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Abstract
Relating the attenuation and velocity dispersion of seismic waves to fluid pressure diffusion (FDP) by means of numerical
simulations is essential for constraining the mechanical and hydraulic properties of heterogeneous porous rocks. This, in
turn, is of significant importance for a wide range of prominent applications throughout the Earth, environmental, and
engineering sciences, such as, for example, geothermal energy production, hydrocarbon exploration, nuclear waste disposal,
and CO2 storage. In order to assess the effects of wave-induced FDP in heterogeneous porous rocks, we simulate time-
harmonic oscillatory tests based on a finite element (FE) discretization of Biot’s equations in the time-frequency domain
for representative elementary volumes (REVs) of the considered rock masses. The major challenge for these types of
simulations is the creation of adequate computational meshes, which resolve the numerous and complex interfaces between
the heterogeneities and the embedding background. To this end, we have developed a novel method based on adaptive
mesh refinement (AMR), which allows for the fully automatic creation of meshes for strongly heterogenous media. The
key concept of the proposed method is to start from an initially uniform coarse mesh and then to gradually refine elements
which have non-empty overlaps with the embedded heterogeneities. This results in a hierarchy of non-uniform meshes with
a large number of elements close to the interfaces, which do, however, not need to be explicitly resolved. This dramatically
simplifies and accelerates the laborious and time-consuming process of meshing strongly heterogeneous poroelastic media,
thus enabling the efficient simulation of REVs containing heterogeneities of quasi-arbitrary complexity. After a detailed
description of the methodological foundations, we proceed to demonstrate that the FE discretization with low-order FE has
a unique solution and hence does not present spurious modes. We assess the practical effectiveness and accuracy of the
proposed method by means of four case studies of increasing complexity.

Keywords Adaptive mesh refinement · Finite element method · Biot’s equations · Poroelasticity · Fluid pressure
diffusion · Seismic attenuation and velocity dispersion
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1 Introduction

In the mesoscopic scale range, that is, at scales larger
than the pore size but smaller than the seismic wavelength,
the attenuation and velocity dispersion of seismic waves
in heterogeneous porous rocks tends to be dominated by
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fluid pressure diffusion (FDP) [32, 43, 44, 47, 59]. The
analysis of these characteristics thus has the potential of
revealing valuable information on the prevailing mechanical
and hydraulic properties of the probed subsurface regions.
This, in turn, is relevant for many applications, such as
geothermal energy production, hydrocarbon exploration,
nuclear waste disposal, and CO2 storage.

In order to quantify the effects of FPD in fluid-saturated
heterogenous porous rocks, time-harmonic oscillatory tests
are simulated employing Biot’s equations of poroelastic-
ity for representative elementary volumes (REVs) of the
considered geological units [6–8]. This allows to evalu-
ate the seismic response of such REVs in terms of their
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frequency-dependent seismic attenuation and velocity dis-
persion characteristics [53]. The primary motivation for this
up-scaling-type approach is that simulating wave propa-
gation in poroelastic media is computationally inefficient
[16, 37], as wave propagation and FPD prevail at signifi-
cantly different time scales [17]. Time-harmonic oscillatory
tests are generally performed at frequencies at which iner-
tial effects can be ignored and hence are also referred to
as quasi-static tests [39]. For most fluid-saturated porous
rocks, inertial effects do indeed become significant only at
ultrasonic frequencies [11].

For the simulation of heterogeneous porous and/or
fractured porous rocks of realistic complexity with a
finite element (FE) method, meshing is arguably the
major bottleneck. The creation of computational grids that
resolve the numerous complex interfaces associated with the
embedded heterogeneities remains an immensely tedious
and error-prone task, which tends to require a high degree of
human interaction. This finds its expression in the fact that,
although a wide range of models and numerical methods
have been proposed to improve the accuracy and efficiency
of the simulation of FDP in heterogenous porous media [39,
49, 53], corresponding applications have so far been limited
to simple geometries of the heterogeneities and/or to small
numbers of complex features [40, 48, 52].

Adaptive mesh refinement (AMR) is a highly effective
method for improving the accuracy of numerical simula-
tions of differential problems while retaining their compu-
tational efficiency. These techniques can reduce by orders-
of-magnitude the number of degrees of freedom necessary
to reach a prescribed accuracy. AMR may be employed
together with error estimators following the paradigm
“Solve-Estimate-Refine” [18–20, 34, 50, 57] or, alterna-
tively, it can be used exploiting a-priori information on
the problem. For example, AMR has been used to create
meshes for hybrid-dimensional fracture-matrix models, i.e.,
models where a two-dimensional background medium is
coupled with one-dimensional embedded fractures. In [38],
AMR is used to generated meshes in a domain with discrete
fracture networks together with constrained Delaunay trian-
gulations, thus resulting in a conforming mesh that is denser
at fracture locations. In [46], an initially uniform mesh of
the background medium is adaptively refined in the vicinity
of the lower-dimensional fractures. This approach results in
a non-conforming mesh, which allows for a more adequate
representation of flow and transport phenomena between the
background and the fractures. Another application of a non-
conforming method can be found in [4] for the simulation
of wave propagation in heterogeneous media. Here, mesh
adaptation was driven by the local wave velocity and the
maximum frequency of interest.

In previous works [29, 30], we presented initial applica-
tions of a novel method based on AMR, which enables fully

automated meshing of complex heterogeneous structures,
such as stochastic fracture networks. Inspired by the adap-
tive schemes proposed in [4, 15, 46], our method does not
create meshes which explicitly resolve the heterogeneities.
Instead, it creates sequences of non-conforming quadrilat-
eral or hexahedral structured meshes, which approximate
the heterogeneities with increasing accuracy. To this end,
the embedded heterogeneities are analytically defined as
subsets of the computational domain under consideration.
Hence, starting from a uniform coarse mesh, elements
which have non-empty overlaps with the interfaces between
background and the embedded heterogeneities are succes-
sively refined. This allows to automatically create a hier-
archy of non-conforming nested meshes, which are finer
near the interfaces where numerical errors tend to be con-
centrated. As in [4], meshes are enforced to be 1-irregular
and the discretization is performed with a conforming FE
method. We explicitly construct the stiffness matrix since
we use an implicit method.

The proposed method can indeed be regarded as a
generalization of the finite cell method (FCM) [22]. The
core idea of the FCM is to immerse a smaller complicated
physical domain into a larger and simpler one and then to
use locally refined, axis-aligned meshes for the embedding
domain to describe the features of the immersed domain.
Hence, the differential problem is solved by extending the
material properties to zero in the embedding domain. In our
study, we can consider the REV as the embedding domain
and the heterogeneities as the immersed domain.

While our method has already allowed us to perform sim-
ulations of oscillatory tests for media containing complex
fracture networks of unprecedented realism and complex-
ity [29, 30], it has never been formally introduced and its
numerical properties were, as of yet, largely unexplored.
The main objective of this work is thus to provide a for-
malization of the proposed AMR method. In doing so, we
also seek to demonstrate that the employed discretization of
Biot’s equations with low-order FEs has a unique solution
and, hence, does not present any instabilities, such as spuri-
ous modes [13, 24, 25]. Moreover, we explore the method’s
convergence by means of numerical examples.

The manuscript is organized as follows. In Section 2, we
describe our mathematical model based on Biot’s consolidation
equations in the frequency domain and the time-harmonic
oscillatory tests used to compute the seismic attenuation
and velocity dispersion characteristics. In Section 3, we
outline the FE formulation. Section 4 presents our AMR
methodology, which is then validated in Section 5 by means
of four numerical tests. Two tests, for which analytical
solutions are available, are used to explore the convergence
properties of our method. In the third test, we compare
the results obtained with our adaptive method against those
obtained on a mesh which explicitly resolves the interfaces
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separating different materials. Finally, we illustrate the
convergence of our method for the particularly challenging
scenario of a realistic stochastic fracture network. In the
appendices, we formally derive the weak formulation of
the problem with a particular focus on the use of complex
variables and we prove the stability of its FE formulation.

2Mathematical model

To find the effective seismic attenuation and velocity disper-
sion of a heterogeneous porous and/or fractured rock mass,
a corresponding REV is modeled as a poroelastic medium
with non-constant heterogeneous coefficients [31]. That is,
different material properties are assigned to the background
and to the embedded heterogeneities. In the following, we
present the mathematical model, which we employ to simu-
late the oscillatory tests performed over an REV. It consists
of Biot’s consolidation equations in the frequency domain
with periodic boundary conditions. The weak formulation
of this model is formally derived in Appendix A.

2.1 Computational domain

We denote the spatial dimension of the problem by the
integer d ∈ {2, 3} and we assume that the domain on which
the equations are defined is � = (−L, L)d with L ∈ R

representing the half-length of the side of the REV. Over �,
we introduce a set F of d-dimesional heterogeneities fi ⊂
� with i = 1, 2 . . . Nf , where Nf = |F | is the number
of heterogeneous inclusions. The subdomain �f denotes

the set of all inclusions, i.e., �f = ⋃Nf

i=1 fi . We also set
�b = �\�f . In this way, � admits the decomposition
� = �b ∪ �f with �̊b ∩ �̊f = ∅. We denote by n the
outward normal and by x the points of � such that xi is the
i-th Cartesian coordinate with i = 1, . . . , d.

We also introduce the symbol �i
β to denote the

(d-1)-dimensional subset of � defined as

�i
β = {x ∈ � : xi = β}.

In this way, the boundary of � admits the decomposition

∂� =
∑

s∈{−1,1}

d∑
i=1

�i
sL.

2.2 Biot’s consolidation equations

To simulate FPD in an REV, we employ Biot’s consolidation
equations of poroelasticity [5, 58] in the so-called u-p form.
Since we are interested in the simulation of time-harmonic
oscillatory tests, we write them in the frequency domain
[49], where the unknowns are the solid displacement u( · ; ω)

and the fluid pressure p( · ; ω), which are both complex
functions. The parameter ω denotes the angular frequency.
Neglecting inertial terms, Biot’s equations in the frequency
domain are

− div σ = 0, in �, (1)

− j α div u − j
p

M
+ 1

ω
div

(
k

η
∇p

)
= 0, in �, (2)

where j is the imaginary unit, k the permeability, η

the dynamic shear viscosity of the fluid, and α the so-
called Biot or Biot-Willis coefficient. Please note that the
dependence of u and p on ω has been dropped for ease of
notation.

The total stress tensor σ is a function of the strain

ε(u) := ∇u + ∇uT

2
(3)

and of the pressure p and can be written as

σ = 2με(u) + λtrε(u) I − αpI , (4)

where μ is the shear modulus of the dry frame and λ the
Lamé parameter. Because of Eq. 3, the stress tensor is
symmetric but not Hermitian (σij = σji and σij �= σ ∗

ji). It
remains to define α and M , which are given by

α = 1 − Kb

Ks

and
1

M
= φ

Kf

+ α − φ

Ks

, (5)

with φ denoting the porosity and Kf , Ks , and Kb the bulk
moduli of the fluid, the solid grains, and the dry frame, respec-
tively.

Equations 1 and 2 are subjected to the following periodic
boundary conditions:

u|�i
L

− u|�i−L
= αi with i = 1, . . . , d, (6)

σ i |�i
L

− σ i |�i−L
= 0 with i = 1, . . . , d, (7)

p|�i
L

− p|�i−L
= 0 with i = 1, . . . , d, (8)

k

η

∂p

∂xi

|�i
L

− k

η

∂p

∂xi

|�i−L
= 0 with i = 1, . . . , d. (9)

Equation 6 imposes the continuity of the displacements up
to an external relative displacement αi . In Eq. 7, σ i denotes
the i-th column of the stress tensor. This equation is derived
from the continuity of the stress at two extrema of the domain

(σ n)|�i
L

= −(σ n)|�i−L
.

Considering, for example, the first direction with d = 2, we
observe that the normals are (−1, 0) at x1 = −L and (1, 0)

at x1 = L. Hence, we obtain

−σ 1|�1
L

= −σ 1|�1−L
.
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The material properties μ, λ, α, M , and k/η in Biot’s
equations are assumed to be real functions attaining constant
positive values over �b and �f , such as, for example,

μ =
{

μb, in �b,

μf , in �f .
(10)

2.3 Time-harmonic oscillatory tests

Time-harmonic oscillatory tests are realized by imposing
a relative displacement along one direction between two
opposite faces of the boundary of the domain and setting
to zero the relative displacement along the other directions.
For isotropic samples, these tests can be performed in any
of the d axes of the considered problem. We carry out two
different tests:

1. A compression test to determine P-wave attenuation
and velocity dispersion.

2. A shear test to obtain the corresponding S-wave
characteristics of the medium.

Considering, for example, tests in d = 2 along the
second (vertical) direction, the former is realized by setting
α2 =[0; α] and the latter by setting α2 = [α; 0], with α ε R,
while setting α1 = 0.

By averaging specific components of the calculated
stress and strain tensors, we obtain the complex P-wave
modulus H(ω) and the complex S-wave modulus μ(ω) for
the second direction as [41]

H(ω) = σ̄22(ω)

ε̄22(ω)
and μ(ω) = σ̄12(ω)

2ε̄12(ω)
, (11)

where the bars denote spatially averaged quantities. The
factor 2 in the denominator of the shear modulus is
due to the Voigt notation [41]. To calculate the inverse
quality factor 1/Q(ω) quantifying the attenuation, one
simply divides the imaginary part of these moduli by the
corresponding real part [41]

1

Qp(ω)
= 
{H(ω)}

�{H(ω)} and
1

Qs(ω)
= 
{μ(ω)}

�{μ(ω)} . (12)

The frequency-dependent velocity V (ω) is then obtained by

Vp(ω) =
√

�{H(ω)}
ρ̄

and Vs(ω) =
√

�{μ(ω)}
ρ̄

, (13)

where ρ̄ denotes the average bulk density of the sample.
If the sample is anisotropic, a horizontal compression test is

needed in addition to the vertical compression and the shevar
tests. This is realized by setting α1 = [α; 0] and α2 = 0.
Following the procedure described by [51], these three
tests allow for inferring the frequency-dependent equivalent
Voigt stiffness matrix C. For the general anisotropic case

with d = 2 under plane strain conditions, C relates the
mean strain to the mean stress⎛
⎝σ̄11

σ̄22

σ̄12

⎞
⎠ =

⎛
⎝C11 C12 C16

C12 C22 C26

C16 C26 C66

⎞
⎠

⎛
⎝ ε̄11

ε̄22

2ε̄12

⎞
⎠ . (14)

Once the complex components of C have been deter-
mined, one can solve for the wavenumbers of the P- and
S-waves, which can then be related to the frequency- and
angle-dependent attenuation and velocity dispersion charac-
teristics 1/Q(ω, θ) and V (ω, θ) [51], where θ denotes the
incidence angle with regard to the vertical axis.

3 Finite element method on adapted
non-conformingmeshes

Before discussing the FE approximation on non-conforming
meshes, we first introduce some definitions (adapted from
[18]) which will simplify the presentation.

1. Mesh T . A mesh T is a triangulation of � into squared
(d = 2) or cubic (d = 3) elements. Elements will be
denoted by K and hK denotes the side length of K .

2. Red-refinement. We say that an element K of side
length hK is red-refined if it is split into 2d identical
elements of side length hK/2.

3. Initial mesh T0. The mesh T0 is supposed to be a uniform,
regular triangulation of � into closed elements.

4. Adapted mesh TL . A mesh TL , with L >1 is obtained
by a finite number L of red-refinements from T0,
where for every � = 1, ..., L , T� is obtained by a red-
refinement of a subset A of elements of T�−1. Then,
one says that T� is some red-refinement of T�−i , with
i = 1, . . . , �. The symbol E(K) denotes the number of
refinements that has been applied to its parent element
in T0 in order to obtain K .

5. Hanging nodes. Given a mesh T , which is some red-
refinement of T0, a node is said to be hanging if it
belongs to an element K but it is not a vertex of such
an element. Otherwise, the node is called regular. We
will refer to hanging nodes belonging to an edge as edge
hanging nodes and to hanging nodes belonging to a face
as face hanging nodes.

6. k-irregular meshes. If any edge contains at most k

hanging nodes in its inside, T is called k-irregular. We
denote the number of all hanging nodes by Nh and the
number of all regular nodes by Nr .

According to the definitions above, a triangulation
can be non-conforming and non-uniform but all elements
are shape-regular, being squares or cubes. In particular,
1-irregular meshes, also referred to as balanced meshes
[4], have the constraint that each element has at most
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2d−1 identical adjacent elements per side. Examples of
1-irregular meshes for d = 2 are shown in Fig. 1.

Both finite difference [3] and FE [61] approximations
have been proposed on adapted meshes. The main advan-
tages of employing adapted meshes composed of quadri-
lateral and hexahedral elements stems from their capacity
of resolving heterogeneities and complex features in the
domain, while keeping a regular shape of the elements. This,
in particular, allows to reduce ill-conditioning due to too

Fig. 1 Examples of 1-irregular meshes. Right column, top to bottom:
initial mesh and the resulting adapted meshes after one, two, three, and
four red-refinement steps. The hanging nodes are colored in red, while
regular nodes are colored in blue. Left column: element marked for
refinement (red) and elements that have been marked for refinement to
keep the resulting mesh 1-irregular (blue)

skewed elements at the price of having non-constant and
non-regular material properties over some elements. Hence,
interfaces are not explicitly represented but approximated
with an order of O(h).

Both the displacement u and the pressure p are
locally approximated on each element with bilinear or
trilinear functions. Such functions provide greater accuracy
compared with linear functions on triangles and tetrahedra:
the asymptotic convergence rate is the same but the constant
in the convergence estimate is typically smaller. The
computation of the local stiffness matrices is performed by
standard numerical quadrature, assigning different material
properties to each quadrature point. At the global level,
only degrees of freedom associated with regular nodes
are considered, meaning that the size of the linear system
arising from the FE discretization is (d + 1)Nr , i.e., Nr -
times the number of variables involved in the model. The
values at the hanging nodes are subsequently computed by
interpolation: components of the solution at an edge hanging
node are imposed to be the average of the solution at its two
edge neighbors and components at a face hanging node are
imposed to be the average of the solution at its four face
neighbors.

Although Eqs. 1–4 define a generalized saddle-point
problem, its approximation with a low-order FE method
provides a unique solution and does not present instabilities,
such as spurious modes. In Appendix B, we formally prove
the uniqueness of the solution. Here, we want to briefly state
that the presence of a diffusion term in Eq. 2 drastically
changes the inf -sup condition for this system of equations
[13, 24, 25], allowing also for approximations of the same
order for u and p.

The definitions outlined at the beginning of this section
refer to the specific case of square or cubic domain
and for discretizations based on axis-aligned quadrilateral
and hexahedral elements. They can be generalized to any
domain with polygonal boundaries and to any kind of
triangulation, in particular triangles and non-axis-aligned
quadrilaterals for two-dimensional cases [18], as well
as tetrahedra and non-axis-aligned hexahedra for three-
dimensional cases. For the case of general quadrilaterals and
hexahedra, standard convergence proofs have to be adapted
due to the presence of a non-affine map from the reference
element to a generic element [10].

4 Adaptivemesh refinement

4.1 Adaptivemesh refinement for heterogenous
media

The main goal of our work is to perform simulations
of FPD employing equi-dimensional models, i.e., models
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where d-dimensional fractures are embedded into a
d-dimensional matrix. For realistic cases involving multiple
complex fracture networks, this process is prohibitively
time-consuming and requires an excessive degree of human
interaction. To alleviate this problem, we propose a method
based on AMR to automatically mesh complex embedded
fractures.

The basic idea of the method is to start with a coarse initial
mesh and, given a distribution of embedded heterogeneities,
refine the elements that have non-empty intersections with
them. By iterating this procedure, we can create a hierarchy
of meshes, which become progressively finer towards the dis-
continuities and which feature element boundaries that do
not coincide with them. This AMR method allows to auto-
matically create meshes for any heterogeneity distribution
without any human interaction. In order to evaluate the
accuracy of the method, solutions, or output variables, such
as seismic attenuation and velocity dispersion, from two
consecutive hierarchical levels can be compared.

Another possibility for evaluating the quality of the
solution would be to employ error estimators, which are not
readily available for the proposed method. In this regard,
there are basically two options. One would be to adapt error
estimators based on flux reconstruction that have already
been developed for Biot’s equations in the time domain
[50]. Here, the main difficulty would be to extend this
methodology to complex vector spaces and non-symmetric
problems. Another would be to use more generic residual-
based error estimators for coupled problems, e.g., [23].

4.2 Algorithm and implementation

Figure 2 represents the algorithmic details of the proposed
AMR method for level � = 1, . . .L . We assume that
the mesh T0 is regular, uniform, and structured; hence, the
number of elements is N0 = (2L/h)d . At each level �, we
select a subset of parent elements A�−1 ⊂ T�−1 and we red-
refine all elements K ∈ A�−1. The total number of elements
in the mesh T� is N� = N�−1 + (2d − 1)|A�−1|.

In step 1 of the algorithm, all elements that have non-
empty intersections with the boundary ∂fi of at least
one heterogenous inclusions are selected. Step 2 of the
algorithm ensures that each mesh T� is 1-irregular. It is
important to notice that the outer loop in step 2 has
to be iterated until the set A�−1 is unchanged, because
the elements added after the first loop may still have
neighboring elements that are too coarse to ensure that the
mesh is at most 1-irregular.

Iterating steps 1–3, the initial mesh T0 can be adapted for
any given set of heterogeneous inclusions with an arbitrary
accuracy depending on some a-priori criterion. In this way,
we define a hierarchy of 1-irregular meshes that are finer
close to the interfaces between the heterogeneities and the
embedding background.

AMR is nowadays available in some of the most
widely used open-source FE packages: Libmesh, which
works both with triangular/tetrahedral meshes and quadri-
lateral/hexahedral meshes [33]; MOOSE, which wraps
and extends Libmesh functionalities [26]; and Deal II,

Fig. 2 Algorithm of the
proposed AMR method for level
�
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which works with quadrilateral and hexahedral meshes [2].
Software libraries based on octree data structures, such
as, for example, p4est [15], allow to easily generate and
manage adapted hexahedral meshes, in which elements are
recursively refined.

For a parallel implementation, assuming that the distri-
bution of the mesh is balanced amongst the processors,
the algorithm for marking elements for refinement scales
ideally since it requires no communication between the pro-
cessors. On the other hand, ensuring that the resulting mesh
is 1-irregular requires communication between the proces-
sors to which different adjacent subdomains are assigned.
In order to achieve this, the mesh requires the presence of
a layer of ghost elements around each subdomain, which
is usually available in FE meshes. The performance of the
algorithm is thus primarily constrained by the actual refine-
ment process, which depends on the implementation of the
employed library.

5 Numerical results

In the following, we consider four numerical tests to demon-
strate the effectiveness and the accuracy of the proposed
AMR method in reproducing frequency-dependent seis-
mic attenuation and velocity dispersion characteristics for
a broad range of heterogeneous media. The first two tests,
for which analytical solutions are available, serve to assess
the convergence of the numerically estimated seismic atten-
uation and velocity dispersion characteristics to the corre-
sponding analytical solutions. In the third test, we compare
the results of our AMR method with those obtained on a
mesh, which explicitly resolves the heterogeneities. In the
fourth test, we explore the convergence properties of the

proposed method for scenarios of very high complexity by
applying it to a realistic stochastic fracture network.

For all two-dimensional tests presented in Sections 5.1,
5.3, and 5.4, we consider an REV of a fractured medium con-
sisting of a square with an edge length of 2L = 400 mm.
The elements of the initial uniform mesh T0 have a side
length of 4 mm. The material properties of the hetero-
geneities and of the embedding background are listed in
Table 1 and are representative of a tight sandstone [42]. Sim-
ulations have been performed up to a frequency of 106 Hz.
Since the main interest of our work is FDP effects, the iner-
tial term in our model has been neglected, and, hence, we
neither consider wave propagation effects, such as diffrac-
tion and scattering, nor so-called Biot global flow. For the
considered material properties, Biot global flow may start
to come into the play at frequencies around 105 Hz. Cor-
respondingly, this mechanism is not expected to affect our
results significantly as reported in [30]. However, scattering
might play a role for the model with fracture networks and
thus would be an additional source of attenuation, which
we do not take into account. In this context, it is, however,
important to note that the proposed AMR method can be
coupled with any different model.

All numerical tests have been implemented in the FE
framework MOOSE. Inside MOOSE, we have developed
the application named “Parrot” for the simulation of hetero-
geneous poroelastic materials based on Biot’s equations in
the time and time-frequency domain. The solution of the lin-
ear system arising from the FE discretization is performed
by means of the parallel direct solver MUMPS [1].

The use of more advanced solution methods, such as
multigrid or domain decomposition techniques, is far from
trivial for the considered application. On the one hand,
multilevel methods have been developed for saddle-point

Table 1 Material properties used in example 1 with layer 1 being the background medium and layer 2 representing a fracture

Property Symbol Unit Layer 1 Layer 2

Background Fracture

Thickness m 0.196 0.004

Density of solid ρs kg/m3 2700 2700

Density of fluid ρf kg/m3 1000 1000

Shear modulus of dry frame μ GPa 32 0.02

Permeability k m2 10−18 10−11

Dynamic shear viscosity of fluid η Pa·s 0.001 0.001

Porosity φ - 0.06 0.5

Bulk modulus of fluid Kf GPa 2.4 2.4

Bulk modulus of solid grains Ks GPa 40 40

Bulk modulus of dry frame Kb GPa 34 0.025
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Fig. 3 Geometry of the
horizontally layered medium
considered in example 1. The
corresponding material
properties are given in Table 1

problems and on adaptively refined meshes [14, 54]. On the
other hand, they have to be adapted to the specific multiscale
problem [27]. In particular, due to the small size of the
inclusions and the pronounced discontinuities associated
with the material properties, the assembly of coarse grid
operators has to be combined with the use of multiscale
discretization methods. Potential pathways in this direction
would be the use of composite FE [56], generalized FE [55],
or multiscale FE [28].

5.1 Example 1: Horizontally layeredmedium

Here, we compare the attenuation and velocity dispersion
characteristics obtained by our AMR method for a sample
of a periodically layered medium with the corresponding
analytical solution [35, 60]. As one of the key motivations
for the development of the proposed AMR method was to
allow for the accurate and efficient simulation of fractured
media [29, 30], we represent one of the two alternating
layers as a horizontal fracture with a thickness of 4 mm
separated by a background layer with a thickness 196 mm
(Fig. 3).

The elements of the initial uniform mesh T0 have a side
length of 4 mm. As fractures are aligned with the horizontal
coordinate axis and their thickness coincides with the initial
mesh-size, we consider two different scenarios: (1) fractures
coincide with a layer of mesh elements and hence they are
exactly resolved by the mesh T0 and (2) fractures are shifted
of 1/32 mm with respect to the initial mesh such that they
are only resolved after 7 AMR steps.

In Table 2, we report the root mean square errors errQα ,
with α ∈ {p, s}, of the attenuation characteristics for an
incident angle of 30◦ for the first 4 AMR levels for the
scenario (1) and similar results have also been obtained for
the scenario (2) in which fractures are not resolved by the
mesh. The fact that we observe quasi-complete convergence
after the first refinement step (Fig. 4) shows that, for
fractures aligned to one of the coordinate axes, there is no
need to employ meshes that actually resolve fractures.

5.2 Example 2: Spherical inclusion

To assess the functionality of the proposed AMR method
in a three-dimensional setting, we consider a classical
patchy saturation problem, for which an analytical solution
is available [47]. The underlying model corresponds to a
porous sphere saturated with gas embedding another porous
sphere saturated with water. Given that seismic attenuation

Table 2 Root mean square error of seismic attenuation for meshes
which explicitly resolve the interface of a one-dimensional layered
model (Table 1)

AMR level errQp errQs

0 0.08177 0.02219

1 0.00083 0.00011

2 0.00071 0.00011

3 0.00035 0.00010

4 0.00021 0.00010
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Fig. 4 Analytically (solid black line) and numerically (circles) deter-
mined attenuation and velocity dispersion at an incidence angle of
30◦ for a periodically layered medium consisting of two horizon-
tal layers whose material propoerties are given in Table 1. a P-wave

attenuation. b S-wave attenuation. c P-wave velocity dispersion. d
S-wave velocity dispersion. The numerical results correspond to the
scenario of fractures resolved by mesh and obtained after 1 AMR level

Table 3 Material properties of example 2 consisting of a gas-saturated cube (background) enclosing a water-saturated sphere (inclusion)

Property Symbol Unit Spherical Background

Inclusion

Density of solid ρs kg/m3 2700 2700

Density of fluid/gas ρf kg/m3 1010 160

Shear modulus of dry frame μ GPa 3 3

Permeability k m2 10−12 10−12

Dynamic shear viscosity of the fluid η Pa·s 0.003 2 · 10−5

Porosity φ - 0.25 0.25

Bulk modulus of fluid Kf GPa 2.4 0.04

Bulk modulus of solid grains Ks GPa 40 40

Bulk modulus of dry frame Kb GPa 4 4

Table 4 Mesh characteristics of each level of the proposed AMR method for the spherical inclusion shown in Fig. 5

Refinements Elements Total nodes Regular nodes Hanging nodes

0 4096 4913 4913 0 (0.0%)

1 9528 12619 6567 6052 (48.0%)

2 33944 46299 16215 30084 (65.0%)

3 134464 184205 57831 126374 (68.6%)

4 535200 733279 223509 509770 (69.5%)

5 2135400 2926093 883091 2043002 (69.8%)

6 8543536 11705489 3523723 8181766 (69.9%)

The number of hanging nodes is large since the refinement is performed only at the surface of the sphere
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Fig. 5 Model consisting of a
water-saturated (light blue)
spherical porous medium
enclosed in a gas-saturated (dark
blue) porous background
(Table 3). a Initial mesh. b–d
The first three refinement steps.
The red elements intersect the
boundary of the enclosed sphere
and are refined in the
subsequent level. Only half of
the model is depicted to better
visualize the refinement along
the boundary of the sphere

prevails in the water-saturated sphere, effects related to
the geometry of the embedding gas-saturated volume are
expected to be negligible [36]. For this reason, the geometry
of the embedding volume can be replaced with a cube for
the computation of the numerical solution. The side length
of the corresponding gas-saturated cube is 2L = 80 cm. The
enclosed fluid-saturated sphere has a radius R = 32 cm and
its center coincides with the center of the cube. The material
properties are given in Table 3.

The initial uniform mesh consists of cube-shaped
elements with a side length 5 cm. Subsequently, the
elements along the boundary of the embedded sphere are
adaptively refined. The number of elements and nodes for

each level is reported in Table 4. Figure 5 shows the initial
coarse and uniform mesh and the first three adapted meshes.
Since the boundaries of the elements do not coincide
with the interfaces between different materials, an element
can lie partially inside and outside the corresponding
heterogeneity. The material properties are then non-uniform
within an element and different values of the material
properties are assigned while evaluating them at the
quadrature points during the assembly of stiffness matrix
(Tables 5 and 6).

Figure 6 compares the resulting P-wave attenuation
and velocity dispersion characteristics with the analytical
solution [47]. The discrepancies between the numerical and

Table 5 Mesh characteristics of each level of the AMR method for the example involving two intersecting fractures (Fig. 7)

Refinements Elements Total nodes Regular nodes Hanging nodes

0 10000 10201 10201 0 (0.0%)

1 10606 10925 10689 236 (2.2%)

2 11860 12423 11699 724 (5.8%)

3 14332 15377 13689 1688 (11.0%)

4 19300 21315 17687 3628 (17.0%)

5 35782 39729 32237 7492 (18.9%)

6 87958 95765 80553 15212 (15.9%)

7 272776 288309 257645 30664 (10.6%)

The fraction of hanging nodes increases up to the 5th refinement and then starts to decrease
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Table 6 Mesh characteristics of each level of the AMR method for the stochastic fracture network example (Fig. 10)

Refinements Elements Total nodes Regular nodes Hanging nodes

0 10000 10201 10201 0 (0.0%)

1 19729 22219 17753 4466 (20.1%)

2 46537 54080 39689 14391 (26.6%)

3 111220 130129 93240 36889 (28.3%)

4 272608 315245 231193 84052 (26.7%)

5 714802 806381 624844 181537 (22.5%)

6 2062852 2253776 1874112 379664 (16.8%)

7 6599809 6990669 6212029 778640 (11.1%)

The fraction of hanging nodes increases up to the 4th refinement and then starts to decrease

the analytical solutions, which are clearly visible for the
initial mesh, diminish with increasing refinement levels and
become sufficiently small at the fourth refinement. The
remarkably rapid convergence of the numerical solution to
the analytical one demonstrates the viability of our AMR
method for three-dimensional scenarios.

5.3 Example 3: Two intersecting fractures

In this test, we compare the results obtained by our AMR
method against those obtained on a mesh which explicitly
resolves the interfaces between two intersecting fractures
and their embedding background (Fig. 7a). One fracture is
vertical while the other is inclined by 45◦. Both fractures

have a length and a thickness of 200 mm and 0.5 mm,
respectively

The triangular mesh which explicitly resolves the
interfaces has been generated using the commercial
software package COMSOL Multiphysics (Fig. 7b). The
AMR-based hierarchy of meshes has been computed with
the subsequent application of six refinement steps to the
initial mesh T0 (see Fig. 7d–k for the finest four levels). The
number of elements and nodes for each level are reported
in Table 4. The resulting final mesh has a minimum side
length of 0.0625 mm inside the fractures, and, hence, the
fracture aperture is 8 elements wide. We observe how all
elements overlapping with the fracture, which is modeled
as a rectangle with 90◦ corners, are gradually refined to

Fig. 6 Seismic attenuation and
velocity dispersion
characteristics at vertical
incidence for model shown in
Fig. 5. Analytical solution (bold
gray line) and 5 adaptive
refinement levels (colored lines)
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Fig. 7 a Model containing two
fractures (blue) intersecting each
other at an angle of 45◦. The red
rectangle denotes the fracture
tip, for which blowups are
shown on the left. The green
rectangle denotes the crossing of
the two fractures, for which
corresponding blowups are
shown on the right. b, c
Triangular mesh following the
geometry of the fracture. d–k
Automatically refined meshes
created at steps 3, 4, 5, and 6 of
the AMR method. The semi-
transparent red area indicates
the location of the fractures

improve the resolution of the fracture tip. This illustrates the
effectiveness of the meshing algorithm.

The P- and S-wave attenuation and velocity dispersion
characteristics are computed for vertical incidence employ-
ing the material properties reported in Table 1. We consider
the attenuation and velocity dispersion inferred from the
time-harmonic oscillatory tests using the triangular mesh to
be the reference solution of the problem, because (1) the

triangular mesh explicitly follows the geometry of the frac-
tures and (2) the triangular mesh is significantly denser in
the vicinity of the fractures than the quadrilateral mesh.
The corresponding results are shown in Fig. 8. The bold
gray line represents the reference solution, while the col-
ored dashed lines depict the results of AMR levels 3 through
6 for our method. The intermediate results obtained after
three levels (blue dashed line) show no attenuation and
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Fig. 8 Seismic attenuation and velocity dispersion at vertical inci-
dence for model shown in Fig. 7 based on a mesh that explicitly
resolves the geometry of the fractures using triangular elements (bold
gray curve) and one consisting of quadrilateral elements that is 3 to 6

times adaptively refined in the vicinity of the fractures (colored dashed
lines). a P-wave attenuation. b S-wave attenuation. c P-wave velocity
dispersion. d S-wave velocity dispersion

Fig. 9 Distribution of real component of the pore fluid pressure at
a frequency of 1 Hz in the region blown up in Fig. 7. a–d Results
obtained at steps 3–6 of the AMR method. e Results obtained with

a triangular mesh. Please note the much larger number of triangular
mesh elements as compared with the AMR method
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velocity dispersion as the mesh is still too coarse to capture
the fractures. This finds its expression in correspondingly
small values of the real component of the fluid pore pressure
distribution in Fig. 9. In the fourth adaptive level (red dash-
dotted line), the algorithm starts to resolve the fractures, but
the calculated attenuation and velocity dispersion, as well
as the underlying pore fluid pressure, still differ from those
obtained for the triangular mesh. The fifth step (yellow dot-
ted line) then provides results close to the reference solution
and allows to reproduce the two attenuation peaks present.
The sixth step (purple solid line) produces only minor addi-
tional improvements. Correspondingly, the distribution of
the pore fluid pressure (Fig. 9b–d) gradually approaches
that of the reference solution (Fig. 9e). This case study
demonstrates that an automatically refined mesh is able to
accurately estimate the attenuation and velocity dispersion
characteristics of a two-dimensional fractured medium.

5.4 Example 4: Stochastic fracture networks

The key motivation for the development of the proposed
AMR method was to enable the fully automatic generation
of meshes for models containing large numbers of highly
complex heterogeneities. In this example, we therefore
consider a realistic stochastic fracture network (Fig. 10),

which, at present, arguably represents one of the most
complex and most challenging scenarios to mesh and
simulate.

Fracture lengths are drawn from a scale-invariant
power law distribution [21]. The fracture orientations are
uniformly distributed between 30◦ and 150◦, where 0◦ is
a vertical fracture and 90◦ a horizontal one. The thickness
of the fractures is constant at 0.5 mm. The positions of
the center points of the fractures are drawn from a uniform
distribution. As illustrated in Fig. 10, fractures that cross the
boundary of the sample are reintroduced on the other side of
the sample, thus, making the model periodic in accordance
with the corresponding periodic boundary conditions. Six
AMR steps have been applied to the initial mesh T0 at the
fracture locations. The resulting number of elements and
nodes for each level are reported in Table 4.

The P- and S-wave attenuation curves, calculated for
incident angles of 0◦, 45◦, and 90◦, are shown in
Fig. 11. As in the previous example, we observe that the
intermediate results obtained after three AMR steps do
not show any attenuation as the mesh is still too coarse
to capture fractures. In the fourth level, the fractures start
to be resolved but the obtained values of the P- and S-
wave attenuation still differ from those of the subsequent
refinement levels. Finally, we observe that the differences

Fig. 10 REV of the stochastic
fracture network example
employed to evaluate the
accuracy of the proposed AMR
method (red), which has been
repeated three times (black) to
illustrate the periodicity of the
fractures
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Fig. 11 Seismic attenuation and
velocity dispersion
characteristics of the model
shown in Fig. 10 for four
refinement levels. Three
different incident angles θ are
considered: θ = 0◦ (a,b),
θ = 45◦ (c,d), and θ = 90◦ (e,f)

between the fifth and sixth refinement steps are negligible,
thus indicating convergence of the AMR method.

6 Conclusions

We have presented a novel AMR method for the simulation
of FPD in heterogeneous poroelastic media based on Biot’s
consolidation equations in the time-frequency domain. The
proposed method uses non-conforming meshes and local
hierarchical refinements, which allow to automatically and
efficiently adapt an initially uniform mesh for any kind
of heterogeneities. The idea is to start from a coarse
and uniform mesh of an REV of a heterogeneous porous
medium. Then, by refining the elements that have non-
empty overlaps with the heterogeneities, we gradually adapt
this initial mesh to resolve the embedded heterogeneities
with increasing accuracy. This automatically creates a
hierarchy of meshes for any kind of heterogeneities
without any human interaction. On the thus adapted
meshes, a discretization based on low-order FE of Biot’s
consolidation equations is employed to simulate time-

harmonic oscillatory tests, which allows to quantify the
effects of FPD in terms of the seismic attenuation and
velocity dispersion. For the proposed discretization, we
have shown the uniqueness of the solution, thus ensuring
that it does not present spurious modes.

Three numerical examples illustrate the accuracy of the
method. In particular, we show that refining the mesh
near the interfaces of the heterogeneities is sufficient and,
that, there is no need for creating meshes that explicitly
resolve such interfaces. We also demonstrated that for
complex stochastic fracture networks, our AMR method
exhibits rapid convergence of the seismic attenuation and
velocity dispersion characteristics. This underlines the
computational efficiency of the proposed method and its
capacity of fully automatically meshing extremely complex
heterogeneous media.

Our AMR method is based on the a-priori information
that, for heterogeneous materials, numerical errors are local-
ized at the interfaces. This was indeed corroborated by our
numerical tests. Obviously, the development of an error esti-
mator for Biot’s equations in the frequency domain would
also provide a criterion to control such numerical errors.
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In the future, the resulting hierarchy of meshes could
also be considered in the context of a multilevel solution
strategy to replace the parallel direct solver we employed in
the presented simulations.
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Appendix A: weak formulation of Biot’s
equations

A.1 Mathematical preliminaries

We denote by C the set of complex numbers and by
j = √−1 the imaginary unit. For a number a ∈ C, the
symbol a∗ will denote the complex conjugate, �{a} ∈ R

the real part, and 
{a} ∈ R the imaginary part. Given two
elements a, b ∈ C, we introduce the product (a, b)C :=
a b∗ so that the modulus of a can be computed as
|a| = √

(a, a)C. V is the complex Euclidean space Cd

provided with the inner product

(u, v)V := u · v∗ =
d∑

i=1

ui v∗
i , u, v ∈ V. (15)

The space of the second-order tensors over V is denoted
by M. Once a basis is introduced over V, the space M can
be identified with Cd×d and we provide it with the scalar
product

(σ , τ )M := σ : τ ∗ =
d∑

i=1

d∑
k=1

σikτ
∗
ik, σ , τ ∈ M. (16)

For a tensor σ and the symbol σH denotes the adjoint whose

components are σH
ik = (σki)

∗ and the symbol σT denotes
the transpose whose components are σT

ik = σki . The
symmetric part of a tensor is denoted by

sym σ = σ + σT

2
, (17)

while the Hermitian part is denoted by

Herm σ = σ + σH

2
. (18)

The symbol tr(σ ) is the usual trace operator. The operators
∗, �, and, 
 are intended to be applied component-wise to a
vector or a tensor.

Before deriving the weak formulation of Biot’s equa-
tions, we first introduce the suitable function spaces. Given a
vector space W, which can be R, C, V, or M, for p∈[1, ∞),
we denote with Lp(�,W) the space of p-integrable
functions defined on � with values in W. The space
L2(�,W) is endowed with the scalar product

(p, q)L2(�,W) :=
∫

�

(p, q)W d�, p, q ∈L2(�,W), (19)

and the norm

‖p‖L2(�,W) =
√

(p, p)L2(�,W). (20)

Instead, L∞(�, W) is the space of the essentially bounded
functions defined on �. The operators ∇ and div are the
usual gradient and divergence operators, respectively. They
are intended to be applied to the real and the imaginary parts
separately. For example, given a function p : � → C, the
gradient is defined as

∇p = ∇�{p} + j ∇
{p}. (21)

The symmetric gradient of a function v : � → V is denoted
by

ε(v) = sym ∇v (22)

and the following identity holds

tr(ε(v)) = tr(∇v) = I : ∇ v = div v, (23)

where I is the second-order identity tensor. We define the
following spaces:

H 1(�,C) = {p ∈ L2(�,C) | ∇p ∈ L2(�,V)} (24)

and

H 1(�,V) = {v ∈ L2(�,V) | ∇v ∈ L2(�,M)} (25)

endowed with the standard H 1 scalar products. We denote
as

H 1
�(�,W)={w∈H 1(�,W) |w|�i

L
=w|�i−L

, with i =1, . . . , d}.
(26)

Finally, in order to simplify the notation, we define the
following function spaces V = H 1

�(�,V) and Q =
H 1

�(�,C).

A.2Weak formulation of Biot’s equations
with periodic boundary conditions

In order to formally derive the weak formulation of the
system of Eqs. 1 and 2, we first consider a test function
v ∈ V , multiply (1) by v∗, and integrate over �∫

�

(div σ) · v∗ d� = 0. (27)
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Using Green’s formula, we obtain∫
�

σ : ∇v∗ d� =
∑

s∈{−1,1}

d∑
i=1

∫
�i

sL

σ n · v∗ d�. (28)

The symmetry of σ implies that

σ : ∇v∗ = σ : ε(v∗) (29)

and, finally, using the fact that the test functions belong
to V and the boundary conditions (7), we observe that the
boundary integral at the right-hand side vanishes giving∫

�

σ : ε(v∗) d� = 0. (30)

Similarly, for Eq. 2, we consider a test function q ∈ Q.
Multiplying this equation by q∗ and integrating over �, we
obtain

−j
∫

�

α div u q∗d�− j
∫

�

p

M
q∗d�+ 1

ω

∫
�

div

(
k

η
∇p

)
q∗d� = 0.

(31)

Applying again Green’s formula, the last term becomes

−
∫

�

(
k

η
∇p

)
·∇q∗d�+

∑
s∈{−1,1}

d∑
i=1

∫
�i

sL

k

η
∇p·n q∗|�i

sL
d�.

(32)

As for the linear momentum equation, the boundary integral
vanishes and we obtain

−j
∫

�

α div u q∗d�− j
∫

�

1

M
pq∗d�− 1

ω

∫
�

k

η
∇p ·∇q∗ d� = 0. (33)

In order to include the external relative displacement, we
define the set
U = {v ∈ H 1(�,V) | v|�i

L
− v|�i−L

= αi with i = 1, . . . , d}. (34)

Hence, exploiting the definition of stress (4), the weak
formulation of Biot’s equation can be written as
Find (u, p) ∈ U × Q such that

a(u, v) − b(v∗, p∗) = 0 ∀v ∈ V,

− j b(u, q) − d(p, q) = 0 ∀q ∈ Q,
(35)

where

a(u, v) = ∫
�

2με(u) : ε(v∗) + λ div u div v∗ d�,

b(u, q) = ∫
�

α div u q∗ d�,

d(p, q) = j m(p, q) + c(p, q),

m(p, q) = ∫
�

1
M

p q∗d�,

c(p, q) = ∫
�

k
η
∇p · ∇q∗d�.

(36)

In Eq. 35, the right-hand side is null since we assume no
external force is acting on the REV. The external loads are
encoded in the essential boundary conditions in the set U .
In order to formally express these boundary conditions, the
displacement can be written as

u = u0 + uα, (37)

where u0 belongs to V and uα is a lifting function, which
can be any element in U . Hence, for a given uα , the problem
(35) can be written as
Find (u0, p) ∈ V × Q such that

a(u0, v) − b(v∗, p∗) = −a(uα, v) ∀v ∈ V,

− j b(u0, q) − d(p, q) = j b(uα, q) ∀q ∈ Q.
(38)

The solution can then be computed from Eq. 37. Finally,
we also observe that u0 is defined up to a constant vector,
since for any constant c, (u0 + c, p) is also a solution of
Eq. 38. In order to eliminate this ambiguity, the space V can
be replaced with

V0 =
{
v ∈ V :

∫
�

v d� = 0

}
. (39)

A.3 Properties of bilinear forms

The analysis of problem (38) is not trivial. Similar problems
on real function spaces have been considered in [12]. Here,
we limit ourselves to prove two properties that are useful for
the analysis of the discrete problem.

While for Hermitian complex bilinear forms, the proof of
coercivity is just a simple extension of the real case, it needs
to be generalized for non-Hermitian bilinear forms [45]. In
particular, we say that a bilinear form c( · , · ) defined over
a complex Hilbert space Q is C-coercive, if there exists a
constant γ such that |c(p, p)| > γ ‖p‖2

Q for all p ∈ Q.

Property 1 The bilinear form a( · , · ) is coercive over V0

with coercivity constant

min(μb, μf ), (40)

where μ is the shear modulus. This can be seen observing
that a(u, u) = a(�u, �u) + a(
u, 
u). Applying Korn’s
inequality to both bilinear forms at the right-hand side,
coercivity can be easily proven [9].

Property 2 The bilinear form d( · , · ) is C-coercive over
Q, with coercivity constant δ = 1

2 min(
c0
ω

, m0), where

c0 = min(kb/ηb, kf /ηf ) and m0 = min(1/Mb, 1/Mf ).

We observe that

|d(u, u)| ≥ � d(p, p) = 1

ω

∫
�

k

η
∇p · ∇p∗ d� ≥ 1

ω
min(kb/ηb, kf /ηf )‖∇p‖2

L2(�,V)
(41)
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and

|d(u, u)| ≥ 
 d(u, u) =
∫

�

1

M
p2 d� ≥ min(1/Mb, 1/Mf )‖p‖2

L2(�,C)
.

(42)

Summing up (41) and (42), we obtain

|d(p, p)| ≥ 1

2
min(m0,

c0

ω
)‖p‖2

V . (43)

B Finite element discretization of Biot’s
equations

Let T be a 1-irregular triangulation of �. We denote by Q1

the space of real bilinear functions for d = 2 and of real
trilinear functions for d = 3. We define the conforming
interpolation spaces over T

XT = {ph ∈ C0(�,R) : ph|K ∈ Q1 ∀K ∈ T } (44)

and

YT = {uh ∈ C0(�,Rd ) : (uh)i |K ∈ Q1 ∀K ∈ T and i = 1, . . . , d}. (45)

The dimension of the space XT is Nr and the dimension
of the space YT is dNr . In order to include boundary
conditions in the interpolation spaces above, we define
VT = YT ∩ V , and QT = XT ∩ Q. For any uα , the FE
approximation of problem (38) has the following form:

Find (u0h, ph) ∈ VT × QT such that

a(u0h, vh) − b(v∗
h, p

∗
h) = −a(uα, vh) ∀vh ∈ VT ,

− j b(u0h, qh) − d(ph, qh) = j b(uα, qh) ∀qh ∈ QT .

(46)

B.1 Uniqueness of the solution of the discretized of
Biot’s equations

In order to prove the uniqueness of solution of problem (46),
we first rewrite it in an algebraic form by introducing the
basis functions {�j ∈ VT } and {φl ∈ QT } of VT and QT ,
respectively. Expanding the two components of the solution
with respect to the basis functions, we obtain a linear system
with the following block structure:∣∣∣∣ A −BT

−j B −D

∣∣∣∣
∣∣∣∣ up

∣∣∣∣ =
∣∣∣∣ fg

∣∣∣∣ , (47)

where A ∈ RdNr
h×dNr

h , B ∈ RNr
h×dNr

h , and D ∈ CNr
h×Nr

h

are the matrices related to the bilinear forms a, b, and d ,
respectively. The elements of such matrices are given by
Aij = a(�j , �i), Bkj = b(�j , φk), and Dkl = d(φl, φk).
The vectors u ∈ CdNr

h and p ∈ CNr
h are the vectors

collecting the unknown Lagrange coefficients of the discrete
displacement and pressure, respectively. The two vectors at

the right-hand side are defined as fi = −a(uα, �i) and
gk = j b(uα, φk). The matrix D can be written as D =
1
ω
C + jM.
The stiffness matrix in the linear system (47) is indefinite

and we show that it is invertible thanks to from properties
1 and 2. First, owing to property 1, A is Hermitian and
semi-positive definite, having in its kernel the displacements
associated with rigid body motions. Hence, u can be
formally computed from

u = A−1(F + BT p), (48)

where u is defined up to a vector in the kernel of A.
Replacing this equation in the second line of Eq. 47, we

obtain

Sp = −j BA−1f − g, (49)

where S = D + jBA−1BT . Before proving that S is
invertible, we observe that BA−1BT is symmetric and semi-
positive definite and M, being a scaled mass matrix, is
symmetric and positive definite.

Property 3 The matrix S is regular.

Let us suppose by contradiction that S is not regular. This
means there exists a non-trivial vector r associated with a
function rh ε QT , such that Sr = 0. Hence, by definition of
S, we obtain

0 = |rT Sr| = | 1

ω
rT Cr + jrT (M + BA−1BT )r| >

1

2
| 1

ω
rT Cr| + 1

2
|rT (M + BA−1BT )r| >

1

2
| 1

ω
rT Cr| + 1

2
|rT Mr| >

1

2
|rT Dr| = 1

2
|d(rh, rh)|.

(50)

Therefore, property (2) leads to a contradiction

0 = |rT Sr| >
1

2
δ‖rh‖2

Q > 0,

which proves the invertibility of S. This ensures the
uniqueness of p, while (48) ensures that of u. The
uniqueness of p ensures that the FE problem (46) does not
present spurious modes.
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