
Computational Geosciences (2019) 23:169–188
https://doi.org/10.1007/s10596-018-9790-0

REVIEW PAPER

Unstructured Voronoi grids conforming to lower dimensional objects

Runar Lie Berge1 ·Øystein Strengehagen Klemetsdal2 · Knut-Andreas Lie3

Received: 9 May 2018 / Accepted: 10 October 2018 / Published online: 6 November 2018
© Springer Nature Switzerland AG 2018

Abstract
We present a novel mixed-dimensional method for generating unstructured polyhedral grids that conform to prescribed
geometric objects in arbitrary dimensions. Two types of conformity are introduced: (i) control-point alignment of cell
centroids to accurately represent horizontal and multilateral wells or create volumetric representations of fracture networks,
and ii) boundary alignment of cell faces to accurately preserve lower dimensional geological objects such as layers, fractures,
faults, and/or pinchouts. The prescribed objects are in this case assumed to be lower dimensional, and we create a grid
hierarchy in which each lower dimensional object is associated with a lower dimensional grid. Further, the intersection of
two objects is associated with a grid one dimension lower than the objects. Each grid is generated as a clipped Voronoi
diagram, also called a perpendicular bisector (PEBI) grid, for a carefully chosen set of generating points. Moreover, each grid
is generated in such a way that the cell faces of a higher dimensional grid conform to the cells of all lower dimensional grids.
We also introduce a sufficient and necessary condition which makes it easy to check if the sites for a given perpendicular
bisector grid will conform to the set of prescribed geometric objects.

Keywords Voronoi grid · PEBI-grid generation · 3D conforming grids · Fractures · Near-well refinement · Control-point
aligned · Boundary aligned

1 Introduction

The basic geometric description of a petroleum reservoir
consists of a collection of surfaces representing stratigraphic
layering and fault surfaces and horizons representing the
structural architecture. These surfaces delineate the major
compartments of the reservoir and often provide first-order
control on in-place fluid volumes and fluid movement dur-
ing production [3]. To correctly split the reservoir volume
into sub-volumes, build flow units with similar or corre-
lated petrophysical properties, and resolve flow patterns, it
is important that a volumetric simulation grid conforms as

� Runar Lie Berge
runar.berge@uib.no

Øystein Strengehagen Klemetsdal
oystein.klemetsdal@ntnu.no

Knut-Andreas Lie
knut-andreas.lie@sintef.no

1 University of Bergen, Bergen, Norway

2 Norwegian University of Science and Technology,
Trondheim, Norway

3 SINTEF Digital, Oslo, Norway

closely as possible to these surfaces. Early simulation grids
were either simple Cartesian boxes or block-centered grids
used for dipping bedding, in which each rectangular cell
could be compactly represented by four numbers (top depth
and extent in each axial direction). These grid types are
simple to construct, but cannot represent stratigraphy and
structural architecture very well.

To better model sloping horizons, fault planes, and ero-
sion surfaces, corner-point grids were introduced by [33].
These grids consist of hexahedral cells defined in terms of
their eight corner points. The corner points are defined as
pairwise depth values along four lines. Each line is defined
by its endpoints, which are ordered lexicographically so that
they form a quadrilateral areal mesh. These quadrilaterals
will each have an associated vertical stack of cells forming
a pillar that extends downward. In the simplest form, the
coordinate lines are straight vertical lines distributed on a
rectilinear areal mesh, giving rectangular pillars in which
each hexahedral cell is delimited by six planar surfaces.
More generally, the coordinate lines are sloping or curved
lines defined over a curvilinear areal mesh, giving hexahe-
dral cells delimited by bilinear planes. Depth values within
each pillar are typically set so that the cell faces adapt to
the stratigraphic layers of the reservoir. Each pair of depth
values can collapse to a single point, so that cells can model

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-018-9790-0&domain=pdf
http://orcid.org/0000-0002-8490-2284
mailto: runar.berge@uib.no
mailto: oystein.klemetsdal@ntnu.no
mailto: knut-andreas.lie@sintef.no

170 Comput Geosci (2019) 23:169–188

erosion and even collapse to a surface of zero volume.
The corner points of neighboring pillars are defined inde-
pendently, and faults can thus be modeled by adapting the
coordinate lines so that they follow major fault surfaces.
The corner-point format has also been extended to include
patches with local grid refinement to improve resolution
e.g., in the near-well zone.

By construction, corner-point grids have an inherent
Cartesian topology, which is advantageous for simulation.
Unless the reservoir is heavily faulted or has extensive ero-
sion, which both introduce non-neighboring connections,
most cells will have six neighbors, which in turn leads
to discretization matrices with reasonably regular sparsity
patterns. On the other hand, corner-point grids are time-
consuming to generate, require specialized software, have
many subtle geometrical challenges caused by collapsing
points and bilinear cell faces, and can easily give significant
grid-orientation and grid-deviation effects [40] unless care
is taken. The format is also inflexible and unable to accu-
rately represent more complex features like y-shaped faults,
thrust faults, and other overturned structures.

Wells have traditionally been described by the use of rel-
atively simple semi-analytical models (inflow performance
relationships) to capture the large pressure drop that takes
place inside perforated grid blocks [31]. While such mod-
els may be sufficient for vertical or inclined well paths, they
are often less suitable for directional wells, which may be
highly deviated and consist of multiple branches and/or long
and horizontal sections. Modern wells can also have (intel-
ligent) inflow devices to control the fluid flow from the
reservoir to the wellbore. Various techniques are also used
to modify the near-well region to increase injectivity. Accu-
rate and flexible description of well paths and increased
grid resolution in the near-well region is crucial to evaluate
and choose drilling, completion, and production strategies
of advanced wells. Unfortunately, it is difficult to intro-
duce new horizontal or deviated wells with suitable local
grid adaption in a corner-point grid without changing the
grid in large parts of the reservoir. Many have therefore
started looking into more flexible unstructured grids to bet-
ter capture complex fault or fracture systems and highly
deviated well paths. Unstructured grids adapting to lower
dimensional objects are particularly important for so-called
discrete fracture matrix (DFM) models of naturally frac-
tured reservoirs [11, 18], in which the porous matrix is
represented as a volumetric grid cell and the fractures are
represented as lower dimensional objects (surfaces or lines).

Unstructured grids were introduced in reservoir simula-
tion in the late 1980s and early 1990s [9, 14, 15, 30]. The
earliest techniques would embed refinements in a structured
background grid in areas of interest. The perpendicular
bisector (PEBI) grid is a popular choice for creating Voronoi
type grids. The properties of PEBI-grids used for reservoir

simulations are discussed by [39], whereas [5] were among
the first to create a PEBI representation of a full-scale reser-
voir. The main drawback of these early gridding methods
is their inability to represent complex structures, such as
pinchouts and intersections of multiple faults. Later, [2] pro-
posed a method that handles intersection of multiple faults
and faults intersecting at sharp angles. A similar method is
also presented by [24, 38]. Both methods create a protection
layer around faults by use of constrained Delaunay trian-
gulation and are thereby able to recover the faults exactly.
Pinchouts and intersecting faults/fractures planes are treated
by mirroring PEBI-sites (seed points for cell centers used
in the grid generation) around the tracked features. A dis-
advantage with these methods is that they tend to give to
congested PEBI-sites around these features.

In an attempt to countermand these problems, [6]
introduced a conflict-point removal scheme. The method
starts by creating a structured background grid and placing
a set of PEBI-sites equidistant around each fault/fracture
plane to be tracked. Each PEBI-site is given a priority, and
when two sites are too close, the site with lowest priority
is removed. The generated grid conforms to the tracked
planes and has fairly uniform cells. Recently, we extended
the method to also generate conforming cells at intersections
[20], thereby giving a robust method for generating Voronoi
grids with control-point alignment of cell centroids and
boundary alignment of cell faces in 2D. In 3D, the method
only guarantees full alignment away from intersections.
A different approach is taken by [26, 27], who suggest
to place the PEBI-sites by an optimization method that
minimizes the volume of cells cut in two by a fracture. This
method is promising, even though one often needs to treat
the grid manually after the optimization. Especially cells
at fracture intersections can have undesirable geometries,
and fracture planes are not reproduced exactly like in [20].
Another optimization method was proposed by [36] for
discrete fracture-network models to reduce highly skewed
cells and ensure good grid quality around fracture tips and
intersections and in regions of high fracture density. See also
[8] for a dynamic gridding method in which the Voronoi
grid is rearranged locally to account for opening/shutting of
wells and fracture growth.

Many authors have also studied triangular grids adapting
to faults and fractures. A complete review is out of our
current scope, but we mention [4], who present a method for
exactly representing fractures by a triangulation. Methods
for approximating faults and fractures by triangles have also
been investigated [16, 19, 28]. Another method that has
gained popularity in the latest years is the cut-cell method
[12, 13, 23]. This method generates a grid by creating a
mapping from a Cartesian grid to the physical domain,
and then creates general polyhedral cells by cutting the
Cartesian cells by crossing fractures.

Comput Geosci (2019) 23:169–188 171

In this paper, we present a novel method for generating
unstructured Voronoi grids in arbitrary dimensions con-
forming to fractures, faults, well paths and other types of
lower dimensional objects. All objects are assumed to be
piecewise affine, and for some of the algorithms affine.
We will look at two different conformity requirements: (i)
structures that should be traced by faces of the grid, and
(ii) structures that should be traced by cell centroids. Typi-
cally, wells or volumetric representations of fractures should
be traced by cell centroids, whereas lower dimensional
objects such as fractures (in discrete-fracture matrix mod-
els), faults, horizons, and erosion surfaces as well as other
types of internal boundaries should be traced by cell faces.
The special feature of our method is that the grid is built
dimension-by-dimension, starting with endpoints and inter-
sections between constraining lines (and surfaces) in 0D,
which deliminate 1D discretizations along line constraints,
which in turn deliminate 2D discretizations of constraining
surfaces. By building the grid this way, we ensure that it pre-
serves intersections between lower dimensional constraints
and that the cells from a (d −1)-dimensional constraint will
be faces in the d-dimensional grid. Our new method and
its predecessors described in [20] have been implemented
as a separate module called upr in the Matlab Reservoir
Simulation Toolbox (MRST), which is an open-source com-
munity code designed for rapid prototyping and validation
of new models and computational methods for simulating
flow in porous media [21].

2 PEBI-grids

One popular approach to generate Voronoi grids is to construct
them by first creating a Delaunay triangulation of a set of

generating points and then construct the Voronoi grid by
intersecting the perpendicular bisector lines/planes of the
Delaunay triangulation, clipped against the domain bound-
ary. Figure 1 illustrates this procedure. By careful placement
of the points generating the Delaunay triangulation, we
can control the perpendicular bisectors and hence how the
Voronoi grid adapts to lower dimensional constraints. In
the petroleum literature, such grids are usually referred to
as perpendicular bisector (PEBI) grids, whereas the term
Voronoi is most common in other fields of science. In the
following, we will use the two terms interchangeably.

This section explains the process of generating PEBI-
grids conforming to control points and to internal bound-
aries. To simplify the discussion, we introduce some more
terminology. Let Sd = {si}i=1...n be a set of generating
points (or sites for brevity) in R

d . The subscript on Sd is
dropped if it is obvious from the context which dimension
we are referring to. In all algorithms, we work with three
different sets of sites: well sites, fracture sites, and reservoir
sites. Well and fracture sites are created to make the grid
conform to control points and internal boundaries, respec-
tively. Reservoir sites are all other sites that generate the
background grid.

To define the PEBI/Voronoi grid, we say that a point x
belongs to a Voronoi cell �i if it is at least as close to si as
any other sites in S; that is, �i = {x : x ∈ R

d , |x − si | ≤
|x − sj |, j = 1, . . . , n}. The PEBI-grid is then defined
as the set of all Voronoi cells. This grid is the dual of
the Delaunay triangulation of the set of well, fracture, and
reservoir sites, as proven in Appendix B. In the following,
we only consider so-called clipped Voronoi diagrams, for
which the infinite Voronoi diagram is restricted to a bounded
set � ⊂ R

d by clipping the outmost cells so that �clipped
i =

�i ∩ �; see [1] or [41] for more details. Figure 1 shows the

Fig. 1 Construction of a Voronoi grid from a point set by use of Delau-
nay triangulation. We start by specifying a set of generating points
(blue dots), and then compute the corresponding Delaunay triangula-
tion, defined so that no generating point falls inside the circumcircle
of the triangles in the triangulation. The circumcenter (purple dots) of
each triangle lies at the point where the three perpendicular bisectors of

the triangle intersect. The Voronoi diagram is obtained by connecting
the circumcenters along the perpendicular bisectors; hence the name
PEBI. By construction, the Voronoi diagram extends to infinity and
must therefore be clipped against the domain boundary to define a
finite grid (here shown as dashed lines)

172 Comput Geosci (2019) 23:169–188

most important duality properties between PEBI-grids and
Delaunay triangulations. A thorough description of PEBI-
grids and Delaunay triangulations is out of the scope of this
paper. Instead, we refer the interested reader to the textbook
by [35].

In the rest of the section, we first introduce our control-
point conformity, which ensures that certain cell centers in
the grid conforms to curvilinear paths. The primary example
would be a deviated well path. Next, we present our novel
approach to generate grids where the faces conform to (d −
1) dimensional objects, as well as to the (d − i) dimensional
intersection of these objects for i ≤ d. The primary
examples here would be intersections of fault surfaces or
fractures. For brevity, the two types of conformity are
henceforth referred to as wells and fractures for simplicity,
even though the same techniques can be used to adapt
to other lower dimensional objects like faults or horizons.
Once the two types of conformity have been introduced,
we step back and present an improved algorithm that works
for 2D grid and 3D grids with triangulated face constraints,
before we discuss how to optimize this algorithm to improve
the cells around fracture–fracture, fracture–well, and well–
well intersections. Finally, we discuss various methods for
generating reservoir sites.

2.1Well sites

In reservoir simulation, the diameter of the wellbore will
typically be much smaller than the size of the grid cell.
To account for the significant pressure variation from the
sandface to the wellbore, which for most field and sector
models takes place on a subscale inside each perforated
cell, it is common to use an analytical or semi-analytical
inflow performance relationship of Peaceman type [31].
These models are most accurate when the wellbore passes
through the centroid of each perforated cell. To maximize
accuracy, a good grid should therefore trace wells using cell
centroids. In a high-quality PEBI grid, the cell centroids
coincide with their respective sites [7]. We therefore place a
set of well sites along each well trajectory with the distance
between consecutive sites given by a user-defined function.
Because PEBI-grids are created as the dual of a Delaunay
triangulation, we therefore require that consecutive well
sites belonging to the same well segment should be
connected by edges in the Delaunay triangulations of the
sites. Consecutive well sites will then be neighbors in the
dual PEBI-grid.

Definition 1 (Well condition) If s1 and s2 are two
consecutive well sites, the well condition is satisfied if
the circle centered at the midpoint of the two sites and
intersecting both of them does not contain any other sites
from S.

Fig. 2 The well condition is satisfied if the interior of each circle does
not contain any sites

Circles defining the well condition are shown in Fig. 2.
When the well condition is satisfied, the line segment
between s1 and s2 is so-called strong Delaunay and will be
an edge in the associated Delaunay triangulation [35]. Fur-
ther, from the duality of PEBI-grids and Delaunay triangu-
lations, the neighbor edge in the PEBI-grid will contain the
midpoint of the edge [1]. Figure 3 shows a grid adapted to a
single curved well trajectory, in which the distance between
well sites increases slightly along the well path. Because the
well condition is satisfied, the neighbor edge between two
consecutive well sites always intersects the well trajectory.

To better capture the symmetric flow in/out of wells, [10]
suggested to add a protection layer around the well trajec-
tories to make well cells with more regular shapes. [36]
showed that one can create cells that explicitly represent the
radius of a well by adding protection sites around the well
sites. To add a layer of protection sites in 2D, we trace each
well trajectory and place the protection sites normal to the
resulting curve. Each well site will have two protection sites,
one on each side. Figure 4 shows one well with a protection
layer. The distance δ the protection sites are placed from
the curve also equals the diameter of the corresponding well
cell. We allow the distance δ to vary along the curve. This
is also practical if we for example wish to create explicit
volumetric representation of fractures with varying width
[36]. In the figure, the distance function is perturbed slightly
for each set of protection sites for illustration purposes. As
noted by [20], this may introduce very short faces and these
should preferably be eliminated as shown in Fig. 4c, to make
the grid more suitable for discretization of flow equations.

Fig. 3 A grid adapting to the path of a single well. The blue line is the
well path, and the blue points the well cell centroids

Comput Geosci (2019) 23:169–188 173

Fig. 4 Illustration of a trajectory with a protection layer. Black points
are well sites, while orange points are protection sites. The distance
δ from a well site and its protection sites also equals the diameter

of the corresponding well cell. In (c) we have postprocessed the grid
and removed any short edges. Unlike the unprocessed grid in (b), the
processed grid in (c) is not strictly PEBI locally around the well

2.2 Fracture sites

The final goal in this section is to obtain a PEBI-grid in
which the faces of the cells conform to fractures. However,
before we start describing the steps in our gridding
algorithm, it is useful to understand its motivation. The faces
conforming to a fracture will define a lower dimensional
grid of the restriction of the domain to the fracture. For
a reservoir in 3D, the conforming faces will define a 2D
grid of the fracture. Equivalently, for a 2D reservoir, the
conforming faces will define a 1D grid. In this way, we can
create a hierarchy of grids. If the reservoir is of dimension
d, each fracture can be described by a grid of dimension
d − 1, whereas the intersection of two fractures can be
associated with a grid of dimension d − 2. In general, the
non-degenerate intersection of n fractures can be associated
with a grid of dimension d − n. This structure gives us a
natural way of building the d-dimensional grid from bottom
up: First, the zero-dimensional grids are built. From this, we

build one-dimensional grids, then two-dimensional grids,
and finally the three-dimensional grids. We note that the
task of creating a conforming d-dimensional grid is reduced
to the following problem: Given a grid Gd−1 of dimension
d − 1 defined by the sites Sd−1, how can we create a PEBI-
grid Gd of dimension d so that the faces of Gd conform to
the cells of Gd−1?

To answer this question, we will first give a necessary
and sufficient condition on the sites Sd of Gd . We will
later see that an algorithm for generating conforming grids
in 2D follows naturally from this condition. Repeating the
same construction in 3D is not that straight forward, but
the condition will give us a way to prove that a simpler
algorithm works. We can also easily check whether our
grid will conform to a fracture or not, even before we have
created the grid. Let fp be a facet of dimension p from
the grid Gd−1. This means that fp is a cell of Gd−1 for
p = d − 1, a face (or edge) for p = d − 2, and a vertex for
p = 0. See Fig. 5 for an illustration. The facet fp is also a

Fig. 5 The p-dimensional facet fp of grid Gd−1 exists in grid Gd

if for at least d − p + 1 sites in Sd , any ball centered in fp , inter-
secting the sites, does not contain any sites from Sd . In (a), f1 is
a cell of the purple 1D grid. Any circle centered in f1, intersecting

the neighbor sites, does not contain any other sites in S2 (blue dots),
thus f1 is a face in the 2D grid. In (b), f1 is a vertex of the purple 1D
grid. The circle intersect four sites from S2, but contains none in its
interior, thus f0 is also a vertex in the 2D grid

174 Comput Geosci (2019) 23:169–188

facet inGd if there exists a set of at least d−p+1 sites from
Sd such that for any point on fp, we can draw a ball centered
at this point, intersecting all sites of the set, and the interior
of the ball does not contain any sites from Sd . This condition
can easily be deduced from the definition of a PEBI-grid.
Further, if Gd conforms to Gd−1, this condition must be
satisfied for all facets in Gd−1. To check this condition for
all facets is quite cumbersome, especially for the higher
dimensional facets. Luckily, under two assumptions, we can
simplify the condition and only consider the vertices of
Gd−1 (i.e., f0). For each cell in Gd−1, we associate the two
sites in Sd that have fd−1 as the face between them. The first
assumption we make is that the union of the balls centered at
the vertices of fd−1 and intersecting these two sites contains
any other ball intersecting the sites and centered anywhere
in fd−1. The second assumption is that a vertex in Gd−1

should be connected to at least d cells in Gd−1. Note that
both of these assumptions hold true if Gd−1 is a PEBI-grid,
but is also valid for other grids, e.g., triangle grids. It is then
necessary and sufficient to only check these balls around
each vertex:

Definition 2 (Fracture condition) Let s1 and s2 be two sites
in Sd associated with a cell fd−1 from Gd−1. For each of
the vertices of fd−1, we draw a ball centered at it which
intersects s1 and s2. The fracture condition is satisfied if the
interior of all of these balls does not contain any site from
Sd .

If the fracture condition is satisfied for all cells in Gd−1, the
grid Gd is guaranteed to conform to the lower dimensional
grid. It is worth noticing that there should be one unique
ball around each vertex. This means that if v is a vertex and
Cv

d−1 is the set of all cells from Sd−1 which are connected
to v, the fracture condition must be satisfied with the same
radius for all cells in Cv

d−1.
At the boundary of Gd−1 the second assumption above

is not necessarily valid for a PEBI-grid anymore. A vertex
at the boundary may be connected to d or fewer cells, e.g.,
see the vertices on the dashed boundary of Fig. 5 which
are connected to one or two cells. We therefore need to
add more sites around each vertex on the lower dimensional
boundary. There are two requirements on the position of
these vertices: They should lie on the ball from the fracture

condition, and they should not violate the fracture condition
for any other balls. We will discuss this in more detail in the
2D gridding below.

2.3 Algorithm for fracture sites in arbitrary
dimensions

As mentioned above, we build the grids in order of
dimension, from the 0-dimensional grids through the d-
dimensional grid. In the above discussion, we did not
require that the lower dimensional grid Gd−1 to be PEBI,
and below we will discuss the special case when it is a
triangular grid. However, in this section we will present
an algorithm where the grids in each dimension will be
PEBI and built in such a way that the faces of the grid of
dimension d correspond to the cells of the grid of dimension
d − 1. For d = 3, this means that the cells of the 0D grids
will be faces of 1D grids, the cells of the 1D grids will be
faces of the 2D grids, and the cells of the 2D grid will be
faces of the 3D grid. Equivalently, 0D, 1D, and 2D cells will
be vertices, edges, and faces, respectively, in the 3D-grid. In
this section we will assume the fractures are planar.

Assume we are given the sites Sd−1 of a lower
dimensional PEBI-grid Gd−1. The steps in the following
algorithm are demonstrated in Fig. 6. For each site in Sd−1,
we make two duplicates and move them a step length
γd in the positive and negative normal direction of the
corresponding cell. Using the fracture condition above, it is
easy to show that the cells of Gd−1 will now be faces in
Gd : Since Gd−1 is a PEBI-grid, the distance from a vertex
to the sites associated with it, will have the same distance,
κd−1. This can be seen in Fig. 1b where the dashed circle
has radius κ2. The distance from all associated sites in Sd

to the vertex will then be κd =
√

κ2
d−1 + γ 2

d . The fracture
condition then says that as long as all the interior of these
balls around the vertices of Gd−1 are empty, all the facets
of Gd−1 will be contained in Gd . To create a conforming
grid we see that there are two things we have to be careful
about. We are given some restrictions on where we can place
the reservoir and well sites as to not violate the fracture
condition. Also, we need to choose γd small enough so
that the sites from one fracture does not interfere with the
fracture condition on other fractures. It is also worth noting
that κd−1 will in general be different for each vertex, but

Fig. 6 Sites around an
intersection. Black point is the
0D site, red points the 1D sites,
and blue points the 2D sites

Comput Geosci (2019) 23:169–188 175

γd should be chosen the same for all grids of dimension d

connected by an intersection. If it was chosen to be different
for two grids that share a vertex, the fracture condition
would be violated for this vertex. We will see later that we
easily can relax this requirement for the special case of 2D
and certain cases in 3D, but in general, changing the radius
of one ball would require us to solve a non-linear problem
to find the radii of all other balls.

In the implementation, we start with the 0-dimensional
grids G0, which represent intersections of at least d

fractures. S0 is just a point and trivial to grid. By using the
above approach we can grid the 1D grids; for each of the
0D grids, we find the corresponding 1D lines that created
this 0D point. We place a set of sites a distance ±γ1 from

the intersection point, while the rest can be placed however
we like, as long as the fracture and well condition is not
violated. To generate the S2 sites we take the S1 sites and
place them a distance ±γ2 from the 1D lines. Last, we
take the S2 sites and place two duplicates on each side
of the fractures with a distance γ3. Notice that we never
used information about the vertices, edges, or faces of the
lower dimensional grids. The only information we need is
the location of the Sd−1 sites and the normal vector of the
plane. We can therefore avoid creating any of the lower
dimensional PEBI-grids to save some computational time.
The cost of this is that we are not able to check if the spheres
around each vertex have empty interior. A simple case of
three intersecting fractures is shown in Fig. 7.

Fig. 7 Intersections of three
surfaces in 3D are shown in (a).
(b) shows, in descending order,
the corresponding 0D, 1D, 2D,
and 3D grids. The 3D grid is
opened along the disk surface

176 Comput Geosci (2019) 23:169–188

Fig. 8 The creation of fracture
sites f1, f2, f3, and f4, from the
1D vertices v1, v2, and v3. The
fracture condition is satisfied if
the interior of the three circles
does not contain any sites

2.4 Algorithm for fracture sites conforming
to simplices

If we are in the special case that all cells of the lower
dimensional grid Gd−1 have exactly d vertices (i.e., they
are simplices), we are in luck as we now much easier can
manipulate the radii of the fracture condition spheres. This
is especially relevant for 2D gridding, as a 1D cell has
exactly two vertices. It can also be relevant for 3D gridding
if the fractures are given by a triangulation. For this section
we assume that the fractures are piecewise planar over each
simplex.

Let us first restrict ourselves to the 2D case (d = 2), and
see how the fracture condition gives us a straightforward
algorithm to find the sites S2. In this case, a fracture is
described by a line. The line is divided up in line segments,
which defines 1D cells. We let V = {vi} be the vertices
of the 1D grid ordered such that cell ci has vertices vi and
vi+1. We draw a circle around each vertex and require the
two circles of a 1D cell to intersect, which gives us an upper
and lower bound on the radii of the circles:

|R(vi) − R(vi+1)| ≤ di ≤ R(vi) + R(vi+1). (1)

Here, di is the distance between the two vertices vi and vi+1.
The fracture sites {fj } are placed where two circles intersect.
If Ri is small, the fracture sites will be placed close to the
fracture curve, and if Ri is large, the fracture sites will be

placed far from the fracture curve. In Fig. 8, we see a single
fracture where the radii have been chosen randomly for each
vertex. By construction, the site pairs f1f2 and f3f4 satisfy
the fracture condition as long as we do not place any well or
reservoir sites inside the generating circles.

For the boundary vertices of the 1D grid this procedure
only adds two sites, but to define a vertex in a 2D grid
we need at least three sites. Thus, a third site has to be
added for each boundary vertex. As mentioned in the section
about the fracture condition, there are two requirements for
the position of the site; it should be placed on the circle
drawn around the vertex, and it should not lie inside any of
the other circles. We have chosen to place the site on the
intersection of the circle and the tangential line of the 1D
grid as shown in Fig. 9.

We will discuss 2D gridding in more detail below, in
particular how the flexibility of being able to freely choose
the radii enable us to obtain high-quality cells around
fracture intersections. However, first, we note that we can
generalize this algorithm for fractures defined by simplices
in higher dimensions. In this paper we do not discuss how
to generate a simplex grid of a d − 1 object, but assume it
is given. We start by drawing a sphere around each vertex
of the simplex grid and place the sites at the intersection of
these spheres. Since each lower dimensional cell has exactly
d vertices, the intersection of the corresponding d spheres
gives us exactly two points. If we place the fracture sites of

Fig. 9 Treatment of boundary
vertices. For the boundary vertex
of the 1D grid we need to add an
extra tip site shown as a green
point. This should be placed on
the circle of the boundary vertex

Comput Geosci (2019) 23:169–188 177

Fig. 10 Reservoir consisting of three blocks separated by fractures.
Well cells are colored blue, while the lower dimensional grids of the
fractures are shown as red surfaces

Sd at these intersections, the fracture condition is satisfied.
We can then freely choose the radii of the spheres, but of
course bounded by the requirement that the spheres should
intersect. It is crucial that the lower dimensional grid only
consist of simplices; if a cell has d + 1 or more vertices we
cannot choose the radii of each sphere independently, as the
intersection of d + 1 or more spheres creates degeneracies.
Figure 10 shows an example of a 3D grid with two fractures
that are represented by a triangulation.

2.5 Improving intersections in 2D

The algorithms introduced above for generating well and
fracture sites are sufficient to give good grids as long
as the individual well trajectories and/or fracture lines do
not cross each other at sharp intersections. At such sharp
intersections, additional care should be taken to ensure that
the grid conforms in a feasible manner. There are three types
of intersections a robust grid generator should handle: well–
well, well–fracture, and fracture–fracture intersections. Our
grid generator handles all these cases automatically, as well
as harder cases such as the intersection of multiple fractures.

2.5.1 Well–well intersections

When two well trajectories cross, we have to be careful
when placing the well sites. If we place the sites of each
well independently, consecutive sites will in general not
be connected by Delaunay edges over the intersection. We
may also create small and badly shaped cells. To treat
these cases, all well paths are divided into segments by the
well intersections. A well segment does not intersect any
other well segments, except possibly at the endpoints. When
we place the well sites, we first place a well site at each
intersection. A well site at an intersection is shared by all
well segments starting or ending in this intersection. The
remaining well sites are placed along the well segments as
normal. Figure 11 shows the intersection of two wells. The
yellow site is shared by both wells, and the other sites are
in this case placed equidistant along the well curves. This
method ensures a consistent size of the well cells, even at
intersections of multiple wells.

2.5.2 Fracture–fracture intersections

In a reservoir, it is common to have multiple fractures.
Creating the fracture sites can then be much harder, as the
fractures may intersect. The following algorithm handles
the hard cases shown in Fig. 12, which are common in a
reservoir.

If we place the fracture sites for each fracture inde-
pendently, we will in general not be able to represent the
fractures exactly. At the intersection of two fractures, frac-
ture sites from either fracture may interfere with each other
and violate the fracture condition.

At each intersection, which corresponds to a 0D grid,
we place a circle that is shared by all fractures ending in
that intersection. The other circles are placed as normal
along the fracture segments. We color all intersection circles
blue, and all neighbor circles of blue circles are colored
red. On each red circle, one of three actions is performed:
(i) Nothing is modified, (ii) the radius is changed, (iii) the

Fig. 11 Intersection of two well
trajectories (black lines). Blue
points are well sites for the
diagonal well, red points are
well sites for the vertical well,
and the yellow point is a shared
well site

178 Comput Geosci (2019) 23:169–188

Fig. 12 Three hard cases to grid.
a Fractures intersecting at sharp
angles. bMultiple fractures
intersecting. c Fractures that are
barely intersecting

circle is merged with another red circle. If the interior of a
circle does not contain any sites, it is not modified. If the
interior of a circle contains a fracture site fi , we locate the
red circle that generated fi . These two circles are tagged as
conflict circles. The radii of the conflict circles are shrunk
as shown in Fig. 13. The new radii are chosen such that the
blue circle and the two red circles intersect at the midpoint
of the two fractures. When multiple fractures intersect, a
circle might have multiple conflict pairs. We then calculate
the new circle radius for each conflict pair and choose the
smallest of them. If the radius of a red circle is shrunk too
much, it might violate the radius condition of Eq. 1. For
those cases, we locate the other red conflict circle sharing a
fracture site with this circle. These two circles are merged
to one circle centered at the midpoint of them. The merged
circle is colored blue, and we repeat the procedure above.
Figure 14 shows one iteration of the merging. In this case
two sets of conflict circles are merged, one on each side
of the intersection. This is enough to satisfy the fracture
condition. If the intersection had been sharper, more than
two pairs of circles might have been merged recursively.

An alternative to the merging of circles is to insert a
new 1D cell between the two circles that do not intersect as
shown in Fig. 15. This is equivalent to a grid refinement of
the 1D cells. This approach represents the fractures exactly
at the cost of adding more cells.

Our method of splitting fractures into fracture segments
and placing circle centers along these segments makes it
easy to handle barely intersecting fractures. If a fracture
segment is shorter than a specified length, we do not place
any circles along it. In our implementation, we have set this

minimum length to be 80% of the desired length between
circle centers.

2.5.3 Well–fracture intersections

The last type of intersection we need to consider is well–
fracture intersections. As for the two other cases, all
fractures and wells are split at the intersections. Figure 16
shows the intersection of a well and a fracture. The first
circle center of a fracture segment starting in a well–fracture
intersection is placed half a step length from the start.
Equivalently, the last circle center of a fracture segment
ending in a well–fracture intersection is placed half a step
length from the end. The two fracture sites created from
the circle before and after the well–fracture intersection are
labeled as well sites. These two sites are the first and last
well site for the well segments starting and ending in the
intersection, respectively.

In the case that well paths have higher priority than
representing fractures, the construction can be modified so
that the well sites are placed exactly on the well path, which
will introduce a local deviation in the representation of the
fracture surface.

2.6 Generating reservoir sites

The reservoir sites can be placed any way that may fit the
current problem as long as they do not violate the well and
fracture conditions. The most obvious choice is to create a
structured grid by placing sites equidistant in each direction
or on a rectilinear mesh. We can then make use of the

Fig. 13 Merging two conflict
sites in a pinch-out. The orange
lines are two intersecting
fractures and red points the
fracture sites

Comput Geosci (2019) 23:169–188 179

Fig. 14 The procedure of
merging circles. a The circle at
the intersection is colored blue,
and its neighbors are colored
red. The radii of the red circles
are shrunk until they intersect
the blue circle at the same point.
The red circles now do not
intersect with their neighbors
and are therefore merged. b The
merged circles are colored blue,
and their neighbors are colored
red. The green circle is already
processed and is therefore not
colored red. The procedure from
(a) is repeated until the fracture
condition is satisfied. c An
associated grid

simplicity of the Cartesian topology away from the wells
and fractures. When placing the reservoir sites, we ignore
all fractures and wells. After the reservoir sites are created,
we remove any sites violating the fracture or well condition.
The resulting grid is then guaranteed to conform to fractures
and wells. Some cells might still be small or badly shaped
even if the fracture and well conditions are satisfied. We
therefore also remove sites that are too close to each other. A
grid size is defined for each well and fracture site. For well
sites, the grid size is the distance between two consecutive
well sites. For fracture sites, the grid size is set to the
distance between the two sites that are generated by the
same two circles. If a reservoir site is closer to a well or
fracture site than that site’s grid size, the reservoir site is

Fig. 15 An alternative to the merging procedure in Fig. 14. a Here two
new 1D cells have been inserted for each fracture. The green circles
are equal to those seen in Fig. 14a. The refinement towards the fracture
intersection is enough to avoid the problems of non-intersection
circles. If the intersection had been sharper a larger refinement would
have been needed. b An associated grid

removed. This ensures that the well- and fracture-cells have
a consistent size.

There are many different methods to choose from to
create a fully unstructured grid. Herein, we have chosen
to place the reservoir sites using the force-based method
proposed by [32]. One reason is that this method is available
as a free open-source implementation in MATLAB. The
method associates the edges in the Delaunay triangulation
with springs, whereas vertices are associated with joints
connecting the springs. An initial triangulation is given, and
the algorithm then finds an equilibrium position for the
vertices. When solving for equilibrium, the well and fracture
sites that have been created using the algorithms explained
above are set as fixed points; that is, they are not allowed
to move during the optimization procedure. For a detailed
description of this method we refer the reader to [32] or
Appendix A.

As an alternative to the force-based method, we can use a
similar algorithm to optimize the PEBI-grid directly instead
of optimizing the dual Delaunay triangulation. We define
the Centroidal PEBI-grid (CPG) energy function as [7, 17]

F(s) =
n∑

i=1

∫

�i∩�

|y − xi |2d y.

The variable s = [
s�1 , . . . , s�n

]�
is a vector of the PEBI-

sites. The variable xi is the mass centroid for PEBI-cell �i .
A necessary condition for F to be minimized is si = xi , that
is, the PEBI-sites coincide with the mass centroids [7]. The
gradient of F is

∂F

∂si
= 2Ai(si − xi),

where Ai is the area of the associated PEBI-cell. It was long
thought that the energy function at most was continuous
because of changes in topology when sites are moved.
However, [22] proved that the energy function is two times

180 Comput Geosci (2019) 23:169–188

Fig. 16 Intersection of a
fracture (red) and a well (blue).
The fracture sites are placed as
close as possible to the well
trajectory. The fracture sites at
the intersection are labeled as
well sites

differentiable for convex domains and almost always two
times differentiable for non-convex domains. The exact
Hessian is given explicitly [17, 22], and we can therefore
use Newton’s method to find the minimizer of the energy
function. The computation of the Hessian is nonetheless
expensive, and [22] showed the advantages of using quasi-
Newton methods. Specifically, they show that the L-BFGS
algorithm [29] performs better than both Newton’s method
and fixed-point iterations.

To be able to use the CPG formulation on a gridwith fracture
and well sites, we propose a small change to the gradient.
The fracture and well sites are treated as fixed points, that
is, we do not move them during the optimization procedure.
We incorporate this into the L-BFGS algorithm by setting the
derivatives ∂F

∂si
with respect to fixed points to zero. By doing

so, the L-BFGS algorithm does not move the fixed points,
and the resulting grid will conform to fractures and wells.

A comparison of the three methods for placing reservoir
sites is shown in Fig. 17. The two optimization methods
have more uniform cells than the Cartesian background grid.

Also, the cell centroids for the optimization methods are
very close to the well trajectory.

Figure 18 summarizes the overall algorithm for generat-
ing a grid with control-point and boundary alignment for the
case of an optimal Delaunay background grid.

3 2.5D grids

It is not uncommon for an oil reservoir to have very large
aspect ratios. An oil reservoir can stretch kilometers in
the lateral directions, but only tens to hundred meters in
the vertical direction. Reservoirs also have a natural and
inherent layering since the rock is formed by a sedimen-
tation process that creates horizontal or slightly inclined
layers of deposits that are highly important to represent
accurately in the grid. So-called 2.5D grids take advan-
tage of the flexibility of 2D gridding to create unstructured
tessellations in lateral direction, while retaining the sim-
plicity of a Cartesian topology in the vertical direction.

Fig. 17 Three grids of a reservoir. The reservoir has two wells (blue
lines) and two fractures (orange lines). The well and fracture sites
are the same for all three grids and are created using the methods

described herein. The reservoir sites are created by three different
methods: a Cartesian grid, optimizing the dual Delaunay triangulation,
and minimizing the CVD energy function

Comput Geosci (2019) 23:169–188 181

Fig. 18 Illustration of the overall
algorithm used to generate grids
with control-point alignment to
two blue curves and boundary
alignment to a red line. First, we
generate well sites along the
blue curves (blue dots), fracture
sites (red dots) on opposite sides
of the red lines and tip sites
(green dots). Next, we distribute
reservoir sites throughout the
whole domain with a refinement
towards the two well paths to
generate a finer grid in the
near-well region. In the last step,
we first compute a Delaunay
triangulation of the sites and
then construct the corresponding
clipped Voronoi diagram

Such grids offer a relatively simple means of introducing
local adaption with increased resolution laterally and have
become very popular in parts of the industry [2], e.g., to
accurately represent hydraulic fracturing around horizontal
wells [37].

A 2.5D grid is created by generating a 2D areal
tessellation and then projecting or extruding this to three-
dimensions in the vertical direction, see e.g., [25] for a more

extensive discussion. To this end, one starts by constructing
a set of grid lines that each passes through a vertex in the
areal grid. The grid is extruded along these lines, as shown
in Fig. 19, so that each cell in the lateral tessellation gives
rise to a pillar of volumetric cells. By default, the pillars
are vertical, but can also be set to follow major faults or
other vertically inclined surfaces that need to be represented
accurately. The hard part of creating a 2.5D grid is the

Fig. 19 The creation of a 2.5D
grid. First, a 2D layer is gridded
(red layer) and a set of pillars is
placed through all vertices.
Then, the grid is extruded along
the pillars. Figures from [21]

182 Comput Geosci (2019) 23:169–188

Fig. 20 Reservoir with
hydraulic fractures. Natural
fractures are shown in red,
hydraulic fractures in green, and
the blue line is a well. The right
figure shows the corresponding
grid for this reservoir, where the
well cells have been colored blue

choice of grid lines in the z-direction and the length each
cell is extruded along these lines, as well as extruding
vertically between multiple sets of areal tessellations.

4 Examples

In the following, we present a few examples to illustrate the
capabilities of our gridding framework and the many types
of adapted grids that can be generated.

Example 1 (Fracture networks) We start by two examples
of areal grids that adapt to fracture networks. Inspired by
hydraulic fracturing, we first create a grid of a reservoir with
natural fractures and hydraulic fractures extending from
a horizontal well, depicted in Fig. 20a. The fracture and
well sites are placed using the 2D algorithm, while the
reservoir sites are placed by optimizing the dual Delaunay
triangulation. The corresponding grid is shown in Fig. 20b
and includes refinement towards the fractures to obtain a
higher resolution in these areas.

Fig. 21 Fractures generated
from stochastic variables. Left
figure shows the full reservoir,
while the right figure shows a
zoom-in of the green dashed
square

Comput Geosci (2019) 23:169–188 183

As a second illustration, we consider a statistical frac-
ture network previously discussed by [34] (The data set
is publicly available in the hfm module of MRST). The
fracture system consists of 51 fracture lines that have
been generated by sampling stochastic variables defin-
ing the orientation, length and position for each frac-
ture. Altogether, the lines form 31 disconnected fracture
networks as shown in Fig. 21. Stochastically generated frac-
ture networks can be challenging to grid due to the common
occurrence of small angles, fractures barely intersecting,
and fractures arbitrary close, but not intersecting.

Both these examples show how our algorithm can create
high-quality grids of complex geometries with minimal
effort, due to the automatic handling of intersections and
local grid refinement.

Example 2 (2.5D PEBI-grid) An important reason for
having a robust 2D gridding algorithm is to be able to
extrude the grids to form 2.5D volumetric grids. The grid
shown in Fig. 22 is generated by our 2D algorithm and then
extruded to 3D along vertical lines. We have refined the
cell size towards the wells, and this grid refinement is also

Fig. 22 A 2.5D grid of a fractured reservoir. The fracture faces and
well cells in red and blue, respectively

respected by the 1D grids. In our implementation, we set
the radius of the circles around each vertex in the 1D grids
as a function of the 1D cell-size, so that we in this way can
automatically handle the local grid refinement also for cells
along the fractures.

Example 3 (3D Voronoi grid with multilateral well) In the
next example we show how our gridding algorithm can
make a 3D Voronoi grid that conforms to a complex mul-
tilateral well. The well path depicted in Fig. 23 curves
horizontally in the domain and splits into multiple branches.
The grid was made by first placing the well sites using our
conforming algorithm. Reservoir sites were then subse-
quently optimized by use of the CPG algorithm.

Example 4 (3D fracture network) Figure 24 shows an exam-
ple of a Voronoi grid conforming to a 3D fracture network.
The fracture network consist of six fractures (2D con-
straints), 11 fracture intersections (1D constraints), and four
intersections of intersections (0D constraints). The grid is
generated by the general algorithm described in Section 2.3.
The reservoir sites of the 1D grids are placed equidistant

Fig. 23 A 3D grid with polyhedral Voronoi cells conforming to a well
path

184 Comput Geosci (2019) 23:169–188

Fig. 24 A fracture network
consisting of six fractures. The
top figure shows the 2D grids of
the fracture network. The
bottom figure shows the 3D grid
of the same network opened up
along the plane of the large
circular fracture in the middle

along the intersection lines. The reservoir sites of the 2D
grids are place using the optimal Delaunay triangulation,
while the reservoir sites of the 3D grid are placed using the
CPG-gridding.

Building each grid separately enables us to choose the
appropriate algorithm for creating the background grid, not
only between dimensions, but also between two different
grids of the same dimension. When generating the 2D
grids, we are not able to use the improved techniques
described in Section 2.4, because if we were to change the
radius of a circle around a 1D vertex when creating a 2D
grid, this radius has to be changed for all other 2D grids
connected to this 1D vertex. As a result, some of the cells
around 1D intersections are of lower quality. Implementing
the required connection between 2D grids is out of the
scope of this paper, and will be left for further work. In
2D, boundary vertices of the 1D intersections are captured
exactly by adding an extra site. This has not yet been
implemented in 3D. Faces representing fracture boundary
cells thus are slightly larger than the prescribed fracture
planes. Elsewhere, the faces, edges and vertices of the grid
conform exactly to the lower dimensional grids.

In some cases, one may want to consider the rock matrix
as impermeable, and only run the fluid simulations on
the fracture network. This is easily incorporated in our

gridding algorithm by only constructing grids for the lower
dimensional constraints and not the 3D matrix volume.

5 Closing remarks

We have presented a method for generating PEBI-grids
that conform to different geometric structures in subsurface
reservoirs. Our method successfully creates both control-
point aligned grids and boundary aligned grids in arbitrary
dimensions. Our fracture condition gives a natural algorithm
for creating boundary conforming grids in 2D and 3D.
For the simpler case of 2D, we presented a more flexible
algorithm with the following key advantages: (i) user-
specified grid refinements allows for higher resolution in
areas of interest; (ii) more robust handling of intersections;
and (iii) high-quality cells even in constricted areas.

Through several examples, we have illustrated the
flexibility and given indication of the robustness of our
methods for generating 2D, 2.5D, and 3D grids. These
examples show some of the possibilities of the algorithms
presented in adapting to lower dimensional constraints.
Especially, the ability to create PEBI-grids that conform
exactly to fractures in 3D is, to the best of our knowledge, a
novel contribution to the literature.

Comput Geosci (2019) 23:169–188 185

Our hierarchical method for generating adapted 3D
Voronoi grids is, in the way it has been presented herein,
limited by the fact that constraints are only communicated
upward from a lower dimensional grid to a higher
dimensional grid. A resulting issue is that there is generally
no guarantee that sites of one fracture do not interfere with
the fracture condition of another. This can happen if two
fractures intersect at very sharp intersections, or lie close
to each other, but do not intersect. We can resolve this
issue to a large extent by refining the grid and our methods
support the use of local grid refinement to avoid excessive
number of cells. The algorithm can be improved by allowing
for communication between different constraints of the
same dimension so that the gridding of lower dimensional
grids can be optimized with respect to each other. Herein,
we have only presented this possibility in 2D, for the
case of representing sharp fault or fracture intersection.
In our experience, such a scheme improves grid quality
significantly. We believe a similar approach is possible also
in 3D, but have not yet implemented and tested it properly.

To what extent the methods presented above can be
applied to efficiently mesh very large models is an open
question. We believe that the algorithms presented herein
should be relatively easy to include in existing PEBI
meshing generators. By using a Cartesian background grid,
you are only limited by how fast you can generate a
PEBI-grid. In our MATLAB prototype implementation, the
computational cost of creating fracture and well sites is
low compared to the cost of generating the PEBI-grid.
Likewise, the CPG algorithm is slow compared with the
Delaunay triangulation optimization, since the latter utilizes
fast libraries in MATLAB and only generates the PEBI-
grid after the optimization has finished whereas the CPG
algorithm has to create the grid at each iteration. Normally,
both optimization algorithms give good grids in 20 to 50
iterations. One potential approach to reduce the associated
computational cost could be to use a domain decomposition
technique, but we have not yet researched this.

Another limiting factor is the ability to compute
fracture intersections and intersections of intersections in an
efficient and robust manner. Dense fracture networks often
contain a large number of intricate and challenging special
cases. The UPR module is still lacking somewhat in this
respect.

The fracture condition from Definition 2 is sufficient
and necessary for boundary conformity and enables us to
check for conformity even before the grid is generated.
The condition can also be used to locate (potential) areas
of conflict between individual constraints such as sharp
intersections before the actual grid is constructed, so that the
user can adjust or prioritize the constrains or increase the
local resolution to remedy potential gridding artifacts. The
condition is quite simple and we believe it is an important

tool, not only for the specific algorithms presented herein,
but also for anyone who wishes to improve them or develop
their own.

Appendix A: Optimal Delaunay
triangulation

To create a fully unstructured grid, we can place the
reservoir sites using the force-based method proposed
by [32]. For completeness, we will briefly review this
method. The key idea is to associate edges in the Delaunay
triangulation with springs, whereas vertices are associated
with joints connecting the springs. The forces on each joint
will depend on the difference between the actual length of
the springs and their uncompressed length.

The uncompressed length l0 of a spring is based on
an element size function h. We evaluate the spring at its
midpoint. For the domain [0, 1] × [0, 1] and element size
function h(x, y) = 1 + x, the uncompressed length of the
springs will be about twice as big in the right side of the
domain as the left side.

We let the forces from the springs follow Hooke’s law;
that is, the force is proportional to the difference of its
actual length l and its uncompressed length l0. However, we
assume that the springs only have repulsive forces, and no
attractive forces. The force f from a spring is:

f (l, l0) =
{

k(l0 − l), l < l0,

0, l ≥ l0.

Here, k is a constant of value one that is needed to obtain
the correct units.

Let P be the coordinates of all joints. To find the force
on a joint pi , we find the force from all springs connected
to pi . The total force F(pi) is the sum of these forces.
Figure 25a shows seven springs connected to one joint.
The repulsive force from a spring acts in the longitudinal
direction of the spring. We do not want the joints to move
outside the domain we wish to triangulate. Figure 25b shows
how an external force is added to the boundary joints. The
external force is perpendicular to the boundary and balances
the repulsive forces of the springs. Boundary joints can
therefore only move along the boundary. We also allow for
fixed joints that can be thought of as glued to their initial
position and are not allowed to move, no matter how large
the forces acting on them are.

The optimization loop of the force-based algorithm is
very simple. We calculate the Delaunay triangulation of the
joints P k . For each edge in the triangulation, we calculate
the repulsive force f (l, l0). For joints on the boundary we
also add an external force to prevent it from passing over the
boundary. The total force on a joint is found by summing
all repulsive forces and external forces. The total force on a

186 Comput Geosci (2019) 23:169–188

Fig. 25 Forces acting on a joint
pi . Blue forces are the repulsive
forces from each edge. The red
force F(pi) is the sum of all
repulsive forces. The lengths of
the force vectors are not
proportional to their magnitude.
a An internal joint. b A joint on
the boundary. An external force
R is acting perpendicular to the
boundary. The external force
balance the internal forces so the
joint will not move across the
boundary

fixed joint is set to zero. All joints are moved a step length
ξ along the direction of the total force acting on them:

pk+1
i = pk

i + ξF(pk
i).

An example of an optimum triangulation and its dual
PEBI-grid is shown in Fig. 26 for a case where initial
reservoir sites were placed semi-randomly in the domain.

To achieve refinement towards wells, we create an element
size function that decreases towards wells. We let the element
size function decrease exponentially:

hr(p) = min

[
hmax, hmin exp

(
d (p, W)

ε

)]
. (2)

The desired grid size of the background grid far from and
close to the wells is hmax and hmin respectively. The distance
d(p, W) is the closest distance from the point p to the set of
well sitesW . The constant ε controls the transition region. If
ε is small, the refinement happens quickly around the wells.

If ε is large, the transition region is large. When we run the
force algorithm, all well and fracture sites are set as fixed
points.

Appendix B: Duality of Delaunay
triangulation and PEBI-grids

There is a close relationship between the Delaunay
triangulation and PEBI-grids. They are often called dual of
each other in the sense that the topology of one is defined
by the topology of the other. The duality is defined by a
bijection between the faces of the Delaunay triangulation
and the faces of the PEBI-grid. Following the presentation
in [1], we first define the k-face of a tessellation as a face
of dimension k. In 2D a 2-face is a cell, a 1-face the edge
between two cells and a 0-face a vertex. We then state
the Voronoi-Delaunay duality precisely in the following
theorem [35].

Fig. 26 Optimization of a
triangulation using the force-
based algorithm. The size of
the elements is proportional to
the distance from the origin
squared h(x, y) ∼ x2 + y2

Comput Geosci (2019) 23:169–188 187

Theorem 1 (Duality of Delaunay triangulation and PEBI-
grids) Let P be a generic point set in R

d . Let V and T
be the associated PEBI-grid and Delaunay triangulation,
respectively. Let S = {s1, . . . sj } ⊆ P be a subset of the
sites in P . The convex hull of S is a k-face of T if and only
if vs1,...sj is a (d − k)-face of V .

Proof First, assume that the convex hull of S is a k-face
of T . Then there exists a closed ball B that intersects
s1, . . . , sj , but does not contain any sites from P \ S. The
center of this ball is equidistant to all sites in S, hence, the
intersection vs1...sj is not empty; i.e., it is a PEBI face of P .
Let 	 be the affine space that is orthogonal to the affine
space of S and contains the center of B. The space 	 has
dimension (d − k) because the dimension of A(S) is k. All
points in 	 are equidistant to all sites in S, and no points in
R

d \ 	 are equidistant to all sites in S, thus, vs1...sj ⊆ 	.
Let 0 < ε = minp∈P \S d(B, p) be the minimum distance
from the ball B to any sites in P \ S. Any points in 	 that
are closer to the center of B than 1

2ε are on the face vs1...sj ,
hence, the dimension of vs1...sj is the same as 	, that is
(d − k).

Now assume that vs1...sj is a PEBI (d − k)-face. Since
P is generic, there is no sj+1 ∈ P \ S such that vs1...sj =
vs1...sj sj+1 . In fact, the number of cells must equal j = k +1
if vs1...sj is to have dimension (d − k). We can therefore
find a closed ball centered at some point in vs1...sj that has
s1, . . . , sj on its boundary and does not contain any sites
P \ S. The convex hull of the k + 1 sites in S is a k-
simplex and it is strongly Delaunay, hence, it is a k-face in
the Delaunay triangulation.

The main results of the duality theorem is for j = 2 and
j = d + 1. For j = 2 the theorem says that PEBI-cell vs1

and vs2 share a PEBI facet if and only if there is a Delaunay
edge between site s1 and s2. For j = d + 1 the theorem
says that all PEBI vertices are the center of a circumball of
a Delaunay (d + 1)-simplex. Figure 1 shows the duality in
2D.
Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Berge, R.L.: Unstructured Pebi grids adapting to geological
feautres in subsurface reservoirs. Master’s thesis, Norwegian
University of Science and Technology (2016)

2. Branets, L., Ghai, S.S., Lyons, S.L., Wu, X.-H.: Efficient and accu-
rate reservoir modeling using adaptive gridding with global scale
up. In: Proceedings of the SPE Reservoir Simulation Symposium,
The Woodlands, Texas (2009a). https://doi.org/10.2118/118946-
MS

3. Branets, L.V., Ghai, S.S., Lyons, S.L., Wu, X.-H.: Challenges
and technologies in reservoir modeling. Communications in
Computational Physics 6(1), 1–23 (2009b)

4. Brewer, M., Camilleri, D., Ward, S., Wong, T.: Generation
of hybrid grids for simulation of complex, unstructured reser-
voirs by a simulator with MPFA. SPE Reservoir Simulation
Symposium, 23-25 February, Houston, Texas, USA (2015).
https://doi.org/10.2118/173191-MS

5. Courrioux, G., Nullans, S., Guillen, A., Boissonnat, J.D.,
Repusseau, P., Renaud, X., Thibaut, M.: 3d volumetric modelling
of cadomian terranes northern brittany, france): an automatic
method using Voronoi diagrams. Tectonophysics 331, 181–196
(2001). https://doi.org/10.1016/S0040-1951(00)00242-0

6. Ding, X.Y., Fung, L.S.K.: An unstructured gridding method
for simulating faulted reservoirs populated with complex wells.
In: Proceedings of the SPE Reservoir Simulation Symposium,
Houston, Texas, USA (2015). https://doi.org/10.2118/173243
MS

7. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessella-
tions: Applications and algorithms. SIAM Rev. 41(4), 637–676
(1999). https://doi.org/10.1137/S0036144599352836

8. Filippov, D.D., Kudryashov, I.Y., Maksimov, D.Y., Mitrushkin,
D.A., Vasekin, B.V., Roshchektaev, A.P.: Reservoir Modeling of
Complex Structure Reservoirs on Dynamic Adaptive 3D Pebi-
grid. In: SPE Russian Petroleum Technology Conference, 16-18
October, Moscow, Russia (2017). https://doi.org/10.2118/187799-
MS

9. Fung, L.-K., Hiebert, A., method, L.Nghiem.: Reservoir simula-
tion with a control-volume finite-element. SPE Reservoir Engi-
neering 7(3), 349–356 (1992). https://doi.org/10.2118/21224-PA

10. Fung, L.S.K., Ding, X.Y., Dogru, A.H.: Unconstrained Voronoi
grids for densely spaced complex wells in full-field reservoir sim-
ulation. SPE J. 19(5), 803–815 (2014). https://doi.org/10.2118/163
648-PA

11. Geiger-Boschung, S., Matthäi, S.K., Niessner, J., Helmig, R.:
Black-oil simulations for three-component, three-phase flow
in fractured porous media. SPE J. 14(02), 338–354 (2009).
https://doi.org/10.2118/107485-PA

12. Gringarten, E.J., Arpat, G.B., Haouesse, M.A., Dutranois, A.,
Deny, L., Jayr, S., Tertois, A.-L., Mallet, J.-L., Bernal, A.,
Nghiem, L.X.: New grids for robust reservoir modeling. In: In SPE
Annual Technical Conference and Exhibition, 21-24 September,
Denver, Colorado, USA. Society of Petroleum Engineers (2008).
https://doi.org/10.2118/116649-MS

13. Gringarten, E.J., Haouesse, M.A., Arpat, G.B., Nghiem, L.X.:
Advantages of Using Vertical Stair Step Faults in Reservoir Grids
for Flow Simulation. In: SPE Reservoir Simulation Symposium,
2-4 February, The Woodlands, Texas. Society of Petroleum
Engineers (2009). https://doi.org/10.2118/119188-MS

14. Guerillot, D., Swaby, P.: An interactive 3D mesh builder for fluid
flow reservoir simulation. SPE Comput. Appl. 5(6), 5–10 (1993).
https://doi.org/10.2118/26227-PA

15. Heinemann, Z.E., Brand, C.W., Munka, M., Chen, Y.M.:
Modeling reservoir geometry with irregular grids. SPE Reserv.
Eng. 6(2), 225–232 (1991). https://doi.org/10.2118/18412-PA

16. Holm, R., Kaufmann, R., Heimsund, B.-O., Øian, E., Espedal,
M.S.: Meshing of domains with complex internal geometries.
Numer. Linear Algebra Appl. 13(9), 717–731 (2006). ISSN 1099-
1506. https://doi.org/10.1002/nla.505

17. Iri, M., Murota, K., Ohya, T.: SystemModelling andOptimization:
Proceedings of the 11th IFIP Conference Copenhagen, Denmark,
July 25–29, 1983, chapter A fast Voronoi-diagram algorithm with
applications to geographical optimization problems, pp. 273–
288. Springer Berlin Heidelberg, Berlin, Heidelberg, 1984. ISBN
978-3-540-38828-9. https://doi.org/10.1007/BFb0008901

https://doi.org/10.2118/118946-MS
https://doi.org/10.2118/118946-MS
https://doi.org/10.2118/173191-MS
https://doi.org/10.1016/S0040-1951(00)00242-0
https://doi.org/10.2118/173243-MS
https://doi.org/10.2118/173243-MS
https://doi.org/10.1137/S0036144599352836
https://doi.org/10.2118/187799-MS
https://doi.org/10.2118/187799-MS
https://doi.org/10.2118/21224-PA
https://doi.org/10.2118/163648-PA
https://doi.org/10.2118/163648-PA
https://doi.org/10.2118/107485-PA
https://doi.org/10.2118/116649-MS
https://doi.org/10.2118/119188-MS
https://doi.org/10.2118/26227-PA
https://doi.org/10.2118/18412-PA
https://doi.org/10.1002/nla.505
https://doi.org/10.1007/BFb0008901

188 Comput Geosci (2019) 23:169–188

18. Karimi-Fard, M., Durlofsky, L.J., Aziz, K.: An efficient discrete-
fracture model applicable for general-purpose reservoir simula-
tors. SPE J. 9(2), 227–236 (2004). https://doi.org/10.2118/88812-
PA

19. Keilegavlen, E., Fumagalli, A., Berge, R., Stefansson, I., Berre, I.:
PorePy: an open-source simulation tool for flow and transport in
deformable fractured rocks. ArXiv e-prints (2017)

20. Klemetsdal, Ø.S., Berge, R.L., Lie, K.-A., Nilsen, H.M.,
Møyner, O.: Unstructured gridding and consistent discretiza-
tions for reservoirs with faults and complex wells. In: Pro-
ceedings of the SPE Reservoir Simulation Symposium (2017).
https://doi.org/10.2118/182666-MS

21. Lie, K.-A.: An introduction to reservoir simulation using
MATLAB: User guide for the Matlab Reservoir Simulation
Toolbox (MRST). SINTEF ICT (2016)

22. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L., Yang,
C.: On centroidal Voronoi tessellation-energy smoothness and fast
computation. ACM Trans. Graph. 28(4), 101:1–101:17 (2009).
ISSN 0730-0301. https://doi.org/10.1145/1559755.1559758

23. Mallison, B., Sword, C., Viard, T., Milliken, W., Cheng, A.:
Unstructured Cut-Cell grids for modeling complex reservoirs. SPE
J. 19(02), 340–352 (2014). https://doi.org/10.2118/163642-PA

24. Manzoor, S., Edwards, M.G., Dogru, A.H., Al-Shaalan, T.M.:
Interior boundary-aligned unstructured grid generation and cell-
centered versus vertex-centered CVD-MPFA performance. Com-
putational Geosciences, Oct 2017. ISSN 1573-1499. https://doi.
org/10.1007/s10596-017-9686-4

25. Meng, X., Duan, Z., Yang, Q., Liang, X.: Local PEBI grid
generation method for reverse faults. Computers & Geosciences
110, 73–80 (2018). https://doi.org/10.1016/j.cageo.2017.09.012

26. Merland, R., Lévy, B., Caumon, G.: Building PEBI grids
conforming to 3D geological features using centroidal Voronoi
tessellation. In: Marschallinger, R., Zolb, R. (eds.) Proceedings of
IAMG, pp. 12, Salzburg (2011)

27. Merland, R., Caumon, G., Lévy, B., Collon-Drouaillet, P.:
Voronoi grids conforming to 3D structural features. Computa-
tional Geosciences 18(3-4), 373–383 (2014). ISSN 1420-0597.
https://doi.org/10.1007/s10596-014-9408-0

28. Mustapha, H.: G23fm: A tool for meshing complex geological
media. Computational Geosciences 15(3), 385–397 (2011). ISSN
1573-1499. https://doi.org/10.1007/s10596-010-9210-6

29. Nocedal, J., Wright, S.J. Numerical optimization, 2nd edn.
Springer, New York (2006). https://doi.org/10.1007/978-0-387-
40065-5

30. Palagi, C., Aziz, K.: Use of Voronoi grid in reservoir simulation.
Soc. Petrol. Eng. 2(2), 69–77 (1994). https://doi.org/10.2118/
22889-PA

31. Peaceman, D.W.: Interpretation of well-block pressures in
numerical reservoir simulation. Soc. Petrol. Eng. J. 18(3), 183–
194 (1978). https://doi.org/10.2118/6893-PA

32. Persson, P.-O., Strang, G.: A simple mesh generator in MATLAB.
SIAM Rev. 46(2), 329–345 (2004). https://doi.org/10.1137/S0036
144503429121

33. Ponting, D.K.: Corner point geometry in reservoir simulation.
In: King, P. (ed.) Proceedings of the 1st European Conference
on Mathematics of Oil Recovery, Cambridge, 1989, pp. 45–
65. Clarendon Press, Oxford (1989). https://doi.org/10.3997/2214-
4609.201411305

34. Shah, S., Møyner, O., Tene, M., Lie, K.-A., Hajibeygi, H.: The
multiscale restriction smoothed basis method for fractured porous
media (F-MsRSB). J. Comput. Phys. 318, 36–57 (2016)

35. Shewchuk, J.R., Cheng, S.-W., Dey, T.K.: Delaunay mesh
generation. Computer and information science. Chapman and
hall/CRC (2012). https://doi.org/10.1201/b12987-3

36. Sun, J., Schechter, D.: Optimization-Based Unstructured meshing
algorithms for simulation of hydraulically and naturally fractured
reservoirs with variable distribution of fracture aperture, spacing,
length, and strike. SPE Reservoir Evaluation & Engineering
18(04), 463–480 (2015). https://doi.org/10.2118/170703-PA

37. Sun, J., Schechter, D., Huang, C.-K.: Grid-sensitivity analy-
sis and comparison between unstructured perpendicular bisector
and structured tartan/local-grid-refinement grids for hydrauli-
cally fractured horizontal wells in eagle ford formation with
complicated natural fractures. SPE J. 21(06), 2–260 (2016).
https://doi.org/10.2118/177480-PA

38. Toor, S.M., Edwards, M.G., Dogru, A.H., Shaalan, T.M.:
Boundary aligned grid generation in three dimensions and
CVD-MPFA discretization. In: Proceedings of the SPE Reser-
voir Simulation Symposium, Houston, Texas, USA (2015).
https://doi.org/10.2118/173313-MS

39. Verma, S., Aziz, K.: A control volume scheme for flexible grids in
reservoir simulation. In: SPE Reservoir Simulation Symposium,
8-11 June, Dallas, Texas. Society of Petroleum Engineers (1997).
https://doi.org/10.2118/37999-MS

40. Wu, X.-H., Parashkevov, R.: Effect of grid deviation on flow
solutions. SPE J. 14(01), 67–77 (2009). https://doi.org/10.2118/
92868-PA

41. Yan, D.-M., Wang, W., Lévy, B., Liu, Y.: Advances in Geometric
Modeling and Processing: 6th International Conference, GMP
2010, Castro Urdiales, Spain, June 16-18, 2010. Proceedings,
chapter Efficient Computation of 3D Clipped Voronoi Diagram,
pp. 269–282. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-
13411-1. https://doi.org/10.1007/978-3-642-13411-1 18

https://doi.org/10.2118/88812-PA
https://doi.org/10.2118/88812-PA
https://doi.org/10.2118/182666-MS
https://doi.org/10.1145/1559755.1559758
https://doi.org/10.2118/163642-PA
https://doi.org/10.1007/s10596-017-9686-4
https://doi.org/10.1007/s10596-017-9686-4
https://doi.org/10.1016/j.cageo.2017.09.012
https://doi.org/10.1007/s10596-014-9408-0
https://doi.org/10.1007/s10596-010-9210-6
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.2118/22889-PA
https://doi.org/10.2118/22889-PA
https://doi.org/10.2118/6893-PA
https://doi.org/10.1137/S0036144503429121
https://doi.org/10.1137/S0036144503429121
https://doi.org/10.3997/2214-4609.201411305
https://doi.org/10.3997/2214-4609.201411305
https://doi.org/10.1201/b12987-3
https://doi.org/10.2118/170703-PA
https://doi.org/10.2118/177480-PA
https://doi.org/10.2118/173313-MS
https://doi.org/10.2118/37999-MS
https://doi.org/10.2118/92868-PA
https://doi.org/10.2118/92868-PA
https://doi.org/10.1007/978-3-642-13411-1_18

	Unstructured Voronoi grids conforming to lower dimensional objects
	Abstract
	Introduction
	PEBI-grids
	Well sites
	Fracture sites
	Algorithm for fracture sites in arbitrary dimensions
	Algorithm for fracture sites conforming to simplices
	Improving intersections in 2D
	Well–well intersections
	Fracture–fracture intersections
	Well–fracture intersections

	Generating reservoir sites

	2.5D grids
	Examples
	Closing remarks
	Appendix A A: Optimal Delaunay triangulation
	Appendix B: Duality of Delaunay triangulation and PEBI-grids
	Publisher's Note
	References

