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Abstract
We describe the underlying mathematics, validation, and applications of a novel Helmholtz free-energy—minimizing phase-
field model solved within the framework of the lattice Boltzmann method (LBM) for efficiently simulating two-phase
pore-scale flow directly on large 3D images of real rocks obtained from micro-computed tomography (micro-CT) scanning.
The code implementation of the technique, coined as the eLBM (energy-based LBM), is performed in CUDA programming
language to take maximum advantage of accelerated computing by use of multinode general-purpose graphics processing
units (GPGPUs). eLBM’s momentum-balance solver is based on the multiple-relaxation-time (MRT) model. The Boltzmann
equation is discretized in space, velocity (momentum), and time coordinates using a 3D 19-velocity grid (D3Q19 scheme),
which provides the best compromise between accuracy and computational efficiency. The benefits of the MRT model
over the conventional single-relaxation-time Bhatnagar-Gross-Krook (BGK) model are (I) enhanced numerical stability,
(II) independent bulk and shear viscosities, and (III) viscosity-independent, nonslip boundary conditions. The drawback of
the MRT model is that it is slightly more computationally demanding compared to the BGK model. This minor hurdle is
easily overcome through a GPGPU implementation of the MRT model for eLBM. eLBM is, to our knowledge, the first
industrial grade–distributed parallel implementation of an energy-based LBM taking advantage of multiple GPGPU nodes.
The Cahn-Hilliard equation that governs the order-parameter distribution is fully integrated into the LBM framework that
accelerates the pore-scale simulation on real systems significantly. While individual components of the eLBM simulator
can be separately found in various references, our novel contributions are (1) integrating all computational and high-
performance computing components together into a unified implementation and (2) providing comprehensive and definitive
quantitative validation results with eLBM in terms of robustness and accuracy for a variety of flow domains including various
types of real rock images. We successfully validate and apply the eLBM on several transient two-phase flow problems of
gradually increasing complexity. Investigated problems include the following: (1) snap-off in constricted capillary tubes;
(2) Haines jumps on a micromodel (during drainage), Ketton limestone image, and Fontainebleau and Castlegate sandstone
images (during drainage and subsequent imbibition); and (3) capillary desaturation simulations on a Berea sandstone image
including a comparison of numerically computed residual non-wetting-phase saturations (as a function of the capillary
number) to data reported in the literature. Extensive physical validation tests and applications on large 3D rock images
demonstrate the reliability, robustness, and efficacy of the eLBM as a direct visco-capillary pore-scale two-phase flow
simulator for digital rock physics workflows.
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1 Introduction

Understanding the dynamics of immiscible displacement at
the pore scale can provide beneficial insights into the pore-
scale characteristics and flow regimes that have a major
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influence on the macroscale displacement process [68].
Moreover, pore-scale flow simulation can facilitate the com-
putation of the Darcy-scale flow parameters necessary as
input for, e.g., reservoir simulation. However, it is a very
complicated study due to numerous factors influencing the
flow such as fluid density and viscosity, interfacial ten-
sion, fluid flow rate, surface wettability, pore geometry,
and medium heterogeneity [67]. Besides the experimental
studies, our knowledge of immiscible displacement can be
complemented by numerical modeling, where experimen-
tal studies in pore scale are high in cost and usually time
consuming [68]. Also, in an experimental study of a spe-
cial parameter’s effect on flow behavior, it is troublesome to
set other parameters constant when the special parameter
changes. Although numerical simulation cannot consider
all aspects of immiscible displacement in complex geome-
tries arising in natural porous media, it can give a general
overview of the fluid flow mechanism and can be a helpful
predictive tool [21]. Ultimately, at our current state of know-
ledge, numerical simulation of multiphase flow, improved
oil recovery (IOR), and enhanced oil recovery (EOR) pro-
cesses is, in many cases, the only practical methodology to
upscale flow and displacements from pore to Darcy scale.
For that reason, numerical simulation approaches covering
multiphase flow and IOR/EOR processes at pore-scale res-
olution have received increasing interest. These approaches
group into two major families. The first are so-called pore
network models [22] where the pore space is abstracted into
a network of spherical pore bodies connected with tubes
of polygonal cross sections, and flow and displacement are
described mechanistically by rules. In order to avoid the
associated approximations and shortcomings [19], direct
numerical approaches, which are becoming increasingly
feasible, are used. In direct numerical pore-scale flow simu-
lation, hydrodynamic flow equations are solved directly on
the complex pore space extracted, for instance, from X-ray
micro-computed tomography.

Direct numerical simulation approaches are particularly
appropriate for modeling pore-scale flow because no a priori
choice between the level of rigor and captured phenomena
is made. Moreover, simulations are performed directly on
segmented images that describe the pore structure without
introducing remeshing uncertainties. Unlike traditional pore
network modeling techniques and morphological modeling
approaches (e.g., the maximum inscribed sphere technique)
[89], in direct simulation, capillary and viscous forces act at
the same time. Thus, depending on the choice of flow para-
meters, both capillary- and viscous-dominated flows can be
rigorously captured. Direct simulation enables the descrip-
tion of a wide range of flow regimes and simulation of a wide
range of pore-scale dynamics such as cooperative and/or
nonlocal displacement processes. Berg et al. [19] state

that such nonlocal processes have been observed during
drainage in 2D micromodels [8] and during imbibition [18]
with fast micro-CT (e.g., [17]). However, from a computa-
tional perspective, direct simulation techniques are notably
more computationally expensive than pore network models.

For single-phase flow, direct simulation techniques are
more well established and, to some extent, commercially
available in software packages. For two-phase flow, the
underlying transport phenomena are substantially more
complex, and active research is ongoing along various
tracks. Several methods have been developed for simulating
single- and two-phase flows at molecular, pore, and other
meso scales. These methods include lattice gas and lattice
Boltzmann models (e.g., [23]), Monte Carlo models (e.g.,
[64]), molecular dynamics (e.g., [86]), smoothed particle
hydrodynamics (SPHs) (e.g., [90]), dissipative particle
dynamics (DPD) (e.g., [66]), and Eulerian computational
fluid dynamics (CFD). The latter family of techniques
includes the front-tracking method (e.g., [42]), the volume
of fluid method (e.g., [83]), the level-set method (e.g., [81]),
and the phase-field method (e.g., [3, 4, 13, 34, 38, 52, 56]).
Recently, Demianov et al. [30, 31] and Dinariev and Evseev
[33] introduced the density functional hydrodynamics
method within the framework of the finite-volume method,
where the modeling of two-phase pore-scale flow has
been demonstrated [9, 17] using a general formulation,
which accounts for the miscibility effects [59]. The density
functional hydrodynamics method is closely related to the
phase-field method in terms of its thermodynamically based
fundamentals. The Eulerian CFD family of techniques and
the lattice Boltzmann technique are more commonly used
for simulating fluid flow phenomena at the pore scale. We
refer the reader to the reviews of pore-scale flow simulation
methods by Anderson et al. [7], Jakobsen [53], Meakin
and Tartakovsky [70], Joekar-Niasar et al. [54], Kim [57],
and Blunt et al. [21]. The phase-field method, originally
developed within the framework of the finite-volume/finite-
element method, is closely related to the method described
in this paper, which is developed within the framework of
the lattice Boltzmann method (LBM).

LBM is recently proposed as an ideal CFD method for
simulation of two-phase flow through complicated geom-
etry of porous media. Unlike continuum CFD schemes
which are based on discretization of macroscopic contin-
uum equations, LBM is based on the mesoscopic kinetic
equations (e.g., Benzi et al. [14] and Succi [91]). The
fundamental advantage of LBM is its computational effi-
ciency. The method was designed from ground up to run-on
high-performance hardware to accommodate for complex
physics. The ensuing efficiency makes new scientific fron-
tiers accessible when it allows to solve problems that could
not be approached before. Thus, LBM eliminates the com-
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putational inefficiencies resulting from solving differential
equations with the brute-force approach of classical CFD.
Algorithm simplicity and accuracy in handling irregular
flow paths are the main reasons for LBM’s rapid progress
in multiphase flow modeling through porous media (e.g.,
[11, 12, 41]). It is also an explicit method that makes the
code suitable to massively parallel computing [49]. There
are four predominant multiphase LBM models in the lit-
erature which are as follows: (1) the R-K color gradient
method (e.g., [44, 94]), (2) the Shan-Chen pseudo-potential
model (e.g., [60, 88]), (3) the free-energy model [92], and
(4) the mean-field theory model [46]. Huang et al. [49]
have recently used the R-K color gradient method to sim-
ulate two-phase flow in a porous medium constructed by
scattered circles with different radii. They conducted simu-
lation in 17 cases with various viscosity ratios and capillary
numbers to show flow pattern distributions in a logarithmic
plot of viscosity ratio versus capillary number. Armstrong
et al. [11, 12] used an R-K color gradient LBM on a mixed
CPU-GPU supercomputer to simulate multiphase flow in a
sandstone rock over a wide range of saturation and capillary
numbers demonstrating also close agreement with direct
imaging in terms of fluid topology. Dong et al. [35] uti-
lized the Shan-Chen model to study the viscous fingering
phenomenon of the displacement of two immiscible fluids
in simplified homogeneous porous media. They tested the
effects of capillary number, Bond number, viscosity ratio,
and surface wettability on flow behavior. Liu and Wu [68]
applied the Shan-Chen model and volume of fluid (VOF)
method to examine the effects of wettability, interfacial ten-
sion, and pressure gradient on two-phase flow in a very
complex 3D model of a real porous medium. Liu et al.
[67] extended the mean-field theory model to investigate the
effects of capillary number, viscosity ratio, contact angle,
and bond number on the immiscible displacement of gas and
liquid in a 2D homogeneous pore network.

The R-K color gradient and Shan-Chen LBM models use
a simplistic description of the fluid-fluid interface which
captures only limited physics. While being sufficient and
successful for two-phase immiscible situations [11, 12], it is
difficult to extend the methodology in a thermodynamically
consistent form for fluid systems with compositional
gradients, varying interfacial properties, and immiscible-
miscible transitions. The phase-field approach is very
suitable to handle such situations [59]. There are also
respective free-energy–based LBM models, which were
originally proposed by Swift et al. [92, 93]. These models
involve a thermodynamic equilibrium function of phases,
and a defining term of interfacial tension is added to
the equilibrium distribution function, allowing the free-
energy model to define the interfacial tension more easily
than the other multiphase models. During recent years,

several developments have been performed on this model,
e.g., by Pooley and Furtado [78] and Inamuro et al. [51],
and in a major advance, Zheng et al. [102] developed a
computationally inexpensive model which is applicable at
high viscosity ratios and recovers the lattice Boltzmann
equation to the Cahn-Hilliard equation [27] without any
additional terms.

Yang [96] performed a quantitative comparison of the
Shan-Chen pseudo-potential model, the R-K color gradient
model, and an implementation of the free-energy model.
It has been found that the Shan-Chen model allows the
simulation of high-density ratio fluids (e.g., liquid-gas
systems) but gives rise to low numerical stability and
wide interfaces for multiphase immiscible systems (e.g.,
oil-water systems). On the other hand, the R-K color
gradient model and the free-energy model readily permit
the simulation of two-phase flow for fluids with significant
viscosity contrast and recover the analytical solutions
of Poiseuille flow and fingering simulations. Yang [96]
concluded that the free-energy and R-K color gradient
models are most appropriate to simulate immiscible two-
phase pore-scale flow of fluids exhibiting high viscosity
contrast with high numerical stability.

While the free-energy LBM is a thermodynamically
based model where there is a direct link between interfacial
curvatures and interfacial tension as an upscaled quan-
tity (stemming from the actual nanoscale characteristics of
the interface), the R-K color gradient model lacks such a
direct link to the thermodynamics, which renders it unsuit-
able for subsurface applications in hydrocarbon recovery.
Therefore, we focus on the free-energy model for the LBM
implementation. We describe the development, validation,
and application of a distributed parallel implementation
of a variant of the free-energy LBM based on the phase-
field method for simulating two-phase pore-scale flow in
a thermodynamically consistent fashion on large images of
porous rocks. The numerical method solves the hydrody-
namic visco-capillary equations of motion for a binary fluid
with viscosity contrast. The continuity and Navier-Stokes
equations are coupled to an advection-diffusion equation
and are solved using a free-energy lattice Boltzmann algo-
rithm. The key element of the method is a free-energy func-
tional that describes the equilibrium properties of the binary
fluid. Construction, advancement, destruction, and regener-
ation of phase interfaces are governed by this free-energy
functional. The pressure tensor and the chemical potential
are both derived from this functional. As such, they provide
a gateway for the thermodynamically based free-energy
minimization concept to enter into pore-scale two-phase
flow equations. We implement a multiple-relaxation-time
(MRT) lattice Boltzmann algorithm that reduces the spuri-
ous velocities at the fluid-fluid interface near the contact
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line [78] and leads to an improvement in numerical stabil-
ity. The code implementation of this algorithm is coined
as the energy-based lattice Boltzmann method (eLBM),
standing for energy-based lattice Boltzmann method. While
individual components of eLBM can be separately identi-
fied in various references, our novel contributions are (1)
integrating all computational and high-performance com-
puting components together into a unified industrial grade
simulator implementation and (2) providing extensive and
definitive quantitative validation results with eLBM in terms
of robustness and accuracy for a variety of flow domains
including a plethora of real rock images. Novel predictions
of fluid topology and relative permeability during imbibi-
tion by the use of eLBM have already been published in
Alpak et al. [1]. To our knowledge, this paper is unique
in the open literature in terms of completeness in model
description and eLBM code implementation detail, as well
as comprehensiveness in terms of fundamental validation
tests on real rock images.

The outline of this paper is as follows: We first describe
the mathematical model on which the machinery of the
eLBM code is based. The following section elaborates on
the algorithmic parameters of eLBM. Subsequently, a set
of smaller-scale validation problems is presented which
establishes that eLBM contains the right level of physical
rigor for the applications at interest. Contrary to pore
network models where Darcy-scale results are obtained
by a combination of displacement rules and extensive
tuning of the network, direct simulation approaches rely
entirely on the correctness of the elementary pore-scale
displacement mechanisms. The purpose of the small-scale
validation tests is to establish that phenomena associated
with the elementary displacement physics are handled by
the simulator in a correct way. A series of basic validation
tests has been established in the literature [9, 100] which
probes the interplay of viscous and capillary forces. The
geometry-constrained snap-off was chosen as the first
physical validation problem as it involves topological
changes of fluid interfaces [9]. Simulation-based studies
of Haines jumps constitute the next detailed study using
both a synthetically generated micromodel and a micro-
CT image volume of a Ketton limestone, a Fontainebleau
sandstone, and a Castlegate sandstone. For the latter
cases, the possibility of correctly modeling Haines jumps
using a thermodynamically consistent two-phase pore-scale
simulation method is demonstrated for both forced-drainage
and forced-imbibition processes. The studies of Haines
jumps on the Ketton limestone, Fontainebleau sandstone,
and Castlegate sandstone images involve large-scale flow
simulations from the computational perspective. A section
on the summary of the work and conclusions closes this
document.

2Mathematical model and implementation

2.1 Thermodynamics of the fluid

There is a direct link between interfacial curvatures and
interfacial tension as an upscaled quantity in free-energy
LBM. This is a major requirement for a model intended
for a pore-scale multiphase IOR/EOR flow simulator. Thus,
we implement the free-energy LBM at the core of our
pore-scale flow simulator.

The free-energy LBM is a variant of the phase-field
method that belongs to a class of hydrodynamic models
called the diffuse interface models where the fluid-fluid
interface has a finite thickness [7]. Earlier versions of
the free-energy LBM are described in Swift et al. [92,
93], Briant et al. [25], and Briant and Yeomans [24]. Far
away from a contact line, the free-energy LBM solves
the hydrodynamic equations of motion of the fluid, i.e.,
the Navier-Stokes equations and the continuity equation.
In the vicinity of the contact line, however, due to the
finite thickness of the interface, the method introduces
a diffusive mechanism, which regularizes the viscous
dissipation singularity [29] and allows the contact line
to slip on a solid substrate. One of the most important
advantages of the method is that, when simulating a binary
fluid, this approach avoids the need to track the time
evolution of the interface between two different phases
[97]. This makes it ideal to study problems involving the
time evolution of driven fluid-fluid interfaces, such as the
ones that emerge in pore-scale two-phase displacement
processes. The two phases contain particles of two different
types in the standard binary model that is used in this
work. The two phases have the same density but may have
different viscosities. The free-energy model is known to
deliver enhanced stability for problems with large viscosity
ratios between displacing and displaced fluids. The free-
energy model can also describe (partially) miscible binary
systems [3].

Let � denote a spatial domain such that � ⊂R3 and
let J := (

0,tf
)

denote the considered time interval with end
(final) time, tf ∈R+. We use the index (also known as
Einstein) notation throughout the paper for expressing the
summations in partial differential equations. The symbols
α, β, and γ denote the component summation indices. The
equilibrium properties of a binary (two-phase) fluid can be
described by a Helmholtz free-energy functional [24]

F=
∫

V

(
fb+κφ

2
(∂αφ)2

)
dV +

∫

S

fsdS, (1)

where the first term is a volume (V ) integral over the spatial
domain (fluids) and the second term is a surface (S) integ-
ral over the surfaces of the spatial domain (solid-fluid
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interfaces). The first term in the integrand is the bulk
free-energy density given by

fb=A

2
φ2+B

4
φ4+c2

3
ρlnρ, (2)

where φ is the order parameter, ρ is the fluid mass density,
and c is a lattice velocity parameter. The order parameter
is defined as (m1−m2)

/
(m1+m2) , where m1 and m2 are

mass densities of Phase 1 and Phase 2 fluid, respectively.
This choice of fb allows binary phase separation into two
phases if A< and B>, as the bulk free-energy density takes
the form of a double-well potential, with bulk equilibrium

solutions φeq= ±
√(−A

/
B

)
. Here, we make the choice

A= −B, which leads to φeq= ±1 for the two phases. The
position of the interface is chosen to be at φ= 0. The final

term in the bulk free-energy density, c2

3 ρlnρ, does not affect
the phase behavior and is added to enforce incompressibility
[55].

The gradient term κφ

2 (∂αφ)2 in Eq. 1 penalizes the spatial
variations of the order parameter φ, for example across an
interface, and ensures a smooth transition from one phase to
the other; hence, this term is related to the interfacial tension
σ=√

8κφA
/

9 and to the interface width ξ=√−κφ

/
A

[24].
The final term in the free-energy functional (Eq. 1)

describes the interactions between the fluid and the solid
surfaces. Following Cahn [26], the surface energy density is
taken to be of the form fs= −hφs , where φs is the value of
the order parameter at the surface. Minimization of the free-
energy gives an equilibrium wetting boundary condition
[24]

κφ∂⊥φ= − dfs

dφs

= −h, (3)

which permits the computation of the value of the normal
derivative of the order parameter ∂⊥φ at the substrate in
equilibrium. The value of the parameter h (surface excess
chemical potential) is related to the equilibrium contact
angle θeq via [24]

h=√
2κφ (−A)sign

[π

2
−θeq

]√
cos

(α

3

) [
1 − cos

(α

3

)]
,

(4)

where α= arccos
(
sin2θeq

)
and the function sign returns

the sign of its argument.
This choice of the free-energy leads to the (exchange)

chemical potential

μ=δF

δφ
=Aφ−Aφ3−κφ∂γ γ φ, (5)

which describes the change in F for a small change
in the order parameter and is constant at equilibrium.
The pressure tensor, which determines how the system

approaches equilibrium, is given by Anderson et al. [7] and
Kendon et al. [55]

Pαβ=
[
φ

δF

δφ
+ρ

δF

δρ
−F

]
δαβ+ (∂αφ)

δF

δ
(
∂βφ

)

=
[
pb−κφφ∂γγ φ−κφ

2

(
∂γ φ

)2
]
δαβ+κφ (∂αφ)

(
∂βφ

)

=P isoδαβ+P chem
αβ , (6)

where pb= c2

3 ρ+ 1
2Aφ2− 3

4Aφ4 is the bulk pressure. The
pressure tensor comprises of two terms, a “chemical” pres-

sure tensor contribution
(
P chem

αβ

)
and an isotropic con-

tribution
(
P iso

)
to ensure constant density [55]. P chem

αβ

originates from the fact that, in the presence of concentra-
tion (represented by the order-parameter) gradients, there is
a thermodynamic force density (−φ (∂αμ)) acting at each
point of the fluid which can be expressed as the divergence
of a chemical pressure tensor: φ (∂αμ) =∂βP chem

αβ . Effec-
tively this thermodynamic force density pulls the two fluids
in opposite directions due to the chemical potential gradi-
ent, with the net force being zero at the interface (φ= 0).
For a free-energy–based multicomponent LBM we refer the
reader to Li and Wagner [65] and Zhang and Kwok [101].

2.2 Equations of motion

The hydrodynamic equations for the system are the
continuity (Eq. 7) and the Navier-Stokes (Eq. 8) equations
for a non-ideal fluid

∂tρ+∂α (ρuα) = 0, (7)

∂t (ρuα)+∂β

(
ρuαuβ

)=−∂βPαβ+∂β

[
η
(
∂βuα+∂αuβ

)]+Fα,

(8)

where u, P, η, and F=ρg denote the fluid velocity, pressure
tensor, dynamic viscosity, and body force, respectively. For
a binary fluid, the equations of motion are coupled with an
advection-diffusion equation

∂tφ+∂α (φuα) =M∇2μ, (9)

which describes the dynamics of the order parameter
φ. M=M (φ) denotes the mobility coefficient, which is
nonlinear in φ and restricts the diffusion to the vicinity
of fluid-fluid interfaces. Details of our nonlinear mobility
implementation will be introduced in Section 2.3 of the
paper. We refer the reader to Kim [57] on the use
of constant versus variable mobility. We use the phase-
weighted description of the velocity. The equilibrium
thermodynamic properties of the fluid enter the equations of
motion through the pressure tensor (Eq. 6) and the chemical
potential (Eq. 5).
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By expanding the chemical potential (μ) in powers of
φ−φeq , one obtains the following expression for small
deviations from equilibrium

μ=
(
A−3Aφ2

eq

) (
φ−φeq

) +O
((

φ−φeq

)2
)

, (10)

The diffusive term M∇2μ can be written as D∇2φ

with D=M
(
A−3Aφ2

eq

)
corresponding to the diffusion

coefficient. Then, Eq. 9 can be expressed as follows:

∂tφ+∂α (φuα)=D∇2φ, (11)

We target the isothermal immiscible flow of two flowing
fluids within the application scope of the pore-scale
simulator. We assume that the thermal effects due to
fluid-fluid and fluid-rock friction are negligible. Therefore,
the energy balance equation is consciously excluded in
the equations of motion. Moreover, in the current eLBM
implementation, we assume that the contact angle hysteresis
[82], i.e., the differences between advancing and receding
contact angles from the equilibrium contact angle, is
negligible.

The equations of motion (Eq. 7 through Eq. 11) are
solved using an MRT implementation of LBM [28]. Details
about the implementation of this technique are given in
the references Briant and Yeomans [24], Yeomans [97],
and Pooley et al. [79]. The continuity and Navier-Stokes
equations are coupled to an advection-diffusion equation
and are not solved independently. This ensures that the
equations are solved with an algorithm, which is consistent
with the thermodynamics of the fluids. Thermodynamic
concepts enter the equations of motion through the chemical
potential and pressure tensor in this formulation. The
coupling occurs at the level of the distribution functions for
the density and in the pressure tensor. Details of this can
be found in Briant and Yeomans [24], Yeomans [97], and
Pooley et al. [79]. The evolution of the order parameter is
obtained from solving the advection-diffusion equation. The
order parameter responds to the flow as it can be advected
by the flow (while velocity field is obtained from solving
the Navier-Stokes and continuity equations), but it also
responds to chemical potential gradients. The evolution of
the order-parameter field results in a change of the pressure
field, which, in turn, affects the flow field.

Due to the continuity equation (Eq. 7), we are free to
specify only three of the four variables (density and the three
components of the velocity) on the boundary. The fourth
variable will be the outcome of solving the equations of
motion using the lattice Boltzmann algorithm [47].

2.3 Phase-field LBM implementation for a binary
fluid

From the viewpoint of representation of approximated
solution variables on a discrete grid, LBM (including
eLBM) is an Eulerian technique as it operates on a
fixed mesh. However, there are Lagrangian and arbitrary
Lagrangian-Eulerian implementations of LBM in the
literature as well (e.g., [43, 71, 95]).

Real-life two-phase pore displacement scenarios have
fluids with different densities. Having stated that, we restrict
the scope of the pore-scale immiscible flow simulator to
flows where the density contrast is relatively small, and the
viscosity contrast is a more dominant factor over density
contrast, e.g., displacement of oil with water or vice versa.
We consciously exclude the density contrast–driven systems
from the applicability scope of the simulator. On the other
hand, this scope definition presents us with the opportunity
to make the binary fluid assumption (i.e., density-matched
fluids) in the simulator formulation and thereby takes
advantage of the computational efficiency it endows the
simulator with in terms of the LBM solver implementation.

Conventional methods directly solve the Navier-Stokes
equations in terms of the density (ρ) and velocity (u)

and approximate the differential equations by the use of
a finite-difference, finite-volume or finite-element method.
On the contrary, LBM introduces a number (Q) of particle
distribution functions fi (r,t) (i= 0, · · · ,Q−1), discrete
in time and space, which are associated to a set of
velocity directions (ei). These distribution functions can be
interpreted as the density of fluid, at position r and time t ,
which is moving in direction i. Figure 1 shows the directions

Fig. 1 The velocity vectors ei in the 19-velocity, three-dimensional
lattice Boltzmann model (D3Q19)
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of the velocities in a 3D model with 19 velocity vectors
(D3Q19) given by

⎡

⎣
ex,0−6

ey,0−6

ez,0−6

⎤

⎦=
⎡

⎣
0 c −c

0 0 0
0 0 0

0 0 0
c −c 0
0 0 c

0
0

−c

⎤

⎦ , (12a)

⎡

⎣
ex,7−18

ey,7−18

ez,7−18

⎤

⎦=
⎡

⎣
c −c c

c c −c

0 0 0

−c 0 0
−c c −c

0 c c

0 0 c

c −c 0
−c −c c

−c c −c

0 0 0
c −c −c

⎤

⎦ ,

(12b)

where c=�x
/
�t is the lattice velocity parameter and �x

and �t are the discretization in space and time, respectively.
The moments of the velocity distribution functions (fi)

are related to the physical quantities, mass density (ρ), and
momentum density (ρu) via

∑18

i=0
fi=ρ,

∑18

i=0
fieiα=ρvα, (13)

where v is related to the fluid velocity (u) through

ρuα=ρvα+1

2
Fα�t . (14)

The time evolution of the distribution functions (fi) follows
two steps:

Collision step: f ′
i (r,t) =fi (r,t) − 1

τf

[
fi (r,t) −f

eq
i (r,t)

] +�tFi, (15a)

Propagation step:fi (r+ei�t,t+�t)=f
′
i (r,t) , (15b)

where f
eq
i , τf , and Fi are the local equilibrium distribution

functions, the relaxation time and the external body force
acting on the fluid, respectively. Equation 15b represents
one of the simplest collision models, proposed by Bhatnagar
et al. [20], where a single-relaxation-time approximation is
made. The distribution functions (fi) relax towards their
equilibrium values (f eq

i ) with a relaxation time (τf ), which
is related to the dynamic viscosity of the fluid by

η=ρc2�t
(
τf −1

/
2
) /

3 . (16)

The relaxation time (τf ) therefore has to be greater than
1

/
2 . The collision step is followed by a propagation step

(Eq. 15b), where populations (fi) stream to the next lattice
site along ei .

In order to recover the continuity equation (Eq. 7)) and
the Navier-Stokes equation in the continuum limit, the

following restrictions should be imposed on the distribution
functions and on the forcing term:

∑18

i=0
f

eq
i =ρ,

∑18

i=0
f

eq
i eiα=ρuα,

∑18

i=0
f

eq
i eiαeiβ=Pαβ+ρuαuβ, (17a)

∑18

i=0
f

eq
i eiαeiβeiγ =ρc2

3

(
uαδβγ +uβδαγ +uγ δαβ

)
,

∑18

i=0
Fi=ρ,

∑18

i=0
Fieiα=Fα,

∑18

i=0
Fieiαeiβ=uαFβ+uβFα . (17b)

For a binary fluid, two sets of particle distribution functions
are needed, since there are two fluid phases: one of them
(fi) is related to the density and momentum (Eqs. 13 and
14) and the other (gi) is related to the order parameter

∑18

i=0
gi= φ, (18)

Again, the evolution of the additional distribution functions
follows two steps:

Collision step: g
′
i (r,t)=gi (r,t)− 1

τg

[
gi (r,t) −g

eq
i (r,t)

]
, (19a)

Propagation step: gi (r+ei�t,t+�t) =g
′
i (r,t) , (19b)

where g
eq
i is the equilibrium distribution functions. The

relaxation time (τg) is related to the mobility coefficient in
the advection-diffusion equation (Eq. 9) by

M= �t�
(
τg−1

/
2
)
(φ−1) (φ+1) , (20)

where � is a parameter that governs the slip velocity of
the contact line, as the contact line moves via diffusion.
� can be predicted using a calibration procedure involving
high-resolution visualizations of micromodel experiments
for a given fluid-fluid-solid triplet with an equilibrium
contact angle (θeq), approximately matching the actual
simulation problem at hand. Moreover, if the simulation
problem at hand warrants so and if there is a justifiable
way of generating spatial variability, one can specify a
heterogeneous � for a heterogeneous θeq problem.

The distribution functions
(
g

eq
i

)
must obey the following

constraints:
∑18

i=0
g

eq
i =φ,

∑18

i=0
g

eq
i eiα=φuα,

∑18

i=0
g

eq
i eiαeiβ= �μδαβ+φuαuβ (21)

to correctly reproduce the advection-diffusion equation
(Eq. 9).
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Taking into account the constraints in Eqs. 17a and 21 for
f

eq
i , g

eq
i , and Fi , the equilibrium distribution functions and

the forcing terms can be defined as follows [78]:

f
eq
i =wi

c2

(
pb−κφ∇2φ+eiαρuα+ 3

2c2

[
eiαeiβ− c2

3
δαβ

]
ρuαuβ

)
,

κφ

c2

(
wxx

i ∂xφ∂xφ+w
yy
i ∂yφ∂yφ+wzz

i ∂zφ∂zφ+w
xy
i ∂xφ∂yφ

+wxz
i ∂xφ∂zφ+w

yz
i ∂yφ∂zφ

)
, (22)

g
eq
i =wi

c2

(
�μ+eiαφuα+ 3

2c2

[
eiαeiβ− c2

3
δαβ

]
φuαuβ

)
, (23)

and

Fi=wi

c2

(
eiαFα+ 3

2c2

[
eiαeiβ−c2

3
δαβ

] (
uαFβ+uβFα

))
.

(24)

The coefficients wi , wxx
i , w

yy
i , wzz

i , w
xy
i , wxz

i , and w
yz
i are

as follows:

w1−6=1

6
, (25a)

w7−18= 1

12
, (25b)

wxx
1,2=w

yy

3,4=wzz
5,6=

5

12
, (25c)

wxx
3−6=w

yy

1,2,5,6=wzz
1−4= −1

3
, (25d)

wxx
7−10=wxx

15−18=w
yy

7−14=wzz
11−18−

1

24
, (25e)

wxx
11−14=w

yy

15−18=wzz
7−10=

1

12
, (25f)

w
xy

1−6=w
yz

1−6=wxz
1−6= 0, (25g)

w
xy

7,10=w
yz

11,14=wxz
15,18=

1

4
, (25h)

w
xy

8,9=w
yz

12,13=wxz
16,17= −1

4
, (25i)

w
xy

11−18=w
yz

7−10=w
yz

15−18=wxz
7−14= 0. (25j)

Although the choice for the coefficients in Eqs. 22 through
24 is not unique, it was shown that this choice reduces
the unphysical currents, called spurious velocities, that
appear close to the curved interfaces in lattice Boltzmann
simulations [78]. It is important to note that the distribution
functions f

eq
i and g

eq
i are coupled to each other through the

terms ∂αφ and ∇2φ in f
eq
i .

The hydrodynamic equations of motion, namely conti-
nuity equation (Eq. 7), Navier-Stokes equation (Eq. 8), and
advection-diffusion equation (Eq. 9) can be obtained by per-
forming a Chapman-Enskog expansion [69] on Eqs. 15a and
20.

Consistent with the physics of pore-scale two-phase flow
of two immiscible fluids, e.g., oil and water, the variant
of LBM implemented in the eLBM code approximates

the incompressible Navier-Stokes equations for two-phase
flow. The derivation of the incompressible Navier-Stokes
equations by means of the LBM is only valid for low Mach
numbers (typically, Ma<0.1) with Ma=u0,l

/
cs , where

u0,l is the characteristic velocity in lattice units and cs

is the speed of sound, which is a lattice constant such
that c2

s =1
/

3 . Theoretically, even at low Ma values, the
Reynolds number (Re=ρu0,l l

/
η ) can be high due to a

low viscosity (η), rendering LBM applicable for any Re.
However, the viscosity is directly related to the relaxation
time in practice. For stability reasons, the relaxation time
is limited at the lower and upper bounds. Therefore, the
practically accessible Re range is approximately 1.0 × 10−4

to 1.0.
The developments reported in this paper are a step

towards a more comprehensive model including composi-
tional and density gradient effects. In the future, we intend
to relax the density-matched fluid assumption. In order
to achieve this objective, the momentum balance equation
needs to be extended for density contrast.

2.4 Initial and boundary conditions

The fluids are at rest in the flow domain (�) as the initial
condition. The order parameter (φ) and bulk pressure (pb)

fields can be homogeneous (e.g., before primary drainage)
or heterogeneous (e.g., post-drainage/pre-imbibition) within
the pore space initially.

In lattice Boltzmann simulations, we encounter two main
boundary conditions on solid surfaces: the no-slip boundary
condition for the velocity field and the wetting boundary
condition (Eq. 3) for the order parameter.

A no-slip boundary refers to the condition at a solid
boundary, where the fluid has zero velocity relative to
the boundary. The solid walls are introduced to the
lattice Boltzmann model through the implementation of
the midlink bounce-back method proposed by Ladd and
Verberg [61], where the incoming populations (f

′
i ) are

reflected towards the lattice nodes they came from. In
the 3D formulation, the advected populations (f

′
i ), which

are traveling along links connecting fluid and solid nodes,
are reflected towards the fluid node they came from. This
step can be described by f−i (r,t+�t) =f

′
i (r,t), where the

direction −i denotes the opposite direction of the direction
i. The bounce-back step is repeated at the end of each
cycle of the collision-propagation sequence and ensures that
the no-slip boundary condition is recovered at the solid
boundaries. More precisely, the effective boundary, defined
as the position of the zero-velocity plane, is located halfway
between the fluid and solid nodes.

We next consider the implementation of the wetting
boundary condition. The value of the normal derivative of
the order parameter ∂⊥φ at the substrate in equilibrium is
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expressed by Eq. 3. Using this condition and the values for
φ at the fluid nodes neighboring the boundary, we assign
the appropriate values for φ at the neighboring solid nodes.
The main advantage of this method is that the terms ∂αφ

and ∇2φ, needed for the evaluation of f
eq
i in Eq. 22, can be

calculated in the same way as for the fluid nodes in the bulk.
We use the stencils for ∂αφ and ∇2φ reported in Pooley and
Furtado [78] that were shown to reduce spurious velocities.
Since eLBM is based on a phase-field method that results
in diffuse interfaces and operates directly on image volumes
stemming from imaging and image processing that often
contain jagged surfaces (with artificial roughness due to
insufficient resolution), it is prone to the errors associated
with the inaccurate representation of the energy density on
rough surfaces. We counter this prohibitive issue in eLBM
by implementing the energy-based correction methodology
described in Frank et al. [39] such that the wetting boundary
condition is accurately imposed within two-phase flow
simulations.

Prescribed velocity and prescribed order-parameter
boundary conditions are implemented for the inlet to drive
the fluid flow through the domain (�). Gradient-free fluid-
exit boundary conditions are implemented for the outlet to
mimic the real-life situation that the medium in which the
flow takes place is much larger than the domain we numer-
ically model. A loop boundary condition is imposed for the
order parameter and velocity on the open-to-flow, i.e., non-
solid global faces of the domain (�). The loop boundary
condition is similar to the popular periodic boundary condi-
tion but does not require mirroring of the domain. A fluid
package that exits the domain at a given domain boundary
surface enters the domain at the opposing boundary surface
with the same order parameter and velocity, as long as there
is a fluid cell at the entry point.

2.5 MRT approximation

We implement a variant of the MRT method for computing
the relaxation times in eLBM [2, 28, 55, 63, 80]. The
rationale for that is as follows: When a single-relaxation-
time approximation is used to model a binary fluid
consisting of phases with different viscosities, strong
spurious velocities appear at the fluid-fluid interface
near the contact point [78]. This results in an incorrect
equilibrium contact angle (θeq), since the system is
continuously pushed out of equilibrium. Spurious currents
originate from long-range contributions to the equilibrium
distribution functions near the contact line and from
the bounce-back boundary conditions. Making the choice
τf = 1 overcomes the problem. However, τf controls the
fluid viscosity through Eq. 16 and hence, it is not possible
to keep it to unity for both phases of a binary fluid if the two
phases have different viscosities.

Pooley et al. [79] showed that introducing an MRT
approximation [28, 80] significantly suppresses the spurious
currents. This is achieved by eliminating the effect of the
nonhydrodynamic modes by setting the relaxation time
for these modes to τf = 1, which results in automatically
setting the distribution functions to their equilibrium values
(f eq

i ) at each time step. A different relaxation time (τf )

is used for the hydrodynamic modes, which accounts for
the different viscosities of the two fluid phases. Moreover,
an important remark is that the introduction of the MRT
approach improves the numerical stability of the algorithm
[55]. It is important to note that the MRT approximation
is not required for gi since the mobility coefficient M

in Eq. 9 can be tuned by the independent parameter �

through Eq. 20. This allows us to fix the relaxation time to
τg= 1 for gi The use of the MRT technique for formulating
the collision operator allows eLBM access more stable
simulations for large viscosity ratios.

The main idea of the MRT method is that different
relaxation times are used for different linearly independent
combinations of the distribution functions (fi). The relaxa-
tion parameters responsible for generating the viscous terms
in the Navier-Stokes equations (Eq. 8) are set to τf , those
related to conserved quantities to infinity, and all the others,
which correspond to nonhydrodynamic modes, to unity.

In the evolution equation of the distribution functions
(fi) (Eq. 14), the collision term 1

τf

(
fi−f

eq
i

)
is replaced by

M−1·S · M
[
f−feq

]
, (26)

where fi and f
eq
i are now written as column vectors f

and feq , respectively. The matrix M performs a change of
basis, such that the new basis contains more physically
relevant variables. We use the choice for M reported by
Du et al. [36], which is a 19 × 19 matrix. For this
choice, the first row will give the fluid density (ρ) when
dotted with f, while the fourth, sixth, and eighth rows
will give the components of the momentum density: ρux ,
ρuy , and ρuz, respectively. The 10th, 12th, 14th, 15th, and
16th rows correspond to the components of the symmetric
traceless viscous stress tensor: 3pxx , pyy−pzz, pxy , pyz,
and pzz, respectively. The remaining rows are related to
other “kinetic” (nonhydrodynamic) moments [28, 80].

Each of the row vectors in M is mutually orthogonal, and
therefore its inverse is given by

M−1
ij = 1

∑
k M2

jk

Mji . (27)

The matrix S in Eq. 26 is diagonal and given by

S = diag
(
0, 1, 1, 0, 1, 0, 1, 0, 1,�f , 1,�f ,�f , 1,�f ,�f ,�f , 1, 1, 1

)
,

(28)
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Fig. 2 a Schematic representation of a non-wetting fluid jet and its
leading spherical interface inside a constricted capillary tube [9]. b
Example numerical approximation of the constricted capillary tube
geometry (3D view). c 3D numerical simulation of a non-wetting fluid

jet and its leading spherical interface inside a constricted capillary tube
prior to the snap-off phenomenon and d subsequent to the snap-off
phenomenon. Phase 2 is shown in red, and solid surfaces and Phase I
are transparent in the bottom figure frames

where �f =1
/
τf is related to the fluid viscosity by Eq. 16.

The zero values correspond to conserved quantities for
which the relaxation time was set to infinity. This is an
arbitrary choice because, independent of the relaxation
parameters for these quantities, they are collision invariants
since by definition Mji

[
fi−f

eq
i

] = 0 for j= 0, 3, 5, 7.
Finally, the choice of unity for the nonhydrodynamic modes
minimizes spurious velocities [79].

The benefits of the MRT model over the con-
ventional single-relaxation-time Bhatnagar-Gross-Krook
(BGK) model are (I) enhanced numerical stability, (II)
independent bulk and shear viscosities, and (III) viscosity-
independent, nonslip boundary conditions. The drawback of
the MRT model is that it is slightly more computationally
demanding compared to the BGK model. This minor hur-
dle is easily overcome through a general-purpose graphics
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Fig. 3 Geometry-related
snap-off for Model C (nw/nnw

= 1.0). Snapshots of the
order-parameter field are shown
immediately before and after the
snap-off. Red: Non-wetting
phase (Phase 2); Blue: Wetting
phase (Phase 1)

− Δ + Δ

processing unit (GPGPU) implementation of the MRT
model for eLBM.

2.6 Parallel implementation

The collision and propagation kernels of eLBM lend them-
selves very well to many lightweight computation threads
provided by GPGPUs. In fact, the entire eLBM algo-
rithm is implemented for NVIDIA GPGPU cards by the
use of the Compute Unified Device Architecture (CUDA)
programming language, which is a variant of the C++
programming language with extra functions to control the
device (GPGPU) from the host (CPU). In addition, the
eLBM code utilizes a 1D decomposition scheme with a sin-
gle ghost layer communicating the solutions along domain
boundaries. The domain decomposition communications
are managed by the use of message passing interface (MPI).

3 Fundamental validation tests

We focus on fundamental validation tests to demon-
strate the physical consistency of our direct two-phase
visco-capillary flow simulator. Dynamic problems are
investigated where the physical rigor of two-phase transport,
mass, and momentum balance solvers are tested altogether
against theoretical solutions and experimental data. Inves-
tigations of geometry-constrained snap-off in a constricted
capillary tube, Haines jumps in a micromodel, Haines jumps
in real rock images, and capillary desaturation in a real rock
image constitute the problems investigated in this section.

3.1 Investigations of geometry-constrained snap-off

Geometry-constrained snap-off occurs in porous medium
flows in narrow constrictions (pore throats) where the
non-wetting phase is disconnected by swelling of wetting
films. It occurs in imbibition and drainage processes. The
investigated case in this paper follows closely the work
by Roof [85], where the non-wetting phase snaps off in a
circular capillary with a constriction. A schematic represen-
tation of the non-wetting fluid jet is shown in Fig. 2a
(adapted from Armstrong et al. [9]). Previously, simulations
of a similar problem have been performed using an
axisymmetric formulation and the computational fluid
dynamics software by Beresnev et al. [16] and Beresnev
and Deng [15]. Recently, Roman et al. [84] reported
measurements and simulation of liquid films during
drainage displacements and snap-off in constricted capillary
tubes.

Five 3D models of a constricted capillary tube geometry
are generated. Each model is composed of 381 × 200 ×
200 cubic cells (Fig. 2b). The voxel size is uniform and is
equal to 1 μm for each model. This gives rise to a domain
with a size of 3.81 mm × 2.0 mm × 2.0 mm for each
model. The radius of the constriction (rj ) is varied across
the model ensemble, but the domain dimensions are kept
constant. The rj values considered for Model A, Model B,
Model C, Model D, and Model E are 25 μm, 20 μm, 15 μm,
10 μm, and 7 μm, respectively. Initially, the models were
filled with Phase 1, which uniformly wets the entire solid
surface. We impose a 0◦ equilibrium contact angle boundary
condition on the internal surfaces of the constricted capillary

Fig. 4 Geometry-related
snap-off for Model C (nw/nnw

= 3.0). Snapshots of the
order-parameter field are shown
immediately before and after the
snap-off. Red: Non-wetting
phase (Phase 2); Blue: Wetting
phase (Phase 1)

− Δ + Δ
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Fig. 5 Geometry-related
snap-off for Model E (nw/nnw

= 1.0). Snapshots of the
order-parameter field are shown
immediately before and after the
snap-off. Red: Non-wetting
phase (Phase 2); Blue: Wetting
phase (Phase 1)

− Δ + Δ

tube which corresponds to a strong water-wet solid surface.
Buffer layers of 16 lattice units (l.u.) are added to the inlet
and outlet of the domain to impose a constant velocity
injection boundary condition at the inlet buffer. Phase 2
(Fig. 2c, d) was injected from the left side of the model very
slowly with a head gradient that is close to zero to make the
dynamic effects as small as possible. The capillary number
of the non-wetting phase (Canw) varies between 1.2×10−4

and 1.8×10−4 from Model A to Model E.
The first set of simulations is performed using a

viscosity-matched pair of fluids (ηw

/
ηnw=1.0 ) for all

models. Snapshots of the order-parameter field in the center
cross-section are shown immediately before and after the
snap-off in Figs. 3 and 5 for Model C and Model E,
respectively. Model C and Model E are also simulated
for a viscosity ratio of ηw

/
ηnw=3.0 (slightly unfavorable

viscosity ratio displacement) with corresponding center
cross-sectional order-parameter snapshots shown in Figs. 4
and 6, respectively. We will discuss these results later in the
paper.

Roof [85] describes the mechanism, provides experimen-
tal results, and presents a simplified theoretical model for
snap-off. The energy balance considerations under quasi-
static conditions, i.e., without considering dynamic effects
and viscous pressure drops, lead to the conclusion that snap-
off occurs in the constriction of the capillary tube when
the radius of the detaching drop is approximately two times
larger than the radius of the non-wetting-phase stream in the
constriction [9, 85]. As shown in Figs. 3, 4, 5 and 6, the
stream inside the constriction has a near cylindrical shape,
with one curvature radius (rc) signifying that the capillary

pressure is equal to pc=γAB

/
rc . On the other hand, the

detaching droplet has a near spherical shape, leading inter-
face with two identical curvature radii (rb). Therefore, the
capillary pressure of the detaching droplet is pb=2γAB

/
rb .

The detachment can only occur when pb≤pc, which entails
that a separate droplet is more energy favorable since it has
less pressure.

We compute the roof energy balance snap-off criterion
[9] for each model by using the order-parameter snapshots
taken right before and after the snap-off (Fig. 7). The
straight dashed line in Fig. 7 corresponds to the quasi-static
energy balance criterion rb= 2rc discussed above. Overall,
the relationship between the detaching drop radius in the
numerical simulation (rb) and the radius of the jet inside
the constriction (rc) honors the theoretical trend well. The
correspondence seems to be best for not too narrowly and
not too widely constricted capillary tubes (Model B and
Model C) among the investigated models. In more narrowly
constricted tubes (e.g., Model E), it can be argued the
numerical discretization errors in the narrowest portion of
the tube are larger compared to the other models. On the
other hand, in less narrowly constricted tubes (e.g., Model
A), it becomes more difficult to accurately capture the
subtle curvature of the converging-diverging surfaces over
a domain length that is kept constant across the model
ensemble. It is important to note that the energy balance
criterion is a quasi-static approximation and, as such, does
not account for inertial effects. As also highlighted by
DiCarlo et al. [32] and Armstrong et al. [9], snap-off is
a rapid process with Re>1, while the viscous friction
governs the deformation of the interface. Thus, it is not

Fig. 6 Geometry-related
snap-off for Model E (nw/nnw

= 1/3). Snapshots of the
order-parameter field are shown
immediately before and after the
snap-off. Red: Non-wetting
phase (Phase 2); Blue: Wetting
phase (Phase 1)

− +
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Fig. 7 Comparison of the eLBM
simulation results (red and blue
dots) against the
quasi-equilibrium energy
balance snap-off criterion by
Roof (dashed line) for drainage

Model A

Model B

Model C

Model D

Model E

reasonable to expect an exact correspondence between the
numerical simulation results that are based on the full-
physics description of the fluid dynamics and the quasi-
static energy balance criterion.

An additional set of simulations was carried out for
an unfavorable viscosity ratio case with ηw

/
ηnw=3.0 for

Model C and Model E and a favorable viscosity ratio case
with ηw

/
ηnw=0.33 for Model C. Snapshots of the order

parameter field are shown immediately before and after the
snap-off in Fig. 4 for Model C and in Fig. 6 for Model
E for unfavorable viscosity ratio simulations. It has been
observed that snap-off consistently occurs slightly earlier
for the unfavorable viscosity ratio cases because of the
inherent increased tendency for viscous fingering.

In Figs. 3 and 5, it has been observed that snap-off
takes place slightly off-center in the constricted capillary
tube for the viscosity-matched pair of fluids. For snap-off
to occur, two fundamental phenomena should take place:
pressure outside the non-wetting phase (Phase 2) should
be larger than the pressure inside, which is a function of
curvatures and the constriction radius. However, one also
needs the wetting phase to flow fast enough to allow the
snap-off to happen. When the non-wetting phase (Phase 2)
retracts, the wetting phase (Phase 1) has to follow. However,
this interplay between non-wetting and wetting phases is
not instantaneous. Thus, based on the pressure argument,
necking should start at the narrowest part of the constriction;
however, this is only a quasi-static argument. Under
dynamic conditions, there are two arguments explaining the
snap-off phenomenon occurring off-center: (1) because of
the mobility limitation of the wetting-phase flow, the point

where one can observe necking to really proceed is already
off-center, and (2) the snap-off occurs when the necking
progresses, which takes time; i.e., during the necking, which
is perpendicular to the main flow direction, the main flow
moves the necking point downstream.

3.2 Investigations of Haines jumps during drainage
in amicromodel

Pore drainage events occur as a cooperative phenomenon,
which has been postulated [74] and inferred from indirect
data [40] and, more recently, proven with direct evidence
[17]. The visualization of transient dynamics of Haines
jumps in 2D micromodels provides clear evidence to the
cooperative behavior of pore drainage events.

When a pore body is drained, retraction of nearby
menisci occurs, which supplies the volume of fluid required
for the drainage event. The drainage is driven by the
difference in capillary pressure at the front (wide pore =
small curvature) and the nearly constantly high capillary
pressure in the meniscus. During this process, the elastic
energy initially stored in the meniscus is converted into
kinetic energy [73] which is largely dissipated by viscous
forces until a new capillary equilibrium is reached and
fluid is temporarily static. In this way, the pore-scale
flow can be categorized into rapid (only few millisecond
duration), irreversible events (Haines jump, “rheon”) [74]
and much slower (lasting a few seconds) laminar-flow
phases where the menisci are recharged to the same
curvature/pressure before the Haines jump (“subison”) and
further increased (“rison”) [99] until the pore entry pressure
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of the next pore system is exceeded and another Haines
jump occurs.

We investigate the dynamics of Haines jump events [45],
which can occur during drainage. Whether the drainage
process can be considered as a cascade of events where
the pore space is invaded by a non-wetting fluid pore-
by-pore while neglecting the dynamics of the process
to simplify the modeling work has been increasingly
questioned. Pore network modeling, which takes advantage
of a decomposition of the pore space into an ensemble of
geometric shapes that drain in a sequential manner, based on
the capillary entry pressures, neglects dynamical effects at
the pore scale. However, dynamical effects due to pore-scale
instabilities can alter the displacement pathways [37] or lead
to fluid redistribution at a time scale comparable to the time
scale of general advancement of fluid front propagation [8],
and hence, the quasi-static approach used in pore network
modeling may not be able to predict correctly the residual
saturation after drainage and imbibition processes. Recently,
Armstrong and Berg [8] and Berg et al. [18] demonstrated
that capillary or viscous forces may not be acting in a
purely local way. In light of this finding, the importance of
considering the full dynamics at the pore scale for modeling
displacement processes becomes even more apparent.

The pressure generally increases steadily during
drainage. However, as the non-wetting phase travels through
a narrow throat to a wider pore body because it exceeds the
capillary entry pressure, the pressure drops instantaneously
and the pore space fills quickly. Recent developments in
synchrotron-based X-ray micro-computed tomography
improved the temporal resolution in the range of seconds,
enabling the imaging of pore-scale displacement events

while maintaining the flow, the pressure gradients, and the
visco-capillary balance during imaging [18]. This offers
the possibility to directly visualize rapid events, such as the
Haines jumps, and other pore-scale displacement events in
porous rock real time. These rapid events are very important
to the upscaling of multiphase flow since they account for
a significant fraction of the energy dissipation within the
system [18, 87]. Moreover, although often questioned as an
irreversible displacement process, they may also contribute
to macroscopic properties of the rock such as the relative
permeability [75].

We investigate whether the eLBM can capture the
dynamics of Haines jumps. Figure 8 shows the geometry
used in 3D simulations adapted from Zacharoudiou and
Boek [100]. Velocity boundary conditions are applied in the
inlet and outlet of the simulation domain (in the x direction)
to drive the flow, while periodic boundary conditions are
imposed in the vertical (y) direction. In the z direction,
walls are located at z= 0 and z=h. In order to drive the
drainage process, the injected non-wetting phase enters the
simulation at a given flow rate Q= ∫∫

A
u · dA at the inlet,

while imposing the same flow rate at the outlet allows
the wetting phase to exit the system. The geometry is an
effective Hele-Shaw cell with walls located at z= 0 and
z=h= 10 l.u. The platelets are of diameter (dp) = 60 l.u.,
representing the wider pore bodies. Six throats of width
(dt ) = 12 l.u. and length (lt ) = 22 l.u. connect the pore
bodies. Small reservoirs with a length of 16 l.u. are added at
the inlet and the outlet. Simulations were performed using
fluids of the same viscosity. In the first simulation, the
equilibrium contact angle was set to θeq= 30◦. The inlet
fluid velocity

(
uinlet

x

)
was 1.0 × 10−5 l.u. The injected

Fig. 8 The micromodel used to capture the Haines jumps. Velocity
boundary conditions are applied at the inlet and outlet of the simula-
tion domain to drive the flow, while periodic boundary conditions are

imposed on the top and bottom faces of the domain. In the z direction,
walls are located at z = 0 and z = h. In-situ wetting phase (Phase 1):
blue; Injected non-wetting phase (Phase 2): red
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Fig. 9 Illustration of Haines
jump events during drainage
(Sequence #1). Pore drainage
events are labeled with con-
tinuous yellow arrows. Menis-
cus recession is labeled with
dotted yellow arrows. The flow
direction is labeled with con-
tinuous green arrows. The fluid
phases have the same viscosity
nw = nnw = 1.67 × 10−2.
Interfacial tension is
σ = 1.17 × 10−2 l.u.
Equilibrium contact angle is
θeq = 30◦. Inlet velocity is
uinlet = 1.0 × 10−5 l.u. In-situ
wetting phase (Phase 1): blue;
Injected non-wetting phase
(Phase 2): red

non-wetting phase (Phase 2) and the in situ wetting phase
(Phase 1) are viscosity and density matched. Figures 9
and 10a show two simulated order-parameter snapshot
sequences during drainage. The frames of these figures
illustrate the pore drainage and meniscus recession events
observed during Haines jumps. The events shown in Figs. 9
and 10a have different fluid distributions prior to the Haines

jump event. The first column in these figures corresponds
to the beginning of the events (t=t0), the second one
corresponds to the time of maximum interfacial velocity
(t=t1), while the third one corresponds to the time when
all the non-wetting fluids from the surrounding pore throats
were provided for draining the pore body (t=t2) and marked
the end of fluid rearrangement during a Haines jump event.

Fig. 10 a Illustration of Haines jump events during drainage
(Sequence #2). Pore drainage events are labeled with continuous yel-
low arrows. Meniscus recession is labeled with dotted yellow arrows.
The flow direction is labeled with continuous green arrows. The fluid
phases have the same viscosity nw = nnw = 1.67 × 10−2. Interfacial
tension is σ = 1.17×10−2 l.u. Equilibrium contact angle is θeq = 30◦.

Inlet velocity is uinlet = 1.0×10−5 l.u. In-situ wetting phase (Phase 1):
blue; Injected non-wetting phase (Phase 2): red. b High speed images
(2,000 fps) of pore drainage events. Pore drainage events are labeled
with black arrows, meniscus retraction is labeled with a red arrow, and
the presumed flow direction is labeled with dotted red arrows. The
figure is adapted from [8]
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Fig. 11 The average components of the velocity vector (u) during drainage separately plotted for wetting (w) and non-wetting (nw) phases for
θeq = 30◦ (top frames) and θeq = 60◦ (bottom frames)

During the drainage of a pore body, imbibition occurs
in the neighboring throats and the fluid interface retracts.
These imbibition events provide a fraction of the fluid nec-
essary for draining the pore body and lead to rearrangement
of the fluids in the surrounding area of a pore drainage
event. When the non-wetting fluid reaches the wider pore
body and the pressure exceeds the pore entry pressure, the
interface “jumps” into the pore body, accelerating until it
reaches a maximum velocity (t=t1) and then decelerates.
This initial acceleration is due to the viscous resistance
of the resident wetting fluid in the pore body and inertial

forces being too small to resist the rapid fluid motion by
capillary forces. Differences in the curvature of the menis-
cus in the pore body and the menisci in the surrounding
throats generate high transient pressure gradients, and there-
fore, capillary forces act in a nonlocal way, since a capillary
pressure difference can exist over multiple pores. From
the energy viewpoint, the drainage process can be divided
into two flow regimes: (1) when the interface moves in
the pore throats and (2) when the interface moves from a
throat (narrow restriction) to a wider pore body. During the
first flow regime, which can be reversible and controlled
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by the injection flow rate, energy is stored in the menisci
and the fluid columns of the non-wetting phase in the
pore throats due to the work done by external forces. This
energy is then released during the Haines jump event (sec-
ond flow regime), converted into kinetic energy and surface
energy, and dissipated. Therefore, for a given geometry and
fluids, approximately the same amount of energy will be
stored in the menisci and then released, irrespective of the
externally imposed flow rate, leading to the same draining
times [8]. eLBM simulations are in qualitative agreement
with the conclusions reached by the experimental work
reported in Armstrong and Berg [8] (Fig. 10b). Experi-
mental work and eLBM simulations demonstrate that pore
drainage dynamics are cooperative and nonlocal, since they
extend beyond the draining pore body. We also find the
correct time scale for drainage events (∼10–15 ms) is
also captured by eLBM, demonstrating that eLBM also
correctly resolves the fast dynamics of interfaces during
pore-filling events. Note that the time scale and dynamics of
pore drainage events ultimately affect front propagation and
fluid-phase topology during fluid displacement [8, 72, 73].
Thus, accurate simulation of the time scales and dynam-
ics of pore-filling events is critical for any digital rock
flow-physics simulation system.

We examine the flow field during a jump event reveals
that the fluid-fluid interface velocity is larger than the mean
fluid velocity. This can be inferred from Fig. 11 where
we plot the average components of the velocity (u) vector
for wetting and non-wetting phases during drainage for
θeq= 30◦ and 60◦ , respectively, as a function of time.
The peaks in average ux and uy , which are more easily
detectable in the non-wetting-phase velocity field, indicate
the Haines jumps. The main flow is in the x direction. uz

is equal to zero due to the 2D heterogeneity in the model
and the solid walls located at z= 0, and z=h thus is not
plotted. Nonzero values for average uy indicate the jumps
that are perpendicular to the direction of flow, which, if

averaged over longer times, are equal to zero in line with the
expectation. Haines jumps are more clearly visible for the
stronger wetting case (θeq= 30◦).

3.3 Investigations of Haines jumps using 3D rock
images

3.3.1 Ketton limestone

We investigate the Haines jump events for 3D real rock
images. Figure 12 shows the first geometry used for the
eLBM simulations reconstructed from micro-CT images
of Ketton limestone. The model size is 700 l.u. × 700
l.u. × 700 l.u. at a resolution of 4.52 μm per l.u., which
corresponds to a physical system size of 3.164 mm ×
3.164 mm × 3.164 mm and a porosity of 0.159. A small
reservoir (16 l.u.) is added at the inlet/outlet of the domain
for two-phase flow simulations. The enforced equilibrium
boundary condition is θeq= 40◦ in all investigated cases.
We first investigate a base forced-drainage case with
ηw

/
ηnw= 1.0 and Canw= 3.9×10−5 (uinlet

x = 5.0×10−6

l.u.) (Case #1, base case). We then generate a variation case
by keeping Canw unchanged and changing the viscosity
ratio to ηw

/
ηnw=10.0 to explore the effects of unfavorable

viscosity ratio on forced drainage (Case #2). We generate a
second variation case with ηw

/
ηnw=10.0 and Canw=8.6×

10−6 (Case #3) where Canw is reduced significantly while
retaining the unfavorable viscosity ratio of Case #2. The
final forced-drainage variation case features a more than 1
order of magnitude increase in Canw (Canw= 5.9×10−4)

while retaining ηw

/
ηnw=1.0 of the base case. Finally,

we simulate forced imbibition starting from the end-
point of forced drainage of the base case. In both base
forced-drainage and forced-imbibition cases, the enforced
constant inlet velocity boundary condition is kept the
same at uinlet

x = 5.0×10−6 l.u., resulting in a case with
ηw

/
ηnw= 1.0 , Canw= 1.7×10−5, and Caw= 2.0×10−5.

Fig. 12 Geometry used for the
eLBM simulations reconstructed
from micro-CT images of
Ketton limestone. The model
size is 700 × 700 × 700 lattice
units (l.u.) at a resolution of 4.52
μm per l.u., which corresponds
to a physical system size of
(3.164 × 3.164 × 3.164 mm3)
and a porosity of 0.159. A small
reservoir (16 l.u.) is added at the
inlet/outlet of the domain for
two-phase flow simulations
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Fig. 13 Haines jump events and
the associated fluid
rearrangement in the Ketton
limestone image. The region
occupied by the non-wetting
phase that remains unchanged
before and after the jump event
is shown in red. The draining
pore bodies where the
non-wetting phase replaces the
wetting phase are shown in light
blue. The interfacial recession
events are shown in orange. The
non-wetting phase appears to be
well connected indicating that
imbibition sites directly provide
the extra fluid volume needed
for draining the pore bodies

We perform a time-lapse analysis of the order-parameter
field and visualize a series of Haines jump events for the
base case. Figure 13 documents these Haines jump events
and the associated fluid rearrangement. The figure panels
show the region occupied by the non-wetting phase that
remains unchanged before and after the jump event. The
draining pore body and interfacial recession are also shown.
The non-wetting phase appears to be well connected,
indicating that imbibition sites directly provide the extra
fluid volume needed for draining the pore body.

In Fig. 14, we report pore volume–averaged velocity
components for the wetting and non-wetting phases as a
function of time for the investigated forced-drainage case
variants and for the forced-imbibition case. The inlet and
outlet reservoirs are excluded in all averaging calculations.
The non-wetting-phase average velocity in the main flow
direction (ux) (Fig. 14) clearly shows the signatures of the
Haines jump events for the base case (Case #1) similar
to the ones observed for the micromodel study discussed
in the previous section (Fig. 11). They become less
pronounced for an unfavorable viscosity ratio displacement
(ηw

/
ηnw=10.0 ) for the same Canw as shown in case

3. However, when the Canw is further reduced for the
same unfavorable viscosity ratio, the Haines jump events
become more pronounced as in the base case. The case
with increased Canw and base-case viscosity ratio (Case #4)
indicates that the Haines jump events are suppressed as the
visco-capillary flow becomes more viscous dominated than
capillary dominated. Haines jump signatures are of smaller
magnitude for the post-drainage forced imbibition.

For each investigated case, we calculate the average
saturation for the wetting and non-wetting phases as a

function of time. Results are documented in Fig. 15. For
capillary-dominated lower Canw cases, we observe a sharp
transition from breakthrough to (apparent) residual wetting-
phase saturation state (Case #1, Case #2, and Case #3) while
transition is smoother for the high Canw case (Case #4). The
high-Canw case leads to the lowest residual wetting-phase
saturation for forced drainage in line with the expectation.
The unfavorable viscosity ratio displacement leads to a
slightly higher residual wetting-phase saturation as shown
by the comparison of Case #1 and Case #2 also in line
with the expectation. Reducing Canw for the unfavorable
viscosity ratio displacement reduces the residual non-
wetting-phase saturation slightly as shown in a comparison
of Case #2 and Case #3. Post-drainage and post-imbibition
non-wetting-phase fluid configurations are visualized for
Case #1, excluding the inlet and outlet buffers in
Fig. 16.

Figure 17 shows the non-wetting-phase saturations (Snw)

as a function of the frontal position for the investigated
forced-drainage cases. Rapid advancements of the frontal
position at constant Snw indicate the forward Haines
jumps. On the other hand, rapid increases in the Snw

at constant frontal position indicate the backward Haines
jumps. Forward and backward Haines jumps are much
more distinct for lower Canw cases with more capillary-
dominated flows, namely Case #1 through Case #3. Case #4
features relatively more viscous-dominated flows. Thus,
the signatures of Haines jumps on the Snw versus frontal
position function are less distinct.

Berg et al. [18] reported the pressure drop for a
sequence of seven scans showing individual pore-filling
events during two-phase displacement (Fig. 18a). We
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Forced Drainage – Case #1

Forced Drainage – Case #3 Forced Drainage – Case #4

Forced Drainage – Case #2
= 1.0⁄ ; = 3.9 × 10 = 10.0⁄ ; = 3.9 × 10

= 10.0⁄ ; = 8.6 × 10 = 1.0⁄ ; = 5.9 × 10

Forced Imbibition – Case #1 (Post-Drainage)

= 1.0⁄ ; = 1.7 × 10 ; = 2.0 × 10

Fig. 14 Average (over the pore space) velocity components for the wetting and non-wetting phases as a function of time for various forced-
drainage cases and for the forced-imbibition case that starts from the end-point of Forced Drainage – Case #1. w: wetting phase; nw: non-wetting
phase
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Forced Drainage – Case #1 Forced Drainage – Case #2

Forced Drainage – Case #4Forced Drainage – Case #3

= 1.0⁄ ; = 3.9 × 10 = 10.0⁄ ; = 3.9 × 10

= 10.0⁄ ; = 8.6 × 10 = 1.0⁄ ; = 5.9 × 10

Forced Imbibition – Case #1 (Post-Drainage) 
= 1.0⁄ ; = 1.7 × 10 ; = 2.0 × 10

Fig. 15 Average (over the pore space) saturation for the wetting and
non-wetting phases as a function of time for various forced-drainage
cases and for the forced-imbibition case that starts from the end-point

of Forced Drainage – Case #1. w: wetting phase; nw: non-wetting
phase. Buffers are not included in the saturation calculations
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Fig. 16 Post-drainage and
post-imbibition non-wetting
phase fluid configurations are
visualized for the Ketton
limestone image (Case #1). Inlet
and outlet buffers are excluded
in the visualization

Forced Drainage         Forced Imbibition (Post-Drainage) 
= 1.0⁄ ; = 3.9 × 10 = 1.0⁄ ; = 1.7 × 10 ; = 2.0 × 10

compare this experimental pressure drop data qualitatively
to that computed by eLBM for Case #1. Numerically
simulated pressure drop data are computed by calculating
the difference between average inlet and outlet pressure
as a function of time and wetting-phase saturation from
eLBM simulation on the Ketton limestone sample. Note that
subsequent to the breakthrough, average phase pressures
at the inlet becomes less meaningful, which is the
behavior observed after about t= 9×106 in Fig. 18b, which
corresponds to Sw= 0.6 in Fig. 18c. Experimental pressure
drop data and numerically simulated pressure drop results
show very similar trends for capillary-dominated visco-
capillary flows.

Fig. 17 Non-wetting phase saturation profiles as a function of the
frontal position for the investigated forced-drainage cases

3.3.2 Fontainebleau sandstone

The second geometry used for the eLBM simulations
is reconstructed from micro-CT images of Fontainebleau
sandstone [5, 6] (Fig. 19). The model size is 288 l.u. ×
288 l.u. × 300 l.u. at a resolution of 7.5 μm per l.u.,
which corresponds to a physical system size of 2.16 mm
× 2.16 mm × 2.25 mm. The porosity of the image is
0.147. The computed permeabilities are 1627 mD, 1413
mD, and 1699 mD in the x, y, and z directions, respectively.
The measured permeability of the much larger core sample
from which the image is taken is ∼1100 mD. Both forced-
drainage and subsequent forced-imbibition processes are
simulated with eLBM. Two-phase flow simulations are
performed in the x direction. A small reservoir (16 l.u.) is
added at the inlet/outlet of the domain for these simulations.
The enforced equilibrium boundary condition is θeq= 60◦
in all investigated cases. The key dimensionless numbers
are ηw

/
ηnw= 10.0 , Canw= 1.7× 10−5(forced drainage),

and Canw= 7.7×10−6 and Caw= 7.2× 10−5 (forced
imbibition). The velocity boundary condition imposed on
the inlet buffer is uinlet

x = 2.0×10−6 l.u. for both cases.
Forced imbibition starts from the end-point of the forced

drainage as described in the Ketton limestone case. The
difference between average inlet and outlet pressure as a
function of wetting-phase saturation is illustrated in Fig. 20
for forced-drainage and forced-imbibition processes. It is
important to note that the outlet experiences two-phase flow
upon injected fluid breakthrough near the end of the forced
drainage process, and the pressure difference do not reflect
the difference of phase pressures anymore at that time.
On the other hand, the inlet buffer for forced imbibition
requires a certain amount of buildup time for pressure at
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Fig. 18 Qualitative comparison of the (a) experimental and (b) numer-
ically computed time evolution of pressure drop during two-phase
displacement. The pressure drop for a sequence of seven scans
showing individual pore-filling events (entire drainage experiment
in the inset) reported by Berg et al. [18] (top frame). c Differ-
ence between average inlet and outlet pressure as a function of

wetting-phase saturation from eLBM simulation on the Ketton lime-
stone sample (nw/nnw = 1.0;Canw = 3.9 × 10−5). Note that, in
panels (b) and (c), the outlet experiences two-phase flow upon injected
fluid breakthrough near the end of the forced-drainage process, and the
pressure difference does not reflect the difference of phase pressures
at that time (hence oscillations are observed)

the beginning of the forced-imbibition process. Therefore,
it takes a while for the pressure to reflect a steady-state-like
phase pressure difference.

We investigate the effect of capillary number, and hence
the strength of Haines jumps, on saturation profiles for
forced drainage and imbibition cycles on the Fontainebleau
sandstone image. Two cases are investigated, with the
first one (Case #1) being the one in the above-described
study. A second case (Case #2) is generated for the
same viscosity ratio with approximately 1 order of
magnitude higher capillary numbers, i.e., ηw

/
ηnw = 10.0,

Canw= 1.5×10−4(forced drainage), and Canw= 2.1×10−5

and Caw=7.7×10−4 (forced imbibition). Non-wetting-phase
saturation profiles as a function of the frontal position are
illustrated for the forced-drainage part of the simulations
in Fig. 21. For Case #1, signatures of forward and
backward Haines jumps are present, but they are weaker
compared to the Ketton limestone case (Fig. 17). The
magnitudes of the jumps are notably smaller, especially
in the forward direction due to the more complex pore
morphology. On the other hand, signatures of Haines jumps
are practically absent for Case #2. Saturation for the wetting
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Fig. 19 Geometry used for the
eLBM simulations reconstructed
from micro-CT images of
Fontainebleau sandstone. The
model size is 288 × 288 × 300
lattice units (l.u.) at a resolution
of 7.5 μm per l.u., which
corresponds to a physical system
size of 2.16 × 2.16 × 2.25 mm3

and a porosity of 0.147. A small
reservoir (16 l.u.) is added at the
inlet/outlet of the domain for
two-phase flow simulations

and non-wetting phases as a function of time are shown
in Fig. 22. Moreover, post-drainage and post-imbibition
non-wetting-phase fluid configurations are visualized in
Fig. 23 excluding the inlet and outlet buffers for cases
when the non-wetting-phase saturation in the rock is
nonzero. While there is an apparent residual oil saturation
of ∼0.04 for Case #1 at the end of the forced-imbibition
process, for the high-capillary-number case, none of the
non-wetting phase is left behind. It is important to note
that buffers are not included in the saturation calculations.
It is demonstrated in Figs. 22 and 23 that capillary
phenomena (i.e., snap-off and Haines jumps) over drainage
and imbibition cycles play a crucial role in establishing
non-wetting-phase residual saturation in porous rocks.
While for a high-capillary-number flow, one can place a

larger saturation of the non-wetting phase during drainage,
a high-capillary-number injection of the wetting phase can
displace all of the non-wetting-phase saturation during a
forced-imbibition event leading to a zero non-wetting-phase
saturation (Figs. 22 and 23). This simulation study indicates
that pore-scale simulation with eLBM can be effectively
used to forecast waterflooding performance and design
injection/production rates and possibly interfacial tension to
reduce residual oil. A comparison of the spatial distributions
of the nonwetting-phase fluid in the panels of Figs. 16
and 23 reveals the major differences between a limestone
and sandstone rock, respectively. The eLBM simulator can
generally handle limestone and sandstone rock if a given
rock type does not contain significant microporosity in
micro-CT–resolved grains.

Fig. 20 Difference between average inlet and outlet pressure as a
function of wetting-phase saturation. Forced-drainage and forced-
imbibition processes are simulated with the Fontainebleau sandstone
image (w: wetting phase; nw: non-wetting phase). Forced imbibi-
tion starts from the end-point of the forced drainage. The gray arrow
shows the direction of the displacement process. The outlet experi-
ences two-phase flow upon injected fluid breakthrough near the end
of the forced-drainage process, and the pressure difference does not

reflect the difference of phase pressures anymore at that time (left-
hand side of the dashed line in the left-hand side frame). On the other
hand, the inlet buffer for forced imbibition requires a certain amount
of buildup time for pressure at the beginning of the forced imbibition
process (left-hand side of the dashed line in the right-hand side frame).
Therefore, it takes a while for the pressure to reflect a steady-state-like
phase pressure difference
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Fig. 21 Non-wetting phase saturation profiles as a function of the frontal position for the investigated Fontainebleau sandstone forced-drainage
cases

Fig. 22 The effect of capillary number on saturation profiles for a
forced-drainage and forced-imbibition cycle. Two cases are investi-
gated, and associated capillary numbers are shown together with the

average (over the pore space) saturation for the wetting and non-
wetting phases as a function of time. Buffers are not included in the
saturation calculations
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Fig. 23 Post-drainage and post-imbibition (non-zero) non-wetting phase fluid configurations are visualized for the Fontainebleau sandstone image.
Inlet and outlet buffers are excluded in the visualization

3.3.3 Castlegate sandstone

The third geometry used for the eLBM simulations is
reconstructed from micro-CT images of Castlegate sand-
stone (Fig. 24). The model size is 800 lattice units (l.u.)
× 800 l.u. × 800 l.u. at a resolution of 2.072 μm
per l.u., which corresponds to a physical system size
of 1.66 mm × 1.66 mm × 1.66 mm and a porosity
of 0.217. A small reservoir (16 l.u.) is added at the
inlet/outlet of the domain for two-phase flow simulations.
The enforced equilibrium boundary condition is θeq= 40◦

in all investigated cases. We investigate a forced-drainage
case with ηw

/
ηnw= 1.0 and Canw= 3.9×10−5 and a

subsequent forced-imbibition case with ηw

/
ηnw= 1.0 ,

Canw= 1.3×10−5, and Caw= 1.5×10−5. The veloc-
ity boundary condition imposed on the inlet buffer is
uinlet

x = 5.0×10−6 l.u.
We perform a time-lapse analysis of the order-parameter

field and visualize a series of Haines jump events for the
base case. Figure 25 documents these Haines jump events
and the associated fluid rearrangement. The figure panels
show the region occupied by the non-wetting phase that
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Fig. 24 Geometry used for the
eLBM simulations reconstructed
from micro-CT images of
Castlegate sandstone. The model
size is 800 × 800 × 800 lattice
units (l.u.) at a resolution of
2.072 μm per l.u., which
corresponds to a physical system
size of (1.66 × 1.66 × 1.66
mm3) and a porosity of 0.217. A
small reservoir (16 l.u.) is added
at the inlet/outlet of the domain
for two-phase flow simulations

remains unchanged before and after the jump event. The
draining pore body and interfacial recession are also shown.
The non-wetting phase appears to be well connected,
indicating that imbibition sites directly provide the extra
fluid volume needed for draining the pore body.

Average (over the pore space) velocity components for
the wetting and non-wetting phases as a function of time
are illustrated in Fig. 26a for forced-drainage and forced-
imbibition processes. Castlegate sandstone has a more
complex pore space than the Ketton limestone. Haines

Fig. 25 Haines jump events and
the associated fluid
rearrangement in the Castlegate
sandstone image. The region
occupied by the non-wetting
phase that remains unchanged
before and after the jump event
is shown in red. The draining
pore bodies where the
non-wetting phase replaces the
wetting phase are shown in light
blue. The interfacial recession
events are shown in orange. The
non-wetting phase appears to be
well connected indicating that
imbibition sites directly provide
the extra fluid volume needed
for draining the pore bodies
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Fig. 26 Plots for
forced-drainage and
forced-imbibition processes
simulated with the Castlegate
sandstone image (w: wetting
phase; nw: non-wetting phase).
Forced imbibition starts from the
end-point of the forced drainage.
a Average (over the pore space)
velocity components for the
wetting and non-wetting phases
as a function of time. b Average
(over the pore space) saturation
for the wetting and non-wetting
phases as a function of time

jumps are noticeable in these plots, but their periodicity
is less distinct compared to the more spherically grained
Ketton limestone. A comparison of the frames in Fig. 26a
to the frames in Fig. 14 indicates that, for the Castlegate
sandstone, Haines jumps are detectable, but their periodicity
is significantly more complex compared to the more

granular Ketton limestone. Average (over the pore space)
saturation for the wetting and non-wetting phases as a
function of time for forced-drainage and forced-imbibition
processes is illustrated in Fig. 26b. Post-drainage and
post-imbibition non-wetting-phase fluid configurations are
visualized for the Castlegate sandstone image in Fig. 27.

Fig. 27 Post-drainage and
post-imbibition non-wetting
phase fluid configurations are
visualized for the Castlegate
sandstone image. Inlet and
outlet buffers are excluded in the
visualization
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Fig. 28 Geometry used for the
eLBM simulations of the Berea
sandstone. The simulation
system size is 400 × 400 × 400
lattice units (l.u.) at a resolution
of 5.4 μm per l.u., which
corresponds to a physical system
size of (2.16 × 2.16 × 2.16
mm3) and a porosity of 0.196. A
small reservoir (16 l.u.) is added
at the inlet/outlet of the domain
for two-phase flow simulations

3.4 Capillary desaturation

The process where the non-wetting phase is mobilized
by increasing the balance of (mobilizing) viscous forces
over the (trapping) capillary forces is termed as capillary
desaturation [48]. Capillary desaturation is the basis
of many IOR and EOR processes such as water and
surfactant flooding [62]. Since they are time consuming
to measure experimentally [50], there is increasing interest
to determine capillary desaturation curves using pore-scale
flow-simulation approaches [58, 77, 98]. The concept is
based on a visco-capillary balance over non-wetting-phase
clusters (10, 48, and references therein).

In the following, the eLBM’s capability for computing
capillary desaturation curves is demonstrated. For the
validation of eLBM using data reported in the literature
[62], simulations are performed on a digitized water-wet
Berea sandstone sample with a porosity of 0.20 and an

absolute permeability of 1653 mD (Fig. 28). A similar study
was reported in Koroteev et al. [58] using a proprietary
simulator. The porosity and permeability of the Berea
sandstone sample used in that work were 0.23 mD and 1150
mD, respectively. Neither of these references explicitly
report the densities and viscosities of the fluids involved
and the interfacial tension at their interface. We used the
following values for water and decane (oil) at 25◦C: ρwater

= 1000 kg/m3 and ρoil = 730 kg/m3; ηwater = 1.0 cp and
ηoil = 0.89 cp; σ = 51.8 × 10−3 N/m. Since we assume
binary density–matched fluids in eLBM, only the viscosity
ratio and interfacial tension are relevant for the numerical
simulations. Following the experimental workflow in Lake
[62], the model was initially filled with 100% of the non-
wetting oil. Subsequently, it was flooded by the wetting
phase (water) as shown in Fig. 29. Water injection was
modeled at different capillary numbers (Ca) and continued
until residual oil saturation was established. We control Ca

Fig. 29 Experimental and
numerically simulated capillary
desaturation curves for
sandstone rocks. Digital rock
flow simulations are performed
on the Berea sandstone
micro-CT images
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by controlling the displacement velocity in our numerical
simulations. The capillary desaturation curve calculated
by eLBM (Fig. 29) is in a reasonable agreement with
experimental data [62] and proprietary simulator predictions
[58] for the investigated Ca values. It is important to
note that different samples were used in the reported
studies, which explains the differences in the residual oil
observations.

4 Summary and conclusions

We describe the mathematics, validation, and applications
of a novel Helmholtz free-energy—minimizing phase-field
model solved within the framework of the LBM for
efficiently simulating two-phase pore-scale flow directly
on large 3D images of real rocks obtained from micro-
computed tomography (micro-CT) scanning. The code
implementation of the technique, eLBM, is performed in the
CUDA programming language to take maximum advantage
of accelerated computing by use of multinode GPGPUs.

eLBM’s momentum-balance solver is based on the MRT
model. The Boltzmann equation is discretized in space,
velocity (momentum), and time coordinates using a D3Q19
scheme, which provides the best compromise between
accuracy and computational efficiency. The benefits of
the MRT model over the conventional single-relaxation-
time BGK model are (I) enhanced numerical stability,
(II) independent bulk and shear viscosities, and (III)
viscosity-independent, nonslip boundary conditions. The
drawback of the MRT model is that it is slightly more
computationally demanding compared to the BGK model.
This minor challenge is easily overcome through a GPGPU
implementation of the MRT model for eLBM. eLBM is, to
our knowledge, the first industrial grade–distributed parallel
implementation of an energy-based LBM taking advantage
of multiple GPGPU nodes. The Cahn-Hilliard equation that
governs the order-parameter distribution is fully integrated
into the LBM framework that accelerates the pore-scale
simulation on real systems significantly.

Our novel contributions are (1) integrating all com-
putational and high-performance computing components
together into a unified implementation and (2) providing
definitive quantitative validation results with eLBM in terms
of robustness and accuracy for a variety of flow domains
including a plethora of real rock images. We successfully
validate and apply the eLBM on several transient two-phase
flow problems of gradually increasing complexity. Success-
fully simulated validation problems include the following:
(1) modeling of snap-off phenomena in constricted capil-
lary tubes while honoring the Roof criterion; (2) capturing
the correct time scales and velocity, saturation, and pres-
sure profiles of Haines jumps on a micromodel, a Ketton

limestone image, a Fontainebleau sandstone image, and
a Castlegate sandstone image; and (3) capillary desatura-
tion simulations on a Berea sandstone image including a
comparison of numerically computed residual non-wetting-
phase saturations to data reported in the literature.

Extensive physical validation tests and applications on
large 3D rock images demonstrate the reliability, robustness,
and efficacy of the eLBM as a direct visco-capillary pore-
scale two-phase flow simulator for digital rock physics
workflows. Future work will focus on enhancing the
distributed parallel performance of eLBM through code
optimization.
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