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Abstract
Imbibition is an important process encountered in many porous media applications. At the pore scale, pore network models
(PNM) are computationally efficient and can model drainage accurately. However, using PNM to model imbibition still
remains a challenge due to the complexities encountered in understanding pore-scale flow phenomena related to pore body
filling (PBF) and snap-off along with the relative competition between these events. In this work, we use direct numerical
simulations (DNS) to revisit the basic principles of PBF in a two-dimensional synthetic pore geometry. We notice that PBF
during spontaneous imbibition is dependent on several parameters such as shape of the transition zone, contact angle and
the fluid properties like density. The interactions between these parameters are investigated in a quantitative manner. We
demonstrate the existence of a critical contact angle θc and a barrier contact angle θb. θc depends on the shape of the pore
geometry, whereas θb depends on the pore geometry, contact angle and fluid properties. For a system comprising of light
fluids, θb is only slightly larger than θc; whereas for a system occupied by dense fluids, θb is notably larger than θc. The
contact angle of the wetting phase θ in relation to θc and θb decides if the wetting phase can imbibe a pore body. Imbibition
always occurs if θ < θc. For θ > θc, we observe capillary barrier zones in which capillary forces accompany viscous forces
to resist spontaneous imbibition. For this case, we observe smooth transition of the meniscus curvature while the meniscus
enters and exits capillary barrier zones. For θc ≤ θ ≤ θb, inertia assists the wetting phase to overcome resisting forces and
imbibe the pore space. For θ > θb, the resisting forces dominate over inertia so that the wetting phase cannot imbibe the pore
space. For the synthetic pore geometries investigated, we provide analytical and semi-analytical expressions to determine
θc and the position of capillary barrier zones respectively. The barrier contact angle θb is computed numerically for several
inertial systems and for various shapes of the synthetic pore geometry. The results of this quantitative analysis can be utilised
to improve the existing pore filling rules and predictive capabilities of PNM used for two-phase flows.

Keywords Pore body filling · Spontaneous imbibition · Dynamic capillary barriers · Pore geometry · Contact angle ·
Inertia

1 Introduction

Multiphase flows occur in a wide range of industrial and
engineering applications such as in the recovery of hydro-
carbons, carbon capture and sequestration, fuel cells and
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lab-on-a-chip devices. The Darcy scale flow behaviour is a
cumulative collection of the flow physics occurring within
each of the millions of interconnected pores. Despite sev-
eral decades of research from the pioneering works of
[13, 14], many flow phenomena that occur at the pore
scale still lack profound understanding. The pore geome-
try along with the fluid properties and contact angle govern
the magnitude of inertial, viscous and capillary forces act-
ing within the system [8, 16] which in turn govern the
displacement pattern of the fluids. In recent times, advance-
ments in imaging the pore spaces of core plugs [23] and
micromodels [26] have resulted in capturing interesting
flow phenomena such as viscous and capillary finger-
ing, snap-off and cooperative pore body filling. However,

/ Published online: 1 July  2019

Computational Geosciences (2020) 24:951–969

© The Author(s) 2019
Received: 24 October 2018 / Accepted: 31 May 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-019-09842-7&domain=pdf
http://orcid.org/0000-0002-6454-781X
https://doi.org/10.1007/s10596-019-09842-7
mailto: saideep.pavuluri@pet.hw.ac.uk


numerical studies are indispensable for a quantitative under-
standing of the dynamic flow processes and for parameter
optimisations.

Pore network models (PNM) and direct numerical sim-
ulations (DNS) are used to investigate fluid displacements
at the pore scale. DNS are based on the first principles of
physics and provides a complete insight regarding the pore
scale flow dynamics. However, DNS are computationally
expensive (for reference: flow analysis on a micro-CT takes
a week). On the other hand, PNM are computationally effi-
cient (flow analysis on a micro-CT takes less than an hour)
but rely on invasion-percolation rules and on additional flow
assumptions thereby sacrificing accuracy. PNM are efficient
in modelling drainage, where a non-wetting phase invades
to displace the wetting phase in a piston-type motion [13].
The nature of fluid displacement is governed by the viscos-
ity ratio and capillary number resulting in fingering (viscous
or capillary) or stable displacement flow patterns [24]. Dur-
ing imbibition, where a wetting phase invades to displace
the non-wetting phase, complex displacement flow patterns
are observed [14, 23]: (1) piston-type motion, (2) pore body
filling (cooperative when the pore body is connected to
multiple throats) and (3) snap-off. Further, the competition
between piston-type motion, pore body filling (PBF) and
snap-off results in either filling of the pores by the wet-
ting phase thereby recovering the non-wetting phase or in
trapping of the non-wetting phase in the pore bodies.

Imbibition is a common displacement process encoun-
tered during hydrocarbon recovery as majority of minerals
in hydrocarbon reservoirs show affinity towards water prior
to ageing (long-term exposure to oil) [9, 27], making the
surface of the pore initially water-wet. Even after primary
drainage, the reservoir turns to a mixed-wet state as the
larger pores most probably come in contact with hydrocar-
bons. These larger pores can then be subjected to wettability
alterations, whereas the smaller pores continue being occu-
pied by the wetting phase and remain water-wet [22]. In
recent times, imbibition has gathered more attention and
has been studied experimentally [23, 26] and numerically
[8, 20] giving insights regarding the inter-pore and intra-
pore fluid displacement processes. Focussing exclusively on
PBF, Ferrari and Lunati [8] have shown the occurrence of
meniscus reconfigurations at the corners of a square and
circular pore during forced imbibition and used the princi-
ples of energy balance to study meniscus reconfigurations
analytically. Further, they also notice that the meniscus
reconfigurations have their own time scales and velocities.
Zacharoudiou et al. [25] have experimentally noticed tran-
sition in meniscus curvature (from imbibition curvature to
drainage curvature) during quasi-static imbibition in a sharp
throat-pore body system. Further, using numerical investi-
gations, they show that these meniscus oscillations are not
only limited to forced imbibition scenarios but also occur for

spontaneous imbibition flows in a sharp throat-pore body
system.

We revisit the concept of PBF in this paper by
investigating meniscus dynamics that occur at the transition
zone (pore space that connects a pore throat and pore
body) having different shapes. PNM for PBF currently use
rules that capture the qualitative behaviour of displacement
patterns [4]. For our investigation, we consider a synthetic
two-dimensional pore geometry and spontaneous imbibition
flow conditions. We uncover the concept of capillary
barriers which are seen to play a significant role in
choosing the invasion paths of the wetting phase during
spontaneous imbibition. The occurrence of capillary barrier
zones are linked to the shape of transition zone and
contact angle of the fluid. However, PNM do not take
into account the transition zone shape while modelling
imbibition. We quantitatively analyse PBF using DNS
for different scenarios by tuning the following dependent
parameters: pore geometry (transition zone shape, aspect
ratio), contact angle and the fluid properties. To showcase
the importance of acknowledging capillary barriers, we
investigate spontaneous imbibition at different contact
angles in a pore doublet comprising of two pores having
different size and transition zone shape. Although the focus
of this manuscript is on contact angle dependent invasion
patterns, this work also provides an insight regarding the
optimal design of porous membranes to avoid or achieve
spontaneous imbibition which is vital for the manufacture
of fuel cell membranes and during inkjet printing.

The manuscript is organised as follows: Section 2 intro-
duces the numerical formulation used for the study along
with the contact angle and partial slip wall boundary condi-
tions. Section 3 discusses the shape of the two-dimensional
synthetic pore geometry considered for investigation along
with the analytic and semi-analytic expressions to deter-
mine the critical contact angle and locate the position
of the capillary barrier zones respectively. The numerical
setup is discussed in Section 4 and the results for vari-
ous cases are discussed in Section 5. Finally, we end the
paper with concluding remarks.

2 Equations governing two-phase flow

The isothermal dynamics of two immiscible and incom-
pressible fluids are governed by the Navier-Stokes Equa-
tions (NSEs) for each fluid. The NSEs for individual fluids
are coupled through a series of boundary conditions at the
interface [2]. Hence, using this approach requires solving a
challenging moving boundary problem.

The volume-of-fluid (VOF) method simplifies the
moving boundary problem by treating the two-phase fluid
system as a single mixture [10]. VOF uses a bounded colour
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function α = [0, 1] to distinguish the fluids. The colour
function represents the normalised volume of a specific
phase in the control volumes.

The NSEs for the VOF mixture comprise of the mass
conservation,

∇ · U = 0, (1)

and the momentum conservation equations,

∂(ρU)

∂t
+∇·(ρUU) = −∇p+∇·μ(∇U+∇UT )+Fb+Fcap,

(2)

where U denotes the velocity field, ρ the density, t the time,
p the pressure, μ the dynamic viscosity, Fb the external
body forces and Fcap the capillary forces. The density ρ and
dynamic viscosity μ of the mixture are given by,

ρ = ρwα + ρn(1 − α), (3a)

μ = μwα + μn(1 − α), (3b)

where the indices w and n denote the two fluids in the
system. The capillary forces are given by,

Fcap = σknIδI, (4)

where σ is the surface tension between fluids, k is the
interface curvature, nI is the unit interface normal and δI

is a Dirac function representing a sharp interfacial region
where the capillary forces act. In this manuscript, we refer
to the interface between two fluids that is in contact with the
wall as a meniscus. The terms such as interface curvature
and interface normal refer to the mentioned variables along
the interface. We use the continuum surface force (CSF)
formulation [5] to represent the capillary forces as body
forces by replacing the interface normal and the Dirac
function in Eq. 4 by the gradient of the colour function,

Fcap = σk∇α. (5)

The curvature of the interface k is computed from the colour
function by,

k = −∇ · nI + (nI · ∇nI · nI)

= −∇ · ∇α

|∇α| +
( ∇α

|∇α| · ∇ ∇α

|∇α| · ∇α

|∇α|
)

. (6)

In the above equation, the first term is the conventional
way to compute the interface curvature. The correction term
(enclosed in brackets, available in OpenFOAM) ensures that
the colour function α is interpolated accurately during the
computation of the interface normal. It is formally zero
but numerically not. The capillary pressure pc is computed
solving the following equation [19],

∇ · ∇pc = ∇ · Fcap. (7)

The capillary pressure pc is solved using a Neumann
condition (∇pc = 0) and Fcap is computed from Eq. 5.

Finally, the colour function is advected in a conservative
form with the help of the continuity equation, Eq. 1 as,

∂α

∂t
+ ∇ · (Uα) + ∇ · (

α(1 − α)Ur
) = 0. (8)

Ur in the above equation refers to the relative fluid velocity
between phases acting at the interface approximated as
min

(
Ucell, max(Udomain)

)
[21].

2.1 Boundary conditions on the wall

We use an equilibrium contact angle θ based on Young’s law
[3] at the wall boundaries such that the unit normal to the
interface (used in Eq. 6 to compute the interface curvature)
is given by,

nI = nwcos(θ) + twsin(θ), (9)

where nw is the unit normal and tw is the unit tangent to the
wall boundaries [5].

Displacing a meniscus on a no-slip wall boundary results
in a mesh-dependent stress singularity on the wall surface
[1, 11]. To avoid this numerical artefact, we employ the
partial (Navier) slip condition [17] such that the velocity on
the wall boundaries is given by,

Uwall = λ
∂U

∂n
, (10)

where, λ is the slip length and ∂U /∂n refers to the velocity
gradient in the direction normal to the wall boundaries.

2.2 Discretisation and numerical schemes

We use the interFoam solver of the open-source finite
volume based package - Foam-Extend-1.6 (http://wikki.
gridcore.se) that employs the VOF—CSF formulation. A
collocated Eulerian grid is used where the primary variables
are stored at the cell centres of a control volume. An
implicit first-order Euler scheme is employed for temporal
discretisation. Gauss linear scheme is used for discretizing
the gradient terms. Limited linear differencing is used to
solve for the advection term in the momentum equation
of NSEs. To adhere to the boundary limits of the VOF
colour function, van Leer scheme is used to solve the
advection equation of the colour function (Eq. 8). The
primary variables, pressure and velocity are coupled by the
predictor-corrector step of pressure implicit with splitting of
operators (PISO) [12]. The time step size is restricted by the
Brackbill number [6],

	t =
√

	x3ρavg

πσ
. (11)

The Courant number is set to 0.1.
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3 Transition zone shapes and the occurrence
of capillary barrier zones

In this section, we discuss the shape of the synthetic 2D
pore geometry under investigation, the threshold capillary
pressures used by conventional quasi-static PNM for the
considered pore geometry and the concept of capillary
barriers in detail.

3.1 Pore geometry

We consider a synthetic two-dimensional pore geometry
where the shape of the transition zone in dimensionless form
is defined by the function

ȳ = s ·
(

x̄
s

)n

(
x̄
s

)n + (
1 − x̄

s

)n + 0.5, with0 ≤ x̄

s
≤ 1. (12)

In the above equation, s is a scaling factor to tune the radius
of the pore body rp and n is an exponent to tune the shape
of transition zone. The dimensionless variables x̄ = x/d

and ȳ = y/d are obtained by dividing x, y by the reference
length, d = 2rt = 20 μm. The reference length is taken as
the diameter of the pore throat. The shape of the transition
zone for different values of n is illustrated in Fig. 1. As n

increases, the transition zone gets sharper. The radius of the
pore throat is set to rt = d/2 = 10 μm all through the
manuscript. The aspect ratio of the pore geometry is defined
as AR = rp/rt = (rt + sd)/rt. The aspect ratio is three for the
pore geometry illustrated in Fig. 1 having a scaling factor,
s = 1. The value of the scaling factor is mentioned when
it is not equal to one. The slope of the wall boundary in the
transition zone mw is maximum at the centre (x = 10 μm,
y=rt+sd/2 = 20 μm) equal to n and decreases to zero at
the entrance and exit of the transition zone as illustrated in
Fig. 3b.

Fig. 1 Illustration of the shape of transition zones connecting a pore
throat with a pore body

3.2 Threshold capillary pressures

Provided that the topological information of porous media
is known, PNM construct a network model of pore spaces
considering simplified geometries to represent the real pore
spaces. Typically, the throats are represented as cylinders
and pore bodies are represented as spheres [7]. For the con-
sidered synthetic pore geometry discussed in Section 3.1,
PNM generally consider the pore throat as a rectangle
and the pore body as a circle as illustrated by blue line
in Fig. 2. Conventional quasi-static PNM rely on the Young-
Laplace law (Eq. 13, [3]) to decide the invasion pattern of
fluids in a system

pt = σk = σ

(
1

r1
+ 1

r2

)
, (13)

where pt is the threshold capillary pressure and r1, r2 are
the principal interfacial radii. The critical radius of the
interface that corresponds to the least interfacial curvature
encountered during the invasion process is used to compute
the threshold capillary pressure using Eq. 13. The threshold
capillary pressure is greater for smaller pores. Pore spaces
are invaded by the wetting phase when the available
pressure gradient is lower than the threshold capillary
pressure [14]. Hence, smaller pores are preferred during
imbibition. However, the quantitative predictions of the
threshold capillary pressure that PNM use to decide if a
pore gets invaded are still approximate [4]. PNM predict
the imbibition path in a throat-pore body system according
to favourable threshold capillary pressures encountered.
During the network extraction of PNM, the shape of
transition zone is not taken into account as illustrated in
Fig. 2.

Fig. 2 Illustration of the pore geometry with the transition zone
defined by n = 5 (labelled 2) connecting the pore throat (labelled 1)
and the pore body (labelled 3). Pore network extraction simplify this
pore geometry into a rectangular throat having a radius of 10 μm and
a circular pore body having a radius of approximately 28 μm. In the
conventional network extraction of PNM, the shape of the transition
zone is neglected

954 Comput Geosci (2020) 24:951–969



For the case shown in Fig. 2, for a contact angle θ = 10◦,
the threshold capillary pressures in the throat and pore body
are 984 Pa and 351 Pa respectively. The threshold capillary
pressure for the pore body is defined considering that the
critical radius r in Eq. 13 is equal to cos(θ)/rp,PNM ,
where rp,PNM is the PNM estimate of the pore body radius
approximately equal to 28 μm. Similarly, when the contact
angle is θ = 13◦, the threshold pressures in the throat
and pore body are 974 Pa and 348 Pa respectively. We
will discuss the threshold capillary pressure values attained
using DNS considering the transition zone shape for both
the discussed contact angles later in Section 5.1.

3.3 Capillary barriers and critical contact angle

This section discusses in detail the conditions responsible
for the occurrence of capillary barrier zones during imbibi-
tion and their potential consequences on the flow dynamics.
The capillary barrier zones are exclusively dependent on
the wetting properties of the fluids and the shape of the
transition zone. It is important to investigate the parameters
that result in capillary barrier zones as their presence can
potentially hinder the imbibition of a pore body thereby
influencing the invasion paths. Theoretical analysis in this
section is done considering spontaneous imbibition flow
conditions and assuming that the system is occupied by light
fluids (such as air) to neglect inertial effects.

The critical contact angle θc is a parameter exclusively
dependent on the shape of the transition zone wall boundary.
It is defined as the contact angle of the wetting phase θ

that results in a flat meniscus at the centre of the transition
zone (where the wall slope is maximum) as illustrated in
Fig. 3a. Spontaneous imbibition flows are capillary driven.
A flat meniscus corresponds to zero capillary forces and
thus hinders further imbibition of the wetting phase into
the pore body. We now present an analytical expression to
determine θc for the considered synthetic pore geometry.
Consider an infinitesimally small section at the centre of
the transition zone as illustrated by the triangular region in

Fig. 3a. θc is the angle between the flat meniscus and the
tangent drawn from the midpoint of the transition zone. γ is
the angle between the tangent drawn from the midpoint of
the transition zone and a horizontal plane. The slope of the
wall boundary mw is given by

tan(γ ) = mw = n(x̄)n−1(1 − x̄)n + n(x̄)n(1 − x̄)n−1

(
x̄n + (1 − x̄)n

)2
.

(14)

In the above expression, x = 10 μm is the known location
of the occurrence of a flat meniscus and d = 20 μm is the
reference length resulting in x̄ = 0.5. As θc = π/2 − γ and
γ = atan(mw),

θc = π

2
− atan

(
n(x̄)n−1(1 − x̄)n + n(x̄)n(1 − x̄)n−1

(
x̄n + (1 − x̄)n

)2

)
.

(15)

Substituting x̄ = 0.5 in the above expression and after
few arithmetic manipulations results in a simple analytic
expression to determine θc given by,

θc = π

2
− atan(n). (16)

Figure 4a shows the critical contact angle for different
values of n. As the transition zone gets sharper (increase of
n), the critical contact angle gradually moves towards 0◦ (at
n = ∞, θc = 0◦).

The wetting properties of the fluid in relation to critical
contact angle determine if the wetting phase can imbibe
a pore body. Figure 4 illustrates the possible scenarios.
The first scenario is when θ = θc. This results in the
occurrence of a flat meniscus at the centre of the transition
zone as discussed above (Fig. 3a). The second scenario
is when θ < θc. This always favours imbibition as the
contact angle of the wetting phase is sufficient to maintain a

Fig. 3 a Illustration of the critical contact angle θc which is the contact angle of the wetting phase that results in the occurrence of a flat meniscus
at the centre of the transition zone (x = 10 μm, y = 20 μm). b Illustration of the slope of wall boundary mw in the transition zone for n = 2
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Fig. 4 a Critical contact angle with respect to n and classification of the imbibition process based on θ with respect to θc. b Meshed region
illustrates the capillary barrier zone when θ > θc

meniscus curvature (and subsequently the capillary driving
forces) at all times. The final scenario is when θ >

θc. This results in the occurrence of two equidistant flat
menisci from the centre of the transition zone. We refer
to the region enclosed between the two flat menisci as
the capillary barrier zone (Fig. 4b). The significance of
capillary barrier zone is illustrated in Fig. 5 which shows the
meniscus orientation at different positions of the pore space.
Within the capillary barrier zone, the meniscus orients with
a negative curvature resulting in capillary forces acting
against imbibition. Transitions in the meniscus curvature
during forced imbibition were investigated by Ferrari and
Lunati [8] on pores having corners with singularity (corners
of a sharp pore body has an undefined wall normal). They
refer to the transitions in meniscus curvature occurring at
the corners of a pore body as meniscus reconfigurations.
The transition in meniscus curvature during quasi-static
imbibition in a single junction micromodel were also

observed experimentally [25]. Zacharoudiou et al. [25] used
Lattice-Boltzmann simulations to investigate spontaneous
imbibition in a sharp throat-pore body system. From their
numerical investigation, it was noticed that the interfacial
oscillations do occur even for spontaneous imbibition flows.
However, in all of their investigated cases, the wetting phase
always invaded the pore space. As illustrated in Fig. 5, the
meniscus changes its curvature during imbibition even when
there is a smooth transition between a throat and a pore.
The transitions in meniscus curvature are dependent on the
wetting properties of the fluid and the shape of the wall
boundary.

Now, we determine the position of the capillary barrier
zones when θ > θc for the considered synthetic pore
geometries. From Fig. 3a,

tan(γ ) = tan

(
π

2
− θ

)
. (17)

Fig. 5 Illustration of the
meniscus configurations at
different positions of the pore
space. Within the capillary
barrier zone, capillary forces act
as resisting forces against
imbibition
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Substituting mw from Eq. 14 in the above expression for
tan(γ ) gives,

n(x̄)n−1(1 − x̄)n + n(x̄)n(1 − x̄)n−1

(
x̄n + (1 − x̄)n

)2
= tan

(
π

2
−θ

)
. (18)

In the above polynomial expression, for a known shape of
the transition zone n and contact angle of the wetting phase
θ , the real roots of x̄ are computed using [15] to determine
the limits of the capillary barrier zones. Figure 6 shows
the normalised width of the capillary barrier zones and the
critical contact angles (marked by stars on the horizontal
axis) for different n. We arrive at two important conclusions
from Fig. 6. Firstly, for any n, the width of the capillary
barrier zone x′ increases with the contact angle (x′ ∝ θ ).
Secondly, the width of the barrier zone reduces at larger θ

and n (x′ ∝ 1/n) corresponding to a decrease in the width
of the transition zone where the wall slope varies for larger
n (Fig. 1).

We refer to the discussed barrier zones as dynamic
capillary barriers as during spontaneous imbibition, inertia
can assist the wetting phase to overcome the capillary
barriers. During this phase, the meniscus is subjected to
smooth transitions in its curvature multiple times. The first
transition in meniscus curvature occurs at the entrance
of the barrier zone where a positive meniscus curvature
(exists until the meniscus is behind the entrance of the
barrier zones) turns negative (exists in barrier zones). When
the meniscus is in capillary barrier zones, capillary forces
accompany viscous forces to resist further spontaneous
imbibition. If inertia is dominant enough to overcome
resisting forces, the meniscus is pushed over capillary
barrier zones where the meniscus curvature transitions back
from negative to positive (Fig. 5).

Fig. 6 Normalised width of capillary barrier zone x′ with respect to
n. The stars on the horizontal axis represent the occurrence of one flat
meniscus at the centre of the transition zone when θ = θc

In addition to the capillary barrier concept discussed
above, there also exists a barrier contact angle θb that
depends on the fluid properties, contact angle and the
pore geometry. We determine the barrier contact angle
numerically for different inertial systems by considering
different fluid densities in the pore space but maintain the
surface tension between fluids and viscosity of fluids as
constants. For dense fluids, θb is notably larger than θc;
whereas for light fluids, θb is slightly greater than θc. For
θc ≤ θ ≤ θb, inertia assists the wetting phase to overcome
the resisting forces thereby invading the pore space. On the
other hand, for θ > θb, the resisting forces are greater than
inertia and the wetting phase cannot overcome the capillary
barrier zones and hence cannot imbibe the pore space.

4 Numerical setup

In this section, the mesh, initial and boundary conditions
used for the investigation of water flooding with spon-
taneous imbibition flow conditions are discussed. These
parameters are then used in Section 5 to study the contact
angle dependent invasion patterns.

4.1 Computational domain

The pore geometries used for investigation in this
manuscript along with the meshing procedure are provided
in the Supplementary Material. A two-dimensional Carte-
sian mesh with refinement 	x = 	y = 0.5 μm is
embedded into the modelled pore geometries to snap off
the hexahedral Cartesian control volumes such that the pore
shape is captured accordingly using Foam-Extend’s library
snappyHexMesh. Figure 7 illustrates the mesh and sponta-
neous imbibition boundary conditions used for investigating
flow through a single pore body having an aspect ratio of 3.
The length of the pore throat and the pore body is 2x (x =
20 μm) and the length of the transition zone is x.

All simulations were performed on 4 Intel-Xeon proces-
sors (2.000GHz frequency) and run until the wetting phase
enters the pore body (if imbibing) else until no change in the
volume of the wetting phase occurs (if stopped by capillary
barriers). When the density of fluids considered are small
(ρα = 1 kg/m3) the computation time was around 6 h using
a Brackbill number 5 (	t = 10−8 s). While considering
heavier fluids (example: ρα = 1000 kg/m3), the computa-
tion times were within 20 min using Brackbill number one
(	t = 6.3 × 10−8 s).

4.2 Initial and boundary conditions

We initially position the meniscus 10 μm from the inlet
boundary and allow the meniscus to relax for 0.1 ms
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Fig. 7 Numerical setup for investigating spontaneous imbibition in a
pore singlet. a The pore space comprises of the pore throat, transition
zone and pore body. The boundary conditions for the inlet, outlet and
walls are shown. b A zoom of the meshed pore space highlighted by

the dashed pink region in subfigure (a). The control volumes are Carte-
sian except near the transition zone wall which are adjusted to match
the shape of the wall

to develop an initial meniscus curvature. During the
relaxation stage, the pressure on the boundaries is set
to Neumann condition (∇p = 0) and there is neither
inflow nor outflow across the boundaries (U = 0). This
results in the relaxation of the meniscus according to
the contact angle boundary condition Eq. (9). Then we
commence spontaneous imbibition by using a Dirichlet
boundary condition for the pressure (pinlet = poutlet =
p0) and a Neumann boundary condition for the velocity
(∇U = 0) at the inlet and outlet (Fig. 7a). The flow with
spontaneous imbibition conditions is a consequence of the
pressure gradient developed within the pore geometry due
to capillarity [18].

To alleviate the numerical artefact of stress singularity on
the wall boundaries caused due to a moving contact line on
a no-slip boundary, a partial slip wall boundary is chosen
considering uniform slip length of λ = 2 μm. The slip length
is chosen such that we resolve the size of control volumes
in the computational domain [1].

5 Results

In this section, we systematically investigate the principles
of pore body filling under different inertial conditions and
then extend the study to a simple pore network model (a
pore doublet) comprising of two pores having different size
and shape. For all the cases discussed in this section, the
surface tension between wetting and non-wetting fluids is
set to σ = 0.01 N/m and the viscosity of both fluids is taken
to be μ = 0.001 kg/ms. The density and contact angles for
the cases discussed vary and are mentioned. The density
and viscosity ratios are set to unity. Gravitational effects
have been discarded in this investigation considering the

size of the pore geometry (in microns) and as the fluids in
the system have no density differences. The animations of
all the contact angle dependent invasions investigated in this
manuscript are provided in the Supplementary Material.

5.1 Spontaneous imbibition through a single pore
body

We consider the pore space comprising of a single pore
throat, transition zone and pore body as illustrated in Fig. 7.
We commence this study by analysing the invasion patterns
when inertial effects are negligible and later consider systems
where inertia does play a role during the invasion process.

5.1.1 Weak inertial system

The density of both fluids in the system is 1 kg/m3 (air).
This case study corresponds to the theoretical concept put
forward in Section 3 where there are no additional forces
acting within the system apart from capillary and viscous
forces that govern the flow physics. However, it is important
to note that it is rather difficult to have two immiscible
fluids at such low densities in real-life applications. We
validate cases with the transition zone wall shapes defined
by n = 2, 3, 5, 7 and 10 (Eq. 12, Fig. 1). For discussion, we
consider n = 5 and the meniscus dynamics for other cases
are qualitatively similar.

For weak inertial systems, after the initial relaxation
stage of the meniscus, when spontaneous imbibition com-
mences, the meniscus is displaced at a steady-state velocity
within the pore throat according to the balance between
capillary (driving force) and viscous (resisting) forces.
The instantaneous steady-state velocity is a consequence of
the minimal mass within the system to be displaced.
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The variation of wall slope along the transition zone
(Fig. 3b) in relation with the contact angle of the wetting
phase impacts the meniscus curvature and correspondingly
the capillary forces and imbibition rates. As the wall slope
is maximum at the centre of the transition zone and reduces
in both directions moving away from the centre, the most
difficult stage of the spontaneous imbibition process is
to overcome the centre of the transition zone where the
meniscus curvature decreases resulting in a slow down of
the meniscus displacement if θ < θc. On the other hand, for
θ > θc, there is no meniscus curvature at the entrance of the
capillary barrier zone thereby hindering further imbibition
of the wetting phase into the pore body.

Figure 8 shows the snap-shots of the meniscus position
at different time intervals when the contact angle of the
wetting phase is θ = 10◦ which is less than the critical
contact angle θc = 11.31◦. The pink solid line represents the
centre of the transition zone for reference. The orientation
of the velocity vectors is shown to highlight the flow
behaviour. At t0 = 0.1 ms, the meniscus reaches an
equilibrium configuration according to the contact angle
boundary conditions. This is the end of the relaxation
stage from where we commence spontaneous imbibition.
At t1 = 0.15 ms, the meniscus enters the transition zone.
The displacement velocity of the meniscus commences to
reduce from the steady-state velocity attained when the
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Fig. 8 Spontaneous imbibition for n = 5, ρα = 1 kg/m3. θ (10◦) < θc (11.31◦). The corresponding time related to the snapshots are t0 = 0.1 ms,
t1 = 0.15 ms, t2 = 0.2 ms, t3 = 0.6 ms, t4 = 0.9 ms and t5 = 1.4 ms
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Fig. 9 Spontaneous imbibition for n = 5, ρα = 1 kg/m3. θ (13◦) > θc (11.31◦). The corresponding time related to the snapshots are t0 = 0.1 ms,
t1 = 0.15 ms, t2 = 0.3 ms and t3 = 3 ms

meniscus was present in the pore throat due to the decrease
in meniscus curvature. At t2 = 0.2 ms, as the wetting phase
imbibes further and reaches the centre of the transition
zone, the imbibition rate further drops due to decrease in
the meniscus curvature. At t3 = 0.6 ms, the meniscus
slowly overcomes the centre of the transition zone (having
maximum wall slope) and commences to enter a favourable
zone to imbibe due to the continuous reduction in the wall
slope. However, the imbibition of the wetting phase is slow
due to smaller meniscus curvature caused by the nature of
the expanding pore geometry. At t4 = 0.9 ms, the meniscus
exits the transition zone and starts to equilibrate towards
a new meniscus configuration based on the contact angle
boundary conditions thereby generating vortices. Finally,
at t5 = 1.4 ms, the wetting phase keeps filling the pore
body at a steady-state velocity based on the balance between
capillary and viscous forces.

Figure 9 shows the snap-shots of the meniscus position
at different intervals of time when the contact angle of
the wetting phase is θ = 13◦ which is greater than
the critical contact angle θc = 11.31◦. From Section 3,
for this scenario, we show that there exists a capillary
barrier zone and the position of the barrier zone can be
found semi-analytically from Eq. 18. The region enclosed
between two pink lines in Fig. 9 represents the capillary

barrier zone. At t0 = 0.1 ms, the meniscus reaches an
equilibrium configuration according to the contact angle
boundary conditions at the end of the relaxation stage from
where we start spontaneous imbibition. At t1 = 0.15 ms,
we observe the meniscus entering the transition zone and
the meniscus velocity starts to reduce from the steady-
state velocity attained when the meniscus was present in
the pore throat due to reduction in the meniscus curvature
as explained for the previous case. At t2 = 0.3 ms, the
meniscus slows down at the entrance of the capillary barrier
zone due to the flat meniscus configuration. As explained
in Section 3, a flat meniscus would mean zero capillary
forces thereby hindering further spontaneous imbibition into
the pore body. Finally, at t3 = 3 ms, a long time after
the wetting phase has reached the entrance of the capillary
barrier zone, we observe no substantial difference in the
wetting phase occupancy compared to t2.

Figure 10 shows the evolution of the capillary pressure
during spontaneous imbibition for both the above discussed
cases. The difference in the computed capillary pressure
values Eq. 7 between the outlet and inlet is plotted as
capillary pressure (coloured dots) in Fig. 10. From Fig. 10
when θ < θc, the meniscus curvature stays positive
all through the spontaneous imbibition process and the
threshold capillary pressure is a positive value (represented
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Fig. 10 Evolution of the capillary pressure during spontaneous
imbibition in a pore geometry having transition zone defined by n = 5.
The red dots represent capillary pressure values for θ = 10◦ and blue
dots represent capillary pressure values for θ = 13◦. tx correspond
to the meniscus configurations shown in Figs. 8 and 9. Threshold
capillary pressure for θ = 10◦ is pt = 7.8 Pa and for θ = 13◦ is a
negative value which are notably different compared to the values used
in conventional PNM

by red dots). Interestingly, we find that the threshold
capillary pressure for the system is pt = 7.8 Pa which is
much lesser than the value used by PNM (pt = 351 Pa).
Note that we find discrepancy in the numerically determined
capillary pressure values and the values obtained by Young-
Laplace law (for example: θ = 10◦ case) when the meniscus
is in the throat (numerical prediction of 1039 Pa against 985
Pa) and pore body (numerical prediction of 275 Pa against
328 Pa) due to the dynamic nature of meniscus displacement
occurring at high velocities. For the case θ > θc, the
capillary pressure (represented by blue dots) is zero due to
flat meniscus configuration that occurs at the entrance of
the capillary barrier zone. Hence, the meniscus is unable to
invade the pore space any further. As shown in Fig. 5, when
the meniscus enters the capillary barrier zone, the meniscus
curvature transforms from positive (imbibition curvature)
to negative (drainage curvature). This indicates that the
threshold capillary pressure when θ > θc is negative for
the considered pore body which means an additional push is
required for the meniscus to overcome the capillary barrier
zone. Interestingly, due to the negative threshold capillary
pressure encountered when θ > θc, the phenomena can
be related to fluid displacement in a mixed-wet system
where the pores having capillary barriers have inverted their
wettability.

When spontaneous imbibition is stopped due to capillary
barrier effects, we compare the numerical solution of the
volume of wetting phase present within the pore geometry
with the expected volume to be present within the pore
geometry. The discrepancy is always within 5% for all the

cases investigated in this paper. For the case discussed
(
n=5,

θ (13◦) > θc (11.31◦)
)
, the discrepancy is around 2.1%

potentially caused due to numerical dispersion.

5.1.2 Dynamic imbibition of a pore body—role of inertia

We now consider the same numerical setup as discussed
above but consider the impact of inertia in analysing
the invasion patterns. Both the fluids in the system have
a density of 1000 kg/m3 (water). We investigated the
spontaneous imbibition process on wall shapes defined by
n = 2, 3, 5, 7 and 10. For discussion, we consider n =
10 and the flow behaviour is qualitatively similar for the
other investigated cases. An inertial dominant system would
take longer duration to reach steady state as the mass to
be displaced is greater compared to a system occupied by
lighter fluids. Therefore, compared to the previous case
(ρα = 1 kg/m3) where steady-state velocity is attained
instantaneously on starting spontaneous imbibition, for an
inertial dominant system, the flow gradually accelerates
towards steady state. Considering the flow within the system
carrying sufficient momentum to overcome the capillary
barrier zones, the meniscus curvature smoothly transforms
twice. The first meniscus curvature transition occurs at the
entrance of the capillary barrier zone where the imbibition
curvature (positive curvature) turns to a drainage curvature
(negative curvature). The second meniscus curvature
transition occurs at the exit of the capillary barrier zone
where the drainage curvature turns backs to an imbibition
curvature. When the meniscus is being displaced within the
capillary barrier zone, capillary forces accompany viscous
forces to resist further spontaneous imbibition. Even during
this stage, the slowing down of the spontaneous imbibition
process is gradual. Therefore, inertia can temporarily assist
the wetting phase to overcome the capillary barrier zones
thereby invades the pore body.

Figure 11 shows the snap-shots of the meniscus position
over time for the transition zone shape defined by n = 10
when the contact angle of the wetting phase is θ = 38◦
which is larger than the critical contact angle θc = 5.71◦.
For this case, the fluid system carries sufficient momentum
to overcome the capillary barrier zone. Note that θ = 38◦
is at the brink of overcoming the barrier zone and imbibes
the pore space; whereas for θ = 39◦ (discussed later),
the inertia of the system is not sufficient to overcome
resisting forces and push the meniscus over the capillary
barrier zone. The region enclosed between two solid pink
lines represent the capillary barrier zone determined semi-
analytically. The orientation of the velocity vectors is shown
to analyse the flow behaviour. At t0 = 0.1 ms, the
meniscus reaches an equilibrium configuration according
to the contact angle boundary conditions from where we
commence spontaneous imbibition. At t1 = 0.2 ms, the
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Fig. 11 Spontaneous imbibition for n = 10, ρα = 1000 kg/m3. θ (38◦) > θc (5.71◦). The corresponding time related to the snapshots are t0 = 0.1
ms, t1 = 0.2 ms, t2 = 0.225 ms, t3 = 0.35 ms, t4 = 0.4 ms and t5 = 1 ms

meniscus arrives at the transition zone by gaining velocity
gradually over time to reach steady state according to the
balance between capillary and viscous forces. At t2 =
0.225 ms, as the meniscus is pushed into the capillary
barrier zone due to momentum, the meniscus is subjected
to an initial transition in its curvature. At this stage, the
capillary and viscous forces act as resisting forces with
only inertia driving the flow within the system. At t3 =
0.35 ms, the magnitude of resisting forces grows larger
compared to inertia thereby commencing a back flow
within the pore geometry. The backward flow tends to
create a zone of vortices in the transition zone helping
the meniscus temporarily spread over the wall surface. At
t4 = 0.4 ms, once the meniscus crosses the capillary

barrier zone, the meniscus finds it favourable to spread on
the wall and tries to attain an equilibrium configuration
according to the contact angle boundary conditions by
generating vortices. At t5 = 1 ms, after attaining an
equilibrium meniscus configuration, the meniscus gradually
accelerates towards steady-state velocity according to the
balance between capillary and viscous forces filling the pore
body. After entering the capillary barrier zone, if inertia is
dominant over resisting forces, stage t3 shown in Fig. 11 is
avoided (vortices temporarily spreading the wetting phase
on the wall) and the flow profile gradually moves from t2
to t4.

Figure 12 shows the snap-shots of the meniscus position
over time for the transition zone shape defined by n = 10
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Fig. 12 Spontaneous imbibition for n = 10, ρα = 1000 kg/m3. θ (39◦) > θc (5.71◦). The corresponding time related to the snapshots are t0 = 0.1
ms, t1 = 0.2 ms, t2 = 0.3 ms, t3 = 0.4 ms, t4 = 0.525 ms, t5 = 0.6 ms, t6 = 0.675 ms and t7 = 2 ms

963Comput Geosci (2020) 24:951–969



when the contact angle of the wetting phase is θ = 39◦
which is larger than the critical contact angle, θc = 5.71◦.
For this case, the system marginally falls short of the
required energy to push the meniscus over the capillary
barrier zone thereby hindering spontaneous imbibition of
the pore body. At t0 = 0.1 ms, the meniscus reaches an
equilibrium configuration at the end of relaxation stage from
where we commence spontaneous imbibition. At t1 = 0.2
ms, the meniscus arrives at the entrance of the transition
zone gradually accelerating to attain steady-state velocity.
As the meniscus enters the capillary barrier zone due
to inertia, the meniscus is subjected to a change in its
curvature. At t2 = 0.3 ms, back flow and vortices are
generated as the magnitude of resisting forces (viscous and
capillary) grow larger than inertia. The temporary spreading
of the meniscus on the wall due to vortices generated during
the back flow were not sufficient to push the meniscus
over the exit of the capillary barrier zone. At t3 = 0.4
ms, as capillarity becomes the dominant force within the
system, the meniscus is pushed back towards the pore throat.
At t4 = 0.525 ms, during the back flow, the momentum
would once again push the meniscus over the entrance of
the capillary barrier zone into the pore throat. Between t4 =
0.525 ms to t6 = 0.675 ms, the momentum would repeat the
process of pushing the meniscus into the capillary barrier
zone and retracting back several times. Over time, these
meniscus oscillations around the entrance of the capillary
barrier zone dampen. Finally, at t7 = 2 ms, the meniscus
settles at the entrance of the capillary barrier zone not
invading the pore body.

For inertial dominant flows as seen above, momentum
can potentially assist the meniscus overcome the capillary
barrier zones even when the contact angle of the wetting
phase is greater than the critical contact angle. The inertial
dependent contact angle that can overcome the capillary
barriers is referred to as the barrier contact angle θb.
From the analysis done for n = 10, ρα = 1000
kg/m3, the barrier contact angle lies between 38◦ and
39◦. Similarly, we determine the barrier contact angle
numerically for various inertial systems (considering fluids
with different densities) and for different transition zone
shapes as shown in Fig. 13. In Fig. 13, the continuous
blue line represents the critical contact angle determined
by Eq. 16. The numerically determined barrier contact
angles for various inertial systems are within 1◦ accuracy.
For ρα = 1 kg/m3, we find a good match between the
analytical expression used to determine the critical contact
angle and the numerical solution validating the concept put
forth in Section 3. If light fluids occupy the system, we see
the barrier contact angle move towards the critical contact
angle; whereas if the system is occupied by dense fluids,
the barrier contact angle is notably larger than the critical
contact angle. Note that the numerical analysis shown in

Fig. 13 Barrier contact angle, θb for different shapes of the transition
zone considering different fluid densities in the system for pore
geometry discussed in Fig. 7

Fig. 13 is valid only for the specific pore geometry discussed
in Fig. 7. Any change in the pore geometry, boundary
conditions or the fluid properties can impact the barrier
contact angle.

5.2 Spontaneous imbibition through a pore
doublet

To investigate the impact of capillary barriers during PBF,
we consider a simple pore network (a pore doublet)
comprising of two pore bodies having different shapes
of transition zone and are of different sizes. Figure 14
illustrates the considered pore doublet along with the
spontaneous imbibition boundary conditions of the system
that has a single inlet and two outlets connected to both the
pore bodies. The wetting phase initially occupies the region
enclosed between two solid blue lines. The larger pore body
to the right has an aspect ratio of 6 and is twice bigger
than the smaller pore body having an aspect ratio of 3. The
scaling factor s used in Eq. 12 for the larger pore body is
2.5. The shape of the transition zone for the larger pore is
defined by n = 3, whereas n = 10 for the smaller pore. The
density of both fluids in the system is ρα = 500 kg/m3 (light
oil). We compare spontaneous imbibition flow phenomena
for the same pore geometry and fluid properties at different
contact angles (0◦ and 10◦). Conventional PNM predict that
the smaller pore (left side, n = 10) gets invaded first during
imbibition.

Figure 15 shows the snap-shots of the meniscus position
during spontaneous imbibition in the considered pore
network at different intervals of time when the contact angle
of the wetting phase is 10◦. The critical contact angle for
n = 10 is θc,n=10 = 5.71◦ and for n = 3 is θc,n=3 = 18.4◦.
For the smaller pore body as the contact angle of the wetting
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Fig. 14 Illustration of a pore doublet comprising of two pore bodies having different shapes (left: n = 10, right: n = 3) of transition zone and are
of different sizes (rp,right = 2 × rp,left)

phase is greater than the critical contact angle (θ > θc), we
expect the presence of a capillary barrier zone. The capillary
barrier zone is represented by the region enclosed between
pink lines in Fig. 15. The green line in the larger pore body
represents the centre of the transition zone for reference.
At t0 = 0.1 ms, the meniscus reaches an equilibrium
configuration upon relaxation from where we commence
spontaneous imbibition. At t1 = 0.4 ms, the capillary forces
start to displace both the menisci (left and right) in the
horizontal pore throat and the meniscus enters the transition
zones of the pore bodies. The meniscus on the left has
already reached the entrance of the capillary barrier zone
of the smaller pore. On the other hand, for the larger pore,
we see the capillary forces still acting (due to the meniscus
curvature) and the influx of the wetting phase is directed
towards the larger pore. For the larger pore as θ < θc,
we do not expect any capillary barriers and the meniscus
always maintains a curvature (and capillary forces) that
keeps displacing the meniscus as seen at t2 = 1 ms and at
t3 = 2.5 ms, where the wetting phase slowly overcomes
the centre of the transition zone. At t4 = 6.3 ms, as the
meniscus exits the transition zone of the larger pore body
and enters the flat horizontal wall surface, according to
the contact angle boundary conditions the meniscus tries to
attain an equilibrium meniscus configuration by generating
vortices. The wetting phase continues to invade the pore
body further according to balance between forces within the
system. As the meniscus reaches the vertical wall boundary
of the larger pore, the meniscus once again adapts according
to the contact angle boundary conditions. For the meniscus
configurations at t5 = 10.04 ms and t6 = 12 ms,
the capillary forces are greater in the larger pore. As a

consequence, the meniscus to the left that has stopped at the
entrance of the capillary barrier zone is sucked back slightly
towards the pore throat. At t5 = 10.04 ms, as the magnitude
of capillary forces in the larger pore body are greater in
comparison to the capillary forces at previous time intervals
(t1 to t4), the imbibition rate increases thereby eventually
filling the larger pore body with the wetting phase as seen
at t7 = 20.1 ms. For the smaller pore body, between t1 to
t7, the meniscus stays at the entrance of the capillary barrier
zone and shows resistance to invade the pore body as there
are no capillary (due to the flat meniscus configuration)
or external forces acting within the system to overcome
the capillary barrier zone. Note that the threshold capillary
pressure for the smaller pore body having θ > θc has a
negative value similar to the case of n = 5, θ(13◦) >

θc(11.31◦) discussed in Section 5.1.1, Fig. 10.
We now consider a case where the contact angle of the

wetting phase is 0◦ to compare the invasion pattern of the
wetting phase when there are no capillary barrier zones
during spontaneous imbibition. The numerical setup and
fluid properties are the same as discussed for the earlier
case (pore doublet with θ = 10◦). Figure 16 shows the
snap-shots of the meniscus position during spontaneous
imbibition in the considered pore doublet at different
intervals of time. For the considered contact angle θ = 0◦,
there are no capillary barrier zones. The pink lines represent
the centre of the transition zone for reference. At t1 = 1 ms,
after relaxing the meniscus and commencing spontaneous
imbibition, the wetting phase invades the horizontal pore
throats and commences to enter the transition zone of both
pores. At t2 = 2.5 ms, the meniscus to the left in the smaller
pore body crosses the transition zone entering a favourable
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Fig. 15 Spontaneous imbibition in a pore doublet with contact angle,
θ = 10◦. Unlike conventional PNM that predict invading smaller pore
initially, the impact of wall shape and contact angle show preference to
invade the larger pore body and not imbibe the smaller pore at all due

to the capillary barrier effect. Corresponding time related to the snap-
shots are t0 = 0.1 ms, t1 = 0.4 ms, t2 = 1 ms, t3 = 2.5 ms, t4 = 6.3
ms, t5 = 10.04 ms, t6 = 12 ms and t7 = 20.1 ms

wall surface to spread; whereas the meniscus to the right is
close to exit the transition zone of the larger pore body. Note
that the meniscus curvature on the right is less compared
to the meniscus curvature on the left resulting in relatively
weaker capillary forces on the right. Between t3 = 3.5
ms and t4 = 3.7 ms, as a consequence of the competition
between capillary forces at both ends, the left pore body
gets imbibed and sucks back the meniscus on the right.

Later, at t5 = 5 ms and t6 = 6 ms, the meniscus on
the right tries to attain equilibrium and starts filling up the
larger pore body. As seen in the earlier case, the meniscus
configures itself according to the contact angle conditions
upon encountering the vertical wall surface at seen at t7 = 9
ms. Finally at t8 = 10.04 ms, due to stronger capillary
forces at t7, the wetting phase quickly imbibes the larger
pore body.

966 Comput Geosci (2020) 24:951–969



10.750.50.25

Wetting Phase Velocity

0.2 0.0 0.160.120.080.040

Fig. 16 Spontaneous imbibition in a pore doublet with contact angle, θ = 0◦. θ = 0◦ results in no capillary barriers. Corresponding time related
to the snap-shots are t1 = 1 ms, t2 = 2.5 ms, t3 = 3.5 ms, t4 = 3.7 ms, t5 = 5 ms, t6 = 6 ms, t7 = 9 ms and t8 = 10.04 ms

This case study of a pore doublet clearly demonstrates
that imbibition is strongly dependent on the shape of the
pore geometry along with the contact angle of the wetting
phase and contradicts the conventional theory that smaller
pores are always preferred during imbibition. This can
have major implications in choosing the invasion paths and
potentially impact determining the relative permeabilities of
fluids.

Based on the observations from the pore singlet (weak
inertial systems, Section 5.1.1) and pore doublet case

studies, when there are no capillary barriers (θ < θc),
recovery of the non-wetting phase is 100%. On the other
hand, when a capillary barrier exists (θ > θc), the non-
wetting phase is not fully recovered. For example, in the
pore doublet case when a capillary barrier exists for the
smaller pore body, the non-wetting phase recovery drops to
86.7%. Extending our observation to a larger macroscopic
system, we speculate that the presence of capillary barriers
will have an impact on the recovery of the non-wetting
phase during spontaneous imbibition flows.
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6 Conclusion

This study exclusively focuses on the event of pore body
filling and we revisit the basic principles governing the
invasion of a pore body during spontaneous imbibition.
Conventional pore filling rules take into account only the
sizes of pores and throats and additionally comprise of
stochastic parameters that introduce uncertainties to model
imbibition. In our study, we find that the geometric char-
acteristics of the pore space, contact angle and the fluid
properties play an important role during imbibition. The
relationship between meniscus dynamics and factors men-
tioned above are quantitatively analysed. For this study, we
consider a simple 2D synthetic pore geometry with varying
shapes of the transition zone (pore space connecting a pore
throat and a pore body) and use direct numerical simulations
to investigate water flooding. The main findings of this work
are the following: (1) capillary barriers are seen to play a
significant role in choosing the invasion paths of the wetting
phase during spontaneous imbibition. The presence of cap-
illary barrier zones are linked to the shape of transition zone
and contact angle of the fluid, (2) meniscus oscillations that
were previously investigated during forced and spontaneous
imbibition on pores having sharp transition zone shapes [8,
25] are also seen to occur for smooth transition zones. We
unravel the physics behind these transitions in the meniscus
curvature during imbibition that are linked to the capil-
lary barriers. We also notice that for pores having capillary
barrier zones the threshold capillary pressure is a negative
value and (3) we show how the invading phase can over-
come the capillary barriers during spontaneous imbibition
due to inertia.

For the investigated pore geometries, we demonstrate
the existence of a critical contact angle θc that varies
according to the slope of the wall boundary in the transition
zone. We provide an analytical expression to determine
the critical contact angle for the investigated cases. The
relation between contact angle of the wetting phase θ and
the critical contact angle θc decides if the wetting phase
can imbibe a pore body. Imbibition always happens when
θ < θc. For θ ≥ θc, capillary barrier zones occur. Once the
meniscus enters capillary barrier zones, the capillary forces
try to resist imbibition. It is important to investigate the
parameters that result in the occurrence of capillary barrier
zones as their presence can potentially hinder imbibition
and influence the invasion paths. We provide a semi-
analytic expression to determine the position of the capillary
barrier zones for the investigated case. During spontaneous
imbibition, inertia can assist the wetting phase to overcome
the capillary barrier zones at a barrier contact angle θb that
we determine numerically for the geometries we consider.
For inertia-dominated systems (system occupied by heavy
fluids), θb is notably larger than than θc; whereas for systems

occupied by light fluids, θb is slightly larger than θc. We
consider the impact of this study on a simple pore network
comprising of two pores having different sizes and shapes.
Unlike conventional pore network models which predict
invading a smaller pore body, we rather observe the larger
pore body getting invaded first and the smaller pore body
never gets invaded by the wetting phase due to the capillary
barrier effect.

This study can be an important step towards a deeper
understanding of the spontaneous imbibition event in pore
geometries. The analysis of this study can be used to
improve the existing pore filling rules that incorporates flow
physics and can lead to improved predictive capabilities of
pore network model simulations.
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