrj is the residual phase distribution of phase j ; and Ck ,
αϕ , and nk are tuning parameters. It was assumed in this
formulation that the ratio of the two partial differential
coefficients was constant. The form of Eq. 16 allowed
for direct use of the Corey model, while also making the
equation simple. Although Eq. 16 satisfies reciprocity, it
does not satisfy all boundary conditions in Table 1 and likely
is not reliable except near the tuned experimental data.

We set the value of nk to 2 in Eq. 16 to get Eq. 17.

krj =Ck

(
S2

j +α2
ϕχ2

j +φ2
rj

+2αϕSjχj −2Sjφrj − 2χjφrj

)
.

(17)

Comparing our development in Eq. 11 to Eq. 17, we see

Ck = α22, (18)

αϕ = ±
√

α11

α22
, (19)

φrj = ±
√

α11

α22
. (20)

More complicated cubic or higher-order polynomial equa-
tions could also be used, but the simplest form that reason-
ably matches experimental data and boundary conditions
is preferred to avoid over-fitting. Most importantly, the
EoS developed in this paper honors the physical boundary
constraints presented in Table 1. The response surface for-
mulation provides justification for Eq. 16, although future
research could define a form of Eq. 16 that honors physical
constraints like those in Table 1.

In Fig. 1, we illustrate that once the EoS is determined,
the real path from the initial to the final state can be
separated into a constant saturation path followed by a
constant phase connectivity path or vice versa to arrive
at the same final state. In this way, relative permeability
can be calculated by integrating the individual partial
differential coefficients to arrive at the final state’s relative
permeability. The shortcoming of such an approach is
that it requires phase connectivity values at the initial
and the final state, which is not readily available unless
sophisticated techniques such as X-ray micro-CT are
implemented. One way of overcoming this shortcoming is
to determine a functionality between phase connectivity and
phase saturation so as to bypass the dependence of relative
permeability on phase connectivity. This provides an avenue
for future research. Khorsandi et al. [22] solved this problem
by assuming that the change in connectivity with saturation
is constant for any drainage path, and similarly for any
imbibition path. They used simple but different models for
drainage and imbibition and tuned them to available data.
From these fixed tuned models, they could predict hysteretic
scans that began at different saturations.

2.5 Estimation of the coefficients of the EoS

The data set used for estimating the coefficients of the
model in Eq. 11 is from Armstrong et al. [31]. In their
paper, the authors coupled experimental research with
simulations to study the effect of phase topology on
macroscopic system behavior during two-phase flow in a
porous medium. Micro-flow experiments were conducted in
a sintered glass sample with chemically doped water as the
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Fig. 1 Illustration showing the EoS state approach on a real path
(simulation) taken during two-phase flow simulation in Sj and χ̂j

space

wetting phase and decane as the non-wetting phase. The two
phases were co-injected at different fractions maintaining
steady-state conditions, and three different flow rates
were tested to represent three different capillary numbers,
namely 10−4, 10−5, and 10−6. From the segmented images
acquired during micro-flow experiments, 11 different fluid
configurations (each representing a different fluid saturation
arrangement) were used as the initial condition for two-
phase flow simulations to determine relative permeabilities
for a wider range of capillary numbers obtained by
varying fluid properties during these simulations. A 4D
connected component algorithm was implemented to track
the fluid ganglion during simulations for estimating phase
connectivity.

The full data set is displayed in Fig. 2. Figure 2a shows
the data for phase relative permeability while Fig. 2b shows
the data for phase connectivity, which is measured as a
normalized Euler characteristic using Eq. 9. The phase
shown here is the non-wetting phase because the Euler
characteristic for the wetting phase was not reported.

Table 2 Euler characteristic values estimated through 2D extrapola-
tion for the pore structure 689 used during simulations in Armstrong
et al. [31]

χmax 5788

χmin −10, 704

To calculate the normalized Euler characteristic values,
χ̂j , χmax, and χmin need to be known. Because the number
of pores and the Euler number of the pore structure were not
reported, a 2D extrapolation was carried out on the data for
Nca = 1, which showed the maximum and minimum values
for the Euler number. Large capillary numbers imply very
low interfacial tension, which may explain the largest and
smallest connectivity values observed.

We assumed a planar relationship among krj , Sj , and χ̂j

for the 2D extrapolation

krj = ASj + Bχ̂j + C. (21)

Three-point extrapolation was carried out such that the
extrapolated values were near the actual data as opposed to
extrapolation on the entire data, which could lead to errors
in estimation. The first three data points of the Euler number
were used for determining χmax, where krj was set to 0,
while the last three data points were used for determining
χmin, where krj was set as 1. Simultaneously, the same three
data points on either end were used for fitting lines through
Sj and χ̂j for fixed Nca, which were then intersected with
the plane (Eq. 21) to estimate χmax and χmin values. The
extrapolated values for the Euler characteristic of the pore
structure are shown in Table 2.

3 Results and discussion

In this section, we present the results for the fitted quadratic
response for relative permeability. The sub-data set of

Fig. 2 Phase saturation, relative permeability, and normalized Euler connectivity for different capillary numbers used for fitting the quadratic
response for relative permeability as well as for prediction purposes. Courtesy Dr. Ryan T. Armstrong. Data from Armstrong et al. [31]
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Table 3 Model coefficients and the goodness of quadratic response
surface fit to phase saturation and phase connectivity to the data
presented in Armstrong et al. [31] at the Nca of ∼ 10−4

α11 −0.229

α22 −0.589

R2 0.971

Root mean squared error 0.147

capillary number ∼ 10−4 was used for response surface
fitting. This fit was used to predict data sets at different
capillary numbers. The goodness of fit is evaluated using
residual error and R2 values. Further, we present the
partial derivative coefficient to the exact differential of
relative permeability as a function of phase saturation and
phase connectivity. Finally, we compare response surfaces
generated for different capillary numbers using linear
regression on the individual sub-data sets to evaluate the
impact of the capillary number.

3.1 Quadratic response for relative permeability

We used linear regression with Matlab® to find the
coefficients in the proposed model described in Eq. 11 that
best fits the data set at the fixed capillary number of∼ 10−4.
Table 3 provides the information for the fitting parameters
and the goodness measure of the fit.

The contour map of the response surface fit is shown
in Fig. 4. The dots represent the data points at the
fixed capillary number of ∼ 10−4 used for estimating the
coefficients for the response surface. The corresponding
plot for the residual error is shown in Fig. 3. As shown,
the quadratic response gives small residual error values
scattered around 0 with a mean of −0.009, showing little
systematic error.

As shown in Fig. 4, the general trends of relative
permeability versus saturation and relative permeability
versus phase connectivity are honored, where relative

permeability increases as saturation and phase connectivity
increase. The contour map gives the relative permeability
value for a known value of normalized phase connectivity
and its corresponding value of phase saturation, irrespective
of the path/direction a particular experiment/simulation may
take. The contour map is also independent of the phase label
(gas, oil, or water, for example). This is valid for the fixed
wettability, pore structure, and capillary number used in the
development of this quadratic response.

We present a notional boundary on the contour plot in
Fig. 4, which represents the limits of possible physical
experimental/simulation conditions. The regions below and
to the right of the curve are extreme cases controlled by the
topology of the rock structure itself, as well as other vari-
ables such as wettability. This region suggests that even at
a very high phase saturation, the phase remains extremely
disconnected. Such a case would be highly unusual to occur,
especially in real porous media. It may occur in theoreti-
cal porous media with a highly disconnected pore structure
or a pore structure with a very large aspect ratio between
the pore and connecting throats so that very high capillary
forces are required for the phase to pass through. Since there
is insufficient data in this region, the prediction from our
quadratic response fit may not lead to conclusive results for
this region. A similar “unrealistic” region could be present
in the upper left corner of the contour map, although this is not
shown in Fig. 4. To achieve low saturations with high con-
nectivity would require very thin wetting films or spreading
of an intermediate wetting phase (in three-phase systems),
where even at very low phase saturation a phase remains
highly connected. Although the phase would remain highly
connected, the relative permeability would be small in this
region of Sj and χ̂j space owing to small saturation. More
experimental studies should be conducted under extreme
conditions and varying wetting states and pore topology of
the medium to acquire more complete data sets to enhance
predictive capabilities of these cases and to capture the loci
of zero relative permeabilities in Sj and χ̂j space.

Fig. 3 a Quadratic response prediction versus simulation data. b Residual between the predicted and simulation measurements for relative
permeability based on the response surface fit (Fig. 4)
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Fig. 4 Contour map of the
response surface of relative
permeability as a function of
phase saturation and normalized
Euler connectivity. The capillary
number (∼ 10−4), wettability,
and pore structure have been
kept constant. Data points
shown as black dots were taken
from the two-phase flow
simulations presented in
Armstrong et al. [31]. The
dashed line represents a limiting
boundary of plausible values

Fig. 5 Partial derivative coefficients (calculated using Eqs. 12 and 13) expressed as a function of a phase saturation and b normalized Euler
connectivity

Fig. 6 a Prediction of relative permeability and b residual error for capillary numbers ∼ 10−3 and ∼ 10−5 based on the response surface fit to
capillary number 10−4 described in Fig. 4
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Fig. 7 R2 error for prediction of data at different capillary numbers
using the sub-data set at a capillary number of ∼ 10−4 as the fitted
response surface

In Fig. 5, the partial differential coefficients expressed
in the final form of the exact differential (Eq. 15) are
shown as a function of phase saturation (Fig. 5a) and
phase connectivity (Fig. 5b). Both partial derivatives w.r.t.
relative permeability are always positive, suggesting that
relative permeability increases with an increase in Sj as
well as χ̂j . We further observe that the rate of increase in
relative permeability decreases with increasing saturation,
whereas the rate of increase of the relative permeability
with increasing phase connectivity increases, although this
increase is minor and plateaus near χ̂j∼0.55. This suggests
that the effect of an increase in phase saturation on
relative permeability slowly declines, while the effect of phase
connectivity grows. This is consistent with our understanding
that for a phase to be sufficiently connected in the porous
medium, some phase saturation should exist.

3.2 Quadratic response prediction at neighboring
conditions

We now present the predictive capability of the fitted
response surface to neighboring conditions. We use the

same data set by Armstrong et al. [31] but at capillary
numbers of ∼ 10−3 and ∼ 10−5. This ensures that the pore
structure and wetting conditions remain the same between
the fitted and the predicted cases. The plots for the response
and the corresponding residual errors are shown in Fig. 6.

Figure 6 shows that the predicted response fits the
data well. The residual errors between the predicted and
actual relative permeability values show little systematic
errors and R2 values near ∼ 0.94 for both capillary
numbers. It is likely that the capillary number impacts
these values, as is discussed in the next section in more
detail.

3.3 Effect of capillary number

To capture the effect of the capillary number on relative
permeability, we use the surface fits to predict relative
permeability at different capillary numbers ranging from ∼
100 to ∼ 106. The goodness measure of these prediction
cases is shown in Fig. 7.

From Fig. 7, we see that the R2 value showing the
goodness of fit is the maximum for capillary number ∼
10−4 marked by the dashed red line. This is because the
regression was carried out using this capillary number sub-
data set. As stated earlier, the R2 values in the neighborhood
of the fitted response are excellent at about 0.94; however,
as we move two to three orders of magnitude away from
the original capillary number, the prediction with Nca

∼ 10−4 leads to erroneous values. This clearly suggests
the importance of the capillary number as a parameter
that affects relative permeability. This is also shown in
Fig. 8 for the fitted quadratic responses to individual sub-
data sets at different capillary numbers (see Table 4 for
fitting parameters). As the capillary number increases, the
response surface becomes more planar, showing that the
dependence of relative permeability on phase connectivity
is reduced significantly while relative permeability becomes
more sensitive to the change in saturation. The occurrence

Fig. 8 Quadratic response
surface fits to sub-data sets at
different capillary numbers

Nca = ~10-6

Nca = ~10-4

Nca = ~100
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Table 4 Coefficients for the quadratic response and goodness
measures for the quadratic response surface fits to sub-data sets at
different capillary numbers shown in Fig. 8

Coefficients for the Capillary number

quadratic response and

goodness measure

∼ 100 ∼ 10−4 ∼ 10−6

α11 −0.009 −0.229 −0.517

α22 −0.806 −0.589 −0.667

R2 0.994 0.971 0.863

Root mean squared error 0.064 0.147 0.249

of these observations can be quantitatively observed in
Table 4, where the magnitude of the α11 term decreases
significantly at a higher capillary number. A sharp decrease
in the magnitude of this term explains the reduced effect of
phase connectivity (see Eq. 11). Overall, these observations
are consistent with those observed by Armstrong et al.
[31], where connectivity was found to be larger at greater
capillary numbers and therefore relative permeability
becomes more strongly dependent on phase saturation [31].

In Fig. 9, we show typical Corey fit to the data
at extreme capillary numbers. The fit to the exponent
was <1 for the high capillary number case and >1 for
the low capillary number case. These exponents govern
the curvature of the relative permeability change with
respect to saturation, which causes a slower or faster
increase in relative permeability as saturation changes.
These plots reveal the inherent importance of phase
connectivity implicitly assumed in Corey’s approach for
fitting relative permeability. The slower/faster change in
relative permeability as seen in Fig. 9 is the result of the
changes in phase connectivity. Such relative permeability
curves are also observed during microemulsion/excess

oil and microemulsion/excess brine relative permeability
measurements conducted by Delshad et al. where the
microemulsion phase relative permeability was observed to
increase sharply [48]. This increase was attributed to the
wettability and low interfacial tension of the microemulsion
phase, which in principle improved connectivity to increase
relative permeability.

4 Conclusions

In this paper, we present the development of a physically
based quadratic state function for relative permeability in
phase saturation and phase connectivity. The coefficients
of the EoS are determined through linear regression on
two-phase flow simulation data from the literature. The
following conclusions can be drawn under the assumptions
in which this study is conducted.

• A simple quadratic response for relative permeability
gives an excellent fit to simulation data at fixed
capillary numbers.

• The quadratic response fit acquired from one data set
shows excellent predictive capabilities at similar flow
conditions. However, away from original conditions, the
predictive capability of the kr response surface decreases
owing to the dependence on the capillary number.

• Connectivity increases faster at low saturations than
at high saturations for large capillary numbers. This
explains the small Corey exponents obtained in labora-
tory cores for ultra-low interfacial tension experiments.
The reverse is true for a small capillary number where
capillary effects dominate.

Although the model presented in this paper may not be
the only solution, our approach was designed to seek the
simplest EoS that honors key limiting physical constraints

Fig. 9 Phase relative permeability plots with corresponding phase con-
nectivity value (shown in blue). a High capillary number ∼ 1. b Low
capillary number ∼ 10−5. The red solid lines represent the fit using the

Corey model with ∼ exponent value of a 0.76 and b 1.29. The resid-
ual saturation in a was set to 0 while computing the Corey exponent
because that data point was not known
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and provides a reasonable fit to the data presented in the
literature. The presented approach is mathematically simple,
which is advantageous for potential use in compositional
simulation. The assumption of a quadratic response surface
may not fit all relative permeability data, where higher-
order polynomials may be needed. Nevertheless, the
response surface approach developed here justifies the
relative permeability functionality presented by Khorsandi
et al. [22] for an exponent of 2.0. In addition, one
of the main outcomes of using the developed EoS is
being able to eliminate discontinuities resulting from using
saturation-dependent relative permeability correlations in
compositional simulators, which increases computational
time and reduces accuracy. This would be especially useful
to account for complex processes such as mass transfer
and dynamic changes that often occur during transport of
multiple phases in real porous media. A future research
direction is to develop an improved functional form of
relative permeability that honors physical limits and is more
predictive than response surfaces.
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Nomenclature A, B, C, Coefficients for planar representation of
relative permeability for 2D extrapolation; αi , Coefficients in the
quadratic expression for relative permeability, i = 0, 1, 2, 11, 22,
12; β0, β1, β2, Betti numbers 0, 1, and 2, respectively; E, Number of
edges in a polyhedron; F , Faces in a polyhedron; I , Wettability index;
krj , Relative permeability of phase j ; λ, Pore structure; Micro-CT,
Micro-computed tomography; Nca, Capillary number; Pc, Capillary
pressure; PV, Pore volume; Sj , Saturation of phase j ; V , Number
of vertices in a polyhedron; χ̂j , Normalized Euler connectivity; χj ,
Euler characteristic of phase j ; χmin, Euler characteristic representing
the most connected state of a phase; χmax, Euler characteristic
representing the maximum disconnected state of a phase.
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