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Abstract
The problem of sparsely collected seismic data is one of the main issues in reflection seismology, because most advanced
data processing techniques require a dense and regular seismic data grid. We present a geostatistical seismic data
interpolation technique based on sequential stochastic simulations with local structural anisotropies. This technique, contrary
to conventional existing data-driven seismic interpolation approaches based on sparsity, prediction filters, or rank-reduction,
predicts the value of seismic amplitudes at non-sampled locations by exploiting the statistics of the recorded amplitudes,
which are used as experimental data for the geostatistical interpolation in the original data domain. Local mean and variance
are computed on-the-fly to define intervals of the global conditional distribution function, from where amplitude values are
stochastically simulated. The parameters to define subsets of experimental data from which mean and variance are calculated
are given by local variogram models, which in turn are obtained from a local dip and azimuth estimation in the t-x-y domain.
The geostatistical seismic data interpolation technique is applied to synthetic and real 2D and 3D datasets in both post-
and pre-stack domains. Besides being computationally cheaper than other methods, because the interpolation is carried out
directly in the original data domain, the proposed technique provides a local quantitative analysis of the reliability of the
interpolated seismic samples, which can be exploited in following processing steps.

Keywords Seismic interpolation · Stochastic simulation · Uncertainty

1 Introduction

Seismic reflection data are often irregularly collected due
to economic constraint and/or physical obstacles during
data acquisition. The problem of sparsely collected data
and missing traces due to acquisition limitations affects
negatively the quality of advanced processing techniques
like multiple attenuation, pre-stack Kirchhoff migration,
full waveform inversion and AVAZ/AVO analysis, which
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require a dense and regularly spaced sampled seismic
reflection data to properly work [4, 14, 53]. Another
important limitation of under-sampled seismic data sets
appears during reservoir characterization. Seismic inversion
methodologies, and particularly stochastic seismic inversion
[2] require the knowledge of the entire cube of seismic
amplitudes.

Seismic data interpolation and reconstruction aim at
predicting missing seismic traces to reconstruct regularly
and irregularly sampled seismic reflection data sets. Various
interpolation methods have been proposed during the last
decades differing mostly on the type of approach they
have regarding the choice of the interpolation strategy
and the mathematical operation used to fill the seismic
gaps with new predicted traces. One classification divides
interpolation methods into model-driven, or wave-equation-
based methods, and data-driven, or signal processing-based
methods [36, 49].

Model-driven techniques exploit the physics of acoustic
wave propagation within the subsurface to reconstruct
seismic traces: the wave field is mapped from the irregular
input seismic data to another physical domain through
an operator (e.g., Fourier and Radon transforms) where
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it is interpolated. The modeled physical domain is then
transformed back into the original data space, obtaining
a regularized grid of seismic data that would have been
acquired with a properly sampled experiment [13, 27, 39,
45, 48]. These methods often require information about the
spatial distribution of the subsurface velocity field [35] and
can be performed on irregularly and coarsely sampled data
sets with large gaps.

Interpolation approaches based on signal processing
principles (data-driven approach) do not require any
information on the Earth’s subsurface elastic properties, but
use the intrinsic properties of the signal assuming patterns
in the sampled data. Many of these methods exploit the data
sparsity representation in a transform domain and formulate
the reconstruction as a L1-norm minimization problem;
for instance, in the Fourier [13, 32, 40, 41], Radon [8,
47], local Radon [55], or curvelet domain [19, 20, 34].
Dictionary learning methods are alternatives for predefining
a transform, as they provide a dictionary that represents well
the sparsity of the original data [26, 52].

Another important family of methods is based on
prediction filters applied in the t-x [6, 12], f -x [28, 38, 44,
54], f -k [17, 18], or curvelet domains [33]. In this family
of methods, error prediction filters are estimated from low-
frequency components and are used to interpolate the higher
frequency part of the data [6, 16, 32, 38, 44].

Interpolation methods based on rank-reduction rely on
the assumption that fully sampled seismic data, when
organized into a matrix, are of low rank-structures,
and missing traces and noise increase the rank of the
structures. Low-rank approximation methods have been
used extensively for seismic data denoising ([50] and
references therein), and were recently applied to seismic
data reconstruction [23, 24, 26, 37, 51]. Yang et al. [57],
Ma [30], Aravkin et al. [1], and Kumar et al. [25] address
the reconstruction problem as a nuclear-norm minimization
matrix completion problem. Jia and Ma [22] present a
machine learning method applied to seismic interpolation,
training the algorithm with data sets that display similar
geometries to the one to be interpolated.

In this work, we introduce an alternative approach to the
seismic interpolation problem. In our algorithm, missing
traces are reconstructed through stochastic sequential
simulations that are constrained by the neighbor recorded
seismic amplitudes and by an estimate of the local structure
variation [5, 21]. The success of sequential simulation
methods relies in the ability to reproduce the statistics
of the experimental data (e.g., histogram and variogram
models), generating alternative interpolated traces (i.e.,
realizations), which are equivalent under the same set of
assumptions and from where we can assess uncertainties
on the estimation [9, 15]. By definition, each realization
reproduces the experimental data at its location, the prior

probability distribution of the simulated property and a
spatial continuity pattern, estimated by a variogram in the
2-point geostatistics framework [2].

Stochastic sequential simulation techniques have been
widely used in different fields related with Earth and
environmental sciences [9, 15] to predict the value of
a given property of interest at an unknown location
based on experimental data, sampled at sparse locations.
In geophysics, stochastic sequential simulation techniques
have been widely used in iterative geostatistical seismic
inversion methodologies [2] and in the inference of
velocity models for time-to-depth conversion [10, 11]. A
geostatistical method to interpolate non-stationary patterns
of geological formations have been purposed by Soares
[42] to model folded geological structures with kriging
with local anisotropies. Other applications of kriging
with local anisotropies can be found in environmental
and mineral resources applications [46]. References [56]
and [29] introduced the concept of local anisotropies in
stochastic simulation procedures for the characterization of
sedimentary sand channels.

The success of the proposed seismic interpolation
approach is related with the ability to impose local
variogram, or spatial covariance models inferred directly
from the existing seismic records handling in this way
the non-stationary behavior of seismic data (i.e., the local
structure variation). The results retrieved with the proposed
approach are compared against a standard f-x interpolation
method [44]. Although Spitz’s method is not a state-of-
art seismic interpolation technique—as for example, 5D
seismic interpolation [16, 33]—it is the basis of many
seismic interpolation techniques [6, 17, 18, 33, 35, 38,
54]. To our knowledge, this is the first application of a
stochastic sequential simulation technique to the problem of
seismic data interpolation. Due to this reason, the examples
shown herein aim at performing at least as good as Spitz’s
interpolation, opening the door for a new family of seismic
interpolation techniques.

We first introduce the stochastic sequential simulation
with local structural anisotropies followed by the detailed
description of the geostatistical non-stationary seismic
data interpolation technique. The proposed interpolation
technique is then applied to both synthetic and real 2D and
3D seismic reflection data.

2Methodology

In this section, we first introduce the stochastic sequential
simulation with local structural anisotropy algorithm [5,
21] from a seismic interpolation point of view, followed
by the detailed description of the proposed algorithm
for geostatistical seismic data interpolation (GSDI). In
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stochastic sequential simulation, the term local structural
anisotropy refers to a local structure variation and non-
stationary continuity patterns.

2.1 Direct sequential simulation with local
anisotropy

From all the existing geostatistical inference methods,
one can distinguish between estimation and simulation
methods. The first group includes kriging, while the second
group comprises stochastic sequential simulation—e.g.,
sequential Gaussian simulation [9] and direct sequential
simulation [43]. Estimation methods infer the value of a
given property at a non-sampled location, and represent the
best linear unbiased estimate in a least-squares sense, with
minimized local variance. Estimation algorithms generate
smooth models unable to reproduce extreme values as
interpreted from the experimental data: low values are
overestimated and high values underestimated. Smoothing
is dependent on local data configuration and is not uniform;
it is minimally close to experimental data locations and
increases proportionally with the distance from these
locations. For this reason, these methods cannot be used to
measure local uncertainty.

On the other hand, direct sequential simulations (DSS)
[43], like all other stochastic simulation techniques, allows
assessing the spatial uncertainty associated with the inferred
property by generating multiple models (i.e., realizations)
which are considered equally probable under the same a
priori assumptions about a given a spatial continuity pattern
and a set of experimental data. The main difference of DSS
when compared with other stochastic sequential simulation
algorithms is the use of the estimated local mean and
variance to sample directly from the global conditional
distribution function (CDF) Fz(A), as estimated from the
entire set of experimental data, without the need of any data
transform as in stochastic Gaussian simulation [9].

The simulation grid contains both recorded seismic
amplitudes (i.e., experimental data; A(xα)) and empty
nodes (samples to be interpolated). The simulated value
at x0 is sampled by Monte Carlo from the conditional
distribution function, centered in Ask(x0)

∗ and with a range
equal to σ 2

sk . At each location x0 the simple kriging estimate
(Ask(x0)

∗; Eq. 1) and variance (σ 2
sk; Eq. 2) are computed

following

Ask(x0)
∗ − m(x0) =

∑
α

λα

[
A(xα) − m(xα)], (1)

σ 2
sk =

∑
α

λαC(xα, x0) (2)

where m(x0) is the mean of existing seismic amplitudes
within the pre-defined neighborhood (i.e., the seismic
samples that will be used for the estimation) and
m(xα) is the average value of all seismic samples

considered as experimental data. A(xα) are the recorded
or previously simulated seismic amplitudes within the
searching neighborhood. λα are the weights attributed to
each seismic sample involved in the estimation and depend
on the spatial continuity pattern imposed by a variogram
model (γ (h); Eq. 3) or by a spatial covariance matrix (C;
Eq. 2).

The variogram γ (h)(Eq. 3) represents a measure of the
spatial continuity (or variability) of the property of interest;
it describes the correlation between pairs of amplitudes
separated by an arbitrary distance h (A(x0) and A(x0 +
h) (Fig. 1). For each simulation, the neighborhood of
conditioning data is selected using an elliptical search radius
parameterized by the local variogram model (Fig. 1a, b).

γ (h) =
∑N(h)

α=1
[A(x0) − A(x0 + h)]2. (3)

DSS with local anisotropy (DSS-LA) is a particular case
of direct sequential simulation where different variogram
models are assigned to each grid node individually contrary
to the conventional DSS approach where a global variogram
model is used for the entire simulation grid. In Eq. 2,
the spatial covariance matrix, C, changes locally at each
seismic sample location. The definition of local varying
spatial continuity patterns allows handling non-stationary
spatial phenomema as, for instance, hyperbolic events in the
shot or common mid-point (CMP) gathers. This stochastic
sequential simulation algorithm may be summarized in the
following sequence of steps [5, 21]:

1. Define a random path that visits all the simulation grid
nodes x0 corresponding to the seismic samples to be
interpolated;

2. At each node location, calculate simple kriging estimate
Ask(x0)

∗ (Eq. 1) and variance σ 2
sk (Eq. 2) conditioned

by neighbor seismic samples, including previously
simulated values following the local variogram models;

3. Define a local CDF from the global CDF Fz(A), built
from all the existing recorded seismic samples, centered
in Ask(x0)

∗ with an interval equal to σ 2
sk;

4. Draw a simulated value Ask(x0) from the selected
interval of the global CDF Fz(A);

5. Visit the remaining simulation grid nodes until all nodes
have been visited and simulated.

As all nodes of the simulation grid are visited following a
random path, and at each node local kriging estimate and
variance are computed based on both experimental data and
previously simulated values, the conditioning data for the
stochastic simulation changes accordingly to the random
path. Hence different runs generate different models.

The key point for the success of this algorithm when
dealing with seismic interpolation is the reliability of the
local variogram models in describing the spatial behavior
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Fig. 1 Spatial representativeness
of the variogram in the seismic
interpolation application. a
Spatial representation of the
variogram parameters b
Experimental variogram model
along the directions represented
by the two ellipses (c); r(y) and
r(b) represent the horizontal
ranges of the yellow and blue
ellipsoids (c), respectively c
Zoom of the pre-stack CMP
gather (location in the blue
rectangle (d)); the white dot
represents the seismic sample
considered for the experimental
variogram calculation with other
seismic samples within the blue
and yellow ellipses d Dip
magnitude field calculated from
a pre-stack CMP gather
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of seismic amplitudes within the simulation grid. The
definition of the local variogram model parameters (ranges
in the three dimensions (r1–r3), dip (d), and azimuth
(a), Fig. 1a) is fundamental, since it provides information
about the spatial continuity (or variability) of the seismic
amplitudes Ideally, the conditioning data for the simulation
of a seismic sample lying on a specific seismic event should
be the recorded amplitudes of that seismic event in the
neighbor traces (i.e., blue dots in Fig. 1a). Consider the
seismic sample marked by the white dot in Fig. 1a, c, d; an
elliptical search radius with dip magnitude of −35◦ (blue
ellipsoid in Fig. 1c) will constrain the simulation in order
to give more weight to the samples lying along the same
seismic event in the neighbor traces (i.e., the seafloor).
In the proposed technique, these variogram parameters are
estimated directly from the seismic record as they represent

the geometry of existing seismic events in the data (Fig. 1),
as discussed in the next section.

2.2 Geostatistical seismic data interpolation

The idea of applying geostatistical simulation for interpo-
lating missing seismic traces is not trivial, as seismic events
are non-linear and change in space and time. However,
they do form a spatial continuity pattern, which is depen-
dent on the underlying geology. This pattern is exploited
by the proposed GSDI technique using local variogram
models to describe the structural variability of the data.
In the proposed algorithm, the local variogram parame-
ters are computed automatically from a local waveform
similarity estimation between the neighbor seismic traces
around the location of the missing trace to be interpolated.
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The waveform similarity is calculated through a cross-
correlation based algorithm analogous to the one presented
by Bahorich and Farmer [3]. These parameters comprise
direction of maximum coherency in terms of dip (d) and
azimuth (a), and the ranges in the three direction of space
(r1–r3) (Fig. 1). The more similar two traces are, the larger
the variogram ranges and, consequently, the larger the krig-
ing weights (λα) of the conditioning amplitude values along
the direction of maximum coherence. When two adjacent
traces are less similar, the importance of neighbor samples
for the kriging estimate decreases according to the vario-
gram ranges. It is important to note that the dip, azimuth,
and coherence value calculated between neighbor traces
are linearly interpolated at missing trace locations. There-
fore, the performance of GSDI is better when interpolating
regularly sampled data sets.

After simulating N realizations, it is possible to explore
the variability related with the interpolation, assigning a
value of uncertainties to every interpolated sample: well
constrained areas of the simulation matrix will display low
variability within the ensemble of simulated traces, whereas
areas of poor coherency will have higher variability. In
the proposed method, the mean model of the simulated
ensemble (expected value for each interpolated seismic
sample) is assigned to the location of interest. By calculating
the mean of the ensemble of realization, possible random
noise introduced by outlier simulated values is reduced.

The GSDI method is described in Algorithm 1, and
summarized in Fig. 2.

3 Examples

We show the application of GSDI technique in both
synthetic and real data sets considering post- and pre-
stack domains. Thus, we aim at assessing the performance

Algorithm 1 GSDI.

1. Input: simulation grid with recorded and missing traces
around the location of interest
2. User-defined parameters: number of realizations (N);
temporal and spatial sampling interval (ds, dt); and initial
variogram parameters (r1–r3, d, a)

3. Initialize r1–r3, d, and a cubes
4. Compute dip/azimuth and coherency cubes: cross-
correlation between recorded seismic traces within a
neighborhood around the location to be interpolated.
Interpolate at missing traces columns
5. Update r1–r3, d, and a cubes: scaling horizontal ranges,
allocate angles to d and a

6. For i = 1:N run DSS-LA
7. Output: average of N realizations, assign trace to seismic
grid

of this approach in the presence of noise and complex
geometries. All data sets used in these application examples
are complete and fully sampled; therefore, we randomly
zeroed entire seismic traces before interpolation. In this
way, we are mimicking an irregular input seismic record
while being able to compare the interpolated against the real
data. The coherency field used to update the local variogram
parameters (step 5 in Algorithm 1) are computed in different
ways according to the application example. For the sake of
comparison, we carried out the same experiments using an
interpolation algorithm based on f -x prediction filters as in
[44].

3.1 Post-stack domain interpolation

We first tested the proposed geostatistical seismic interpo-
lation technique in the post-stack domain. The aim of these
application examples is to simultaneously increase lateral

Fig. 2 Schematic representation of the workflow for geostatistical seismic data interpolation



670 Comput Geosci (2019) 23:665–682

resolution and reconstruct missing seismic traces at specific
CMP locations. We show examples in 2D and 3D.

3.1.1 2D examples: synthetic and real field seismic sections

The first example comprises a 2D synthetic seismic section,
modeled with four distinct reflectors with dips ranging from

4 ms/trace to horizontal and dipping in both directions.
There are two areas of crossing events and a small per-
centage of random white noise was added to the section
(Fig. 3a). The temporal and spatial sampling intervals are,
respectively, 1 ms and 10. The initial horizontal maxi-
mum range r1 is set to 180 m. The coherency-based dip
field was computed over moving vertical windows between

Fig. 3 Post-stack synthetic
seismic section with dipping
reflectors. a Original section. b
Decimated by 66% (only 33%
of the original traces were kept
for the interpolation). c, d Dip
magnitude field and the
horizontal ranges field,
respectively. e Interpolated
section with GSDI method. f
Residuals between the results of
the interpolation and the true
section
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neighbor-recorded traces around the location to be interpo-
lated and linearly interpolated at missing trace locations.
Due to the small size of the data and for illustration of
the method, we computed the cross-correlation between all
existing traces. In real datasets, we just need to compute the
cross-correlation between traces around the location to be
interpolated. The resulting coherency dip field was used to
update the local variogram model (Fig. 3c). The horizontal
range is automatically reduced in regions of low correla-
tion between adjacent traces (Fig. 3d), for instance in the
area of crossing events and in absence of distinct reflectors.
Thirty-three of the 50 traces were removed before coherency
estimation, leaving every original third trace (Fig. 3b).
Figure 3e shows the reconstructed seismic record. Given
the strong dependence on the dip estimation, the recon-
struction of the seismic traces is less accurate in cases of
large gaps or conflicting dips, as can be noticed in Fig. 3f.
Nevertheless the amount of random noise is kept low in
the GSDIinterpolated section (Fig. 3e). The f -k spectra for
the original and reconstructed seismic section are shown
in Fig. 4. As expected, the decimated section is strongly
affected by spatial aliasing (Fig. 4b); the f -k spectra of the
GSDI section (Fig. 4c) reproduces well the f -k spectrum
calculated from the original section and shows the ability
of the proposed technique to successfully attenuate spatial
aliasing.

Figure 5a shows an inline extracted from a real 3D
post-stack cube showing complex geology and conflicting
dips. Sixty-five percent of the traces were randomly zeroed,
leaving all the remaining original traces as conditioning data
for the simulation (Fig. 5b). Spacing between the crosslines
is 10 m and the sampling interval is 1 ms. r1 is initialized
at 180 m. The dip magnitude field and the coherency
matrix (Fig. 5c, d) calculated between recorded traces and
linearly interpolated at missing trace locations are used to
parameterized local variograms: when the coherency value

is 1, r1 is maximum. In absence of clear seismic events,
for instance where faults are present, it is smaller due to
low similarity between waveforms (Fig. 5d). This leads to a
higher variability of the simulated amplitude values for grid
nodes in these areas, which results in effective white noise
attenuation when computing the mean of all the simulated
values.

The interpolated section reproduces considerably well
the original seismic record (Fig. 5e), maintaining important
structural and sedimentary features such as faults, strata, and
high amplitude zones. The differences with respect to the
original section are shown in Fig. 5f.

The f -k spectra of the original, decimated and interpo-
lated sections can be seen in Fig. 6a–c respectively. The f -k
spectrum computed over the interpolated section is able to
properly reproduce the original one.

3.1.2 3D example: field data seismic cube

Figure 7a shows the original seismic volume where a gap
of 3 × 3 missing traces was created (Fig. 7b). With this
simple experiment, we want to highlight an advantage of
the GSDI method, which is the possibility to assess the
reliability of the interpolated traces, at a sample scale,
based on the variability of the simulation matrixes at
given sample locations for different realizations. In this
experiment, spatial and temporal intervals were set to 10 m
and 1 ms, respectively. The simulation grid is a subset of
10 × 10 traces of the original seismic volume (Fig. 7b).
The traces lying within this grid were used to estimate the
coherency dip field. Local 3D variograms were initialized
with horizontal ranges r1 and r2 equal to 180 m.

The correlation coefficients between the entire interpo-
lated and the original traces are higher than 95% for all the
nine traces, although the ensemble of realizations of traces
5–8 display a larger spread, with a broader range of values,
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Fig. 5 Real case application to a
post-stack seismic record. a
Original section. b Randomly
decimated by 65% (only 140 of
400 original traces left. c, d Dip
magnitude field and the
horizontal ranges field,
respectively. e, f Reconstructed
section with GSDI method and
the residuals, respectively
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with respect to the other interpolated traces. The dotted lines
in Fig. 7c (traces 1 and 6) represent the boundaries within
which all the simulated values for that portion of the traces
fall. It can be noticed that the bounds are larger for trace
6 than for trace 1, meaning a lower level of confidence for
the interpolated samples in that specific interval. The reason

of the higher variability in the simulated values of traces 5,
6, 8, and 9 is an abrupt change in the seismic patterns (for
instance, reflector steepness or thickness) in the lower-right
corner of the simulation matrix (red triangle in Fig. 7a).

As a quality control of the interpolated traces, we
show a comparison of amplitude spectra of the real and
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interpolated seismic traces for the nine considered locations
(Fig. 7d). The reproduction of high frequencies is ensured
using stochastic sequential simulation as the interpolation
technique.

3.2 Pre-stack domain interpolation

In this section, we show two application examples of GSDI
in the pre-stack domain. The first example comprises the
interpolation of seismic traces within an under-sampled pre-
stack gather, resulting in a higher fold with respect to the
original data. The second illustrates the ability of the GSDI
technique to be used in interpolating in-between inlines
or crosslines. Interpolation in the midpoint-offset domain
improves the signal to noise ratio, while it allows decreasing
the bin size (i.e., increase spatial resolution) when it is
carried on in the shot point, inline, or crossline domains. It
must be stressed that although in the application examples
presented in this paper the interpolation is carried on in the
midpoint-offset and shot-point coordinate spaces, the same
method is applicable in the midpoint coordinate, inline, or
crossline domains. The 2D coherency-based dip estimation
and successive interpolation are carried out along the offset
direction in the first example, and along the shot point
direction in the second example.

3.2.1 Interpolation in offset domain

Figure 8a shows a CMP gather from a real marine 2D
seismic survey. We created a decimated gather by removing
every second trace (Fig. 8b); in this way, we simulate
the case of an under-sampled data set that one desires to
improve by increasing the fold and thus the signal-to-noise

ratio. In this case, fold increases from 15 to 30 after
interpolation. We also generated an irregularly sampled
gather by zeroing 11 traces resulting in gaps of 3, 2, and
1 seismic traces (Fig. 8c), in order to test GSDI method in
the presence of both larger gaps of missing seismic traces
and non-linear events. The spatial and temporal sampling
intervals were set to 10 m and 1 ms, respectively. The initial
maximum horizontal variogram range r1 was set to 120.
The coherency based dip field for the decimated gather
was calculated between the remaining traces after every
second offset was removed, and it was linearly interpolated
at missing trace locations. In the case of the gather with
traces gaps (Fig. 8c), the dip field was calculated from the
nearest fully sampled CMP gather. In real case, examples,
the nearest fully sampled CMP gather can either be too far
or be inexistent; in this case the dip field can be computed
between adjacent traces and interpolated at missing trace
locations. As discussed in Section 2.1, the use of a linear
interpolator is only valid under the assumption that the
number of consecutive missing traces is small enough
compared to the curvature of seismic events. In presence
of high curvature, a spline interpolator would be more
appropriate.

The trace reconstruction is good both in the decimated
gather (Fig. 8e, g) and in the gather with gaps (Fig. 8h,
l). Despite small amplitude, decreases can be observed
in Fig. 8l close to the reflection corresponding to the
seafloor, the residuals for both of the interpolated gathers
are considerably small (Fig. 8f, i) and the overall results
show a good fitting between the original traces and the
reconstructed ones. Figure 9a, b illustrates zoomed portions
of five of the reconstructed traces from near, middle,
and far offset regions of the gather and their amplitude
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Fig. 7 a Seismic post-stack cube with a gap of 3 × 3 traces shown
in the middle and the region of abrupt change in the geometry of the
underlying geology shown with the red triangle. b A map view of
the seismic volume indicating the nine removed traces. c The original
(pink) and interpolated (black) traces; the predicted trace is the mean

of the one hundred realizations, shown with gray lines. The larger the
spread between the realization, the lower the level of reliability of the
interpolated trace. dAmplitude spectra of each the original traces (red)
and the interpolated ones (black)

spectra, respectively. Interpolated traces have correlation
coefficients above 85% when compared with the true ones.
This example shows that the GSDI technique can handle
small gaps of missing traces even in presence of nonlinear
reflection as in the case of a pre-stack CMP gather. The
f − k spectra for the original, decimated, and interpolated
gather are shown in Fig. 10: in the decimated gather, spatial

aliasing occurs at all frequencies, whereas the original and
interpolated data are only aliased above 60 Hz.

To benchmark the proposed interpolation technique, f -
x interpolation [44] was applied to the same CMP gather
corrected for normal move-out (NMO). Results are shown
in Fig. 11. It can be noticed that the GSDI introduces
less amount of random noise than the f -x interpolation
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Fig. 8 2D marine CMP gather a original gather; b decimated by 50% leaving every second trace; c gather with random gaps; e, h show
interpolation with GSDI (b, c, respectively), while h, i residuals. Note that residuals were multiplied by 4 for a better comparison. d, g, l Zoomed
area in the red rectangles

method (Fig. 11f, i). Furthermore, curved nonlinear events
that may remain even after NMO, due to inaccurate velocity
model or in presence of multiples, as is this case, are
handled by the GSDI technique, whereas they are poorly
resolved by the f -x interpolation algorithm (Fig. 11d, g).
The GSDI interpolated gathers show to minor residuals
between the interpolated and the original traces (i.e., a
higher percentage of zero residuals and small absolute
residuals) when compared to the f -x interpolated section
(Fig. 12a). The trace-by-trace signal-to-noise ratio (SNR)
is also higher for the GSDI interpolated traces, supporting

the performance of the proposed method (Fig. 12b). The
residuals between the interpolated and the original gathers
is considered noise.

3.2.2 Interpolation in shot point domain

As last example, we use a set of 2D marine shot gathers to
test the GSDI method in the reconstruction of entire gathers.
This procedure is particularly interesting since it can easily
be extended to achieve the reconstruction of entire inlines
or crosslines of an under-sampled 3D data set. The original
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Fig. 9 a Comparison of reconstructed (black lines) and original traces
(red lines) from the interpolated CMP gather in Fig. 8e, b relative
amplitude spectra. Every gray line represents one realization of the

stochastic sequential simulation, and the interpolated trace is the mean
of all the realizations. Different portions of the traces are shown.
Correlation coefficients are also shown

shot point spacing interval is 37.5 m, and increased to 70 m
after every second shot gather was removed. Interpolation
is carried out for each offset as illustrated in Fig. 13a.
As can be noticed in Fig. 13b, the dip angle is close to

0◦ at all sample locations, due to the very smooth and
regular underlying geology. The variogram horizontal range
r2 was set to 350 m and successively updated according
to the coherency field (Fig. 13c). Figure 14 illustrates
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Fig. 10 F -k spectra of the a original gather, b decimated gather, c interpolated decimated gather, and d interpolated gather with gaps
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nine of the initial gathers before and after interpolation
(zoom in Fig. 15). In the deepest parts of the seismic
records, where the seismic texture tends to become more
chaotic and the coherency between traces is low, we can

observe decrease in the interpolation accuracy, whereas
in the shallower parts, where reflection events are clear
and distinct, the interpolated traces match very well the
original ones. Overall, despite small amplitude change, the
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Fig. 12 a Histograms of the
residuals for the NMO corrected
pre-stack gather computed for
both interpolation methods,
considering only the
interpolated traces (even trace
numbers, Fig. 11e, h). b SNR of
interpolated gather with f -x
technique (red line) and with
GSDI technique (black line).
Offset numbers refer to
Fig. 11d, g
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reconstructed traces are hardly discernible from the input
data. The f -k spectra of the original shot gather 3 and
the interpolated shot gather 4 are shown in Fig. 16a, b,
respectively. In this experiments, GSDI algorithm has been
able to reconstruct most of the signal present in the shot
gathers, despite some of the negative dip events (up dip with
increasing offset) display lower energy than in the original
shots (darker stripes in Fig. 16b).

4 Discussion

The GSDI technique presented herein is a local interpolation
method based on the assumption that there is a spatial
continuity pattern within the recorded data (i.e., distinct

reflections), which is expressed in terms of dip, azimuth,
and coherence between portions of adjacent traces. In
absence of clear events, as well as in presence of large
amount of white noise, the GSDI loses precision due to
the inaccuracy of the dip estimation and the decreasing
number of conditioning data for the simulation as can
be observed examples illustrated by Figs. 14 and 15.
The reconstruction of missing seismic traces is based on
the definition of local variogram models which are in
turn characterized by dip, azimuth, and range parameters
that vary for each seismic sample. In presence of large
gaps or crossing events, the dip estimation precision
decreases considerably, and will eventually partially or
totally compromise the interpolation accuracy. It is hard to
define the maximum number of consecutive missing traces
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Fig. 13 a Dip magnitude estimation example for the reconstruction of an entire gather between recorded gathers. b, c Dip magnitude field and the
horizontal ranges field, respectively, for shot gather number 4 of Fig. 14

for which the proposed method is effective for different
data sets, as it depends on the complexities of the seismic
events that are present in the recorded data, on the quality
of the data and on the similarity between the two traces
at the sides of the gap. A dip estimation based on cross-
correlation does not handle this problem properly, as the
wavelet signature changes when two reflectors interfere
with each other; on the other hand, the use of a more
accurate dip estimation technique [7, 31] could lead, in
some cases, to better results than the ones presented in this
paper

A significant advantage of the proposed method,
compared to other interpolation methods, is the possibility
to assess the reliability of the reconstructed traces at
the sample scale by computing the variability of the
ensemble of N realizations generated for each seismic
sample. In real case examples, when we want to interpolate

missing traces, we do not have access to the real seismic
traces to benchmark new predicted traces and evaluate
the quality of the interpolation technique. With the GSDI
technique, the variance of the ensemble of realizations at
an unknown location can be used as a confidence index
of the predicted amplitude value. When the realizations
are very similar one to another, the level of confidence
is considered high, while when the variance between
different realizations is higher, the level of uncertainty
increases (e.g., traces 5, 6, 8, and 9 in Fig. 7c).
This confidence index can be exploited in further data
processing steps, for example by increasing or decreasing
weights to the interpolated pre-stack traces in the stack
phase.

Finally, the main issue of many seismic data interpolation
techniques in the pre-stack domain is the presence of
strong curvatures in the offset direction. Many interpolation
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Fig. 14 a Original shot-point gathers. b Decimated gathers. c
Interpolated gathers (even numbers). d residuals. White rectangle is
zoomed in Fig. 15

methods assume linear events in the timespace domain [18,
27, 33, 44, 52], and must therefore reduce the curvature
as much as possible before interpolation by application
of NMO corrections or time/space windowing. One of
the main advantages of GSDI technique relies on the
fact that the method does not need any assumption about
linearity of seismic events and is applicable equally to post-
and pre-stack data sorted in any domain (shot number,
common midpoint, inline/crossline, etc.). Moreover, by
interpolating seismic traces before velocity analysis, it is
possible to increase the fold and model more accurate
velocity functions.

5 Conclusions

GSDI technique, introduced in this paper, shows a great
potential for seismic data reconstruction based on stochastic
sequential simulations. The examples show the significant
versatility of this method, which is suitable for both 2D
and 3D data applications, in pre- and post-stack domains.
Among the main advantages of this method are the
following:

– The ability to interpolate non-stationary seismic data,
without making assumptions about the linearity of
seismic events;

– The possibility of interpolating pre-stack seismic data
without the need of a normal move-out correction;

– The possibility to assess to the reliability of the
interpolated amplitude values of the reconstructed
seismic traces at the sample scale, and the chance to
exploit the confidence index in further signal processing
steps.

– The ability to reconstruct missing seismic traces
without the need to transform the data into another
domain to interpolate.
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Fig. 16 F − k spectra of a shot
gather 3 and b shot gather 4 of
Fig. 14
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