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Abstract
Current micro-CT image resolution is limited to 1–2 microns. A recent study has identified that at least 10 image voxels are
needed to resolve pore throats, which limits the applicability of direct simulations using the digital rock (DR) technology to
medium-to-coarse–grained rocks (i.e., rocks with permeability > 100 mD). On the other hand, 2D high-resolution colored
images such as the ones obtained from transmitted light microscopy delivers a much higher resolution (approximately
0.6 microns). However, reliable and efficient workflows to jointly utilize full-size 2D images, measured 3D core-plug
permeabilities, and 2D direct pore-scale ow simulations on 2D images within a predictive framework for permeability
estimation are lacking. In order to close this gap, we have developed a state-of-the-art deep learning (DL) algorithm for the
direct prediction of permeability from 2D images. We take advantage of the computing graphics processing units (GPUs) in
our implementation of this algorithm. The trained DL model predicts properties accurately within seconds, and therefore,
provide a significant speeding up simulation workflow. A real-life dataset is used to demonstrate the applicability and
versatility of the proposed method.
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1 Introduction

One of the critical properties of a reservoir is permeability.
The permeability of a rock is one of the key controls
on the rate at which oil can be produced, thus impacting
decisions ranging from the economic viability of a prospect
to the field development planning and facilities sizing.
Obviously, having an accurate information of brine or
relative permeability of a reservoir is crucial. However, such
measurements are often relatively time consuming to make
in a laboratory environment (see Fig. 1), and they are not
always possible. For instance, re-visiting legacy samples
that have already been impregnated and made into thin
sections. All above makes the proposed approach even more
valuable, at least as first-order approximation.

In an effort to reduce the time between sample acquisi-
tion and having the data necessary to decisions, researchers
have turned to computational simulations, collectively
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referred to as the digital rock physics (DRP). DRP focuses
on using image volumes, generally microcomputed tomog-
raphy (μCT), of rock samples to simulate accurate pore-
scale flow physics. These simulations require several inputs
that constrain the applicability of DRP. First, an accurate
depiction of the 3D geometry of the sample of interest is
required (e.g., Fig. 1). Although this is a logical require-
ment, in practice, even high-resolution μCT images can
omit important details. These details may include sub-
resolution pore throats, or flow pathways, or sub-resolution
clays obstructing flow pathways. The implications of this
fact are that while DRP relies on μCT images with this lim-
ited resolution, a methodology for addressing the issue of
image resolution is necessary to derive an accurate answer.
Second, DRP relies on algorithms to describe and repli-
cate the physical behavior of fluids moving through a rock.
Although these algorithms are rigorously tested and bench-
marked, assumptions and boundary conditions are still nec-
essary, which may impact the accuracy of the simulation.
DRP has shown significant promise. However, as users push
the bounds of current technology, the limits ofμCT imaging
are reached, while computational times grow.

Current micro-CT image resolution is limited to ≈ 1–
2 microns. A recent study has identified that at least 10
image voxels are needed to resolve pore throats, which
limits the applicability of direct simulations using the digital
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Fig. 1 From core plugs the current properties estimation workflow can take the laboratory path and/or the simulation path, both with advantages
and shortcomings. Major concern are the time needed to compute the property, and accuracy of it

rock (DR) technology to medium-to-coarse–grained rocks
(i.e., rocks with permeability ≥ 100 mD)(see [1]). On
the other hand, 2D high-resolution colored images such
as the ones obtained from transmitted light microscopy
delivers a much higher resolution (≈ 0.6 microns).
However, reliable and efficient workflows to jointly
utilize full-size SEM images, measured 3D core-plug
permeabilities and 2D direct pore-scale flow simulations
on SEM images within a predictive framework for
permeability estimation are lacking. In order to close
this gap, we introduce a deep learning (DL) algorithm
for the direct prediction of permeability from 2D, plane-
polarized light photomicrograph images of thin-sectioned
rock samples with permeabilities in a range between 50 and
1100 millidarcies (mD).

The ultimate vision driving this work is to minimize
the turn around between sample acquisition and derivation
of rock properties. In the case of permeability, we
envision imaging thin-sectioned cutting samples to produce
a pseudo-permeability log over the target intervals. The
advantages of this approach are two-fold. First, sample
acquisition is generally a time-consuming and expensive
proposition, involving an additional trip into the hole with
a new tool. Second, cuttings are not only an inevitable
byproduct of the drilling process but also they are generally
retained in storage long after well completion. In instances
where detailed information regarding rock properties is of
interest after the completion of a well, the proposed work-
flow offers a simple and cost-effective means to this end.

In this paper, we describe in detail, the first step in
achieving the vision described above by testing the viability
of using 2D thin section images paired with permeability
measurements to estimate permeability on other rock

samples via DL. To our knowledge, this is the first work
where laboratory-measured permeability data (on the same
samples from which thin-section images are taken) for 135
different rock samples from real-life producing reservoirs
(11) are used as label. Also, this is the first time the input
to the DL systems is not a segmented image, but rather
a high-resolution image, thus, allowing the DL system to
deduce the relevant features by itself, which is an idea at
the core of the DL paradigm. Nonetheless, two works from
the literature standout in terms of prediction accuracy and
similarly innovative approaches. First, in Sudakov et al. [2]
work permeability is computed by a Pore Network Model
[3] on sub-sample images in order to be used as labels, from
only 1 rock sample (Berea sandstone) model, which makes
us wonder about how generalizable are their permeability
predictions for other rocks. Basically [2] work purposes is
to compare off-the-shelf DL architectures, to that at the end
they use a custom metric. Second, in Srisutthiyakorn’s work
[4] permeability for labels is computed by direct numerical
simulation with a Lattice Boltzmann-based method solver )
on sub-samples of 2 rock samples (Fontainebleau and Berea
sandstones). Srisutthiyakorn [4] work is primarily devoted
to 3D aspects of the problem. Also, in both [2, 4] the input
data set is a segmented version of the rock, wherein [2]
Minkowski functionals are used as features.

In our approach, physics is contained in the measurement
dataset with which we train the deep-learning algorithm.
Therefore, when putting together the dataset used in this
work, we paid special attention such that permeability
measurements (that correspond to the thin-section images
in the training dataset) were either performed with a
consistent protocol or corrected to be consistent with the
mainstream measurement protocol used for the majority
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of the datapoints. The measurement protocol includes
provisions for ensuring that the permeability measurements
were free of strong rock-brine interactions (salinity effects).
Moreover, if air permeability was measured (in a small
subset of the dataset) instead of brine permeability, we made
sure that these measurements were carefully corrected for
the non-Darcy flow effects (e.g., Klinkenberg correction)
such that these measurements are on equal footing with the
rest of the dataset. The images and measured permeability
data contain sufficient information to resolve the absolute
(single-phase laminar flow) permeability with reasonably
good accuracy as it will be demonstrated later in the paper.

Our initial results show that over the lithologies and
permeabilities used, this approach is a viable means for
quickly determining permeability. The trained DL model
predicts properties accurately within seconds, and therefore,
provide a significant speeding up simulation workflows.

The outline of the paper is as follows: First we introduce
our machine learning approach, starting with the data
labeling and then the deep learning method. After an outline
of the implementation, we introduce prediction results for
rock samples. The paper concludes with a summary of the
main results, as well as an outlook for future work.

1.1 Geologic descriptionmethodology and sample
description

Samples used in this study come from 11 clastic reservoirs
across Shell’s asset portfolio and cover a range of lithofacies
that might be encountered in clastic basins. All samples are
sandstones, and range encompass a range of grain sizes from
very fine sand to coarse sand (see Fig. 2). Similarly, this
dataset encompasses samples across a spectrum of sorting
from well sorted to very poorly sorted. Finally, the sample
set was chosen such that a range of permeabilities was
covered from between ≈ 50 and 1000 mD.

Samples were prepared into thin slices of rock, called
thin sections, that are primarily 1 inch in diameter and
30 microns in thickness. To preserve texture and structure,
each rock sample is impregnated with a blue-dyed epoxy
prior to cutting, grinding, and polishing. This is the standard
sample preparation technique, and there is no evidence that
this approach damages or significantly alters the texture
within the sample. After cutting and polishing the samples,
they were imaged using a transmitted plane-polarized light
microscope at 10×, resulting in images with a resolution
of 0.65 microns per pixel. A scanning stage and stitching
software were used to create images of the entire thin
section. From these images, two 9000×9000 pixel areas
deemed representatives of the sampled lithology were cut
from the larger image. One image from each sample is
coupled with the sample permeability measured in the lab,
and the second is withheld for blind testing. Care was

Fig. 2 Plane polarized photomicrographs of samples showing a variety
of textures included in the training dataset. In these images, blue is
epoxy filling the inter-granular pore space. Samples range in grain
size from very fine sand in (a), to very coarse sand (c). Porosities and
permeabilities are as follows: a porosity = 30.5 porosity units (pu),
permeability = 70 mD, b porosity = 21.3 pu, permeability = 1189 mD,
c porosity = 22.7 pu, permeability = 929 mD, d porosity = 31 pu,
permeability = 980 mD

taken to ensure that samples included in the study were
homogeneous on the scale of the thin section, and showed
no signs of damage during sample preparation (see Fig. 3).

2Method

Deep learning is part of a new wave of powerful machine
learning (ML) algorithms [6, 7], which provide state-of-the-
art results in numerous computer vision, speech processing,
and artificial intelligence problems. In particular, deep
neural networks (DNN) provide excellent results for
imaging inverse problems such as compressed sensing
[8], and X-ray computed tomography [9, 10] or seismic
tomography [11]. In addition, according to the universal
approximation theorem [12], DNNs can be used to
approximate any arbitrary continuous function up to a
specified accuracy. For these reasons, there is great promise
in using this approach to approximate complex functions
that are highly non-linear. One key dependency of the DL
approach is the availability of labeled data, i.e., data for
which the expected result is known. To fulfill the data
requirement Shell legacy collection of thin sections provide
a rich dataset. Not all images from thin sections are labeled,
that is a time consuming task usually carried out in the
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Fig. 3 a A plane-polarized light photomicrograph of a sample with
significant heterogeneity in both grain size and sorting of grains.
Both of these attributes have a strong impact on the permeability
of a rock, which means that the lab permeability measurement for
this sample is a combination of the permeability of the fine-grained,
moderately well-sorted sand, and the coarse-grained, poorly sorted
sand. The relative contributions of each are unclear, and thus not
suitable for including in the deep learning training dataset. b A plane-
polarized light photomicrograph of a sample of unconsolidated sand
where the original textures of the sand were not retained during sample
acquisition and preparation

laboratory (see Fig. 4). Alternatively, permeability labels
can be generated by using direct flow simulation.

2.1 Machine learning

The machine learning approach is described here. First, we
describe the training process. Our approach is supervised
learning, thus input and labels needs to be available at
training time. In order to fulfill that condition, we prepare

a set of high-resolution images from thin sections for
which we have laboratory measurements Fig. 4. Second,
we describe the prediction or inference process, which is
similar to what a regular user experience would be.

ML classification is not the task we need to solve to
tackle the problem at hand, since permeability is a property
that can not be derived by just identifying groups of grains.
Further, segmentation will not provide the answer since
identifying shapes of pore throats or grain sorting is not
enough to estimate permeability. Fundamentally, a mapping
in a continuous manifold between the thin-sectioned images
and the labels needs to be learned. Therefore, our approach
is regression (as depicted in Fig. 5).

For very simple cases, analytical expressions for
permeability calculation can be derived (for instance, see
Fig. 6), but the complexity of real rock images (3) makes
any analytical approach a futile endeavor.

The following expression describe our regression
approach as is commonly expressed in the machine learning
community:

θ̂ = argmin
θ

1

N

N∑

i=1

L(li, P (Xi, θ)), (1)

where P(X, θ) is the permeability operator, parameterized
by the coefficients vector θ , X is the input to the
permeability operator, and its output is the predicted
permeability p̂. In machine learning terminology, X is
known as the input feature and l is known as the label.
The loss function L(li, p̂i) measures the difference between
the ground truth permeability and its predicted value. The
loss function employed in this work is the squared error
L(li, p̂i) = (li−p̂i)

2, which is frequently used in regression
problems. Replacing the generic loss function with the
squared-error loss, we can express the optimization problem
in (1) as

θ̂ = argmin
θ

1

N

N∑

i=1

(li − P(Xi, θ))2. (2)

Fig. 4 Using laboratory measurements as labels for the training process and as ground-truth for inference performance. The latter will be described
in the results section
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Fig. 5 General depiction of the proposed machine learning approach. Where the input is a set of thin-section images and the output is permeability
prediction per image. Notice that the porosity prediction or any other property is not covered in this work

This familiar regression problem is usually solved with
a stochastic gradient descent approach which iteratively
updates the coefficients of θ . Expression 2 can be seen as an
inverse problem, but the solution of the system is reached
by an approach very different wrt to the conventional
one. The latter is a deterministic optimization problem, the
ML approach profits from a learning process in which a
statistical mechanism helps to minimize the loss function by
exploiting the training dataset. Therefore, the Achilles heel
of this ML approach is the quality and labeling of the data
used for training.

In this work, the permeability predictor P(X, θ) is
implemented as a convolutional neural network (CNN)
composed of layers of weighted nodes parameterized by θ .
The input to the network is connected to the input layer
which is followed by a varying number of convolutional
layers. The output scalar is a permeability prediction given
a input feature vector X, in our case, a thin-section image.
It is worth noticing that the output can be a vector that holds
simultaneous predictions of different parameters given the
corresponding labels; in this work, we will focus on
permeability. Neural networks are trained with examples per

Fig. 6 For this simple case, the analytical expression for permeability

is known as k = π×r2

8×H×s
. And k varies widely (orders of magnitude)

given small r changes. For instance, if diameter is 0.8 mm then k =
10 mD, but if diameter is 2.5 mm then k = 1000 mD, two orders of
magnitude change

the statistical learning approach in which the correct output
(label) is known for a given input, and the weight parameters
in the nodes of the network update due to the minimization
of the error between the prediction and true value. Figure 7
shows the workflow used to train the weights of the CNN.

Once the DL model is fully trained, it can be use to
predict permeability when expose to unseen high-resolution
images. This step is straightforward, and it costs very little
in terms of computing capacity, which is the grand promise
of this whole approach wrt laboratory work or simulation.

3 Results

In this section, we will first introduce implementation
details, then actual training and testing results are presented
and analyzed. We will cover two main cases. In the first
case, all samples used in training and testing belong to the
same thin section. In the second case, which is closer to the
expected deployment mode, thin-sections from 11 different
reservoirs from Gulf of Mexico fields are used.

3.1 Implementation

The most important aspect of the implementation is
the neural network architecture. We built two different
architectures, one for each case. The first network is
composed of seven convolutional layers followed by two
dense layers. The second network is inspired by the U-Net
architecture [13]; therefore, after a series of downscaling
convolutional layers (contraction), the architecture have
a symmetrical series of upscaling convolutional layers
(expansion) that end in a couple of dense layers. The
concentration section share intermediate feature maps with
the expansion section (see Fig. 8.(top-left)).

Both networks share the following characteristics:

• Relatively small networks therefore in the order of
few millions of parameters to learn, good for rapid
investigation and hyperparameter tuning.
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Fig. 7 General depiction of the training workflow

Fig. 8 (Top-left) Depiction of the U-Net architecture, pictured by [13]. (Top-right) Example of input image, sub sampled and cropped from the
original image, one channel. (Bottom) Features maps (four filters) after applying one convolutional layer including activation function and max
pooling
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Table 1 Examples of
predictions for unseen samples
from reservoir 7 core plug 4.
The average error is 19.09%,
but if only predictions for
permeability above 10 mD are
considered, the average error
drops to 7.73%

Sample Ground truth (mD) Prediction (mD) Error (%)

1 27.58 26.33 4.53

2 74.86 71.96 3.87

3 7.88 10.33 31.09

4 63.04 59.57 5.50

5 3.94 6.46 63.96

6 15.74 18.72 18.93

7 47.28 50.02 5.80

• In terms of computing implementation, python plus
Keras library ([14]) with Google’s TensorFlow-backend
([15]) was used, also, NVIDIA cuDNN library ([16])
is required given that most of heavy computing was
carried out with NVIDIA V100 GPGPUs.

• Data normalization is applied in order to ensure that
weights of all features are equal in their representation.
Rectified linear unit (ReLU) activation function is used
and the loss function is mean-squared error (MSE). The
network optimizer is stochastic gradient descent (SGD)
with Nesterov momentum ([17, 18]).

In terms of computing resources, each node of our cluster
is equipped with two NVIDIA Tesla V100 GPGPU cards.
The technical specification of each CPU-GPGPU node is
as follows: HP Proliant XL250a Gen9, 24 Cores-Intel(R)
Haswell–Xeon(R) CPU E5-2680 v3 @ 2.50 GHz, 256 GB
DRAM. It is important to note that each Tesla V100 has
5120 CUDA cores and 16 GB of total HBM2 RAM at
900 GB/s of internal bandwidth. The memory capacity is
a key due to the size of the images to be used as input
to the DL architectures; in fact, it is the single limiting

factor when considering cropping from the original high-
resolution images, and it sets the bounds to the image size
and sub-sampling of the mentioned images.

3.2 Performancemetrics

The results will compare using the following metrics.
The performance metrics are R2 score (coefficient of
determination) and mean-squared error (MSE) for the
training and testing set overall. R2 score measures the total
variation of the outcomes provided by the model, it is
interpreted as the goodness of the model fitting, the values
can be negative, and the optimal value is 1. In terms of
error, it is expected that MSE is close to 0 as possible.
For individual predictions, we will use simple relative error,
since ground truth is known.

3.3 Case 1: Results for sub-samples from single thin
section

In this sub-section, we introduce the results of using DL
to directly predict permeability on one image from the

Fig. 9 The training and
validation process is stopped
after 42 epochs, both curves
monotonically descend, this for
the validation curve implies that
the network is not over-fitting
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Fig. 10 The training and
validation process is stopped
after 42 epochs. Training curve
monotonically decreased, but
validation curve stop descending
which might indicate some level
of over-fitting

reservoir 7 core plug 4. The training and testing datasets are
generated from a hi-res image of size 33020×9434; then,
this image is sub-sampled and cropped to patches that can fit
in GPGPUmain memory. The working data set is composed
of a couple of hundred lower resolution 640×480 images.
The dataset is split into training and testing (unseen during
training) sub-sets, 90% and 10% of the dataset, respectively.
The permeability ranges from 3.94 to 74.86 mD for this
dataset. Both extremes values are hold out from the training
process and predicted as can be seen in Table 1 rows 2
and 5. Hyperparameter optimization ([19]) is carried out in
order to set the best possible parameters to train the DL
architecture (described in the implementation section). The
converge of the network with the best parameters obtained
by hyperparameter optimization depicted in Fig. 9.

The overall performance metrics (as described in the
preceding section) are as follows:
Testing: R2 0.9582 (1.0 max), MSE 0.0108 (0.0 max)
The performance results are encouraging in particular in

terms of prediction confidence (R2), but there is room for
improvement error-wise.

In terms of specific examples of permeability predictions,
the following table shows predictions for some sub-sampled
unseen images:

Generalization is a concern when all data is narrow
sampled, which is the case when all data is sub-sampled
from the same thin section, particularly if that sample
lithology is highly homogeneous, similar to what was
presented in [2]. Also, it is known that small permeability
values are difficult to measure, the error range can be as
large as the measurements themselves. As can be seen
in Table 1, in particular for samples 3 and 5, similar
situation affects the DL-based predictions, but for DL the
main issue is the distribution of the input data and lack
of sufficient labels for small permeability values. Although
the predictions accuracy is encouraging, we needed to test
the concept with a larger collection of samples, where the
distribution of the input data label pairs cover a large and

Table 2 Predictions for
samples from the training set.
The average error is 5.56%.
The error is consistent across
the examples, which is
reflected in the R2 metric

Sample Ground truth (mD) Prediction (mD) Error (%)

Reservoir 1, core 91 479.00 448.34 6.43

Reservoir 2, core 85 929.00 956.45 2.95

Reservoir 3, core 62 160.00 185.05 15.63

Reservoir 4, core 1 238.00 238.63 0.26

Reservoir 2, 67 833.00 854.06 2.53
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Table 3 Predictions for
samples from the unseen set
(testing). The average error is
11.69%. As expected the error
here is larger than for the
training dataset, still the
predictions are useful and well
inside the measurement
uncertainties

Sample Ground truth (mD) Prediction (mD) Error

Reservoir 5, core 2 271.00 239.25 12.81

Reservoir 6, core 1 456.00 443.19 2.81

Reservoir 2, core 79 707.78 708.32 0.08

Reservoir 2, core 40 667.00 574.78 13.83

Reservoir 1, core 71 339.00 437.16 28.96

even range of values, assuming that this compensates for
measurement uncertainty, and at the same time, mitigates
the generalization concern.

3.4 Case 2: Multiple reservoirs thin section results

To address previous concerns, the permeability (labels) in
this section ranges from 50 to 1100 mD, and a careful
selection of the samples helps to avoid label imbalance
problem. The new data set is composed of samples from
11 different reservoirs and multiple core plugs from them.
The sample distribution is as follows: reservoir 2 (70
samples), reservoir 7 (1 sample), reservoir 1 (13 samples),
reservoir 3 (12 samples), reservoir 4 (8 samples), reservoir
6 (11 samples), reservoir 11 (2 samples), reservoir 5 (9
samples), reservoir 8 (6 samples), reservoir 9 (8 samples),
and reservoir 10 (3 samples). The treatment of these
samples is similar to the previous section, but this time the
size of the input images is larger (1000×1000), therefore
less cropped images where used, this given that images
from all the different reservoirs have an average size of
40000×40000, which overwhelms the memory capacity of
current GPGPUs. In terms of data splitting, we again used
90% of data for training (validation) and only 10% for
testing.

The overall performance metrics (as described in the
preceding section) are as follows:
Training: R2 0.9958 (1.0 max), MSE 0.0003 (0.0 max)
Testing: R2 0.7967 (1.0 max), MSE 0.0106 (0.0 max) The
training performance results are excellent both in prediction
confidence and error, but for testing there is room for
improvement in both categories (Fig. 10).

The following tables show predictions for training
(Table 2) and unseen images (Table 3):

Results cover a wide range of permeability with
promising performance. Results can be improved, in
particular adding more training data, this giving the fact that
the DL implementation added regularization, dropout, and
other techniques in order to control over-fitting.

In terms of computing, the training process for this data
set takes only minutes in a couple of NVIDIA V100 GPUs,
and the predictions are computed in a matter of seconds.
This is the great advantage of this method with respect
to laboratory measurements and simulation, once a DL

model is trained, prediction time is basically negligible.
The main requirement for this method is access to accurate
labeled data, the source of that can be legacy laboratory
measurements and/or highly accurate simulations. Any bias
that the data carries will be passed by training to the DL
model.

4 Conclusions

The current means of computing rock properties, such
as permeability, are time consuming and computationally
costly. Either laboratory measurements are required on
core samples or micro-CT imaging of these samples and
computer simulations with computational fluid dynamics
techniques on these images are needed. An alternative
method is developed based on the deep learning (DL)
approach, which takes advantage of an existing library of
thin-section images. We show that the resulting workflow
exhibits a great promise. A set of legacy proprietary data
with labels is the starting point for the DL-driven direct
prediction of permeability. We show the feasibility of this
method using a real dataset and a state-of-the-art machine
learning algorithm taking advantage of GPUs. The resulting
deep neural network is trained and tested with a dataset
composed of samples from 11 different reservoirs and 135
different cores. The average error of the predictions is only
11.69% for permeabilities that range from 50 to 1100 mD.
The predictions are produced almost instantaneously which
speeds-up all related field-development workflows that
depend on permeability estimation. It is important to
mention that the DL architecture can potentially predict any
property given the presence of a proper label database, such
as compressibility, etc.

The DL-based property estimation technology is being
tested with a larger and more demanding dataset and
incorporated into the production workflow for digital rock.
Also, new workflows that intertwine simulation and DL-
based approaches are in development targeting even more
ambitious objectives combining physics modeling and
machine learning.
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