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Abstract
Remote sensing data has shown tremendous potential for applications in various fields like land use mapping and detection,
geologic mapping, water resource applications, wetland mapping, urban and regional planning, environment inventory,
natural disaster assessment, archaeological applications, and others. Every day, thousands of gigabytes of memory are
involved in capturing the hyperspectral remote sensing datasets. The compelling information present in these hyperspectral
images (HSIs) is very minimal due to redundancy. Spatial and spectral correlations monopolize the acquired HSI data sets.
Therefore, an algorithm that exploits these correlations and compresses the HSI tensors is proposed in this paper. First, the
acquired HSI image (reflectance data) is subjected to the removal of geometric and radiometric errors. Second, spectral
bands of interest affiliated to the underlying application are exclusively processed for principal component analysis (PCA).
Results of this PCA are scrutinized to identify the absolute dependent components. Further, these components are exposed
to a non-iterative factorized compression technique. As a result, HSI 3D tensors are disintegrated into 1D tensors. This
tensor breakdown leads to a compression ratio as high as 3747:1 while the total encoding time observed is 332 s and
RMSE is as low as 0.0017. Later, the original HSI is reconstructed back by the product of decomposed individual tensors
and its PSNR is 53.03 dB. The proposed compression method targets the tucker decomposition-based HSI compression
technique which is computationally complex and time consuming, and hence, a breakthrough is achieved with the technique
introduced.
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1 Introduction

Hyperspectral image (HSI) applications are widespread but
extensively employed in remote sensing. For example, veg-
etation indices derived from remote sensing imagery are
used to quantify crop growth and yield variations as in
[1], land-cover types classification from features extracted
from hyperspectral image pixels in [2], robust mineralogi-
cal investigation over extraterrestrial bodies in hyperspectral
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datasets from Mars and Moon as in [3], poultry fecal detec-
tion from multispectral images in [4], and discrimination
and recognition of sugarcane plants infected with mosaic
virus through aerial imaging as in [5] were all innovations
in the field of computational geoscience and also involve
tremendous processing and storage resources for their
operation.

The HSIs are frequently captured by special imaging sen-
sors of aircrafts [6]. A team of NASA scientists is using a
high-altitude aircraft and a sophisticated imaging spectrom-
eter built by NASA’s Jet Propulsion Laboratory in Pasadena,
CA, to study environmental impacts called AVIRIS.
Even NASA boasts utilizing 76 GB of data over few
flight runs per day [7, 8]. Therefore, an obligation to com-
press these data sets has been raised. First, compression is
achieved by filtering out the redundancies in both spatial
and spectral resolutions [9] and [10]. The size of the sam-
ples is also shortened by eliminating the spatial redundancy
along their adjacent spectral bands [11–14]. However, this
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dimensionality reduction results in either lossy or lossless
compression. Compression by dimensionality reduction is
also proposed, but their methods hardly bought a consider-
able difference [15]. Independent component analysis (ICA)
is a preferred technique in [16] and [17], but it has no
legacy in considering the spatial correlation in between the
bands. SPIHT and EZW algorithm are also used in [18,
19] and [20], which takes into concern only the relationship
between spatial and spectral correlation. Hybrid algorithms
employing PCA and JPEG2000 are also selected to com-
press HSIs in [21, 22], which utilizes transforms to analyze
the spectral details and eliminate their redundancies. Sin-
gular value decomposition (SVD) is the most employed
technique to decompose 3D data sets into 2D matrices in
spite of it exploiting greater computation resource due to
its iterative behavior [23]. Tucker decomposition, another
compression technique based on SVD, achieves near loss-
less compression with the help of rank matrices, but it has
relentless computational complexity [24–27]. Its encoding
time measured is 94 min. Thus, a prominent near-lossless
compression technique devoid of processing complexity is
necessary and one such technique is proposed in this paper
which consumes 6 min on an i3-5005U processor clocked
at 2.0 GHz.

The rest of the paper is organized as follows. Section 1
briefs about the prime objective of the proposed algorithm.
Sections 2.1, 2.2, and 2.3 elaborate about the different
compression methods, discrete wavelet transform (DWT),
PCA, and the proposed factorized decomposition technique.
The process of compression is elaborated through steps 1
to 13 with necessary equations and diagrams in Section 3
(Fig. 1). Section 4 has the end results tabulated for
performance analysis, and the final conclusion is portrayed
in Section 5.

1.1 Objective of the proposal

The main objective is to develop a linear non-iterative
compression algorithm that operates on the spectral bands of
interest and utilizes principal component analysis to select
the significant components for redundancy minimization.

2 Principal techniques

2.1Wavelet transform

Wavelet transform is chosen because of its property to
decompose signals into sub-bands of smaller bandwidths.
The continuous wavelet transform (CWT) is defined as in
Eq. 1:

CWT(f (ab)) =
∫

f (t)ϕa,b(t)dt (1)

where

ϕa,b(t) = (1÷√
a)ϕ

(
t−b

a

)
, a∈R+, b ∈ R (2)

Here, ϕa,b(t) is the wavelet window function while a and
b are scaling and location parameter resp. taking constant
values e.g. 1, 2, etc. It is represented by

CWTm,n(f ) = a
−m/2
o

∫
f (t)ϕ(a−m

o t−nbo)dt (3)

Since the application of wavelet transform is on digital
images in our paper, we chose discrete wavelet transform
(DWT). It is represented by Eqs. 4 and 5.

F(ab) =
∫ ∞

−∞
f (x)ϕ∗

(a,b)(x)dx (4)

Approximation coefficients and detail coefficients being
CA1and CD1 resp. are computed while the input signal is
represented by s.

f (n)= 1√
M

∑
k
W∅(j0, k)∅j0,k(n)+ 1√

M

∑∞
j=j0

∑
k
Wϕ

(5)

W∅(j0,k) = 1√
M

∑
n
f (n)∅j0,k(n) (6)

Wϕ(jk) = 1√
M

∑
n
f (n)ϕj,k(n), j ≥ j0 (7)

Equations 6 and 7 are approximation anddetail coefficients
resp., and f (n), ∅j0,k(n), ϕj,k(n)are discrete wavelet func-
tions [28, 29].

2.2 Principal component analysis

The fundamental idea of principal component analysis
(PCA) in our paper is to reduce the dimensionality of a data
set in z direction, which incorporates a number of inter-
related variables, while retaining the deviations present in
the data set. It is addressed by exhibiting linear orthogonal
transformation that revamps the input data to a comprehen-
sively new coordinate system, which in turn has maximal
variances characterized in the first few coordinates of the
signal [30–34].

Let x refer to the input signal containing n input vectors
of length K ,

x = [x1, x2, x3 . . . ..xn]T (8)

then PCA refers to transforming xto vector y by the relation

y = A(x − mx) (9)

where mx is the mean of all variables, defined by

mx = 1

K

∑K

k=1
xk = E{x} (10)

Comput Geosci (2019) 23:969–979970



and A is determined by the covariance matrix Cx of
dimension n × n.It is possible by the relation

Cx = E(x − mx)(x − mx)
T = 1

K

∑K

k=1
xkx

T
k − mkm

T
k

(11)

The main diagonal elements of Cx , i.e.,Cx(ii) are the
variances or covariance of x

Cx(ii) = E(xi − mi)
2 (12)

and Cx(ij) are the cross covariance between inputs xi

and xj

Cx(ij) = E(xi − mi)(xj − mj)} (13)

Further, to increase variance within the variables, matrix
A can be diagonalized by choosing a new orthogonal
coordinate system, i.e., by eigenvectors and eigenvalues
through singular value decomposition [35].

2.3 Factorized compression

The novel compression strategy proposed refers to decom-
posing a N × N matrix into two 1 × N matrices for the
purpose of data transmission as well as storage.

Consider a matrix xof dimension 4 × 4.
Let x1, x2, x3 . . . . . . x16 be the appropriately scaled pixel

values of the 2D image data.
Then, the multiplication of decomposed R1, R2, R3,

R4row vectors and C1, C2, C3, C4 column vectors produces
the original or near-estimated 4 × 4 image pixel matrix in

Eq. 14.

x4x4 =
∑N

i=1

∑N

j=1
CiRj (14)

This algorithm is defined and developed with the working
principles involved in least mean-square error estimations.
Based on the analysis in [36] and [37], this strategy proved
to ascertain better compression results and therefore was
chosen as a primitive compression methodology in this
paper.

3 Description of the process

3.1 Data set

A hyperspectral image data set is procured from [38]. The
size of the reflectance files chosen was 1021 × 1339.
The peak transmission wavelength varies between 400
and 720 nm, sampled at 10-nm intervals, comprising 33
adjacent spectral bands. Each set of scene is preprocessed
for obtaining reflectance values. Each data set comprises
45,114,927 pixel values represented using double datatype
(8 byte). Therefore, the total size of each sample data set is
344 MB.

Step 1: Preprocessing of data sets refers to removal
of geometric and radiometric errors associated
with the motion of the aircraft, correction of
atmospheric effects, removal of dataless bands
from reflectance data, etc. The before-mentioned

Fig. 1 Block diagram—conceptual work flow
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result-driving factors are persuaded at the source
[38].

Step 2: Let X be the input HSI cube of dimension 1016
× 1016 × 16 (m × n × z). In this paper, PCA
is applied only on the desired bands of interest
(BOI), i.e., 18 to 33 bands in spite of all 33
available spectral bands because of their high
contrast and least noise disturbance property.
Therefore, the size of the HSI cube is reduced
to 126 MB. Figures 2 and 3 represent scene 1—
pixels of band 21 and 33 respectively showing
varying details. Scene 1 depicts the aerial view of
an urban environment with a little vegetation and
a lot of detailed information.

Step 3: The matrix cube X is transformed into Y whose
dimensions are 1,032,256 × 16. Ref Fig. 4.

Step 4: Standardization or normalization of the input
signal is performed on matrix Y to make its
mean μY and variance σ 2

Y as 0 and 1 resp. In
this paper, normalization is achieved by subtract-
ing the empirical mean μnfrom each column
data of matrix Y. Let B be the normalized raster
matrix,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 − μ1 y11 − μ1 · · · z11 − μ1

x12 − μ2 y12 − μ2 · · · z12 − μ2

x13 − μ3 y13 − μ3 · · · z13 − μ3
...

...
. . .

...
x1n − μn y1n − μn · · · z1n − μn

...
...

. . .
...

xnn − μnn ynn − μnn · · · znn − μnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

Fig. 2 Pixels of band 21

Fig. 3 Pixels of band 33

Step 5: According to Eq. 16, covariance matrix Cz,zis
calculated. Cz,z is a real, symmetric, positive
semi-definite square matrix. Its dimension, 16 ×
16, is dependent on the number of spectral bands
subjected to consideration in step 2, and the
dimension of this covariance matrix determines
the number of principal components produced in
step 9.

Cz,z = 1

n
BBT =

⎛
⎜⎜⎜⎜⎜⎝

σ 2
1 σ12 · · · σ1n

σ21 σ 2
2 · · · σ2n

σ31 σ32 · · · σ3n
...

...
. . .

...
σn1 σn2 · · · σ 2

n

⎞
⎟⎟⎟⎟⎟⎠

(16)

An ideal covariance matrix for PCA is a
diagonal matrix C′, i.e., all cross covariance
values in Cz,zis equal to zero (17). This fact
ensures maximum variances among variables
being represented in the vectors.

C′ =

⎛
⎜⎜⎜⎝

σ 2
1 0 · · · 0
0 σ 2

2 · · · 0
...

...
. . .

...
0 0 · · · σ 2

n

⎞
⎟⎟⎟⎠ (17)

Step 6: singular-value decomposition is applied on the
matrix Cz,z [39] and [40]. According to Eq. 18,
eigenvalues are calculated using the formulae
Cz,z−λI = 0 and its eigenvectors are determined
by reducing the Cz,z − λI matrix. The roots of
the characteristic polynomial of E will also yield
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Fig. 4 Transformation of matrix
X into raster matrix Y

the eigenvalues. The final matrix containing the
eigenvectors is denoted by U .

E =

∣∣∣∣∣∣∣∣∣∣∣

σ 2
1 − λ σ12 · · · σ1n
σ21 σ 2

2 − λ · · · σ2n
σ31 σ32 · · · σ3n
...

...
. . .

...
σn1 σn2 · · · σ 2

n − λ

∣∣∣∣∣∣∣∣∣∣∣
(18)

Step 7: Eigenvalues are arranged in the order of descend-
ing magnitude, and the values with very fee-
ble magnitudes are neglected before reconstruc-
tion as it contributes less or no significance to
the input signal. The process of reconstruction
involves matrix multiplication of Y and U (19).
The resultant matrix is of dimension 1,032,256 ×
16, represented as Y ′ (20).

Y
′ = Y × U (19)

Y
′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 y11 · · · z11
x12 y12 · · · z12
x13 y13 · · · z13
...

...
. . .

...
x1n y1n · · · z1n
...

...
. . .

...
xnn ynn · · · znn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

⎡
⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

⎤
⎥⎥⎥⎦

(20)

Step 8: Matrix Y ′ is transformed back into matrices of
cubical dimensions 1016 × 1016 × 16, i.e., the
input signal is projected into a new feature phase.
However, in Y

′
, many spectral bands do not have

functional values, i.e., null images, because of the
eigenvalue approximation in step 7. Such spectral
components do not contain any significant
information and hence can be neglected for
analysis, storage, and transmission. Thus, the
phenomenon of compression is introduced in this
step through spectral component reduction.

Step 9: Based on our analysis on several data sets, if
the no. of spectral bands z is >32, then the
no. of principal components p that contains
significant information is restricted to 8. For any
other z ≤ 32, the first four principal components
carry the maximum variance, i.e., information.
Therefore, the first four principal components are
considered Fig. 5, instead of 16 in the HSI data
set which reduces the data set size by 75%, i.e.,
to 31 MB. The compressed data set is represented
by V . Those 12 principal components indeed
look similar to Fig. 5d PCA 4 with no details to
interpret or analyze.

Step 10: Since the data sets are of high resolution
(4,129,024 pixel values), huge physical memory
(over 8 GB) and high processing potential, i.e.,
a multicore processor with parallel processing
ability [43], are required for faster implementa-
tion of the proposed compression algorithm in

Fig. 5 Principal components—a PCA 1, b PCA 2, c PCA 3, and d PCA 4
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Fig. 6 Tensor decomposition

Section 2.3. In addition, to reduce this processing
complexity, the entire data set is divided into 4 ×
4 × 4 cubical blocks and then formulized. This
technique is called block processing [41, 42]. The
PCA component data set is further compressed
by using a combination of 1D discrete wavelet
transform and factorized compression technique
as elaborated in Sections 2.2 and 2.3 resp. First,
matrix V is subjected to 1D symmetric wavelet
transform. As a result, approximate W∅

(
j0,k

)
and detail coefficients Wϕ (j, k) are obtained.

Step 11: Results of step 10 are subjected to factorized
decomposition which replaces all n × n × n

cubes with three 1 × n × 1 row vector values
while n can take values 4 (method 1) and 8
(method 2). Thus, if n = 4, Fig. 6 for every
cubical data set, 12 values are transmitted or
encoded instead of 64, and therefore, size is
further reduced by 81%. Similarly, 24 values
for n = 8 and, therefore, size is compressed
by 95%. Now, the actual size that is required
on the storage disk to back up or process these
factorized values is just 94 KB and 1.4 MB resp.
Therefore, compression ratio as high as 3747:1
and 245:1 resp. is obtained.

Step 12: At the decoder, multiplication of the individual
tensors is performed without exploiting any
bigger processing resource since it is mere
matrix multiplication. This method refers to
the reconstruction of the original data after
experiencing near lossless compression. Scene 1
original and reconstructed images for n = 4,8 are
displayed in Fig. 7.

Step 13: The accuracy of the reconstructed data set is
analyzed with the help of several performance
parameters like SNR, PSNR, RMSE, etc. Let
x(n) be the original HSI reflectance data and
y(n) be the estimated decompressed data.

SNR = 10log10

⎡
⎣

∑N
n=0 |x(n)|∑N

n=0 [x(n)−y(n)]2
N

⎤
⎦ dB (21)

PSNR = 10log10

⎡
⎣ [max(x(n))]2∑N

n=0 [x(n)−y(n)]2
N

⎤
⎦ dB (22)

RMSE =
√∑N

n=0 [x(n) − y(n)]2
N

(23)

Fig. 7 Scene 1—a original (band 21), b compressed RMSE = 0.0105 (n = 4), c compressed RMSE = 0.0168 (n = 8)
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Table 1 Comparison of
different method performances Block size/compression factor Samples Scene 1 Scene 2 Scene 3 Scene 4

Method 1 Encoding time (s) 222.39 197.34 332.53 230.65

n =4 Decoding time (s) 0.94 0.83 1.23 1.07

4 × 4 × 4-sized blocks PSNR (dB) 50.42 50.46 48.06 53.03

Total: 64516 blocks RMSE 0.0105 0.0039 0.0017 0.0212

5.33

Method 2 Encoding time (s) 72.95 87.25 68.07 71.28

n = 8 Decoding time (s) 1.15 1.09 0.98 1.73

8 × 8 × 8-sized blocks PSNR (dB) 46.7 47.57 44.92 50.38

Total: 8065 blocks RMSE 0.0168 0.0054 0.0025 0.0288

21.33

4 Performance analysis—results

Table 1 shows encoding, decoding time, PSNR, and RMSE
results of both the methods performed for 4 individual
data sets [38]. It is evident from the images in Fig. 7 that
there is no significant difference in spatial resolution or
details. Therefore, 4× spatially scaled images are displayed
in Fig. 8 which portrays the distorted block-like portions in
the edge of the objects inside the image [43]. These patterns
occur due to block processing employed in the factorized
decomposition (n = 4,8), and the blocks in Fig. 8c are more
disturbing than that of scene 1 (n = 4) and their PSNR
values are 46.7 dB and 50.42 dB resp. RMSE of 0.0105
proves the absence of distortions in Fig. 8b compared to
0.0168. The entire process of disintegrating the HSI image
data set explained in Section 3.1 (steps 1 through 12) takes
a duration of 222 s (n = 4) while for n = 8, total encoding
time is 72.9 s. This difference is due to the fact that the
former processes 64,516 blocks while the latter targets only
8065 blocks which in turn reduces the computational time.
The steps of decoding, which is done at a farther end, are
just matrix multiplication. The decoding time of the former
and latter is 0.94 s and 1.15 s, respectively, in spite of the fact
that the former has a greater number of blocks. This lesser
time of the former is due to the multicore processors used

which can parallelize the process of decoding, i.e., matrix
multiplication.

Data sets of different environments (scenes 1 to 4) are
chosen so as to check the integrity of the proposed technique
on all global data conditions. Scene 2 is an HSI of wooden
planks exhibiting high contrast and vibrancy. Its compressed
and scaled results are displayed in Figs. 9 and 10. The
reconstructed image Fig. 10c is the worst performer of all
because of the block processing that destroyed majority of
the details. Therefore, Fig. 10b can be considered as the
effective replacement for the original image.

Scene 3 contains branches of a rose plant, and it indeed
has a lot of foreground object and background depth details
(Figs. 11 and 12). The 3.5× scaled result is more distorted in
Fig. 12c (RMSE = 0.0025), and its performance is similar
to that of scene 2.

Figures 13 and 14 are compressed versions of scene 4
representing a wooden house delivering a varying level of
textures. On observing Fig. 14, the scaled versions have
no significant difference and, therefore, Fig. 14c can be
used instead of the original image for processing. It is also
evident from the difference in magnitudes of individual
PSNRs, i.e., 2.65 dB. Scene 4—compressed image by
method 2 consumes 71 s, lesser than that of method 1 which
is due to the block size of 8 × 8 × 8.

Fig. 8 Scene 1 (4× scaled)—a original (band 21), b compressed RMSE = 0.0105 (n = 4), c compressed RMSE = 0.0168 (n = 8)
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Fig. 9 Scene 2—a original (band 21), b compressed RMSE = 0.0039 (n = 4), c compressed RMSE = 0.0054 (n = 8)

Fig. 10 Scene 2 (4× scaled)—a original (band 21), b compressed RMSE = 0.0039 (n = 4), c compressed RMSE = 0.0054 (n = 8)

Fig. 11 Scene 3—a original (band 21), b compressed RMSE = 0.0017 (n = 4), c compressed RMSE = 0.0025 (n = 8)
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Fig. 12 Scene 3 (4× scaled)—a original (band 21), b compressed RMSE = 0.0017 (n = 4), c compressed RMSE = 0.0025 (n = 8)

Fig. 13 Scene 4—a original (band 21), b compressed RMSE = 0.0212 (n = 4), c compressed RMSE = 0.0288 (n = 8)

Fig. 14 Scene 4 (4× scaled)—a original (band 21), b compressed RMSE = 0.0212 (n = 4), c compressed RMSE = 0.0288 (n = 8)
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5 General discussion and conclusion

The proposed method is applied over 4 sample data
sets of diversified feeds. It’s quantitative and qualitative
performance is investigated with the help of parameters
like PSNR, RMSE, and processing time and tabulated in
comparison Table 1. The absolute challenge in compressing
a HSI data is to venture the compression algorithms onto
selected bands of interest and exploit the redundancy in
the spectral resolution without employing time-consuming
iterations. Therefore, such a novel algorithm is proposed
and analyzed in this paper. Method 1 and method 2 have
their own significance in different data sets, and they are
indeed experimental and cannot be formulated. Method 2
reconstructed images in Fig. 14c scene 4 have negligible
spatial difference than that of method 1, and so, the former
can replace the original. With reference to the comparison
Table 1, we would like to sum up that the proposed
algorithm compresses the image data set at the ratio of
3747:1 for n = 4 and 245:1 for n = 8. It also completes
the process of compression in 222 s (scene 1) which is 10
times less than that of the time consumed by the Tucker
decomposition technique [36]. Tucker decomposition is a
time inefficient method since it employs several steps of
perpetual iterations and involves the determination of a
singular rank matrix for decomposing the 3D tensors in spite
of its familiarity in remote sensing. However, our proposed
algorithm has surpassed all the shortcomings of Tucker
decomposition. A dedicated memory cum processing chip
can also further aid to decrease the encoding time at the
storage or transmitter end. At the receiver or decoder end,
the process of regeneration or reconstruction from the row
tensors consumes less than 1 s (scene 1) which is similar
to the decoding time of the present generation 2D image
in JPEG formats. However, the compression ratio can also
be increased further by transmitting significant decomposed
pixel values instead of entire row vectors.
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