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Abstract
The flow through both an incompressible fluid region and a porous medium occurs in a wide range of applications
encompassing industrial processes and geological phenomena. Recently, the fluid transport phenomena across the interface
between the distinct regions have received increasing attention both from the mathematical and the numerical points of view.
The primary objective of the present study lies in the development of a simple and efficient method for the computations
of coupled Navier-Stokes and Darcy flows with complex interface conditions. A finite difference projection method is
developed within a staggered grid framework to solve the coupled system in a segregated manner using primitive variables.
Numerical simulations are carried out to demonstrate the order of convergence and its capability. The proposed method
renders the versatility in solving the coupled system, and it is readily extendible to multi-physics fluid flows and turbulent
flows for a broad range of applications.

Keywords Coupled Navier-Stokes and Darcy flows · Beavers-Joseph-Saffman interface conditions · Projection method ·
Finite difference · Staggered grid

1 Introduction

The fluid transport phenomena across the interface between
an incompressible fluid region and a porous medium
are often encountered in various science and engineering
applications. A plethora of physicochemical phenomena,
such as surface reaction, may occur at this interface.
Those coupled problems have received increasing attention
both from the mathematical and the numerical points of
view. The mathematical model consists of the Navier-
Stokes or Stokes equations in the fluid region and the
Darcy law in the porous medium. Despite the fact that
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the numerical schemes of each sub-problem are well-
known and well-developed, the numerical analysis of the
coupled problem is still interesting to investigate. Therefore,
it is prudent that attention is focused on developing
a highly efficient numerical method for solving the
system.

The numerical algorithm is required to compute different
sets of conservation laws on different regions, on top
of the coupling with complex interface conditions. Over
the last decade, various approaches have been developed
in the literature. For instance, based on whether these
different sets of variables in different regions are solved
simultaneously, finite element methods can be classified
into two categories: coupled finite element methods and
decoupled finite element methods. Coupled finite element
methods include the coupled mixed finite element methods
[1–9], coupled discontinuous Galerkin (DG) methods [10–
14], coupled hybrid methods [14], and coupled multi-grid
methods [15]. Decoupled finite element methods include
the domain decomposition methods [16–21], Lagrange
multiplier methods [22–24], two-grid methods [25, 26],
and partitioned time stepping methods [27, 28]. Besides
finite element methods, other approaches such as boundary
integral methods [29, 30], a spectral method [31], a pseudo-
spectral least squares method [32], and a finite volume
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method [33] have already been studied and recently, a
finite difference method based on an immersed interface
method [34] was considered (as for more sophisticated
variations of Navier-Stokes/Darcy or Stokes/Darcy systems
that consider two-phase flow, poroelasticity, dual porosity
media and so on, we refer the interested readers to see
[35–42] for more details). Comprehensive reviews of the
numerical algorithms in the literature revealed that the
vast majority are based on finite element method instead
of other discretization practice. Furthermore, the transient
solutions [43] are rarely investigated as opposed to the
steady-state solutions. Contrary to Stokes and Darcy system,
there are also significantly less effort invested in the
development on Navier-Stokes and Darcy system [12, 26,
44–47].

The primary objective of the present study lies in the
development of a simple and efficient method for the
computations of coupled Navier-Stokes and Darcy flows
with complex interface conditions. The proposed method
is based on the projection method [48] in conjunction with
appropriate interface boundary conditions. The fundamental
discretization approach is the finite difference method based
on the staggered grid framework. The proposed projection
method solves the velocities, Darcy velocities, pressure, and
scaled pressure in a segregated procedure.

The mathematical analysis of the numerical algorithm for
coupling Stokes and Darcy flows based on the staggered
grid framework is studied in [49]. In [49], the authors
considered the steady-state solution. In the present article,
nonstationary Navier-Stokes and Darcy flows based on
the first-order projection method in the temporal variable
and finite difference approximation in spatial variables are
performed. Numerical simulations are conducted for the
model problem with a designed analytical solution and
applications in order to investigate the numerical accuracy
and functionality of the method. The aforementioned
methodology is flexible due to its segregated algorithm, and
therefore it can be extended for a broad range of applications
with relative ease. Numerical experiments suggest that the
numerical scheme for coupling Navier-Stokes and Darcy
flows has the same theoretical results as the case of only
Navier-Stokes flow.

2 Governing equations

Consider a model problem consisting of an incompressible
flow in the fluid region �F with boundary ∂�F and a Darcy
flow in the porous medium �D with boundary ∂�D. The
bounded domains �F and �D ⊂ R

2 are separated by an
interface � with the unit normal vector n pointing out of the
fluid domain �F. The schematic description of the model is
depicted in Fig. 1. In the fluid region�F, the incompressible

Navier-Stokes equations for the velocity u = (u, v) and the
pressure p can be read as

∂u
∂t

+ (u · ∇) u + ∇p = ν�u + F, in �F, (1)

∇ · u = 0, in �F, (u is given on ∂�F) (2)

where ν is the kinematics viscosity and F = (f, g) stands
for the external forcing term. On the other hand, the porous
medium can be defined by a model where the fluid and solid
occupy the whole region on the macroscopic scale. The
porous medium is a homogeneous continuum domain where
a representative volume element is larger than the average
pore size but much smaller than the length scale of the
system. For modeling this saturated flow in homogeneous
porous media domain �D, the Darcy law can be used, i.e.,

uD = −k∇φ, in �D, (3)

∇ · uD = S, in �D, (uD is given on ∂�D) (4)

where uD = (uD, vD) is the Darcy velocity, k is the
hydraulic conductivity coefficient, φ denotes the scaled
pressure, and S is the external source/sink term.

To close the system (1)–(4), the governing equations
must be coupled across the interface � by suitable condi-
tions [22] in the following. Firstly, the mass conservation
across � must be hold by

u · n = uD · n on �. (5)

The second interface condition is the balance of normal
force across � as

2νn · D · n = p − φ on �, (6)

where D = 1
2

(∇u + ∇Tu
)
is the deformation tensor. The

pressure is allowed to be discontinuous across the interface.
Lastly, since the fluid model is viscous, a condition on the
tangential fluid velocity on � must be given. In general,
the simplest assumption of no-slippage along the interface
� is invalid due to the large deviation from experimental
measurements [22]. Therefore the Beavers-Joseph-Saffman
(BJS) interface condition [50, 51] is applied which states
that the tangential component of the fluid velocity is
proportional to the shear stress from the free fluid and the
proportionality constant depends linearly on the square root
of the permeability, i.e.,

u · τ = −2
√

k̃

α
n · D · τ on �, (7)

where τ is the unit tangent vector along the interface �,
k̃ = νk and α are the positive constants. Here, the form√

k̃/α has the physical meaning of friction coefficient.
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Fig. 1 Schematic representation of the coupled Navier-Stokes and
Darcy system

3 Finite difference discretization

To solve the coupled Navier-Stokes and Darcy flows
with complex interface conditions, an underlying finite
difference numerical scheme based on staggered grid is first
described in this section. For the realistic applications with
curved interface, the original curve can be approximated by
a union of horizontal and vertical line segment interfaces.
For simplicity, we assume � to be a rectangular domain
[0, Lx] × [−Ly, Ly

]
, where �F = [0, Lx] × [

0, Ly

]
,

and �D = [0, Lx] × [−Ly, 0
]
in which Lx, Ly are

positive constants. Therefore, the fluid-porous interface is a
horizontal straight line at y = 0. Consequently, the interface
outward normal vector is simply written as n = (0, −1)T

and the interface conditions on � are simplified to

v = vD = v� (8)

2ν
∂v�

∂y
= p − φ (9)

u =
√

k̃

α

(
∂u

∂y
+ ∂v�

∂x

)
. (10)

Similarly, in case of a vertical straight interface, the outward
normal vector is n = (1, 0)T, then the interface conditions
on � are given by

u = uD = u� (11)

Fig. 2 Finite difference staggered grid

2ν
∂u�

∂x
= p − φ (12)

v =
√

k̃

α

(
∂v

∂x
+ ∂u�

∂y

)
. (13)

For the clarity of presentation, the case with just a horizontal
straight interface will be considered in the remainder of this
section.

Let xi = (i − 1/2)�x, yj = (j − 1/2)�y where
the mesh sizes �x and �y are equal to Lx/M and
Ly/N , respectively, with M and N as positive integers.
The schematic representation of the finite difference
discretization within the staggered grid framework is
depicted in Fig. 2. As illustrated in Fig. 2, all the primitive
variables are defined at different locations, with pressure p

and scaled pressure φ defined at the cell centers, while the
velocity components u, v, uD, and vD defined at the center
of the cell faces. It should be noted that due to the staggered
grid arrangement, the interface separating the fluid flow
region and the porous medium is placed to be coinciding
with the vertical velocity component v� = v = vD.
Therefore, to satisfy the interface conditions, an additional
equation, i.e., Eq. 9, is required to solve for v� .

Before discussing the spatial discretization for the
governing equations and the interface conditions, an
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Fig. 3 Decoupled multi-step temporal integration scheme

extended projection method in light of the original
projection method [48] is developed to calculate the
primitive variables u, p, uD, φ at time level n + 1 on
the staggered grid. The projection method begins from a
temporal discretization of the Navier-Stokes equations and
Darcy law. Using the Euler implicit time stepping results in

un+1 − un

�t
+(

un · ∇)
un−ν�un+1+∇pn+1 = Fn+1, (14)

∇ · un+1 = 0, (15)

un+1
D = −k∇φn+1, (16)

∇ · un+1
D = Sn+1, (17)

2ν
∂vn+1

�

∂y
|� =

(
pn+1 − φn+1

)
|� . (18)

The system of discretized equations is split into two sub-
steps, i.e.,

u∗ − un

�t
+ (

un · ∇)
un − ν�u∗ = Fn+1, (19)

u∗ =
√

k̃

α

(
∂u∗

∂y
+ ∂vn

�

∂x

)
on �. (20)

and
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un+1−u∗
�t

+ ∇pn+1 = 0, (21a)
∇ · un+1 = 0, (21b)
un+1
D = −k∇φn+1, (21c)

∇ · un+1
D = Sn+1, (21d)

2ν
∂vn+1

�

∂y
|� = (

pn+1 − φn+1
) |� . (21e)

By taking the divergence of Eq. 21a and 21c, and
invoking Eq. 21b and 21d, system of Eq. 21 can be further
reduced to

⎧
⎪⎨

⎪⎩

�pn+1 = 1
�t

∇ · u∗, (22a)
−k�φn+1 = Sn+1, (22b)

2ν
∂vn+1

�

∂y
|� = (

pn+1 − φn+1
) |� . (22c)

Equation 22a to 22c are to be solved by coupling each other
with appropriate boundary conditions. Subsequently, un+1

and un+1
D are calculated through the following correction

sub-step

{
un+1 = u∗ − �t∇pn+1, (23a)
un+1
D = −k∇φn+1. (23b)

The time-marching algorithm consists of three sub-steps
for each time step: (i) the first sub-step accounts for
viscous effects and computes the provisional velocity in
the incompressible flow region. (ii) The second sub-step
accounts for the incompressibility, and coupling of p, φ,
v� via interface conditions. (iii) Finally, the provisional
velocity is corrected, and the velocity in the Darcy law
region is updated. The present version of the projection
method for Navier-Stokes equations shares the same spirit
of SIMPLE algorithm [52, 53] but differs in some aspects
where the latter algorithm is popularly used in some
commercial CFD softwares. In the aforementioned sub-
step (i), SIMPLE algorithm treats the nonlinear advection
term semi-implicitly as (un · ∇)u∗ and an explicit term
∇pn is added in the momentum equation. Thus, in
step (2), the SIMPLE algorithm solves the incremental
pressure Poisson equation rather than solving the pressure
Poisson equation used in our present scheme. Since
we have to solve the fluid pressure p and Darcy’s
scaled pressure φ together, SIMPLE algorithm for Navier-
Stokes solver is not ultilized in the present study. For
completeness of the numerical formulation, the spatial
discretizations in both flow domains and their coupling
at the interface are articulated in the remainder of this
section.

Let ui+1/2,j , vi,j+1/2, and pi,j be denoted the dis-
crete approximations of the flow velocity u

(
xi+1/2, yj

)
,

Table 1 Grid refinement
analysis of the fluid horizontal
velocity u and Darcy horizontal
velocity uD at T = 1

M × 2N ‖uexact − u‖∞ Rate ‖uD,exact − uD‖∞ Rate

32 × 64 8.484×−03 – 5.285×−03 –

64 × 128 4.963×−03 0.77 2.673×−03 0.983

128 × 256 2.694×−03 0.88 1.298×−03 1.04

256 × 512 1.398×−03 0.95 6.148×−04 1.08

Time step is set as �t = h/2 with h = 1/M
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Table 2 Grid refinement
analysis of the fluid vertical
velocity v and Darcy vertical
velocity vD at T = 1

M × 2N ‖vexact − v‖∞ Rate ‖vD,exact − vD‖∞ Rate

32 × 64 8.764 × 10−3 – 7.457 × 10−3 –

64 × 128 4.604 × 10−3 0.93 4.200 × 10−3 0.83

128 × 256 2.317 × 10−3 0.99 2.221 × 10−3 0.92

256 × 512 1.163 × 10−3 0.99 1.134 × 10−3 0.97

Time step is set as �t = h/2 with h = 1/M

v
(
xi, yj+1/2

)
, and the pressure p (xi, yi), respectively. In

the similar context, let (uD)i+1/2,j , (vD)i,j+1/2, and φi,j

denote the discrete approximations of the flow velocity
uD

(
xi+1/2, yj

)
, vD

(
xi, yj+1/2

)
, and the scaled pressure

φ (xi, yi), respectively. First, using the central differencing
scheme, the momentum equation, i.e., Eq. 19, for provi-
sional velocities u∗ and v∗ are discretized as

u∗
i+1/2,j − un

i+1/2,j

�t
+un

i+1/2,j

(
un

i+3/2,j − un
i−1/2,j

2�x

)

+vn
i+1/2,j

(
un

i+1/2,j+1 − un
i+1/2,j−1

2�y

)

−ν

[
u∗

i+3/2,j − 2u∗
i+1/2,j + u∗

i−1/2,j

(�x)2

+ u∗
i+1/2,j+1 − 2u∗

i+1/2,j + u∗
i+1/2,j−1

(�y)2

]

= f n+1
i+1/2,j , (24)

for (i, j) ∈ Su

=
{
(i, j) ∈ Z

2|1 ≤ i ≤ M − 1, 1 ≤ j ≤ N
}

,

and

v∗
i,j+1/2 − vn

i,j+1/2

�t
+vn

i,j+1/2

(
vn
i,j+3/2 − vn

i,j−1/2

2�y

)

+un
i,j+1/2

(
vn
i+1,j+1/2 − vn

i−1,j+1/2

2�x

)

−ν

[
v∗
i+1,j+1/2 − 2v∗

i,j+1/2 + v∗
i−1,j+1/2

(�x)2

+ v∗
i,j+3/2 − 2v∗

i,j+1/2 + v∗
i,j−1/2

(�y)2

]

= gn+1
i,j+1/2, (25)

for (i, j) ∈ Sv

=
{
(i, j) ∈ Z

2|1 ≤ i ≤ M, 1 ≤ j ≤ N − 1
}

,

respectively. The non-linear advection terms are dis-
cetized explicitly while the diffusion terms are treated
implicitly to assist stability. In this configuration, the

coupling interface is located along j = 1/2 and is
coincided with the vertical velocity component (v�)i,1/2.
Therefore, additional treatments are required to impose on
Eqs. 24 and 25 in order to include the coupling interface
conditions.

Considering Eq. 24, the u∗ component at j = 1 adjacent
to the interface is given by

u∗
i+1/2,1 − un

i+1/2,1

�t
+un

i+1/2,1

(
un

i+3/2,1 − un
i−1/2,1

2�x

)

+vn
i+1/2,1

(
un

i+1/2,2 − un
i+1/2,0

2�y

)

−ν

[
u∗

i+3/2,1 − 2u∗
i+1/2,1 + u∗

i−1/2,1

(�x)2

+ u∗
i+1/2,2 − 2u∗

i+1/2,1 + u∗
i+1/2,0

(�y)2

]

= f n+1
i+1/2,1,

i = 1, · · · ,M − 1, (26)

where the ghost nodes u∗
i+1/2,0 and un

i+1/2,0 are required to
be evaluated. The Beavers-Joseph-Saffman condition (10) is
approximated and discretized at j = 1/2 as

u∗
i+1/2,1 + u∗

i+1/2,0

2
=

√
k̃

α

(
u∗

i+1/2,1 − u∗
i+1/2,0

�y

)

+
√

k̃

α

(
(v�)ni+1,1/2 − (v�)ni,1/2

�x

)

.

(27)

Table 3 Grid refinement analysis of the fluid vertical velocity at the
interface v� at T = 1

M × 2N ‖v�,exact − v�‖∞ Rate

32 × 64 9.372 × 10−03 –

64 × 128 4.830 × 10−03−03 0.96

128 × 256 2.402 × 10−03−03 1.01

256 × 512 1.189 × 10−03−03 1.02

Time step is set as �t = h/2 with h = 1/M
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Table 4 Grid refinement
analysis of the pressure p and
scaled pressure φ at T = 1

M × 2N ‖pexact − p‖∞ Rate ‖φexact − φ‖∞ Rate

32 × 64 3.149 × 10−1 - 1.590 × 10−3 -

64 × 128 2.228 × 10−1 0.50 7.901 × 10−4 1.01

128 × 256 1.562 × 10−1 0.51 3.778 × 10−4 1.06

256 × 512 1.093 × 10−1 0.52 1.779 × 10−4 1.09

M × 2N ‖pexact − p‖2 Rate ‖φexact − φ‖2 Rate

32 × 64 9.434 × 10−2 – 3.746 × 10−4 –

64 × 128 5.322 × 10−2 0.83 1.641 × 10−4 1.19

128 × 256 2.935 × 10−2 0.86 7.165 × 10−5 1.20

256 × 512 1.601 − ×10−2 0.87 3.150 × 10−5 1.19

Time step is set as �t = h/2 with h = 1/M

This yields the ghost node u∗
i+1/2,0

u∗
i+1/2,0 =

(
2
√

k̃/α�y − 1

2
√

k/α�y + 1

)

u∗
i+1/2,1

+ 2
√

k̃/α�x

2
√

k̃/α�y + 1

(
(v�)ni+1,1/2 − (v�)ni,1/2

)
.

(28)

Similarly, the ghost node un
i+1/2,0 can be approximated in

the identical manner.
Now, considering Eq. 25 on the other hand, the v∗

component at j = 3/2 adjacent to the interface is given by

v∗
i,3/2 − vn

i,3/2

�t
+un

i,3/2

(
vn
i+1,3/2 − vn

i−1,3/2

2�x

)

+vn
i,3/2

(
vn
i,5/2 − (v�)ni,1/2

2�y

)

−ν

[
v∗
i+1,3/2 − 2v∗

i,3/2 + v∗
i−1,3/2

(�x)2

+v∗
i,5/2 − 2v∗

i,3/2 + (v�)∗i,1/2
(�y)2

]

= gn+1
i,3/2,

i = 1, · · · , M . (29)

The (v�)ni,1/2 prevailing at previous time step n is employed
for the explicit discretization of advection term. However,
the (v�)∗i,1/2 term in the implicit diffusion term can be

obtained from Eq. 9 and approximated by first-order one-
sided difference as

2ν

(
v∗
i,3/2 − (v�)∗i,1/2

�y

)

= pn
i,1−φn

i,0, i = 1, · · · , M . (30)

Next, for the coupled system of Eq. 22, the spatial
discretization yields

pn+1
i+1,j − 2pn+1

i,j + pn+1
i−1,j

(�x)2
+pn+1

i,j+1 − 2pn+1
i,j + pn+1

i,j−1

(�y)2

= 1

�t

[
u∗

i+1/2,j − u∗
i−1/2,j

�x

+v∗
i,j+1/2 − v∗

i,j−1/2

�y

]

, (31)

for (i, j) ∈ S

=
{
(i, j) ∈ Z

2|1 ≤ i ≤ M, 1 ≤ j ≤ N
}

,

φn+1
i+1,j −2φn+1

i,j +φn+1
i−1,j

(�x)2

+φn+1
i,j+1−2φn+1

i,j +φn+1
i,j−1

(�y)2
= −Sn+1

i,j

k
, (32)

for (i, j) ∈ D

=
{
(i, j) ∈ Z

2|1 ≤ i ≤ M, −N + 1 ≤ j ≤ 0
}

,

Table 5 Grid refinement
analysis of the scaled pressure
gradient φx and φy at T = 1

M × 2N ‖φx,exact − φx‖2 Rate ‖φy,exact − φy‖2 Rate

32 × 64 1.253 × 10−3 – 1.154 × 10−3 –

64 × 128 5.748 × 10−4 1.12 5.466 × 10−4 1.08

128 × 256 2.618 × 10−4 1.13 2.535 × 10−4 1.11

256 × 512 1.200 × 10−4 1.13 1.174 × 10−4 1.11

Time step is set as �t = h/2 with h = 1/M
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Table 6 Grid refinement
analysis of the fluid horizontal
velocity u and Darcy horizontal
velocity uD at T = 1

M × 2N ‖uexact − u‖∞ Rate ‖uD,exact − uD‖∞ Rate

32 × 64 4.145 × 10−4 – 1.584 × 10−4 –

64 × 128 1.080 × 10−4 1.94 3.446 × 10−5 2.20

128 × 256 2.754 × 10−5 1.97 7.911 × 10−6 2.12

256 × 512 6.951 × 10−6 1.99 2.133 × 10−6 1.89

Time step is set as �t = h2/2 with h = 1/M

2ν

(
vn+1
i,3/2−(v�)n+1

i,1/2

�y

)

=pn+1
i,1 − φn+1

i,0 , i =1, · · · , M .

(33)

Note that at the current stage, vn+1
i,3/2 is unknown. In this case,

the correction sub-step Eq. 23 must be invoked, i.e.,

vn+1
i,3/2 = v∗

i,3/2 − �t

(
pn+1

i,2 − pn+1
i,1

�y

)

,

i = 1, · · · , M . (34)

Hence, Eq. 33 is written as

2ν
v∗
i,3/2 − (v�)n+1

i,1/2

�y
= pn+1

i,1 − φn+1
i,0

+ 2ν�t

(�y)2

(
pn+1

i,2 − pn+1
i,1

)
,

i = 1, · · · , M . (35)

To impose the coupling interface conditions and bound-
ary conditions, additional treatments are required for
Eqs. 31 and 32. Note that along the interface j = 1/2 in i

direction, where all the variables of pn+1 are located at the
cell center along j = 1, Eq. 31 is coupled with (v�)n+1

i,1/2
as

pn+1
i+1,1 − 2pn+1

i,1 + pn+1
i−1,1

(�x)2
+pn+1

i,2 − 2pn+1
i,1 + pn+1

i,0

(�y)2

= 1

�t

[
u∗

i+1/2,1 − u∗
i−1/2,1

�x

+ v∗
i,3/2 − (v�)n+1

i,1/2

�y

]

. (36)

Here, the ghost value pn+1
i,0 can be obtained easily by

approximating zero Neumann boundary condition on the
interface �. On the other hand, φn+1 located at the cell
center along j = 0 adjacent to the interface is given by

φn+1
i+1,0 − 2φn+1

i,0 + φn+1
i−1,0

(�x)2
+ φn+1

i,1 − 2φn+1
i,0 + φn+1

i,−1

(�y)2
= −Sn+1

i,0

k
,

(37)

where the ghost value φn+1
i,1 is evaluated by direct

substitution of the gradient at the interface � as

φn+1
i,1 − φn+1

i,0

�y
= −1

k
(v�)n+1

i,1/2 , (38)

which is also coupled with (v�)n+1
i,1/2.

Finally, in the correction sub-step, un+1 and vn+1 in
incompressible fluid region are computed as

un+1
i+1/2,j = u∗

i+1/2,j − �t

(
pn+1

i+1,j − pn+1
i,j

�x

)

, (39)

for (i, j) ∈ Su,

vn+1
i,j+1/2 = v∗

i,j+1/2 − �t

(
pn+1

i,j+1 − pn+1
i,j

�y

)

, (40)

for (i, j) ∈ Sv . The correction sub-step ensures that un+1

and vn+1 in the incompressible fluid flow region satisfy the
divergence-free kinematic constraint. Concurrently, un+1

D
and vn+1

D in the porous medium region are also updated, i.e.

(uD)n+1
i+1/2,j = −k

(
φn+1

i+1,j − φn+1
i,j

�x

)

, (41)

Table 7 Grid refinement
analysis of the fluid vertical
velocity v and Darcy vertical
velocity vD at T = 1

M × 2N ‖vexact − v‖∞ Rate ‖vD,exact − vD‖∞ Rate

32 × 64 3.287 × 10−4 – 2.571 × 10−4 –

64 × 128 8.396 × 10−5 1.97 6.966 × 10−5 1.88

128 × 256 2.114 × 10−5 1.99 1.788 × 10−5 1.96

256 × 512 5.275 × 10−6 2.00 4.398 × 10−6 2.02

Time step is set as �t = h2/2 with h = 1/M
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Table 8 Grid refinement analysis of the fluid vertical velocity at the
interface v� at T = 1

M × 2N ‖v�,exact − v�‖∞ Rate

32 × 64 3.699 × 10−4 –

64 × 128 9.458 × 10−5 1.97

128 × 256 2.378 × 10−5 1.99

256 × 512 5.900 × 10−6 2.01

Time step is set as �t = h2/2 with h = 1/M

for (i, j) ∈ Du

=
{
(i, j) ∈ Z

2|1 ≤ i ≤ M − 1, −N + 1 ≤ j ≤ 0
}

,

(vD)n+1
i,j+1/2 = −k

(
φn+1

i,j+1 − φn+1
i,j

�y

)

, (42)

for (i, j) ∈ Dv

=
{
(i, j) ∈ Z

2|1 ≤ i ≤ M, −N + 2 ≤ j ≤ 0
}
.

The aforementioned discretization framework still holds
in case of straight vertical interface n = (1, 0)T by
switching the “role” between the horizontal u and vertical v
velocity components adjacent to the interface. The vertical
interface separating the fluid flow region and the porous
medium is placed to be coinciding with the horizontal
velocity component u� = u = uD. Therefore, Eq. 12 is
required to solve for u� . The discretization for u� follows
exactly Eq. 33. The Beavers-Joseph-Saffman condition (13)
is discretized on � and imposed as an implicit boundary
condition for v∗ equations similar to Eq. 26.

In the majority of real-world situations, the fluid velocity
magnitude in the incompressible fluid region is marginally
higher than the fluid velocity magnitude in the porous
medium. Since the coupled system evolves on different time
scales, the multi-step temporal integration scheme [33] can

be adopted. By introducing two temporal grids, the coupled
system of Eqs. 31 and 33 is decoupled from Eq. 32, i.e.,

2ν
v∗
i,3/2 − (v�)n+1

i,1/2

�y
= pn+1

i,1 − φm
i,0

+ 2ν�t

(�y)2

(
pn+1

i,2 − pn+1
i,1

)
, (43)

where the time level n represents the fine time step and
time level m represents the coarse time step. In this case,
the incompressible fluid flow solutions are computed with
a fine time step �t and the porous medium solutions are
computed with a coarse time step m�t where m ≥ 1 is the
ratio between the coarse and fine time steps. Figure 3 shows
the two temporal grids schematically. The coupled system
of Eqs. 31 to 33 is only solved once at every coarse time
level m�t . Note that the ratio m is a problem-dependent
parameter which depends on the local characteristic of the
flows. It is possible that the ratio m can be set dynamically
and adaptively throughout the simulation.

4 Numerical results

4.1 Accuracy check of the present method

To validate and to check the numerical convergence of the
present numerical method, a grid refinement analysis is
conducted by constructing an analytic solution. Consider the
Navier-Stokes flow in 0 ≤ x ≤ 1, 1 ≤ y ≤ 2 and the Darcy
flow in 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, the exact solution is given by

u = e−t
[
(y − 1)2 + x(y − 1) + 3x − 1

]
, (44)

v = e−t
[
x(x − 1) − 0.5(y − 1)2 − 3y + 1

]
, (45)

p = e−t (2x + y − 1) , (46)

uD = e−t [(x − 1)(y − 1) + x(y − 1) − 2] , (47)

Table 9 Grid refinement
analysis of the pressure p and
scaled pressure φ at T = 1

M × 2N ‖pexact − p‖∞ Rate ‖φexact − φ‖∞ Rate

32 × 64 7.446 × 10−2 – 5.155 × 10−5 –

64 × 128 3.693 × 10−2 1.01 1.217 × 10−5 2.08

128 × 256 1.835 × 10−2 1.01 2.832 × 10−6 2.11

256 × 512 9.144 × 10−3 1.01 7.792 × 10−7 1.86

M × 2N ‖pexact − p‖2 Rate ‖φexact − φ‖2 Rate

32 × 64 3.229 × 10−2 – 2.028 × 10−5 –

64 × 128 1.553 × 10−2 1.06 4.892 × 10−6 2.05

128 × 256 7.613 × 10−3 1.03 1.187 × 10−6 2.04

256 × 512 3.768 × 10−3 1.01 2.914 × 10−7 2.03

Time step is set as �t = h2/2 with h = 1/M
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Table 10 Grid refinement
analysis of the scaled pressure
gradient φx and φy at T = 1

M × 2N ‖φx,exact − φx‖2 Rate ‖φy,exact − φy‖2 Rate

32 × 64 3.321 × 10−5 – 3.025 × 10−5 –

64 × 128 6.781 × 10−6 2.29 6.426 × 10−6 2.24

128 × 256 1.212 × 10−6 2.48 1.168 × 10−6 2.46

256 × 512 2.746 × 10−7 2.14 2.672 × 10−7 2.13

Time step is set as �t = h2/2 with h = 1/M

vD = e−t
[
x(x − 1) − (y − 1)2 − 2

]
, (48)

φ = e−t

[

x(1 − x)(y − 1) + (y − 1)3

3
+ 2x + 2y + 4

]

,

(49)

with parameters ν = 1, k = 1, and α = 1. In addition, the
exact solution also satisfies the interface conditions Eqs.8
to 10. It should be noted that along the interface y = 1,
the aforementioned solution has discontinuous pressure and
non-zero velocity. The convergence tests are carried out for
all the primary variables using four levels of grid-resolution
starting from M × 2N = 32 × 64 with uniform mesh size
�x = �y = h, time step �t = h/2 and �t = h2/2.
The computations are performed with time-marching up to
time T = 1.0. For the case with �t = h/2, the errors and
convergent rates in L∞-norm for u and uD, v and vD, v� , p
and φ are summarized in Tables 1, 2, 3, and 4, respectively.
In addition, the errors and convergent rates in L2-norm for
p, φ, φx , and φy are summarized in Tables 4 and 5.

In a same manner, the corresponding errors and
convergent rates in L∞-norm for the case with �t = h2/2
are summarized in Tables 6, 7, 8, and 9. In addition, the
corresponding errors and convergent rates in L2-norm are
summarized in Tables 9 and 10. For the case�t proportional
to h, the fluid velocity u and v, Darcy velocities uD and vD,
vertical velocity at the interface v� , and scaled pressure φ

are first-order accurate in L∞-norm, whereas the pressure p

is only half-order accurate in L∞-norm. Pressure p, scaled

Fig. 4 Initial and boundary conditions which represent the percolation
of waters of hydrological basins through rocks and sand

pressure φ, and its gradients φx, φy are first-order accurate
in L2-norm. This first-order accuracy for the velocity is due
to the choice of first-order temporal discretization of the
projection method. However, for the case of�t proportional
to h2, the fluid velocities u and v, Darcy velocities uD
and vD, vertical velocity at the interface v� , as well as
scaled pressure φ are second-order accurate in L∞-norm,
whereas the pressure p is first-order accurate in L∞-norm
and L2-norm. Scaled pressure φ and its gradients φx, φy are
second-order accurate in L2-norm.

4.2 Percolation of fluid through porous medium

A physical example is used to demonstrate the capability of
the developed numerical algorithm. Consider the domains
�F = [0, 8]×[1, 2] and �D = [0, 8]×[0, 1], the initial and
boundary conditions are depicted in Fig. 4. This canonical
case may represent the percolation of fluid through porous
medium [33]. The inlet boundary condition at the left
boundary of the incompressible fluid flow region ∂�F =
{0} × [1, 2] is given by

u = U
(
1 − 4 (y − 1.5)2

)
, v = 0 (50)

where U = 10 in this case. The outflow condition is
prescribed at the right boundary and no-slip boundary
is prescribed at the top boundary of the incompressible
fluid flow region ∂�F = {8} × [1, 2]. For the remaining
boundaries of the porous medium domain, the no-flux
boundary condition ∇φ · n = 0 is imposed. The initial
velocities in �F and �D are zero. The computation is
performed with time-marching, starting from the initial
condition to the steady-state using mesh size of�x = �y =
h = 1/60 and time step of �t = h2/2. The steady-state
solution is justified by assessing the convergence of the
primitive variables.

Figure 5 depicts the comparison of the flow field using
different hydraulic conductivity coefficients k = 1.0
(Fig. 5a) and k = 0.01 (Fig. 5b). In both cases, the fluid
from the incompressible flow region �F flows into the
porous medium region �D until the mass flux across the
interface � has reached the steady-state. Subsequently, the
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Fig. 5 Comparison of velocity vectors with relative magnitude between the case a k = 1.0 and the case b k = 0.01

boundary layer along the top boundary due to the no-slip
condition, and along the interface � in the incompressible
flow region �F due to the BJS interface condition, continue
to develop toward steady-state. The primary discrepancy
between the two cases is the magnitude of the mass flux
across the interface �. Figure 6 illustrates the comparison
of normalized velocity v�/U profiles along the interface �

using different k values starting from k = 0.0001 to k =
1.0. Due to the conservation of mass, the sum of the mass
flow across the interface � must be zero. Table 11 justifies
that the projection method enforces the discrete divergence-
free conditions, and the mass balance error ‖ ∫

�
v�dh‖

across the interface � is up to the machine accuracy. Since k

Fig. 6 Normalized velocity v�/U profiles along the interface � using
different k values starting from k = 0.0001 to k = 1.0

is proportional to permeability, the magnitude of normalized
velocity flows from the incompressible fluid region into the
porous medium region increases as the value of k increases.
To illustrate this, Fig. 7 depicts the mass flux across the
interface � normalized by the inlet mass flux. It is noted
that the normalized mass flux increases significantly with
permeability proportional to k.

The accuracy of the multi-step temporal scheme is eval-
uated herein using the preceding case study with identical
boundary conditions and initial conditions. Table 12 sum-
marizes the comparison of normalized mass flux across
the interface using the coarse to fine time step ratio m =
1, 2, 3, 5 with k = 1.0, 0.001, 0.0001. The predicted nor-
malized mass fluxes for m = 2, 3, 5 are consistent with
the fully coupled case m = 1. By decoupling the system
of Eqs. 31 to 33 and only solve once at every coarse time
level m�t , the computational cost can be reduced without
degrading the accuracy.

Table 11 Mass balance error ‖ ∫
�

v�dh‖ across the interface �

k Mass balance error on �

k = 1.0 8.750 × 10−13

k = 0.1 1.145 × 10−13

k = 0.01 4.297 × 10−14

k = 0.001 6.886 × 10−15

k = 0.0001 8.058 × 10−16
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Fig. 7 Normalized mass flux across the interface �

4.3 Coupled surface and subsurface flows

An example of coupled surface and subsurface flows
(e.g., groundwater system) is exercised to demonstrate
the numerical simulation with an arbitrary interface. As
depicted in Fig. 8, a domain � = [0, 1] × [0, 1] with a
reference length L = 1.0 is separated by an interface �,
where the top half �F denotes a lake or aquarium (surface
flow) and the bottom half �D denotes an aquifer with k =
1.0 (subsurface flow).

The domain is partitioned into these two regions
by conforming the staggered grid approximately to the
prescribed interface �(x) = 0.5 + 0.2 sin (1.5πx) (refer
to Fig. 9) with horizontal and vertical line segments.
Subsequently, the proposed numerical formulation can be
applied directly with minor modifications while retaining its
simplicity. Now, the u and v equations at each cell adjacent
to the interface are imposed with interface conditions
depending on the local orientation of the interface i.e.
horizontal n = (0, −1)T or vertical n = (1, 0)T. In
particular, the normal velocity components at the interface
are computed using the same formulation, i.e., Eq. 6. On
the other hand, the tangential velocity components at the
interface are considered implicitly as the ghost nodes for
the Navier-Stokes equation, i.e., Eq. 7. The discretizations
exactly follow Eqs. 33 and 28 respectively.

The flow is driven by applying a drag force (ReU = 100)
along top boundary ∂�F = [0, 1] × {1}. No-slip boundary

Table 12 Comparison of normalized mass flux across the interface
using the coarse to fine time-step ratio m = 1, 2, 3, 5 with k =
1.0, 0.001, 0.0001

Ratio k = 0.0001 k = 0.001 k = 1.0

m = 1 1.183 × 10−4 1.114 × 10−2 8.21 × 10−1

m = 2 1.183 × 10−4 1.114 × 10−2 8.21 × 10−1

m = 3 1.038 × 10−4 1.114 × 10−2 8.21 × 10−1

m = 5 1.979 × 10−4 1.535 × 10−2 8.21 × 10−1

Fig. 8 Initial and boundary conditions which represent the groundwa-
ter system

condition is imposed on the remaining boundaries ∂�F

and no-flux boundary condition is imposed on ∂�D. The
velocities of �F and �D are initially zero. The computation
is performed with time-marching, starting from the initial

Fig. 9 a Partitioned domain. b Section A view A (white circle indica-
tes cell center for incompressible flows region and black circle
indicates cell center for Darcy flows region). The domain is separated
by conforming the staggered grid to the prescribed interface (indicated
by a dashed line)
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Fig. 10 Velocity vector plot of a shear-driven recirculation flow. The
domain is separated by a interface, where the top half surface flow and
the bottom half denotes subsurface flow with k = 1.0

condition to the steady-state using a mesh size of �x =
�y = h = 1/128 and a time-step of �t = (h/2)2. A
complex recirculation flow is formed within the domain,
and the steady-state solution is determined by monitoring
the convergence of the primitive variables.

A recirculation flow can be observed in Fig. 10. A shear-
driven primary vortex is formed nearby the geometric center
of the domain. Furthermore, two secondary vortices can
be identified nearby the left and right boundaries adjacent
to the interface. The secondary vortices are attributed to
the primary recirculation flow, the discontinuous tangential
velocity (BJS condition) across the interface, and the no-
slip boundary condition. While the normal velocity is
continuous and the mass flux is conserved, the surface
fluid flows into the aquifer through the interface and
decelerates due to the permeability. Subsequently, the fluid
percolates and recirculates back toward the surface through
the interface.

5 Conclusion

The fluid transport phenomena across the interface between
an incompressible fluid region and a porous medium have
received increasing attention both from the mathematical
and the numerical points of view. While the numerical
schemes of each sub-problem are well-known and well-
developed, the development of a high-fidelity numerical
algorithm for the coupled problem is challenging. In
the present study, the Navier-Stokes equations and the
Darcy law, with complex interface conditions, are used
to describe the coupled incompressible flow and porous
medium system. A finite difference projection method is

developed within a staggered grid framework to solve the
coupled system in a segregated manner using primitive
variables. Numerical simulations are carried out for the
model problem with a designed analytical solution and an
application to demonstrate the order of convergence and
its capability. The grid refinement analysis shows that,
for the case �t proportional h2, all primitive variables
are second-order accurate in L∞-norm, except pressure
which is first-order accurate in L∞-norm and L2-norm.
Scaled pressure φ and its gradients φx, φy are second-order
accurate in L2-norm. While for the case �t proportional
h, only pressure is half-order accurate in L∞-norm,
whereas all other primitive variables are first-order accurate.
Pressure p, scaled pressure φ, and its gradients φx, φy

are first-order accurate in L2-norm. The proposed method
provides a fundamental and flexible way in solving coupled
Navier-Stokes and Darcy flow problems and it is readily
extendible to multi-physics fluid flows for a wide range
of applications including physiology, urban climate, and
various engineering analysis.
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