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Abstract
As in many fields, in seismic imaging, the data in the field is collected over a relatively large medium even though only a part
of that medium is truly of interest. This results in significant waste in computation as a typical inversion algorithm requires
many solutions of the wave equation throughout the entire domain, even if only a small part of the domain is being updated.
One way to mitigate this is to use a numerically exact local wave equation solver to perform waveform inversions in an area
of interest, where the idea is to compute accurate solutions of the wave equation within a subdomain of interest. Although
such solvers exist, many require the computation of Green’s function matrices in the background domain. For large-scale
seismic data acquisition, the computation of the Green’s function matrices is prohibitively expensive since it involves solving
thousands of partial differential equations in the background model. To mitigate this, in this work, we propose to exploit the
low-rank structure of the full subsurface Green’s function. Using carefully selected 2D stylized models, we first show that
the full subsurface Green’s function tensor organized as a matrix exhibits the low-rank structure in a transform domain. We
then propose a randomized singular value decomposition–based framework to compute the low-rank approximation of the
Green’s functions, where the cost of wave equation solves depends on the rank of the underlying Green’s function matrix
instead of the number of grid points at the surface of the background model and on the boundary of the local domain. Next,
we validate the proposed framework by performing time-lapse waveform inversion using the 2D Marmousi model. Finally,
we demonstrate a rank-minimization–based framework to compute the low-rank factorized form of the Green’s function
matrices in large-scale 3D seismic data acquisition.

Keywords Low-rank · Randomized SVD · Time-lapse inversion · Local solver · Finite-difference · Wave equation

1 Introduction

Full-waveform inversion (FWI) is a computationally expen-
sive process to predict the properties of a medium of inter-
est, such as the Earth. It is a non-linear process of fitting
the observed and simulated data (see [56] for an overview
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of FWI). To do this, we solve the following optimization
problem in the frequency domain

m = argmin
m

1

2

Nf∑

j=1

Ns∑

i=1

‖PrHj (m)−1qi − di‖2
2, (1)

where Hj = (ω2
jm + ∇2) is a discretization of the

Helmholtz operator for constant-density, ωj represents the
temporal frequency for frequency index j , and m =
v−2 is the gridded squared slowness with v being the
unknown spatially varying velocity. The operator Pr maps
the computed wavefield (H(m)−1qi) in the full subsurface
domain to the receiver locations, qi represents the i-th
source, and di is the observed data. Note that seismic
data acquisition involves either placing the receivers on the
surface/seafloor of the Earth, or towing behind a marine
seismic vessel. The acquisition also involves a source
(dynamite, airgun, vibroseis), which generates acoustic or
elastic vibrations that pass through the complex geological
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structures in the Earth, and return to the surface to be
recorded as seismic data [55].

The major computational cost in waveform inversion is
solving the Helmholtz equations (or the wave equation in
the time domain), which is directly proportional to the num-
ber of sources present in an acquisition. We typically solve
this optimization problem with some form of Newton iter-
ation. Calculating the necessary gradient involves the com-
putation of forward and adjoint wavefields followed by the
cross-correlation of these wavefields for each experiment
[45]. Thus, at each iteration, we need to solve two partial
differential equations (PDEs) for each source to determine
the gradient update. There are several ways to reduce the
total computation time such as reducing the number of wave
solves via source encoding [16, 31, 34], and improving the
Helmholtz solver [32, 44]. Although these techniques can
greatly reduce the turn around time to produce good qual-
ity inversion results, the experimental demonstration in seis-
mic literature assumes that we are interested in the full
subsurface domain to estimate the physical parameters. This
is especially not true for time-lapse or updating salt bound-
aries using FWI, where our area of interest is small (e.g.,
the reservoir). Note that updating the salt boundary in a
velocity model is a labor-intensive [14] imaging method in
seismic data processing, which involves months of manual
guidance. Hence, various automatic methods for determin-
ing the correct salt geometry are proposed in the seismic lit-
erature [22, 33, 58]. Moreover, in the time-lapse case [20,
28, 35], we may have more than one monitor dataset, which
is acquired over different time intervals. Here, time-lapse
data refers to the seismic data acquired at different times
over the same area, where the aim is to assess the subsurface
changes, such as fluid movement in the reservoir.

Another way to speedup FWI is to solve the wave-
equation in a subset of the entire domain. This area of
research is divided into two main categories. The first one
is known as redatuming [5, 6, 8, 12, 17, 24, 42, 43, 52,
54], where we propagate the seismic data to the region of
interest. One of the biggest disadvantages of the redatuming
formulation is that it modifies the surface data recordings
in the region of interest. To overcome this limitation, in the
second approach, we compute the wavefield exactly within
the region of interest, which is then used to update the ve-
locity model locally. This approach is known as a numeri-
cally exact local solver [37, 39, 50, 60] where the idea is
to use the local nature of the FWI problem to speed up
the inversion process. Recently, [40, 58] showed the advan-
tages of such a numerically exact local solver for performing
FWI in a small area (subdomain) around the region of
interest, while still taking all of the data into account. The
core idea is to solve both the forward and adjoint wave equa-
tion exclusively in the area of interest, giving exactly the
same wavefield (on that subdomain) as would be obtained

when solving the full-wave equation in the full subsurface
domain. There are two main aspects of this type of local
solver. First, we need to simulate the Green’s function in
the full domain of the background model at the surface
and on the boundary of the subdomain. We only compute
these Green’s functions once at the start of the process.
After finishing this stage, we no longer need to do full
domain simulations anymore during any of the subsequent
inversions. Second, we evaluate the forward and adjoint
wavefields in the local domain at a significantly reduced
cost. Malcolm and Willemsen [36] further illustrate the ben-
efits of the local solver for time-lapse FWI where changes in
the velocity around the reservoir are estimated in very few
iterations while controlling the computational cost. Note
that the underlying assumption of this method is that the
model is only changing in the subdomain. When applied
to the time-lapse problem, this implies that everything is
constant outside the subdomain for all of the datasets.

Although waveform inversion using a local solver is
conceptually appealing, it requires the computation of a
substantial number of partial differential equations (PDEs)
at the beginning of the inversion using the background
smooth velocity model for all the frequencies. These
solutions are then used to build the Green’s function
matrices for the local solver, which are required to invert
the local solver system of equations. This process is
prohibitively expensive for practical 3D seismic surveys,
since this requires many costly full domain simulations.
The required number of full domain simulations is
directly proportional to the number of nodes around the
local domain. Therefore, both the computational cost and
memory requirements grow drastically when scaling up the
local solver from 2D to 3D.

Recently, [2, 23, 25, 53] showed that seismic data
generated during 2D and 3D acquisitions exhibit low-
rank structure when organized in a transform domain
where sources and receivers are sorted appropriately. They
then exploit this structure for the compression and/or
reconstruction of missing data. Zhang et al. [61] show
the advantages of using the low-rank representation of the
seismic data in full-waveform inversion. In [21], authors
used the low-rank representation of the surface Green’s
function to reduce the matrix-matrix multiplication cost in
the estimation of primaries by sparse inversion framework.
Following similar ideas, we propose to exploit the low-
rank structure of the full subsurface Green’s function
to overcome the computational bottleneck of the local
solver where we simulate a large number of PDEs in the
background velocity model. We present a computationally
cost-effective and memory-efficient framework, where we
reconstruct the densely sampled Green’s function matrices
of the local solver with a small percentage of the standard
number of simulations. Using the complex 2D Marmousi
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model [7], we illustrate the efficacy of the proposed
approach to perform subdomain time-lapse inversion. We
further present a way to exploit the low-rank structure of
the Green’s function for 3D seismic data acquisition and
evaluate it using a synthetic dataset generated on the 3D
SEG/EAGE overthrust model.

2 Numerically exact local solver

We begin by explaining the mathematical formulation of
using the numerically exact local solver to solve the wave-
equation in the subdomain of interest. For simplicity, we
explain the numerically exact local solver formulation in
2D. We can follow the same analogy to extend this to 3D.
Let � represent the interior of the subdomain of interest and
�c its exterior. The exterior domain along with the initial
guess of the velocity model in the interior of the truncated
domain represent the background velocity model m0. The
model perturbation is denoted by δm inside � and is zero
in �c. Thus, the perturbed model m ∈ R

Nx×Nz in the full
domain is defined as m = m0 + δm, where Nx and Nz are
the number of gridpoints in the x and z directions.

To achieve the objective of solving FWI inside � as
would be solved in the full subsurface domain, we need
a numerically exact expression of the scattered wavefield
δus(x). Here, we define the scattered wavefield as δus(x) =
u(x) − u0(x), where u(x) represents the wavefield in the
perturbed model m and u0(x) is the wavefield in the
background model m0. To obtain an accurate wavefield
within the truncated domain �, we can simply solve
Eq. 1 inside �. However, to make sure that the predicted
solution inside � exactly matches the global wavefield
solution computed using m, we need to determine the exact
conditions on the boundary nodes of the truncated domain.

Fortunately, we can use the representation theorem [15],
which states that the scattered field outside a domain can
be uniquely and completely determined by the field on the
boundary. Masson et al. [38] and Willemsen et al. [58]
show that for the local solver, the representation theorem
corresponds to relating the scattered field δus(x) to the
field and its normal derivate on the boundary nodes of
the truncated domain. They also show that the estimated
scattered field includes all orders of multiple scattering
between the interior and exterior of the truncated domain
without any loss of accuracy in the local computation.
Mathematically, we write the representation theorem for the
local solver in the discrete form as

δu(y, ω) = −
∑

x∈δ�

1

h2

(
uδ�(x, ω)Gδ�+1

0 (x, y, ω)

−uδ�+1(x, ω)Gδ�
0 (x, y, ω)

)
,

(2)

where h is the distance between adjacent gridpoints,
δ� is the boundary between � and �c, δ�+1 is the
gridpoints one layer to the inside of δ� , and uδ�(x, ω)

and uδ�+1(x, ω) represent the wavefields on the boundary
nodes and on the nodes sitting at δ�+1, respectively. The
matrices Gδ�

0 (x, y, ω) and Gδ�+1
0 (x, y, ω) represent the

background Green’s functions between the node y where
the scattered field is evaluated and the node x on δ�

and δ�+1, respectively. Appendix 1 describes a process
for extracting the Green’s function matrices from the full
subsurface Green’s functions simulated using the sources
placed on the boundaries of the truncated domain. For a
detailed derivation of Eq. 2, we refer the interested reader to
[58]. Using Eqs. 1 and 2, we define a modified system for
the wave equation within the local domain,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−I I 0

I Gδ�+1
0 −Gδ�

0

0 −ω2
jm

� − ∇2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

δuδ�

uδ�

uδ�+1

uδ�+2

...

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

u0δ�

0
0
0
...

⎞

⎟⎟⎟⎟⎟⎠
,

(3)

which we use to estimate the exact wavefields in the
truncated domain of the perturbed model m. Here, u0δ�

is the forward (adjoint) wavefields, which we compute by
convolving the Green’s function with the source wavelet
(data residual), where the Green’s function is recorded at the
receivers placed on the boundary of the truncated domain
for the sources placed at the surface of the full domain. We
want to emphasize again that the model m� = δm� + m�

0
in Eq. 3 where δm� represents the perturbation of the true
model from the background model (m�

0 ) restricted to the
local domain δ�. Here, the size of m�, δm�, and m�

0
is Nxsub

× Nzsub
. To form (3), we follow the same node

numbering scheme inside the truncated domain as proposed
in [58] on which we give more details in Appendix 1.
We also provide details in Appendix 1 on computing the
necessary components to perform the FWI (i.e., the forward
and adjoint fields [56]) in the truncated domain using the
local solver.

We clearly see that Eq. 3 is much smaller than solving
the Helmholtz equation in the full domain because (Nxsub

×
Nzsub

) ≤ (Nx × Nz). Because of these rapid wavefield
computations, FWI in the truncated domain can greatly
reduce the turn around time necessary to predict velocity
changes around the reservoir. As mentioned above, Eq. 3
depends on the computation of a collection of Green’s
functions in the full domain once. This is a computationally
expensive process since we need to solve Ns + Nδ�

b PDEs
for 2D seismic acquisition, where Nδ�

b is the number of
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gridpoints at δ� and Ns is the number of sources acquired
in the field. For 3D seismic acquisition, the number of
gridpoints both at the surface and the boundary of the
truncated domain will increase by an order of magnitude.
To overcome this computational burden, we propose to
exploit the low-rank structure of the full subsurface Green’s
function to reduce the simulation costs. In the next section,
we explain in detail the concept of low rank and its
application to reduce the number of PDE solves to extend
the local solver for large-scale FWI.

3 Low-rank approximation of the Green’s
function

The objective of this work is to build an accurate low-
rank representation of the Green’s function for efficient
memory storage and computational time. To do so, we
first visualize the structure of the full subsurface Green’s
function and then study its low-rank structure. Low-rank
structure refers to the small number of nonzero singular
values or quickly decaying singular values of the underlying
matrix. For 2D seismic data acquisition, the full subsurface
Green’s functions at a single frequency for the sources
placed at the surface and on the boundary of the local
domain will be a 3D tensor with dimensions Nz, Nx and
(Ns + Nδ�

b ). Since the full subsurface Green’s function is a
tensor, one way to visualize the decay of its singular values
is by matricizing the underlying tensor. Matricization is the
process of unfolding an nD tensor into a 2D matrix. In this
work, we matricize the 3D tensor by combining the Nz and
Nx dimensions along the rows while keeping (Ns + Nδ�

b )

along the columns. Although there are other matricizations
for this 3D tensor, we choose this particular one because
it naturally comes from the solution of the wave equation,
i.e., each column of this matrix represents a new source
experiment.

We find that the full subsurface Green’s function exhibits
a low-rank structure when organized in the proposed matrix
form. To understand the low-rank behavior of the full
subsurface Green’s function in 2D, we simulate a dataset
in the Marmousi model (Fig. 1) by placing the sources at
the surface and on the boundary δ� of the local domain
represented by the black box in Fig. 1. We simulate the
dataset at 5 Hz using a Ricker wavelet with a central
frequency of 12 Hz. We place Ns = 1361 sources at the
surface and Nδ�

b = 340 sources on the boundary of the local
domain sampled at 10 m. Given Ns and Nδ�

b , we need to
simulate Ns + Nδ�

b PDEs in the background model to form
the Green’s function matrices in conventional local solver
implementations for each monochromatic frequency.

From the simulated data, we extract two sets of full
subsurface Green’s functions. The first set corresponds to

Fig. 1 Marmousi baseline model. We use this model to demonstrate
the low-rank representation of the Green’s function. The black box
represents the local domain �

the sources at the surface and the second set represents the
sources placed on the boundary of the local domain. We then
matricize these tensors where the sizes of the matricized
tensors are NzNx × Ns and NzNx × Nδ�

b , respectively.
Here, rows of these matrices represent the solution of the
wave equation at each grid point in the subsurface and
each column represents a single source experiment with the
source either placed at the surface or on the boundary of
the local domain. Figure 2 a–c show the matricized full
subsurface Green’s function at 5 Hz, whereas, Fig. 2 d–f
show a column from the full subsurface Green’s function.
Figure 2 g displays the decay of the singular values of the
full subsurface Green’s function. We see that the matricized
Green’s function exhibits low-rank structure, i.e, its singular
values decay rapidly. Therefore, we can approximate the full
subsurface Green’s function using very few singular vectors.
To verify this, we reconstruct the full subsurface Green’s
function keeping only the largest 20% of the singular
vectors as shown in Fig. 2b and e. We see that we are able
to capture all the coherent energy, which is also validated
by the residual plot (Fig. 2c, f). Also, the signal-to-noise
ratio (SNR) of the approximated Green’s function is 27 dB,

where SNR = −20 log10
‖true−approximated‖2

2
‖true‖2

2
.

Above, we show a low-rank approximation computed
with singular value decomposition (SVD). This is a
relatively naive way to compute the low-rank structure as
one has to simulate all the required Green’s functions in
the background model followed by partial singular value
decomposition. Unfortunately, this is not a practical solution
since computing the SVD can be extremely time-consuming
on large-scale models. To overcome this, we propose to
test a randomized singular value decomposition approach
to approximate the full subsurface Green’s function,
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 2 Green’s function simulated on the surface of the local domain.
We matricized the 3D Green’s function to analyze its singular value
decay. a True Green’s function. b Approximated Green’s function,
where we keep the largest 20% of the singular values. c Residual. It is
evident from the residual that we are able to recover most of the coher-
ent energy with signal-to-noise ratio of 27 dB. d–f A single column

extracted from a–c. For display purposes, we display only every sec-
ond source in the full subsurface Green’s function matrices. g Singular
value decay of the true Green’s function in a. We clearly see that
the singular values decay fast; hence, the underlying Green’s function
exhibits a low-rank structure
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which offers significant speedups and memory saving
over classical SVD methods. Algorithm 1 summarizes the
process to compute the full subsurface background Green’s
function in its low-rank SVD form, which is merely the
randomized SVD from [18].

3.1 Algorithm 1: randomized SVD of the full
subsurface Green’s function [18]

1. Input: rank (k) of the monochromatic Green’s function,
Gaussian random matrix W ∈ C

Ns×k , a function that
evaluates F(m)

2. Compute

a. Y = F(m)W, the computational cost is that of k

PDE solves
b. [N,M] = qr(Y), where Y ∈ C

NxNz×k

c. Z = (F(m)N)∗, extra k PDEs solves
d. [T, S,B] = svd(Z) (Z ∈ C

NxNz×k is a small
matrix)

e. T ← NT, approximated left singular vectors

3. Output: compressed representation of the full subsur-
face Green’s Function for the sources at the surface,
T ∈ C

NxNz×k , B ∈ C
Ns×k , and S ∈ C

k×k

4. Repeat steps 1–3 for the sources on the boundary of the
local domain with W ∈ C

Nδ�
b ×k

Here, F(m) = H(m)−1PT
s I represents the full subsurface

Green’s function for sources placed at the surface or on the
boundary of the local domain, which is the solution of the
Helmholtz equation. The restriction matrix PT

s ∈ R
NxNz×Ns

injects the source wavefields into the grid at the source loca-
tions. The matrix I ∈ R

Ns×Ns is the identity matrix. Note
that, for the sources on the boundary of the local domain �,
the sizes of matrices PT

s , I are NxNz×Nδ�
b and Nδ�

b ×Nδ�
b ,

respectively. Each column of W ∈ C
Ns×k represents a

Gaussian random vector, where k is the rank of the under-
lying full subsurface Green’s function. We choose each of
the column vectors of W in such a way that E(wiwi

T )

equals the identity matrix. Note that the first step of Algo-
rithm 1 represents a simultaneous source experiment where,
for each simultaneous source experiment, Ns sources are
fired simultaneously with different weights. In total, we
perform k simultaneous source experiments each at stages
2a and 2c of Algorithm 1. For large-scale problems, ran-
domized SVD-based low-rank approximation is signifi-
cantly cheaper than computing an SVD of the full matrix.
The overall computational cost of the randomized SVD is
of the order O(N2

x × k). As we see in Algorithm 1, instead
of solving (Ns + Nδ�

b ) PDEs using in the full domain
as for the classical local solver, we now solve 2ks + 2kb

PDEs to approximate the full subsurface Green’s function.
Here, ks and kb represent the number of simultaneous source

experiments to approximate the Green’s function at the sur-
face and on the boundary of the local domain, respectively.
As long as (ks+kb) is significantly smaller than (Ns+Nδ�

b ),
we significantly reduce the required number of full subsur-
face Green’s function in the background model. In addition
to the solution of PDEs, we also perform a QR decompo-
sition in step two and singular value decomposition in step
four. We want to emphasize that both Y and Z in steps 2a
and 2c are tall and thin matrices of size (Nx × k); hence,
these steps are computationally cheap to evaluate. Thus,
the randomized SVD-based approach is computationally
feasible for evaluating the Green’s function in the back-
ground model for large-scale 2D seismic data problems,
where the underlying model dimensions in both the vertical
and horizontal directions are of the order O(102 − 103).

3.2 Verification of the local solver using low-rank
approximation

Now that we have the low-rank approximation of the
Green’s function, the next step is to estimate the accuracy
of the local solver with the approximate Green’s functions
from Algorithm 1. To do this, we compare the forward
and adjoint wavefields and the gradient in the full domain
�c + � using the conventional full domain solver and
the local domain � using the approximate local solver.
Figure 3 shows the true baseline Marmousi model, used as
the background model m0, and the perturbation δm in the
local domain, which we use to verify the exactness of the
local solver. We perform the comparison at 5 Hz, where we
use a Ricker wavelet with a central frequency of 12 Hz.
We generate the wavefields and gradients in the full domain
using the classical method, where we use a finite difference
solution of Helmholtz equation in the entire domain �.

To compute the forward and adjoint wavefields in the
truncated domain, we first approximate the full subsurface
Green’s function using Algorithm 1. For this example, we
choose ks = 0.1Ns = 130 for the sources at the surface
and kb = 0.1Nδ�

b = 40 for the sources on the boundary
of the local domain. From the approximated full subsurface
Green’s function, we extract four sets of fully sampled
Green’s functions, i.e., u(s,r)

0 , uδ�
0 , Gδ�

0 , and Gδ�+1
0 .

Appendix 1 demonstrates the process of forming these
matrices from the full subsurface Green’s function. These
four matrices are of size Nx × Nx , Nδ�

b × Ns , Nδ�
b × Nδ�

b ,
and Nδ�

b × (Nδ�
b − 8). Next, we compute the forward and

adjoint wavefields in the truncated domain as per Eq. 3
where we insert the randomized SVD-based approximated
Green’s function. Note that, in classical settings of the local
solver [58], we need to solve 1701 PDEs using the finite
difference solution of wave equation to compute the Green’s
functions, whereas, we only solve 340, i.e., 2(0.1Ns +
0.1Nδ�

b ) PDEs using the proposed framework.
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Fig. 3 Baseline model and
perturbation for testing the low-
rank approximation of Green’s
function in local solver settings

Figures 4 and 5 compare the real component of the for-
ward and adjoint wavefield simulated in the full domain and
the local domain, and Fig. 6 shows the gradient computed
via cross-correlating the forward and adjoint wavefields. As
pointed out by [58], Eq. 3 preserves all orders of scattering
without loss of accuracy between the model perturbation δm
and the background model m0. In our randomized SVD for-
mulation, we see from the residual plot in Fig. 5 that even
though we lose some coherent energy, this does not signifi-
cantly impact the gradient as can be seen in Fig. 6. Hence,
the approximate local solver is acceptable to perform the
full-waveform inversion in the area of interest.

4 Time-lapse inversion

Having illustrated the computationally efficient randomized
SVD process of reducing the number of PDEs to form the
full subsurface Green’s function, and the accuracy of the
approximate local solver using the inexact Green’s function,
we now move on to perform a time-lapse waveform
inversion. We follow the double-difference full-waveform
inversion (DDFWI) strategy [11, 36, 59] and focus only on
estimating the time-lapse change in the truncated domain �.
Figure 7 shows the baseline and the time-lapse model we
use for the waveform inversion. For this example, we use
the full Marmousi velocity model, which is 2 km deep and
12 km wide, sampled at 10 m. The synthetic data contain

600 sources and 600 receivers sampled at 20 m. We use
frequencies from 3 to 10 Hz, where the source-signature is
a Ricker wavelet with a central frequency of 20 Hz. We use
a frequency domain finite difference code [10] to simulate
the synthetic data.

To generate the background model for the local solver,
we first perform standard full domain FWI over the
baseline velocity model, with the same acquisition and
inversion settings described above. We use 20 iterations of
the LBFGS [51] solver to perform the waveform inversion.
We invert for seven frequency batches sequentially; each
batch consists of six frequencies sampled at 0.2 Hz. We then
use this inverted baseline model to perform the time-lapse
waveform inversion in the local domain. To do this, we first
approximate the Green’s function over the full domain using
Algorithm 1, where ks = 0.125Ns for the sources at the
surface and kb = 0.125Nδ�

b for the sources on the boundary
of the local domain. We then use this approximate Green’s
function to compute the forward and adjoint wavefields
followed by the cross-correlation to compute the gradient
updates. Figure 8 shows the inverted time-lapse model
using the numerically exact local solver [58] and the
approximated local solver proposed in this paper. We use 10
iterations for each frequency batch to perform the waveform
inversion in the local domain. We see that the proposed
method is able to recover the time-lapse change fairly well
and the results are comparable with those of the numerically
exact local solver. Moreover, the computational cost of

(a) (b) (c)

Fig. 4 Real part of forward wavefield in the local domain. a True. b Approximation using randomized SVD. c Residual
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(a) (b) (c)

Fig. 5 Real part of adjoint wavefield computed in the local domain. a True. b Approximation using randomized SVD. c Residual

evaluating the Green’s function in the proposed approach
is four times smaller than the exact local solver approach.
This shows that the randomized SVD approach enables the
computation of the Green’s function cheaply in the full
domain, thus mitigating the computational bottleneck of
the numerically exact local solver to perform waveform-
inversion in the local domain.

Although we reduce the computational cost of the local
solver drastically, the inverted time-lapse result shows more
artifacts, which we believe is due to the fact that we are
using the LBFGS solver with inexact gradient information
at each iteration. If the gradients are approximated at
every iteration, then the LBFGS solver might break down
faster, thus resulting in inaccurate update directions. We
believe conjugate-gradient (and especially gradient descent)
might be more stable for this kind of scenario. We could
also mitigate these problems by adding a regularization
term in the approximated local solver to further stabilize
the inversion process. Both of these topics are subjects
of future research.

5 Extension to 3D FWI

Motivated by the success of 2D target-oriented inversion
using the approximated local solver, the next step is
to extend it to 3D full-waveform inversion, where the
computation of background Green’s functions becomes

prohibitively expensive. Again, one way to circumvent
this computational bottleneck is by using the randomized
SVD approach of Algorithm 1 to approximate the Green’s
function in 3D. Although a randomized SVD-based
framework is computationally efficient to estimate the
Green’s function, one needs to solve 2k PDEs as shown in
Algorithm 1. For large-scale 3D problems, k can easily be
in the range of tens of thousands. Note that we need to solve
an additional 2k PDEs to approximate the Green’s function
for the sources on the boundary of the local domain.
Thus, the randomized SVD-based framework will also be
computationally demanding for performing 3D time-lapse
FWI in the local domain, even if k is much smaller than the
number of sources (NxsrcNysrc + Nδ�

b ).
If we look carefully at step 2a of Algorithm 1, then

we immediately see that we are simulating k simultaneous
source experiments, where we multiply source matrix I ∈
R

Ns×Ns with the Gaussian random matrix W ∈ R
Ns×k . This

will create blended coherent noise in each shot experiment.
Given the simultaneous sources at the first step of Algorithm
1, we design a computationally efficient source-separation
framework, where the cost of source separation is a fraction
of the cost of solving the extra k PDEs at step 2c in
Algorithm 1. Hence, for 3D local waveform inversion, we
use a rank-minimization–based source-separation technique
to remove the coherent interference to recover the fully
sampled Green’s function in the background model. This
reduces the number of PDE solves from 2(ks + kb) to

(a) (b) (c)

Fig. 6 Gradient comparison in the local domain. a True. b Approximation using randomized SVD. c Residual
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(a) (b) (c)

Fig. 7 Time-lapse inversion. a Baseline and b time-lapse section. The orange box in a represents the time-lapse region. c Local domain around
time-lapse change (black box in c), which is used to illustrate the advantages of the proposed approach

(ks + kb) for approximating the Green’s function matrices
for the sources at the surface and on the boundary of the
local domain.

For 3D seismic data, we only do ks + kb simultaneous
source simulations at step 2a of Algorithm 1 to generate
the full subsurface simultaneous Green’s function for the
sources at the surface and on the boundary of the local
domain. From this full subsurface simultaneous Green’s
function matrix, we then extract two sub-matrices, one for
source locations on the surface and one for source locations
on the boundary. Finally, we perform the source separation
on each of these sub-matrices independently. Thus, we only
need to solve (ks + kb) PDEs to approximate the Green’s
function matrices to solve the local domain wave equation
system defined in Eq. 3.

Various methodologies have been proposed to extract the
seismic data from the blended data [1, 3, 41, 49, 57]. Here,
we rely on the compressed sensing (CS) framework [9,
13] that offers three fundamental principles for successful
reconstruction of the original signal sampled at the sub-
Nyquist rate. Specifically, we use the rank-minimization–
based framework to approximate Green’s function matrices,
which is a natural extension of CS ideas for data volumes
organized as matrices. Interested readers can look into [19,
27] for extensive details on these principles and its usage
for seismic data interpolation and/or deblending. In the
next section, we briefly describe the three fundamental

principles for successful reconstruction of the Green’s
function from relatively few simultaneous sources using the
rank-minimization–based framework.

5.1 Low-rank structure of Green’s function

The first principle utilizes the prior knowledge that the
underlying fully sampled signal of interest should exhibit
a fast decay of its singular values and can thus be well
approximated by a low-rank matrix. To understand the
first principle, we visualize the low-rank structure of the
Green’s function organized as a matrix for the sources
placed at both the surface and on the boundary of the local
domain, i.e, δ�. To demonstrate the low-rank behavior,
we simulate the fully sampled sequential source Green’s
function using the SEG/EAGE 3D overthrust model (Fig. 9).
The dimension of the model is 5 km × 20 km × 20 km and
is discretized on a 25 m × 25 m × 25 m grid. Here, we
analyze the low-rank properties of the Green’s function for
two scenarios. In the first scenario, we place the sources
and receivers at the surface spaced by 100 m and 50 m,
respectively, along inline and crossline directions. In the
second scenario, we place sources and receivers on the
boundary of the local domain. For both scenarios, we use a
Ricker wavelet with peak frequency of 10 Hz and simulate
the data using a finite difference time-domain modeling
code [29]. We then apply a temporal-Fourier transform

Fig. 8 Time-lapse waveform
inversion results using the
double-difference approach [11,
59]. a Using the numerically
exact local solver [58]. b Using
the proposed randomized
SVD-based local solver
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Fig. 9 SEG/EAGE overthrust model

to extract the Green’s function matrices in the frequency
domain.

From the simulated data, we extract three sets of fully
sampled Green’s functions, i.e., u(s,r)

0 , Gδ�
0 , and Gδ�+1

0 at
5 Hz. Here, each monochromatic Green’s function restricted
to the surface and the boundary of the local domain will
be a 4D tensor of size Nxsrc , Nysrc , Nxrec , and Nyrec . As
mentioned before, to analyze the low-rank behavior of a
tensor, we need to unfold it into a matrix, since the concept
of singular value decomposition (SVD) is for matrices only.
For these 4D Green’s functions, we follow the matricization
strategy proposed by [25, 53] which show that grouping
Nxsrc , Nysrc , i.e., placing both the source coordinates along
the columns (Fig. 10a), results in a higher rank or slow
decay of singular values as shown in Fig. 10 c. However,
grouping the Nxsrc , Nxrec along the rows and Nysrc , Nyrec

along the columns (Fig. 10b) results in a matrix with fast
decay of the singular values (Fig. 10c).

5.2 Effect of blending on the low-rank structure

The second principle of the compressed sensing-based
source-separation framework is based upon a sampling
scheme that breaks the underlying structure—i.e., increases
the rank or slows down the decay of the singular values
of the original signal. In our case, this translates to finding
a simultaneous source scheme that increases the rank of the
underlying fully sampled matrix in the transform domain.
To understand this, we analyze the effect of blending
on the low-rank properties of the Green’s function in
the transform domain. To mimic the simultaneous source
experiment, we multiply the Nxsrc , Nysrc matricized Green’s
function (Fig. 10a) with the Gaussian random matrix W
of size NxsrcNysrc × k, where k represents the number
of simultaneous source experiments. In this example, we
choose k = 0.1 ∗ NxsrcNysrc ≈ 1000. Since we want

to analyze the effect of blending on the decay of the
singular values in the transform domain, we create a pseudo
deblended Green’s function (Fig. 11) in the Nxsrc , Nysrc and
Nxsrc , Nxrec matricization, respectively.

We further plot the decay of the singular values after
pseudo deblending in the Nxsrc , Nysrc and Nxsrc , Nxrec matri-
cization as shown in Fig. 11. We see that blending destroys
the continuity of the waveforms in both matricizations,
which results in slower decay of the singular values; thus,
the rank increases dramatically. It is clear that although
for both parameterizations the decay of singular values is
slower than without the simultaneous sources, the decay
of singular values is significantly faster for the Nxsrc , Nysrc

matricization than it is for the Nxsrc , Nxrec matricization; in
any case, we would use the latter matricization because this
is the matricization in which the underlying data are sparse.

5.3 Rank-minimization framework

To reconstruct the Green’s function matrix from blended
measurements, we use the rank-minimization framework
for simultaneous source separation proposed by [26], where
the underlying assumption is that the fully sampled Green’s
function matrix exhibits low-rank structure and the blending
process increases the rank of the Green’s function matrix in
some transform domain. Under this assumption, the source
separation problem is to find the fully sampled Green’s
function matrix of lowest possible rank that agrees with the
simultaneous source experiment observations.

For a low-rank matrix X in C
n×m and a linear mea-

surement operator A that maps from C
n×m → C

p with
p 
 n × m, the rank-minimization problem involves solv-
ing the following problem for A, up to a given tolerance ε:

minimize
X

rank(X) subject to ‖A(X) − b‖2 ≤ ε, (4)

where b is a set of blended measurements. Note that, for
a 3D seismic data acquisition, A represents the Gaussian
random matrix W, m = Nxsrc ×Nyrec , n = Nysrc ×Nxrec , b is
the simultaneous source Green’s function matrix extracted
from Y, which corresponds to the sources at the surface or
on the boundary of the local domain, and p = Nysrc ×
Nxrec × k. Appendix 2 explains a computationally efficient
framework to solve (4) efficiently for large-scale seismic
data acquisition.

Finally, we propose a two-step strategy to efficiently
compute the Green’s function in the background model
to enable the numerically exact local solver for large-
scale 3D seismic data problems. The first step involves
solving the partial differential wave equation (PDEs) k times
using the simultaneous sources placed at the surface of
the domain, i.e., step 2a of Algorithm 1. The second step
involves the source-separation procedure, i.e., deblending,
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(a) (b)

(c) (d)

(e)

Fig. 10 Matricized Green’s function simulated using the SEG/EAGE
overthrust model at 5 Hz for sources placed at surface. a Nxsrc , Nysrc

and b Nxsrc , Nxrec matricization. c and d Zoom sections of a and
b at the upper left corner, respectively. e Singular value decay. The

red and blue curves represent the Nxsrc , Nysrc and the Nxsrc , Nxrec

matricizations, respectively. We see that singular values of the fully
sampled Green’s function decay faster for matricization b compared
with a
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(a) (b)

(c) (d)

(e)

Fig. 11 Pseudo deblended Green’s function matrices for sources
placed at surface in the a Nxsrc , Nysrc and b Nxsrc , Nxrec matriciza-
tions. c and d Zoom sections of a and b at the upper left corner,
respectively. e Singular value decay. The red and blue curves represent

the Nxsrc , Nysrc and the Nxsrc , Nxrec matricizations, respectively. We
see that the simultaneous source acquisition slows down the decay
of the singular values of Nxsrc , Nysrc matricization compared with
Nxsrc , Nyrec matricization
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where we recover the fully sampled Green’s function,
which corresponds to the sources placed at the surface,
from the simultaneous source experiment using the rank-
minimization framework of Eq. 4. Now, we only need to
simulate k << NxsrcNysrc PDEs followed by the source-
separation framework, thus avoiding the extra k PDE solves
in step 2c of Algorithm 1 to approximate the Green’s
function. Note that we need to repeat the abovementioned
strategy for the simultaneous sources on the boundary of
the local domain to approximate Gδ�

0 and Gδ�+1
0 matrices,

which will incur the cost of solving an extra k PDEs.
Algorithm 2 outlines the rank-minimization–based source-
separation framework to approximate the Green’s function
to allow for the extension of the local solver to large-scale
3D problems.

To further demonstrate the effectiveness of the rank-
minimization–based framework to approximate the Green’s
function, we perform the source separation on the blended
Green’s function matrices as shown in Fig. 11. The fully

sampled Green’s function at the surface consists of 102 ×
102 sources and 202 × 202 receivers. Since k = 1000,
the number of PDEs solve is 10 times smaller than the
method in [58], where we need to solve 10,404 PDEs
conventionally to form the Green’s function matrices at the
surface. Note that, in the conventional method, we also need
to solve thousands of extra PDEs for evaluating the Green’s
function matrices on the boundary of the local domain.
However, in our framework, we only need to solve an extra
k PDEs. Figures 12 and 13 show the reconstructed fully
sampled Green’s function after source separation. We are
able to deblend all the Green’s function with signal-to-noise
ratio (SNR) of ≈ 27 dB and recover most of the coherent
energy, which is further supported by the difference
plots (Figs. 12c, d and 13c, d). This shows that, using
ideas from compressed sensing and a rank-minimization–
based interpolation framework, we can mitigate the com-
putational bottleneck of the local solver to perform 3D
target-oriented full-waveform inversion. Finally, in Table 1,

(a) (b)

(c) (d)

Fig. 12 Recovered fully sampled Green’s function using rank-minimization–based framework for sources placed at surface. a and c After source
separation and difference. b and d Zoom sections from the upper left corner from a and c. Note that we subtract a and Fig. 10 b to generate c
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(a) (b)

(c) (d)

Fig. 13 Recovered fully sampled Green’s function using the rank-minimization–based framework for sources placed on the boundary of the local
domain. a and c After source separation and difference. b and d Zoom sections from the upper left corner from a and c

we compare the computational cost (in terms of the number
of PDEs solve) of full domain FWI, numerically exact local
solver, Algorithm 1, and Algorithm 2, respectively.

5.3.1 Algorithm 2: rank-minimization–based
source-separation framework

1. Input: W ∈ C
Nxsrc Nysrc ×k , F(m) (as explained in

Algorithm 1)
2. Compute

a. Y = F(m)W, the computational cost is k PDEs,
and Y ∈ C

NxNyNz×k

b. Extract simultaneous source Green’s function
matrices from Y corresponding to sources at the
surface.

c. Organize this matrix as a vector b.
d. Solve minL,R ‖A(LR′)−b‖2 s.t. 1

2‖L;R‖2
F ≤τ ,

Appendix 2 gives details.

3. Output: Low-rank factorized form of the compressed
full subsurface Green’s Function, L ∈ C

Nxsrc Nxrec ×k ,
R ∈ C

Nysrc Nyrec ×k

4. Repeat steps 1–3 for the sources placed on the
boundary of the local domain to get the corresponding
approximated Green’s function matrices.

Table 1 Comparison of the
computational cost (in terms of
the number of PDEs solve) of
full domain FWI, numerically
exact local solver, Algorithm 1,
and Algorithm 2, respectively

Full domain FWI Exact local solver Algorithm 1 Algorithm 2

Number of PDE solves 2Ns Ns + Nδ�
b 2ks + 2kb ks + kb

Here, Ns represents the number of sources at the surface, Nδ�
b is the number of points at the boundary of

the local domain δ�, and ks and kb are the number of simultaneous source experiments at the surface and
on the boundary of the local domain, respectively
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6 Discussion

The main computational bottleneck of the numerically exact
local solver is to simulate the Green’s function at the sur-
face and on the boundary of the local domain in the back-
ground velocity model. Once we simulate all the Green’s
functions, performing waveform inversion is computation-
ally cheap to invert for the subsurface parameters of interest.
The obvious drawback of this approach is that the required
number of wave equation solves to simulate the Green’s
function grows linearly with the number of grid points;
thus, the framework quickly becomes prohibitively expen-
sive for any realistically sized models. To address this,
we propose to exploit the low-rank structure of the full
subsurface Green’s function by using techniques from ran-
domized linear algebra. We show that the simulation cost for
monochromatic Green’s function is dominated by the rank
instead of by the grid points at the surface and on the bound-
ary of the local domain. This observation makes the local
solver a computationally feasible and scalable framework
for performing target-oriented waveform inversion. As long
as the rank is smaller, which is the case for low- to mid-
range frequencies, our approach outperforms the conven-
tional numerically exact local solver in terms of computa-
tional speed.

Although the low-rank factorization scheme circumvents
the computational bottleneck, the obvious question is how
to choose the rank for the different monochromatic Green’s
function. One possible solution is to estimate the rank
at the lower and higher end of the spectrum of interest,
perform linear interpolation between these two values,
and assign rank values to the intermediate frequencies.
Estimating the rank value for the lower end of the spectrum
is computationally feasible since we can reduce the grid
density for the lower frequency and analyze the singular
value decay. However, for the higher end of the spectrum,
analyzing the decay of the singular values will again become
computationally demanding. This is still an open avenue of
research.

7 Conclusions

The numerically exact local solver opens new avenues to
perform target-oriented full-waveform inversion for time-
lapse seismic data acquisition as well as other situations in
which only a part of the model is of interest. The central
idea is to restrict the computation of partial differential
equations to be inside the local domain of interest. Even
though the experimental demonstration in seismic literature
has shown the benefits of an exact local solver, it requires
the computation of Green’s functions in the background
velocity model. Moreover, the number of wave-equation

solves for the Green’s function depends upon the number
of grid points at the surface and on the boundary of
the local domain. This aspect of local solver makes
it computationally demanding to perform target-oriented
FWI, especially for large-scale 3D full-waveform inversion.

In this work, by exploiting the low-rank structure of
the full subsurface Green’s function, we circumvent the
major computational cost involved in the local solver. Our
approach uses probing techniques from the randomized
linear algebra to obtain the full subsurface Green’s func-
tion in a low-rank factorized form. The computational cost
of approximating the Green’s function using probing tech-
niques depends upon the rank of the Green’s function and
not on the grid points at the surface and on the bound-
ary of the local domain. As long as this rank is small,
which is usually the case for low- to mid-range frequen-
cies, the probing techniques enable the application of the
approximate local solver for large-scale seismic data acqui-
sition. Time-lapse inversion results on the 2D Marmousi
model demonstrate that we gain a factor of four in the
computational time with little to no compromise in accu-
racy using the proposed low-rank factorization approach to
approximate the Green’s function.

To extend this framework to 3D full-waveform inversion,
we further proposed to combine rank-minimization–based
source-separation framework with the randomized SVD
to eliminate the need to solve extra PDEs at step 2c in
Algorithm 1. This new framework exploits the fact that
blending increases the rank of the underlying seismic data,
which is low-rank in its deblended form. Using a stylized
example from the 3D overthrust model, we demonstrate that
we gain a factor of ten in computation time compared with
the conventional exact local solver by approximating the
Green’s function.
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Chevron, NSERC, InnovateNL, and the Hibernia Management and
Development Corporation.

Appendix 1

To perform FWI in the truncated domain, we need to
compute the forward and adjoint wavefields. In order to
do so, we need to first simulate the Green’s function at
the surface and on the boundary nodes in the background
model. In this section, we explain the process of extracting
the Green’s function matrices in the background model to
efficiently solve the PDEs, i.e., Eq. 3 in the local domain.
For a 2D background velocity model, the dimensions of the
full subsurface Green’s function responses are NzNx × Ns
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and NzNx × Nδ�
b from which we extract the four desired

sets of Green’s function matrices, i.e., u(s,r)
0 , uδ�

0 , Gδ�+1
0 ,

and Gδ�
0 . The matrix u(s,r)

0 represents the Green’s function
matrix computed in the background model between the
sources and receivers at the surface, which we convolve
with the source wavelet while computing the data residual
during the inversion process. Moreover, we convolve uδ�

0
with the source wavelet (data residual) while computing the
forward (adjoint) wavefields using Eq. 3. The matrices u(s,r)

0
and uδ�

0 are easy to extract from the full subsurface Green’s
function matrix via taking out the rows corresponding to the
locations of the receivers at the surface and the location of
the nodes on the boundary of the local domain, respectively.
To form the other Green’s function matrices, we follow a
node numbering scheme in the truncated domain where the
nodes are numbered in a counter-clockwise inward spiraling
fashion as shown in Fig. 14 a.

Under this numbering scheme, we obtain the matrix uδ�
0

from the full subsurface Green’s function simulated using
the sources at the surface of the model. Again, we select the
rows corresponding to the locations of the boundary nodes
δ� for each source experiment. We illustrate the matrix
structure of the Green’s function matrices Gδ�

0 and Gδ�+1
0

used in the second block row of Eq. 3 by using the 5 × 5
node example from Fig. 14 a.

The foundation of the local solver is the equation for
the scattered field. It is an essential component of the local
solver in Eq. 3 (i.e., it forms the second block row) and also
gives the ability to propagate the local wavefield solution
to the receiver locations. This scattered field equation is
derived in Appendix 1 of the work of [58] and the final result
is restated here for convenience

∑ 1

h2

(
uδ�

(
G

δ�+1
0 − Gδ�

0

)

−Gδ�
0

(
uδ�+1 − uδ�

) )
= −δu(i, ω), i ∈ δ� ∪ �c, (5)

where all the quantities are scalars, h is the grid spacing,
and the summation goes all around the boundary but does
not include the corner nodes as we will illustrate below.
Equation 5 closely resembles a discretization of Green’s
third identity. We simplify Eq. 5 by removing the common
term uδ�Gδ�

0 to get

∑ 1

h2

(
uδ�G

δ�+1
0 − Gδ�

0 uδ�+1

)

= −δu(i, ω), i ∈ δ� ∪ �c. (6)

The second block row of Eq. 3 evaluates (6) for each
boundary node i on δ�, with i ∈ {1, ..., 16} in this 5 × 5
example. The matrices Gδ�+1

0 and Gδ�
0 therefore have 16

rows in this example. Figure 14 b illustrates which Green’s
function combinations are required when the boundary
summation (6) is evaluated around δ� for the case when
i = 1. Evaluating (6) gives

[u(2)G(i, 17) − u(17)G(i, 2)] + [u(3)G(i, 18)

−u(18)G(i, 3)] + [u(4)G(i, 19) − u(19)G(i, 4)]

+ [u(6)G(i, 19) − u(19)G(i, 6)] + [u(7)G(i, 20)

−u(20)G(i, 7)] + [u(8)G(i, 21) − u(21)G(i, 8)]

+ [u(10)G(i, 21) − u(21)G(i, 10)] + [u(11)G(i, 22)

−u(22)G(i, 11)] + [u(12)G(i, 23) − u(23)G(i, 12)]

+ [u(14)G(i, 23) − u(23)G(i, 14)] + [u(15)G(i, 24)

−u(24)G(i, 15)] + [u(16)G(i, 17) − u(17)G(i, 16)]

= −δu(i), (7)

where each term in square brackets represents a contribution
from a single box in Fig. 14 b. Equation 7 is the
multiplication of vectors uδ� and uδ�+1 with the first row
of matrices Gδ�+1

0 and Gδ�
0 in Eq. 3. We now show the first

Fig. 14 A 5 × 5 model
representation of the local
domain �. This truncated
domain is used to demonstrate
the computation of Green’s
function matrices Gδ�

0 and

Gδ�+1
0 used in Eq. 3 to evaluate

the modified wave equation

(a) (b)
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five rows of these matrices to show how (7) continues for
i = 1, 2, 3, 4, 5

Gδ�+1
0 =

⎡

⎢⎢⎢⎣

0 G(1, 17) G(1, 18) G(1, 19) 0 G(1, 19) G(1, 20) G(1, 21) 0 G(1, 21) G(1, 22) G(1, 23) 0 G(1, 23) G(1, 24) G(1, 17)

0 G(2, 17) G(2, 18) G(2, 19) 0 G(2, 19) G(2, 20) G(2, 21) 0 G(2, 21) G(2, 22) G(2, 23) 0 G(2, 23) G(2, 24) G(2, 17)

0 G(3, 17) G(3, 18) G(3, 19) 0 G(3, 19) G(3, 20) G(3, 21) 0 G(3, 21) G(3, 22) G(3, 23) 0 G(3, 23) G(3, 24) G(3, 17)

0 G(4, 17) G(4, 18) G(4, 19) 0 G(4, 19) G(4, 20) G(4, 21) 0 G(4, 21) G(4, 22) G(4, 23) 0 G(4, 23) G(4, 24) G(4, 17)

0 G(5, 17) G(5, 18) G(5, 19) 0 G(5, 19) G(5, 20) G(5, 21) 0 G(5, 21) G(5, 22) G(5, 23) 0 G(5, 23) G(5, 24) G(5, 17)

⎤

⎥⎥⎥⎦ , (8)

Gδ�
0 =

⎡

⎢⎢⎢⎢⎢⎣

G(1, 2) + G(1, 16) G(1, 3) G(1, 4) + G(1, 6) G(1, 7) G(1, 8) + G(1, 10) G(1, 11) G(1, 12) + G(1, 14) G(1, 15)

G(2, 2) + G(2, 16) G(2, 3) G(2, 4) + G(2, 6) G(2, 7) G(2, 8) + G(2, 10) G(2, 11) G(2, 12) + G(2, 14) G(2, 15)

G(3, 2) + G(3, 16) G(3, 3) G(3, 4) + G(3, 6) G(3, 7) G(3, 8) + G(3, 10) G(3, 11) G(3, 12) + G(3, 14) G(3, 15)

G(4, 2) + G(4, 16) G(4, 3) G(4, 4) + G(4, 6) G(4, 7) G(4, 8) + G(4, 10) G(4, 11) G(4, 12) + G(4, 14) G(4, 15)

G(5, 2) + G(5, 16) G(5, 3) G(5, 4) + G(5, 6) G(5, 7) G(5, 8) + G(5, 10) G(5, 11) G(5, 12) + G(5, 14) G(5, 15)

⎤

⎥⎥⎥⎥⎥⎦
. (9)

In Fig. 14 b, we see that the corner nodes on �+1

are involved twice while the corner nodes on � are never
evaluated. This explains the zero columns in Eq. 8 and the
columns with sums in Eq. 9.

As mentioned before, once we form these four sets of
Green’s function matrices, we solve (3), where we compute
the forward wavefield in the following three steps: (i)
Evaluate the vector of unknowns by solving equation 3,
(ii) extract the scattered field on the boundary of the
local domain and one layer to the interior, (iii) project
the scattered wavefield δu on the receiver locations in the
seismic acquisition using Eq. 2, (iv) add the precomputed
background Green’s function matrix u(s,r)

0 and the projected
scattered wavefield to compute the forward wavefield at
the receiver locations. We thus compute the data residual
and the objective function for the locally perturbed model
using the local solver exclusively. To compute the adjoint
wavefield, we now propagate the residual back to the
truncated domain. We do this by using the same sets of
Green’s functions that we used to project the scattered
wavefield to the surface of the full domain. This is simply
achieved by multiplying the Green’s function matrix uδ�

0
with the data residual. We again solve (3) using the
modified source function on the boundary of the truncated
domain to compute the adjoint wavefield. Just like the
forward wavefield, this adjoint wavefield is numerically
exactly the same as would have been generated by a full
domain solver on the perturbed model. Finally, we use
the numerically exact forward and adjoint wavefields to
compute the numerically exact gradients in the truncated
domain, which is exactly the same FWI gradient as a full
domain Helmholtz solver would have returned.

Appendix 2

Here, we illustrate a computationally efficient rank-
minimization–based framework to solve the source-
separation problem in Section 5.3.1, which is an important

step to make the numerically exact local solver feasible
for the large-scale 3D seismic data acquisition. Rank-
minimization–based formulations are based upon the fol-
lowing three fundamental principles: (i) the underlying
target matrix should exhibit low-rank structure in some
transform domain, (ii) the subsampling-blending operator
should increase the rank or slow down the decay of the sin-
gular values in some transform domain, (iii) a scalable and
computationally efficient rank-minimization framework to
handle large-scale data matrices. Under assumptions (i) and
(ii), the goal of the rank-minimization problem is to find
the matrix of lowest possible rank that agrees with the
experimental observations. This is written as the following
optimization problem:

minimize
X

rank(X) subject to ‖A(X) − b‖2 ≤ ε,

where rank is defined as the maximum number of linearly
independent rows or column of a matrix, b is a set of
blended measurements, and A represents the sampling-
blending operator. Since rank-minimization problems are
NP hard and therefore computationally intractable, [46]
showed that solutions to rank-minimization problems can be
found by solving the following nuclear norm minimization
problem:

minimize
X

‖X‖∗ subject to ‖A(X) − b‖2 ≤ ε, (10)

where ‖.‖∗ = ‖σ‖1 and σ is the vector of singular values
for each monochromatic data matricization. To efficiently
solve equation 10 for large-scale seismic data, we used an
extension of SPG�1 solver [4] developed for basis-pursuit
denoising (BPDNσ ) in [2]. The resulting algorithm which
is dubbed SPG-LR by [2] finds the solution to the BPDNσ

by solving a sequence of robust LASSO (least absolute
shrinkage and selection operator) subproblems:

minimize
X

‖A(X) − b‖2 subject to ‖X‖∗ ≤ τ . (11)

where τ is updated by traversing the Pareto curve. The
LASSO is a regularized regression formulation that seeks
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to do variable selection using a sparsity penalty, whereas
the Pareto curve describes the tradeoff between the data
fit and the nuclear norm of the solution vector. Interested
readers can find a detailed explanation of the Pareto curve
in [4]. Solving each robust LASSO subproblem requires a
projection onto the nuclear norm ball ‖X‖∗ ≤ τ in every
iteration by performing a singular value decomposition
and then thresholding the singular values. In the case of
large-scale seismic problems, it becomes prohibitive to
carry out such a large number of SVDs. Therefore, we
avoid the direct approach to the nuclear norm minimization
problem and follow a factorization-based approach [30, 47,
48]. The factorization-based approach parametrizes each
monochromatic data matrix X as a product of two low-
rank factors L ∈ C

n×k and R ∈ C
m×k such that X =

LRH , where k represents the rank of the underlying matrix
and H represents the Hermitian transpose. The optimization
scheme can then be carried out using the matrices L,R
instead of X, thereby significantly reducing the size of the
decision variable from n×m to k×(n+m) when k ≤ (n, m).
Rennie and Srebro [48] show that the nuclear norm obeys
the relationship

‖X‖∗ ≤ 1

2
‖L;R‖2

F ,

where ‖ · ‖2
F is the Frobenius norm of the matrix (sum of

the squared entries). Consequently, the LASSO subproblem
can be replaced by

min
L,R

‖A(X) − b‖2 s.t.
1

2
‖L;R‖2

F ≤ τ .

where the projection onto 1
2‖L;R‖2

F ≤ τ is easily
achieved by multiplying each factor L and R by the scalar
2τ/( 1

2‖L;R‖2
F ).
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