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Abstract
Coupled flow and geomechanics computations are very complex and require solving large nonlinear systems. Such
simulations are intense from both runtime and memory standpoint, which strongly hints at employing model order reduction
(MOR) techniques to speed them up. Different types of Reduced-Order Models (ROM) have been proposed to alleviate
this computational burden. MOR approaches rely on projection operators to decrease the dimensionality of the problem.
We first execute a computationally expensive “offline” stage, during which we carefully study the full order model (FOM).
Upon creating a ROM basis, we then perform the cheap “online” stage. Our reduction strategy estimates a ROM using
proper orthogonal decomposition (POD). We determine a family of solutions to the problem, for a suitable sample of
input conditions, where every single realization is so-called a “snapshot.” We then ensemble all snapshots to determine
a compressed subspace that spans the solution. Usually, POD employs a fixed reduced subspace of global basis vectors.
The usage of a global basis is not convenient to tackle problems characterized by different physical regimes, parameter
changes, or high-frequency features. Having many snapshots to capture all these variations is unfeasible, which suggests
seeking adaptive approaches based on the closest regional basis. We thus develop such a strategy based on local POD basis
to reduce one-way coupled flow and geomechanics computations. We partition the time window to adequately capture
regimes such as depletion/build-up and decreasing the number of snapshots per basis. We focus on linear elasticity and
consider factors such as the role of the heterogeneity. We also assess how to tackle different degrees of freedom, such as
the displacements (intercalated and coupled), pressure, and temperature, with MOR. Preliminary 2- and 3-D results show
significant compression ratios up to 99.9% for the mechanics part. We formally compare FOM and ROM and provide
time data to demonstrate the speedup of the procedure. Examples focus on linear and nonlinear poroelasticity. We employ
continuous Galerkin finite elements for all of the discretizations.
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1 Introduction

Coupled flow and geomechanics simulations are highly
complex and involve solving nonlinear algebraic systems
of millions of equations and unknowns. Such simulations
allow assessing the induced stresses changes that hydrocar-
bon production or the injection of fluids in a reservoir (RS)
produce in the surrounding rock mass. These studies often
include compaction and subsidence that pose harmful and
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costly effects such as in wells casing, cap-rock stability,
faults reactivation, and environmental issues as well.

The simulation of the coupled flow and geomechanics is
paramount to the design of hydraulic fracturing campaigns
involving well/fracture placements in unconventional reser-
voirs. Although these simulations are challenging in their
own right, e.g., selection of the coupling parameters and the
proper choices in the collection of the real scenarios for the
joint flow and geomechanics simulation, they have already
become computationally intensive due to mesh resolution
that is required to resolve the flow around the fractures.
Furthermore, a substantial computational effort is needed if
uncertainty quantification (UQ) has to be added to the pro-
cess [23]. UQ relies on parametric studies that are intense
from both CPU time and memory requirements. The CPU
burden, thus, strongly suggests the use of some form of
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model approximations or reduced complexity frameworks,
e.g., model order reduction (MOR) techniques, to perform
simulations in real time that allow decision-making in a
timely fashion.

We already recognized the increasing role of geomechan-
ics in petroleum reservoir engineering as deeper formations
are exploited, and also more complex processes are consid-
ered. For instance, the modeling of thermal fracturing and
vapor injection, i.e., thermal oil recovery processes, require
coupling flow, thermal and mechanical simulators. These
applications encompass high pressures and temperatures,
leading to substantial volume changes and induced stresses
[49, 62]. For such problems, conventional reservoir model-
ing fails to provide an accurate analysis [45, 53], which is
why we present herein a simple linear thermo-elastic model
as the first step towards tackling these challenges in the
future. One of the numerical examples comprises one-way
coupling of nonlinear heat transfer and elasticity.

MOR has been applied extensively in reservoir simula-
tion to mitigate the high computational cost of what we
call a “single-physics” environment, e.g., multiphase flow
in porous media [33, 35, 57, 58, 63] but, its application
to coupled multiphysics, as in the case of combined flow
and geomechanics, has been minimal. To the best of our
knowledge, the first application of MOR in this scenario
was introduced in [17, 24]. According to [35, 58], the most
promising methods for model reduction of flow alone are
the POD-DEIM and the TPWL and all of their variants.
The central idea of these methods is the projection of the
high dimensional residual and Jacobian into a much smaller
subspace through a Galerkin projection. To this end, the
proper orthogonal decomposition (POD) method is the core
of these approximations. POD-like approaches usually con-
sist of the following: a computationally expensive “offline”
stage whereby the fine-scale (or full order model ( FOM)) is
adequately studied at carefully selected points in the input
parameter space to compute a representative snapshot or the
state-space. Then, a reduced subspace whose basis is used
to obtain a ROM is calculated based on a singular value
decomposition (SVD) of this snapshot matrix. Finally, dur-
ing the inexpensive “online” stage, the ROM is solved, and
its solutions expanded back onto the original space, see for
instance [7, 20, 33].

MOR based on POD heavily depend on the set of
collected snapshots obtained in the offline step of the
algorithm. We compute a family of solutions spanning
the uncertainty in the input space, where every single
realization is a “snapshot.” We then ensemble all snapshots
as column vectors, to compute a compressed subspace via
POD, which spans the FOM solution (see, for instance,
[7, 9]). An important issue is that the projection basis,
and hence the ROM, only contains information that is
present in the ensemble of snapshots. Thus, a careful

snapshot selection is critical to constructing a successful
POD basis (e.g., [60]). The standard POD implementation
implies approximating the problem of interest in a fixed
reduced subspace of global basis vectors. However, this is
not convenient to tackle models characterized by different
physical regimes, parameter variations, or moving features
such as discontinuities and fronts. Having a large number
of snapshots to capture all these regimes/local features
makes global POD impractical according to [2, 20]. This
drawback suggests seeking for adaptive approaches based
on a regional basis and alternatives to POD.

The localized POD has been used in the case of flow
simulation in [32]. In this case, K-means was used to cluster
the temporal snapshots due to a change in the flow regime.
Kerfriden et al. [37] described a bridge between POD-
based MOR techniques and the classical Newton/Krylov
solvers. Their method overcomes some of the POD’s
drawbacks found on structural problems involving plasticity
or damage: find an initial snapshot that is adequate to
represent the solution of the damaged structure accurately
as well as significant topological changes that may occur
in it. They proposed a corrective tool for the adaptive
MOR for such mechanical problems whose novelty lies
in the fact that integrates corrections inside the POD
projection framework. Hernández et al. [36] presented a
novel model order reduction technique for the solution of
the fine-scale equilibrium problem arising in computational
homogenization. Their method relies on a reduced set of
empirical shape functions computed via POD. They also
chose interpolation points based on not only accuracy
but also by on stability considerations. The resulting
speedup factor is over 3×. Similarly, Corigliano et al.
[11] combined using domain decomposition and snapshot-
based POD techniques for elastic-plastic applications in
structural dynamics. They attained a 2× speedup. Kerfriden
et al. [38] propose a local/global MOR method to
circumvents the difficulties of simulating highly nonlinear
mechanical failures. Niroomandi et al. [51, 52] extended
the proper generalized decomposition methods to nonlinear
hyperelasticity problems, which results in an approximation
of the solution in the form of a series expansion. The
technique renders accurate results that can be stored in a
compact form for tackling real-time applications.

This paper introduces a MOR algorithm that, as we will
demonstrate, provides a substantial speedup, up to 50X if we
combine with multi-threading post-processing, for one- and
two-way coupled problems involving thermo-poroelasticity.
We also propose a local-in-time POD scheme, i.e., POD
with time partitioning to tackle geomechanics problems
with distinct and thus incompatible transient regimes such
as those arising from non-monotonic sequential production
and injection scenarios. We employ a continuous Galerkin
finite element formulation for linear isotropic elasticity
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and slightly compressible single-phase flow. We consider
nonlinear transient heat transfer as well. We include
concrete numerical examples covering two- and three-
dimensional problems of practical interest. The sample
problems employ triangular, quadrilateral, and hexahedral
meshes and include standard boundary conditions (BCS).
We organize the remainder of the paper as follows. The
first section presents the mathematical models of the
governing partial differential equations. The second revises
the proposed MOR method and also shortly discusses
POD properties and introduces LPOD. In the third one,
we present concrete numerical examples of our MOR
algorithm. The last sections state concluding remarks and
future work.

2Mathematical model for
thermo-poroelasticity

We discuss the governing equations for linear homogeneous
isotropic thermo-poroelasticity and their finite element (FE)
formulation. We skip many of the details for the sake of
brevity, and a complete treatment can be found in [13, 16,
27, 43]. We consider a bounded domain � ⊂ R

n,n =
2, 3 and its boundary is � = ∂�, and a time interval of
interest ]0,�[. Let Th be a non-degenerate, quasi-uniform
conforming partition of � composed of convex elements.
As shown by [4, 31], the continuity equation and Darcy’s
law yield:

∂φ∗

∂t
+ ∇ ·

(
− 1

μ
K (∇p − ρg∇z)

)
= q , (1)

where the parameters are φ∗, a model specific porosity, K
represents the absolute permeability tensor. The dynamic
viscosity is μ, while ρ is the fluid density, as well as g,
is the gravity acceleration constant, p is the fluid pressure,
and q represents sources and sinks. Finally, the algorithmic
porosity φ∗ is defined by:

φ∗ = φ0 + α ·
(
∇ · u− ε0

v

)
+ 1

M

(
p − p0

)
, (2)

where the additional parameters are accordingly α which
is the Biot’s constant, u represents the displacement vector,
while ε0

v is the initial volumetric strain. Herein, M is the
Biot’s modulus, while φ0 and p0 define for a reference or
initial state (see [12]). The common boundary conditions
(BCS) for the pressure equation imply Neumann or no-flow
namely:

∇p · n̂ = 0 on�, (3)

and one should also consider an initial or reference pressure
distribution in the whole domain. Herein n̂ is the outer
unitary normal vector as usual. For the mechanics part, one

begins from the equilibrium equation for a quasi-steady
process:

−∇ · σ = f in� ;� = �uD ∪ �uN
u = 0 on�uD
t = σ · n̂ on�uN

(4)

where σ is the stress tensor, f corresponds to the vector
of body forces, such as gravity, for instance. One can
decompose BCS in Dirichlet type, i.e., �uD , and Neumann
type BCS, i.e., �uN , where the external tractions are
known or prescribed. Hooke’s law combined with Biot’s
poroelastic theory defines σ by the following expression:

σ = C : ε−
[
α
(
p − p0

)
+ 3Kβ

(
T − T 0

)]
δ ;C = λδ⊗δ+2GI , (5)

where the operator “:” represents the tensor or dyadic
product, T = T (x, t) is the temperature, C is the
elastic moduli, β corresponds to the coefficient of thermal
dilatation whileK is the bulk modulus. The Kronecker delta
becomes δ while λ, and G, are the Lamé constants, and I
represents the fourth-order identity tensor. The strain tensor
ε is given by:

ε = ∇su = 1

2

[
∇u+ (∇u)T ] . (6)

We derive a weak form by substituting Eq. (2) into Eq. (1)
and then multiply by a test function v ∈ H 1

0 (�) and
integrating over� and using the Gauss-divergence theorem,
which yields:
∫
�

(
1
M
∂p
∂t
v + αv∇ · u̇+ 1

μ
K · ∇p(∇v)T

)
· dx = ∫

�

q · vdx+

∫
�

(
ρg
μ
K · ∇z(∇v)T

)
dx + ∫

∂�
p
N

v 1
μ
K (∇p − ρg∇z) · n̂T ds .

(7)

We proceed analogously with the equilibrium Eq. (4), by
testing against a given virtual displacement, χ . We arrive at:∫
�

(
∇χ

)T : σd� =
∫
∂�uN

χT · tds +
∫
�

χT ·f d� (8)

where t = σ · n̂ are the tractions applied as Neumann BCS.
Equation (8) is the virtual work statement. We can take the
FE space as a finite-dimensional subspace of the continuous
Sobolev spaces [54]:

Ck (Th) =
{
v ∈ L2 (�) :∀e ∈ Th, v|e ∈ Pk (e)

}
(9)

where Pk (e) represents the space of polynomials of total
degree less than or equal to k, Ck (Th) is called test functions
that are continuous along the given element’s edges. We
often represent the primary variables in the element e, i.e.
displacements and pressure, as nodal values multiplied by
shape or interpolation functions [6]:

phe
(
x
) = (

�e
)T · pe ; uhe

(
x
) = �e · ue (10)
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where �e and �e are matrices of shape functions given by:

�i
e = ψie

(
x
)

�ij
e =

{
ψk
e
(
x
)

ifj = j
0 otherwise

j = nDOF · (k − 1)+ i ; k = 1 . . . nn

(11)

here nn is the number of nodes in the given element,
i = 1 . . . nn, j = 1 . . . nn · n and nDOF is the number of
degrees of freedom which equals the space dimension. Now
the engineering strain ε̂ is defined by:

ε̂ = B · ue ;B = D ·�e (12)

where D
(n)

is defined as:

DT
(2)

=
[
∂x 0 ∂y
0 ∂y ∂x

]
;DT
(3)

=
⎡
⎣ ∂x 0 0 ∂y ∂z 0

0 ∂y 0 ∂x 0 ∂z
0 0 ∂z 0 ∂x ∂y

⎤
⎦ . (13)

Finally, substituting the generalized Hooke’s law Eq. (5)
into Eq. (8) and using Eq. (7) lead to the FE model for linear
isotropic poroelasticity, thus:

[
0 0

QT S

]
d

dt

{
u

p

}
+
[

K −Q

0 H

]{
u

p

}
=
{
fu

fp

}
. (14)

where the matrixes are given by:

S = ∫
�

1
M
� ·�T dx ;Q = ∫

�

BT αω(n) ·�dx

K = ∫
�

BT CBdx ;fu = ∫
∂�uN

t ·�T ds + ∫
�

�T f · dx

H = ∫
�

1
μ
K∇� · (∇�)T dx ;ω(2) = (1, 1, 0)T ;ω(3) = (1, 1, 1, 0, 0, 0)T

fp = ∫
∂�

p
N

(
1
μ
K∇p · n

)
·�ds + ∫

�

�T q · dx + ∫
�

(
ρg
μ
K · ∇�(∇z)T

)
dx .

(15)

We can obtain the loose coupling approach in different
ways. Equation (16) shows one possible choice, where one
solves the displacements first by taking the pressures from
the previous timestep. Next, one updates the pressures by
using the newest displacements:

K · u(k+1) = fu + Q
(
p(k) − p(0)

)

S′ · p(k+1) = S′′ · p(k)+fp ·�t − QT
(
u(k+1) − u(k)

)
S′ = S + θ ·�t · H

S′′ = S − (1 − θ) ·�t · H , (16)

where θ is the implicitness factor that lies between 0 and
1, while �t represents the timestep size. One can define
an iterative coupling scheme in different ways, but they all
derive from the loose coupling approach by incorporating
an internal iteration to update lagged quantities. For further
details, please refer to [13, 41, 63]. Also notice that for
thermal stresses, one can derive an equivalent pressure drop,
after Eq. (5), i.e., �p(T ) ≡ 3Kβ

(
T − T 0

)
/α, that renders

Eq. (16) unchanged as shown by [18]. The next subsection
presents discretizing the nonlinear energy equation to solve
for the temperature field.

2.1 Nonlinear heat transfer equation

The transient nonlinear heat conduction in a given domain
is as follows [17, 18, 61]:

ρCp
∂T
∂t

= ∇ · (κ∇T )+QT on�× ]0,�[ ,
T = g on�TD × ]0,�[ ,
n · (κ∇T ) = h on�TN × ]0,�[ ,
T (x, 0) = T0 (x)∀x ∈ �.

(17)

Above, Cp is the heat capacity to constant pressure and
κ = κ(T ) is the thermal conductivity. QT represents heat
sources. Neumann BCS imply heat transfer via Fourier’s
law: adiabatic or no-flux BCS; h = 0 of most domain
boundaries. We derive an FE formulation for model problem
(17) by multiplying by a test function and integrate by parts
and applying the Gauss-divergence theorem to arrive at the
following bilinear form:

m (T , v)+ k (T , v)− q (QT , v)− f (h, v) = 0 , (18)

where the functions are:

m (T , v) = ∫
�e
vρCp∂tT · dx ,

k (T , v) = ∫
�e
κ (∇T )T · ∇v · dx ,

q (QT , v) = ∫
�e
v ·QT · dx ;f (h, v) = ∫

�eh

v · h · ds .

(19)
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Time discretization renders the local residual for the
element e:

R(Th)e ≡ M · (T (�) − T (m)) +�t ·
(
K ′ · T

)(m+θ)

−�t · q(m+θ) −�t · f (m+θ) = 0 ,
(20)

where the linear operator

(·)(m+θ) ≡ (1 − θ) (·)
(
t=t (m)) + θ (·)

(
t=t (�)), � = (m+1),M

and K ′ are the local mass and stiffness matrix respectively.
Thus the local Jacobian is given by:

J (Th)
e

= ∂R(Th)e

∂T (�)
= M + ∂

∂T (�)

(
K ′ · T

)(t(�))
(21)

this equation yields once again:

J (Th)
e

= M +�t ·
(
K ′ + δK ′)

We assume a linear gradient for thermal conductivity,
κ (T ) = (a · T + b); a, b ∈ R, so that we can benchmark
our results from those reported by Hughes [61]. However,
we realize that for porous media rocks, the actual relation
is proportional to the inverse of this last one, i.e., κ (T ) ∝
(a · T + b)−1 (see, for instance, [46, 59]). For the simple
linear relation, we have:

δK ′ =
∑
p

∂K ′
ip

∂T
(�)
j

· T (�)p , (22)

where the variation term is given by:

∂K ′
ip

∂T
(�)
j

=
∫
�e

aψj (∇ψi)T · ∇ψp · dx . (23)

We assemble the global tensors, i.e., J (Th) and R(Th), by
direct stiffness summation that utilizes a mapping from local-
to-global DOF, i.e., a connectivity table for the elements. We
then iterate with the Newton-Raphson algorithm to solve the
linearized system of equations in every timestep, namely,{
J (Th) ·�T (�) = R(Th)

T � = T m −�T (�) .
(24)

We utilize the same continuous FE space that we described
for the elasticity part. Next section covers the Gauss-Newton
algorithm with MOR.

3 ProposedMORmethod

We introduce here the regularized Petrov-Galerkin Newton-
Raphson (PGNR) algorithm. We start with the global
MOR algorithm and then comment about obtaining an
oblique subspace via POD. Since we consider staggered
one-way coupled systems here, i.e., we do not solve all
variables simultaneously; we present a general treatment

that segregates the primary variables, namely, pressure,
temperature, and displacements. We create separate POD
basis for every variable and refer to a generic variable,
namely, ξ ∈ {uh, ph, Th}, which indicates the FE
approximation of those quantities.

3.1 Global MOR algorithm

After discretizing the governing Eqs. (1), (4), and (17),
we end up with a parametrized nonlinear dynamic
computational model described by the large-scale system of
algebraic equations denoted by R(ξ):
R(ξ)(ξ (m+1); ξ (m); . . . ; ξ (0);χ

ξ
) = 0 , (25)

here ξ (q),q = 0, . . . , (m + 1) are succesive timesteps and

only ξ (m+1) is unknown, ξ (q) ∈ R
N(ξ) are the solutions to

Eq. (25). Herein, N(ξ) is the number of unknown degrees of
freedom (DOF) for every variable, i.e., the nonlinear system
rank, χ

ξ
∈ R

dξ is the vector of input parameters such as
material properties, initial condition and BCS, etc. For the
problems of interest here, the function R(ξ):RN(ξ) ×R

dξ →
R
N(ξ) is nonlinear respect to its first argument.

The Jacobian J (ξ) of the nonlinear system R(ξ) is defined

by a matrix of N(ξ) ×N(ξ) partial derivatives

J (ξ)ij ≡ ∂R(ξ)i
∂ξj

(m+1)
;i, j = 1, . . . , N(ξ) . (26)

Model reduction aims at projecting Eqs. (25) and (26)
to a smaller subspace spanned by the solution snapshots
on Eqs. (16) and (24). Many implementations have been
investigated for reservoir simulation, i.e., single-phase flow
as in Eq. (1), and in recent years, they have been extended
to multiphase flow by [33, 35, 58, 63]. In the particular
case of solving the nonlinear system of equations, as shown
above, we employ the Newton-Raphson approach, and we
know that it is a local method. Thus, its convergence relies
on the choice of an initial point. Providing an appropriate
initial guess for a given problem may be cumbersome, so
we develop a modified strategy to the Newton iteration by
adding a globalization strategy to improve robustness. The
line-search procedure below seeks convergence regardless
of the initial point. Towards this end, we introduced a
suitable merit function in [21], which guarantees that
Newton’s direction aims at a solution:

M(ξ̃) = ||R(ξ)(�(ξ̃ ))||2, �(ξ̃) = ξ
o

+ Lξ T ξ̃ , ξ̃ ∈ R
ñ(ξ) . (27)

here LξT ∈ R
N(ξ)×ñ(ξ) is the subspace matrix and

ñ(ξ) is the reduced space dimension. From here on, the
notation ˜(·) refers to variables in the reduced space.
The PGNR algorithm proposed in [20, 21] yields: find

Comput Geosci (2020) 24:709–735 713



ξ ∈ R
N(ξ) , R(ξ)(ξ) = 0. The next two subsections

introduce the Levenberg-Marquardt regularization and the
resulting Petrov-Galerkin Newton-Raphson algorithm that
we employ for both our full order and reduced models.

3.1.1 Levenberg-Marquardt regularization

It is well-known that both the singularity of J (ξ) and the

high nonlinearity of R(ξ) impact the performance of the

Newton method. To lessen these drawbacks, we rediscover
two standard regularization types [3, 21]: the first one deals
with an eventual near-singularity of J (ξ), while the second
one tackles the high nonlinearities of the components of
R(ξ). It is thus desirable to move the smaller eigenvalues
of the Jacobian away from zero. We accomplish this goal
by using the Levenberg-Marquart regularization [34, 48],
which consists of solving the following minimization prob-
lem for ξ̃ ∈ R

ñ(ξ) :

min
ξ̃∈Rñ(ξ)

{
||LξT ξ + J (ξ)−1R(ξ)||2

J (ξ)TJ (ξ)
+ �

2 ||LξT ξ ||2J (ξ)TJ (ξ)
+ ι

2 ||ξ ||2
}

, (28)

The solution is given by [3, 20, 21] (see these references for
full development):

(�ξ
T �ξ + ιI) ·�ξ̃ = −�ξT R(ξ)

1 + �||R(ξ)|| ; (29)

where �ξ = J (ξ) · LξT . The term ιI avoids the singularity

while the factor
(
1 + �||R(ξ)||)−1

decreases the Lipchitz
constant of R(ξ), � ∈ (0, 1).

3.1.2 Petrov-Galerkin Newton-Raphson (PGNR) algorithm

We enumerate the high-level steps below and provide the
resulting algorithm next.

1) Petrov-Galerkin direction Eq. (29).
2) Petrov-Galerkin Newton-Raphson step (decompres-

sion): �ξ = LξT �ξ̃ .

3) Sufficient decrease (globalization): Find ς ∈ (0, 1]:
||R(ξ)(ξ + ς�ξ)|| < g(ς)||R(ξ)(ξ)||, g(ς) < 1.

4) Update: ξ = ξ + ς�ξ .

We remark that this is a global algorithm that retains its q-
quadratic rate of convergence moving on the affine subspace
ξ

0
+LξT ξ̃ ,ñ(ξ) � N(ξ). We present the algorithm’s pseudo-

code below. Notice that for linear elasticity the residual and
Jacobian reduce to (see Eq. (16)):

R(uh) = K · u(k+1) − fu + Q
(
p(k) − p(0)

)
J (uh) = K .

(30)

In Algorithm 1 for simplicity, we take ι =
�||R(ξ)(ξ (k))||. We employ as stopping criteria for the

algorithm the norm of the residual, δk = ‖R(ξ)(ξ (k))‖,
the maximum number of iterations, and the difference
between two successive iterations, εk = ‖ξ (k) − ξ (k−1)‖.
We require that these metrics lie below their tolerances,
i.e., εTOL and δTOL, and not exceeding a certain number

of allowed iterations KMax . The algorithm also requires
additional configuration flags such as bMOR, bRegld =
(bRegld1||bRegld2), and bLSearch. If bMOR is true,
then we need to provide a projection matrix LξT . The

functions ResidualJacobian() and Jacobian() evaluate,
for the specific problem, the residual and the Jacobian of
the nonlinear system. Similarly, the functionLineSearch(),
implements the line-search algorithm that is explained in
[20].

3.2 Proper Orthogonal Decomposition

As in the standard POD approach, we ensemble the matrix
�(ξ) with the set of snapshots ξ (j) ∈ R

N(ξ) as column
vectors, j = 1, . . . , Ns , where Ns is the number of them.
Notice that we assume, without generality loss, that we have
an equal number of snapshots for every variable at the same
time stations.

�(ξ) =
[ (
ξ (1) − ξ̂

) (
ξ (2) − ξ̂

)
. . .

(
ξ (N

s) − ξ̂
) ]

, (31)

we take the singular value decomposition (SVD) of �(ξ):

�(ξ) = Uξ ·�ξ · Vξ T = Uξ ·

⎡
⎢⎢⎢⎢⎣

ζ
(ξ)
1 . . . 0
...

. . .
...

0 . . . ζ
(ξ)
Ns

0 . . . 0

⎤
⎥⎥⎥⎥⎦ · Vξ T , (32)

where Uξ ∈ R
N(ξ)×N(ξ) , �ξ ∈ R

N(ξ)×Ns , Vξ ∈ R
Ns×Ns ,

and the singular values ζ (ξ)1 , · · · , ζ (ξ)Ns ∈ R and ensemble’s
mean vector ξ̂ , is computed as:

ξ̂ = 1

Ns

∑Ns

j=1
ξ (j) . (33)
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If we represent problem (16) with a reasonable number
of snapshots from which a proper set of basis vectors
is available, the singular values decrease rapidly, so
only a limited number of basis vectors are necessary
to approximate the snapshots as they preserve the most

important ensemble’s energy contribution. To create a POD
basis, we truncate the basis vector by considering:

ñ(ξ) ≤ Ns ⇒
∑ñ(ξ)

j=1

(
ζ
(ξ)
j

)2

∑Ns

j=1

(
ζ
(ξ)
j

)2
≥ εeξ . (34)

Above εeξ is a pre-defined energy threshold. If the latter is

high, say over 99% of the total energy, then ñ(ξ) modes
accurately capture the principal features and reconstruct the
dataset approximately. Thus, we form a reduced subspace,
which only spans:

Lξ
T =

[
Uξ
(1) Uξ

(2) . . . Uξ

(
ñ(ξ)

) ]
, (35)

where Uξ (j) are the columns of Uξ . We finalize defining the

following percentage compression ratios (CR) for POD and
MOR:

τ
(ξ)
POD = 100 ·

(
1 −

(
ñ(ξ)

NS

))
,

τ
(ξ)
MOR = 100 ·

(
1 −

(
ñ(ξ)

N(ξ)

))
.

(36)

Notice that the number of DOF,N(ξ), does not include those
points in the domain with prescribed Dirichlet BCS. We
usually do not consider them since their information is often
redundant among the snapshots. Also, we mostly assemble
both the residual and Jacobian only for the unknows DOF
as is common in standard FE procedures.

3.3 Local vs. global POD: time partitioning

We refer to POD with time partitioning as LPOD. Indeed,
we partition the time interval of interest into several
subintervals as shown in Fig. 1, where we cluster together
the snapshots that lie in every reduced order basis (ROB)
time’s window. The partitioning is, in general, arbitrary but
depends on the system dynamics, for instance, changing
regimes or rapid transients that we wish to capture
separately. The ROB intervals may overlap for the offline
stage (back-tracking in time), but they don’t in the online
phase (double-lines). In the later stage, for a given time, we
pick up only one ROB exclusively. We then perform the
POD analysis in Section 3.2 in every ROB independently.
LPOD renders smaller projection basis than a global-in-
time approach and also retains more energy in the sense
that adding the local basis modes up often results in larger
oblique subspace dimension ñ(ξ).

Let nROBs be the number of time intervals whose
limits are [t0, t1, . . . , tnROBs]. BCS(t) represent boundary
conditions that can vary as a function of time. Algorithm
2 corresponds to the offline stage for a given nonlinear
model problem. Once we define the time partitioning, we
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Fig. 1 A depiction of POD with
time partitioning

Global ROB

Discrete �me sta�ons: snapshots

ROB1

ROB2

ROB3

ROB4

Overlapping

Complexity

can execute the MOR stages, for which the time intervals
remain constant. vROBs represent an array of ROBs, for
which every entry refers to a given time interval, i.e., ROBi :
t ∈ [

ti , ti+1
]
. In line 2, we allocate memory to store

the snapshots in every ROB, while in line 6, the function
CopySnpshtCol copies ξ (m+1) to the given ROB dependent
if t lies within its interval. After collecting all snapshots, we
perform POD analysis in every ROB independently. Since
the sizes of the local snapshot matrixes are smaller than an
equivalent global-in-time matrix, often, LPOD alleviates the
SVD in the sense that the runtime to execute step 8 is shorter
than a global approach.

Algorithm 3 represents the online stage for LPOD. What
is relevant here is step 5 in which the function GetTimeInt
seeks the local ROB that corresponds to the current time
and returns its oblique subspace basis. Also, we remark that
LPOD impacts how we compute the root-mean-square error
since it also requires seeking the given ROB in function
CmpSnpshtColErr (see the next section for the proper error
definition.)
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4 Numerical examples

The authors implemented these FE models in the Integrated
Parallel Finite Element Analysis program (IPFA) that is a
C++ application whose main characteristics are described in
[16, 28, 29]. IPFA employs standard continuous Lagrange
polynomials as shape functions for the space discretization.
All examples herein were run on a MacBook Pro laptop

equipped with an Intel(R) Quad-Core(TM) i7-4870HQ CPU
@ 2.5GHz and 16 GB of RAM. All numerical simulations
reported below utilized ILU as preconditioner and conjugate
gradient as the iterative solver. Visualizations are performed
with the “LogProc” application (see also www.logproc.
com).

Given the matrix  (ξ) ∈ R
N(ξ)×Ns , we define the

root-mean-square norm (rms) as:

∥∥∥ ∥∥∥(ξ)
rms

=

√√√√√ 1

N(ξ) ·Ns
N(ξ)∑
i=1

Ns∑
j=1

(
 
(ξ)
ij

)2
; (ξ)ij = |ξji (FOM) − ξji (ROM)| , (37)

and we employ this definition to compute the error between
FOM and ROM for transient problems, where i refers to
spatial discretization while j implies snapshots in time. We
present four one-way and one coupled numerical examples;
the first one covers nonlinear heat transfer and elasticity.
The second example couples a black-oil reservoir (RS)
simulation with mechanics but we only input the pressures
exported from a commercial simulator. The third example
focuses on single-phase flow for an unconventional RS in
which we reduce both physics to obtain substantial speedups.
The fourth example tackles the role of the heterogeneity in
the reduction process as well as a more realistic case with
a lot more DOF. Finally, we present preliminary numerical
results for a standard two-way benchmark poroelastic
problem, namely Mandel’s problem.

4.1 Example 1: arch problem

We revisit here this interesting heat transfer 2-D problem
that we presented in [17, 61], whose distinctive features
are the two re-entrant sharp corners where there may be
singularities in the solution. The material properties are
constant density and specific heat,

ρ = 1.0kg/m3 ;Cp = 1.0
W · s

kg ·◦ K
,

and a linear isotropic thermal conductivity,

κ =
(

1 + T

1000◦K

)
W

m ·◦ K
.

Figure 2 shows the domain, whose dimensions are
1.0 m × 0.5 m, a sample mesh, and the given BCS, which are
of Dirichlet type on the left- and right-most sides, and
insulation on all other edges:

n · (κ∇T ) = 0.

We assume the initial temperature distribution as:

T
(
x, y, t∗

) = 103erfc

(
x

2
√
κt∗

)◦
K,

which is the short-time linear solution at a time t∗ for a
planar semi-infinite medium. In our analysis, we considered
κ = 1 and t∗ = 0.0005 s in the calculation of our initial
conditions.

We assume for the mechanics, linear isotropic elasticity
with E = 30 Ksi and v = 0.3 and the coefficient of
thermal dilatation β = 1 · 10−5K−1 and the bulk modulus
K = E/(3 · (1 − 2v)) and plane strain. The bottommost
edges are clamped while the others are traction free.

Figure 3 shows temperature field snapshots for different
times increasing from top to bottom. FOM results are in the
left-column while ROM’s absolute error is on the right. We
simulate 0.1 s with a fully implicit approach. We consider
�t = 5 · 10−3 s that renders 21 evenly spaced snapshots.
We impose the energy constraint εe = 1.0 − 10−7 for
temperature, which yields a τPOD = 40% and a τMOR at least
of 99.85%, which is indeed impressive. We observe that a
heating front quickly travels from left to right as expected
due to the temperature gradient. As a qualitative benchmark,
the temperature profile reported by [61] agrees very well
with our results. Figure 4 includes a pair of snapshots
that depict the induced horizontal displacement field. We
see dilatation that grows from the upper-right corner while
compression appears from the upper-left corner. Figure 5
shows additional mechanical results that correspond to
the mean-stress. This latter depicts the magnitude of the
induced thermal stresses.

We assume the more stringent energy constraint of εe =
1.0−10−9 for the displacements. The number of significant
snapshots for mechanics renders τPOD =31.58. We run
successively refined meshes to asses the performance of our
MOR scheme. Table 1 summarizes relevant results for this
coupled simulation. The listing includes the number of DOF
for every variable, namely, temperature and displacements.
As a rule of thumb, displacement DOF duplicate those
of temperature, but distinct Dirichlet BCS explain the
discrepancy. We highlight the remarkable τMOR at least of
99.92%, which tends to improve with the more significant
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Fig. 2 Mesh, highlighted
boundary, and the BCS

T=0T=103

Fig. 3 Solution snapshots, FOM in the left and ROM’s error in the right column, t = 0.025 s, t = 0.05 s, and t = 0.1 s, from top to bottom

Fig. 4 Horizontal displacement snapshots at t = 0.05 s and t = 0.1 s, from left to right
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Fig. 5 Mean-stress snapshots at t = 0.05 s and t = 0.1 s, from left to right

number of DOF. We also reported runtimes for both FOM
and ROM. We remark that these times include substantial
serial time, for instance, while assembling the Jacobian and
Residual for both physics and post-processing to compute
stresses. We discuss the origin of the extra serial time
in detail below. However, we can still see significant
time savings that are better for larger problems as shown.
As indicated, we are not far from a 2× speedup for
this particular application. Besides the substantial CR,
the rms-error, for temperature and displacements, remains
neglectable for all cases that we ran. Indeed, MOR achieved
smaller errors for mechanics since that problem is linear.
Since the temperature front propagates slowly, 20 snapshots
were sufficient to reproduce most of the features exhibit
herein for both physics. For the other two examples below,
we impose the same energy constraint for the mechanics.

Let us focus on the temperature variable to explain the
remaining serial time in the simulation. Table 2 highlights
the fact that the MOR speedup for energy equation,
deteriorates compared to an equivalent linear problem, see
[17] for further details. What happens is that we are still
assembling the full Jacobian and RHS-vector, for both FOM
and ROM, so that part of the runtime remains constant.
For problem in Eq. (29), though, we ensemble the Jacobian
only once. Now, we face the same challenge in solving the
dense linear system in Eq. (30), for instance. To expedite
this procedure, one can assemble the Jacobian in parallel,
i.e., multi-threading assembling and implement a hyper-
reduction technique as we comment in our path forward.

We also profile a model, with a mesh of size of
75K, typical timestep and Table 3 provides relevant time
data. Indeed, we realize that most of the runtime goes to
assembling the Jacobian and Residual. However, the Petrov-
Galerkin step speeds up solving the linear system 3X. We
emphasize that systems of this sort in which assembling
takes longer that solving are precisely the niche for parallel
processing and hyper-reduction techniques such as DEIM
[9, 10] and Gappy POD [8, 15].

4.2 Example 2: SPE9 benchmark

We implemented this example through the one-way
coupling between the Matlab Reservoir Simulator Toolbox
(MRST) [44] and IPFA as we described in [25]. MRST
solves the flow equations via a fully implicit approach
based cell-centered finite differences while IPFA employs
continuous Galerkin finite elements to compute the induced
poroelastic displacements and thus stresses. We hooked
up both codes by memory through Matlab MEX interface
which allows calling native C code from dynamic link
libraries. The SPE9 benchmark that was posted by [39]
initially to compare black-oil simulators. Figure 6 depicts
the porosity field in a grid whose size is 24 × 25 ×
15 and has a 10◦ dipping-angle in the x-direction. The
25 producers initially operate at a maximum rate of 1500
STBO/D, which is lowered to 100 STBO/D from day 300
to 360, and the raised again to its initial value until the
end of simulation at 900 days. The single water injector

Table 1 ROM’s performance for arch problem

N(Th) N(uh) τMOR [%] FOM runtime ROM runtime
∥∥ ∥∥(Th)

rms

∥∥ ∥∥(uh)
rms

7855 15838 99.92 1 min, 01 s 0 min, 51 s 1.2129e−07 3.8957e−13

31720 63696 99.98 5 min, 10 s 3 min, 30 s 4.1229e−08 2.0200e−13

49761 99778 99.99 8 min, 36 s 5 min, 37 s 1.5314e−07 1.0309e−13
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Table 2 MOR’s metrics for temperature

≈ N(Th) FOM runtime ROM [MB]

8 K 0 min, 39 s −3 s 1.2

32 K 2 min, 53 s −34 s 4.9

50 K 4 min, 51 s −64 s 7.8

is at a rate of 5000 STBW/D with a maximum bottom-
hole pressure of 4000 Psi at reference depth. During the
simulation, most of the wells switch from rate control to
pressure control (see also https://www.sintef.no/projectweb/
mrst/modules/ad-core/spe9/ for further details).

We consider as input 90 oil-pressure snapshots for MOR
purposes, i.e., a pressure field every ten days. Figure 7
depicts sample pressure fields, arising from MRST, at
different times as indicated. There is a clear depletion
scenario in which pressure drops from the top of the
RS, which moves to lower parts. We obtain a valid
geomechanics mesh by reconstructing the RS model exactly
(see [26]), which implies that we extend the flow mesh,
and later solving an elasticity problem for mesh generation
in which we enforce a constraint to honor the pay-zone
exactly so that we project pressure easily, i.e., the identity
matrix is the projector. One of the authors proposes such a
reconstruction workflow in [19, 22].

In addition to the flow mesh size, we also contemplate
Nc = 5, Nu = 5, and No = 7 (Nc refers to mesh patches
on the corners and No and Nu stand for over- and under-
burden respectively). We extrapolated the RS towards the
side-burdens with a factor of 1.0 (RS’s length) while we
employed 8 (RS’s thickness) for the over- and under-
burden. Figure 8 plots the resulting geomechanics mesh
that encompasses 26,400 elements with 29,172 points. In
this cut-away plot, we highlight the fact that we honored
the pay-zone mesh precisely as shown in the zoomed in
detail. BCS for mechanics is the typical traction-free surface
on the top and far-field on all remainder planes. Notice
that the far-field BCS implies that the displacement in the
perpendicular direction to the given plane is zero. The
example also assumes a zero initial displacement field. For
the mechanical properties, we assume a layered RS with
Young’s modulus Eu = 3 × 104, Ep = 1 × 104, Eo =
2 × 104 [Psi], while Poisson’s ratio, v = 0.25, is constant

Table 3 Profiling: N(Th) ≈ 75K arch problem case

Stage CPU time

Assembling J (Th),R(Th) 4s 812ms

Sparselib FOM 0s 46ms

Petrov-Galerkin 0s 15ms

in the whole domain. The subscripts u, p, and o stand for
over-burden, pay-zone level and under-burden respectively.

Figure 9 depicts at least three distinct depletion regimes
that we observe in the RS. There is an evident depletion
in the bottom of the RS; then it depletes the top layers
as shown. We attempted to pack all 90 snapshots together,
but we later realized that the SVD fails to converge due
to an internal error. Our implementation utilizes Armadillo
[56], a C++ hyper-templates library that relies on LAPACK
to obtain the SVD. The error message in the screen only
says that the decomposition failed, but does not provide
further details. For instance, authors in [5] state that it is not
uncommon that classical methods for computing the SVD
of large matrices may fail because they may be ill-suited
to handle such cases. Indeed, a global reduced order basis
(ROB) is not tractable in this case due to different depletion
regimes that are not monotone. We know that the mean-
stress will be proportional to the pressure drop in the RS and
thus the resulting displacement fields will also be different.
The failure has nothing to do with the number of DOF, i.e.,
memory issue, but instead, the lack of correlation among
the displacement snapshots explains why the SVD fails. We
could not ensemble more than 24 snapshots together. We
thus propose partitioning the time interval into four almost
evenly spaced local ROBs (see [2, 17, 32]), every one of
which includes about 240 days. We then ran the FOM and
captured the local ROBs as explained in Section 3.3; Table 4
summarizes the metrics for this ROM.

We have for all these ROBs, N(uh) = 82910 and τPOD

= 0%. This ROM could properly reproduce the features of
the FOM with an error that is neglectable (≈ 10−14). The
CR and speedup are substantial as indicated. Indeed, this
ROM yields a 14.9× speedup if we consider the runtimes
in the table that don’t include the assembling time which is
about 11 s 202 ms. We employed four threads to assemble
the stiffness matrix and post-processing the stresses, which
reduces the serial time per timestep.

These MOR results are promising in the sense that
for most coupled flow and mechanics problems, solving
the sparse system takes longer time than assembling the
stiffness matrix. The latter is thus precisely the niche for
Petrov-Galerkin MOR. It is also possible to speed up
computing the stiffness or Jacobian by combining parallel
computing and hyper-reduction techniques, such as DEIM
and Gappy interpolation (see [9, 33, 35, 58, 64]). There are
other factors that we need to asses such as the influence
of heterogeneity and BCS in the reduction process. Finally,
Fig. 10 depicts vertical displacement snapshots at 240, 480,
720, and 900 days from left to right and top to bottom. We
observe the classical compaction dome that grows from the
pay-zone towards the overburden. A build-up also exists in
the under-burden. The RS mesh displays pressure at those
times as a reference. We see the evident correlation between
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Fig. 6 Porosity field of SPE9
dataset

uz and the pressure drop in the RS. Also, notice that the
scales change with the snapshots as a consequence of the
different regimes that we mentioned.

4.3 Example 3: single-phase flow
in an unconventional RS

We now focus on a synthetic unconventional RS model
whose geometry we show in Figs. 11 and 12. The model
consists of two fractured horizontal wells, separated by

a distance equal to 2 · sw. A uniform pressure pbh is
applied along the transverse fractures, which are divided
by a distance of sf . We keep the pressure constant
throughout production. The RS is homogeneous, isotropic,
and poroelastic and is bounded by layers with similar
mechanical properties. Flow only occurs within the RS and
does not leak into the surrounding strata. We assume no-
flow and far-field BCS for every physics respectively. We
considered perfectly transverse fractures in the offset well
to simplify the analysis. We also understand that the stresses

Fig. 7 Pressure snapshots at 0, 200, 400, and 600 days from left to right and top to bottom
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Fig. 8 Reconstructed mechanics’ mesh

Fig. 9 Pressure drop regimes at different times

Table 4 LPOD’s performance for SPE9

ROB Timesteps Ns τMOR [%] FOM runtime ROM runtime
∥∥ ∥∥(uh)

rms

1 1–24 24 99.97 40 s 921 ms 2 s 484 ms 1.5369e−14

2 24–48 24 99.97 36 s 890 ms 2 s 468 ms 4.0049e−14

3 48–72 24 99.97 36 s 703 ms 2 s 546 ms 6.3672e−14

4 72–90 18 99.98 26 s 281 ms 1 s 921 ms 8.9245e−14
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Fig. 10 Sample uz snapshots

Fig. 11 Geometry and BCS in the horizontal and vertical planes, after
[55]
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Fig. 12 Sample curvilinear mesh and permeability field

in the infill region are impacted only by poroelastic effects
as mentioned by [55]. Table 5 summarizes all relevant
parameters for this one-way coupled flow and mechanics
simulation that mimics a case representative of liquid-rich
shale development. The numerical values for the mechanical
properties on this table are similar to those reported by [14,
50] for the Eagle Ford shale play. We previously developed
a preprocessor which generates a curvilinear mesh based on
the well trajectories and additional geometrical parameters.
We are mainly interested herein in varying the number of
fractures, that would be equal in each well so that we can

Table 5 Unconventional RS model’s parameters

Parameter Value (unit)

Pay-zone half-height hp 400 ft

Fracture half-height hf 50 ft

Fracture half-length Lf 200 ft

Stage spacing sf ≈ 428, 200, 158 ft

Well length Lw ≈ 3000 ft

Well spacing sw ≈ 1000 ft

Number of fractures 8, 16, 20

Matrix permeability km 0.3 μd

Fracture permeability kf 10 μd

SRV’s permeability kSRV 1.5 μd

Young’s modulus E 2000 Ksi

Biot modulusM 850 Ksi

Reservoir pressure pR 10000 Psi

Bottomhole pressure pbh 7000 Psi

Condensate viscosity μ 0.25 cp

Porosity φ 0.05

Poisson’s ratio ν 0.2

Biot coefficient α 0.7

obtain a series of more challenging problems to speed up
with MOR.

Figure 12 depicts a cut-away (upper half) representation
that highlights the well trajectories in bold black and
the fractures that are planar and perpendicular to well’s
path. The preprocessor generates a graded mesh and also
populates properties by using the same blending rationale.
The resulting permeability field is slightly heterogenous
to represent the concept of stimulated rock volume (SRV)
better. Figure 13 shows a vertical cross-section that
emphasizes the fact we are dealing with a general 3-D
hexahedral mesh, i.e., it is not extruded as a 2.5-D mesh,
and thus the grid deviates in the vertical direction as shown.

For the sake of simplicity, we consider the same domain
for flow and mechanics. We ran a series of models with
8, 16 (see Fig. 14), and 20 fractures for 4 years with the
fully implicit scheme (16) with a timestep size of a month.
We ran all FOM serially to compare with a MOR model
that also incorporates multi-threading assembling and post-
processing for both flow and mechanics. We employ four
threads that in average provide a 4× speedup over the
mentioned serial tasks. Notice that we assemble matrixes S′
and K only once at the initialization, and thus for marching
the convolution problem (16), we need to solve those sparse
systems in every timestep. Postprocessing, the stresses per
iteration, can take up to 3 s that add to the serial time.

Let us comment on the numerical results first. Figure 15
depicts pressure field snapshots after two and four years
of production. We observe a reasonably symmetric and
monotone depletion scenario where we stimulated the
formation only in the vicinity of the fractures due to the very
small permeability values. Of course, if we can pack more
fractures, we will deplete and thus produce more, which is
evident if we compared the models with 16 (left column)
and 20 (right column) fractures. We also remark that the
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Fig. 13 General hexahedral mesh not two and a half

Fig. 14 Permeability field for
the 16 fractures case

Fig. 15 Pressure snapshots for cases with 16 and 20 fractures
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Fig. 16 σm snapshots for cases with 16 and 20 fractures

well’s geometry induces asymmetries in the pressure field.
Similarly, Fig. 16 depicts snapshots of the mean-stress σm
that behaves proportionally to the pressure drop in the RS.
It seems that half of the latter gets transferred as induced
poroelastic stresses but only in the vicinity of the fractures.
There are no significant stress shadows produced in the
infill regions. Finally, Fig. 17 displays displacement fields,
namely ux (top) and uy (bottom), after four years. We

observe the typical anti-symmetric fields that tell us that
most of the deformation implies compression towards the
fractures.

Table 6 compares the performance of the different
reduced models. We consider 32 snapshots for cases with
8 and 16 fractures, and 24 for example with 20 cracks.
For the latter, we employed a coarser mesh to alleviate the
number of DOF. Notice that SVD requires a significant

Fig. 17 ux and uy snapshots for cases with 16 and 20 fractures
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Table 6 Unconventional RS ROM’s performance

# N(ph) N(uh) τ
(uh)
MOR [%] FOM runtime ROM runtime

∥∥ ∥∥(ph)
rms

∥∥ ∥∥(uh)
rms

Speedup

8 38,519 111,415 99.97 11 min, 55 s 1 min, 40 s 1.2546e−04 5.5481e−06 7.1

16 76,423 222,327 99.99 2 h 10 min, 51 s 3 min, 23 s 5.1205e−03 1.0886e−03 38.5

20 67,269 191,537 99.99 1 h, 23 min, 59 s 1 min, 41 s 1.4229e−02 9.0368e−04 49.9

Fig. 18 Coarse Cranfield’s porosity field

Fig. 19 Coarse Cranfield’s permeability field (md)
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amount of RAM and depends on these two numbers, N ,
and Ns . CR for flow is above 99.96% with half of the
significant snapshots for most cases. We observe from
the runtime data that MOR plus multi-threaded provide a
substantial speedup for all problems, and the latter improves
with increasing problem size. Most of the speedup arises
for savings in solving the sparse systems for both physics.
Greater speedup is mainly due to the mechanics part rather
than the flow part. Errors are small, in particular, if we
compare them with the magnitudes of the pressure and
displacements. There is also error inducing challenges in the
curvilinear nature of the mesh and fracture tips, as well as
numerical oscillations in the pressure due to the BCS, i.e.,
numerical stability, for instance. All of these ROM could
adequately reproduce the FOM behavior, and they provide a
substantial speedup. We believe that we have to retain more
snapshots which implies utilizing local POD basis in time to
reduce the error. Indeed, it is cumbersome to run SVD with
hundreds of thousands of DOF with more than 24 snapshots,
for the mechanics, for instance.

4.4 Example 4: Coarse Cranfieldmodel

The dataset herein corresponds to a coarser model that
arises from preliminary design and reservoir engineering
associated with the development of a pilot-scale deployment
at the SECARB Cranfield Phase III CO2 Storage Project, in

Cranfield, MS, USA. The latter implementation leverages
the prior investment in the Cranfield Phase III research
site within the Tuscaloosa formation and thus providing
the first-ever opportunity to acquire combined CO2

storage/geothermal energy extraction data necessary to
address the uncertainties involved in this novel technique
[30]. We borrow the porosity and permeability fields that
Figs. 18 and 19 depict. Since we wish to deplete the RS
entirely, we assume 64 vertical producers wells with a BHP
of 3000 Psi while the initial pressure is 10,000 Psi. The
grid size is 47 × 44 × 22, and we run our single-phase
model for twenty years with a viscosity of 0.4 cp and total
compressibility ct of 1.4·10−5 Psi−1. We utilize the fully
implicit scheme (16) with a constant timestep size of 15
days.

Our objectives with this example are twofold. First, we
aim to asses the role that the heterogeneity plays in the
reduction process, and secondly, we wish to tackle a more
massive, i.e., higher number of DOF, and thus realistic
case. Towards that end, we run two distinct situations, one
in which we consider layered properties as before, and a
second one in which Young’s modulus varies as a function
of the porosity according to the following correlation [42]:

E = Ep ·
(

1.0 − φ

0.41

)1.19

, (38)

Fig. 20 Pressure snapshots every 3.33 years from left to right and top to bottom
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Fig. 21 Reconstructed mechanics’ mesh for Cranfield

where the equation holds at the RS where we know the
porosity values and Ep is the pay zone’s level Young’s
modulus.

We output from the flow simulation 48 pressure
snapshots, e.g., every 152 days, for MOR purposes.
Figure 20 depicts sample pressure fields, at increasing times
every 3.33 years as indicated from left to right and top to
bottom spanning 20 years of simulation. There is an evident
depletion scenario in which pressure drops from wells and
quickly propagate into the surrounding areas. Notice that
black dots in the pictures highlight well locations. Once
again, we derive a geomechanics mesh by reconstructing the
RS model as we explained before in Section 4.2.

Additionally, to the pay zone’s mesh size, we also
consider the following dimensions, i.e., Nu = 4, No =
10, and Nc = 6 (mesh patches on the corners and No
and Nu stand for over- and under-burden respectively).
We extrapolated the RS towards the side-burdens in the
same fashion as in Example 2. Figure 21 plots the

resulting geomechanics mesh that encompasses 118944
elements with 126540 points. This cut-away plot highlights
the fact that we honored the pay-zone mesh exactly as
shown in the zoomed-in detail, which also depicts the
heterogeneous Young’s modulus field correlated after the
porosity according to (38). BCS and initial condition for
mechanics are the same as Example 2 (see Section 4.2).
Regarding mechanical properties, we assume layered RS
with Young’s modulus Eu = 4 × 104, Ep = 3 × 104, Eo =
6 × 104 [Psi] and Poisson’s ratio, vu = 0.25, vp = 0.3, and
vu = 0.3 varies accordingly.

We thus proceed to compare these two different cases.
The depletion regime is monotone and thus does not require
local ROBs as the SPE 9 case before. Table 7 summarizes
the metrics for this ROM. We have for this global ROB,
Ns = 48, N(uh) = 367542, and τPOD = 0%, and τMOR =
99.99%. This ROM could properly reproduce the features
of the FOM with an error that is neglectable (≈ 10−12). The
CR and speedup are substantial as indicated. Indeed, this

Table 7 ROM’s performance for Cranfield

Case FOM runtime ROM runtime
∥∥ ∥∥(uh)

rms
Speedup εe

Layered 18 min, 45 s, 711 ms 4 min, 27 s, 100 ms 9.44e−12 4.21 1.0 − 10−9

Heterogenous 18 min, 53 s, 101 ms 4 min, 8 s, 990 ms 9.30e−12 4.55 1.0 − 10−9

Heterogenous 18 min, 53 s, 101 ms 3 min, 44 s, 586 ms 1.10e−11 5.03 1.0 − 10−8

Heterogenous 18 min, 53 s, 101 ms 3 min, 34 s, 956 ms 1.32e−10 5.27 1.0 − 10−7
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Fig. 22 Sample uz snapshots

ROM yields a 4.2X speedup. Once again, we employed four
threads to assemble the stiffness matrix and post-processing
the stresses, which reduces the serial time per timestep.

We do not observe significant discrepancies between
the layered and heterogeneous models according to current
results. Runtime is similar for both cases as well as
the speedup. At first glance, we expected more contrast
because there are almost two orders of magnitude difference

in Young’s modulus in specific cells within the domain.
However, as shown in Fig. 21, these are localized spots
that do not play a significant role. Conversely for a
case involving rough coefficients with a higher order of
magnitude jumps. We know that the iterative solver may
expend more iterations to solve for such cases and thus, a
reduced problem with a significant CR should also certainly
speed up substantially. Indeed, in the present case, the

Fig. 23 Sample σm snapshots
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Fig. 24 Mandel’s problem
mesh, geometry and BC’s for
mechanics [16]
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speedup is slightly higher for the heterogeneous instance
but is still a marginal gain (4.5 > 4.2). We also relaxed
the energy threshold for the latter case, and we observe
that the speedup improves if we require fewer modes as
indicated. Indeed, the τPOD = 12.50% and 64.5% the last two
rows in the table respectively. Their error also grows in the
same proportion, i.e., one order of magnitude, but overall
is neglectable. So the energy level is a sensitive parameter
that we need to tune to achieve performance. We expect
the speed up to improve for cases with rough coefficients.
Finally, Figs. 22 and 23 depict vertical displacement and
the mean-stress after 20 years. We observe the classical
compaction dome that grows from the pay-zone towards the
overburden. A build-up also exists in the under-burden but
occupies a smaller area. There are no significant differences

between these magnitudes when we compare the two cases
that we tackled herein.

4.5 Example 5: Mandel’s problem

We revisit herein one of the most popular benchmark
problems for two-way coupling poroelasticity [1, 31, 40,
47, 47, 54]. We consider only a quarter of the domain due
to symmetry, and we take the same data input used by Gai
[31] plus a fluid viscosity of 10−3 Pa × s. The domain is
100 m × 20 m, and we employ two different quadrilateral
meshes as depicted in Fig. 24, which also depicts the BCS
for mechanics: no vertical displacement in the bottom, a
traction-free right side, constant vertical stress (F/a) on
the top, where a = 100 m and F = 108 N (see [16, 31]

Fig. 25 One-way coupling p∗
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Fig. 26 Two-way coupling p∗
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for details), symmetry on the left side which implies no
horizontal displacement. The BCS for flow consists of walls
on top and bottom, zero reference pressure on the right side
and symmetry on the left (which leads to impermeability as
well). Indeed, the driving force here is the vertical stress that
we apply on the top.

The Mandel-Cryer’s effect [1, 47] refers to the fact that
besides the initial instantaneous increase, the pressure at the
center continues to increase for some time before it starts to
drop, i.e., there is overpressure due to poroelasticity that can
only be reported by a two-way scheme.

Figures 25 and 26 show traces at y = 0 of the
dimensionless pressure, i.e., p∗ ≡ (p · a)/F , and horizontal
displacement for different times in seconds. We run this
problem by using both the one- and two-way coupling
approaches. For the latter, we perform in average four
inner iterations to match Eq. (16) so that the discrepancies
in pressure lie below a given tolerance. This two-way
solution reports and overpressure of additional 1%, which
is qualitatively consistent with the closed-form solution [1,
31].

We run the problem for 25 days with the timestep size
of 1 day, thus Ns = 25. The total number of DOF varies
depending on the mesh size, Table 8 displays the relevant
metrics for these meshes where the more refined mesh has

Table 8 Meshes for Mandel’s problem

Mesh size N(p) N(u) ñ(p) ñ(u)

100 × 20 2100 4120 12 13

1000 × 200 201000 401200 12 13

two orders of magnitude refinement. Notice that for the
standard energy threshold, we require 12 pressure and 13
displacement modes. Table 9 summarizes MOR results. For
the one-way coupling, for the coarse mesh, the speedup
tends to be about 2× that is the standard for such problems.
For the fine mesh, given the substantial amount of DOF,
the resulting speedup is tremendous and similar to values
that we can attain for monotone and large 3-D problems
such as the one reported in Section 4.3. As expected, if
we compare the speedups that we attained for the one-
and two-way runs, then we realize that there is certain
deterioration in performance for the two-way cases. Indeed,
part of the explanation is because we are considering a more
compliant system where the coupling effect is stronger than
in the other examples. The performance losses also have to
do with the fact that MOR induces certain overheads that
start to weigh in if we need to perform more solves per
iteration, which is similar to inner Newton steps. However,
the resulting acceleration is still competitive, and we expect
that it should improve when we are tackling more realistic
3-D problems.

Table 9 ROM’s performance for Mandel’s problem

Mesh size FOM runtime
∥∥ ∥∥(ph)

rms

∥∥ ∥∥(uh)
rms

Speedup

One-way

100 × 20 2.0 s 5.48e−06 1.94e−12 2.40

1000 × 200 462.4 s 9.61e−08 1.35e−13 45.2

Two-way

100 × 20 6.2 s 4.43e−02 8.46e−07 1.8

1000 × 200 710.5 s 8.52e−03 5.23e−07 25.5
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5 Conclusions

We presented herein a MOR algorithm that provides
substantial single and double digits speedups, up to
50× if we combine with multi-threading processing and
perform MOR on both physics, for one-way coupled
problems involving thermo-poroelasticity. We highlight
the remarkable MOR compression ratio above 99.9% for
elasticity. The approach is particularly useful to speed
up solving the sparse system for the inner iteration in
convolution like problems which produces significant time
savings compared to the serial FOM. The latter is also true
for problems that exhibit long serial times, for instance,
while assembling the Jacobian and Residual for both
physics and post-processing to compute stresses, as long as
the serial time per iteration is shorter that solving the sparse
system of equations. These MOR results are promising
in the sense that for most coupled flow and mechanics
problems, the above condition holds. The latter is thus
precisely the niche for Petrov-Galerkin MOR.

We treated all displacements DOF together for POD
purposes in all examples herein but foresaw that for huge
problems perhaps would be better to create separate POD
basis for every individual displacement, i.e., ux , uy , and uz,
which may alleviate the SVD compared to only one sizeable
snapshot matrix. However, we later realize that there may
be implementation challenges, for instance, coping with the
fact that these displacements are intercalated in the vector of
unknowns, i.e., u = {u(1)x , u(1)y , u(1)z , u(2)x , u(2)y , u(2)z , . . .}T ,
and the superscripts represent nodal points in the mesh.

Regarding heterogeneity, we do not observe substantial dis-
crepancies between the layered and heterogeneous models.
We need to further asses a case in which there is also het-
erogeneity in the surroundings of the reservoir, though.
Runtime and speedup are similar for reduced models con-
cerning homogeneous and heterogeneous Young modulus.
The speedup is a function of the energy threshold that is
a sensitive parameter that we must tune to achieve per-
formance. We expect the speed up to improve for cases
with rough coefficients, but additional numerical testing is
necessary.

If we compare the speedups that we attained for the
one- and two-way runs then we realize that there is certain
deterioration in performance for the iterative coupled cases
as expected. The performance loss may have to do with
certain MOR overheads that start to weigh while the
system deviates for the merely linear behavior. However, the
resulting acceleration is still competitive, and we expect that
it should improve when we are tackling more realistic 3-D
problems. We must then conduct further numerical testing.

6 Path forward

We have been working already in several tasks to improve
the results herein since we presented the first version of this
research at the ECMOR conference [24]. We are currently
working on the following:

1. Hasten computing the stiffness or Jacobian by com-
bining parallel computing, i.e., shared memory, and
hyper-reduction techniques, such as DEIM [9, 10] and
Gappy interpolation [8, 15].

2. Asses factors such as the influence of heterogeneity and
BCS in the reduction process.

3. Add more physics by replacing the elasticity part by
rate-independent plasticity which we expect will behave
similarly to the coupled nonlinear energy equation.
Perform more numerical experiments for two-way
coupled problems.
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