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Abstract
Grid generation is critical to numerical reservoir simulations. High-quality grids guarantee the fidelity of a reservoir model
and keep the flow calculations simple. In this study, we propose a 3D unstructured grid, the generalized prism grid (GPG), to
model reservoirs with complicated geological geometries, including horizons, pinch-outs, faults, fractures, and bore holes.
GPG is a layered, pillar-based grid. The location of a face node is specified by its elevation, and the pillar to which it is
attached. Compared with the hexahedral corner point grid (CPG), GPG is a polygon prism and therefore more flexible;
whereas, compared with the 2.5D perpendicular bisection (PEBI) grid, GPG allows polygons morphing through the stratum.
We built a gridding algorithm to fulfil the features of GPG. The algorithm first constructs a 2D triangular mesh for one
layer by setting up control points and grid densities for geological objects, such as fractures, faults, and wells, distributing
triangular grid points with the “advancing front method,” and performing Delaunay optimization to the points. The polygon
mesh is the dual grid of the triangular mesh. Taking the polygon mesh as a reference, the mesh for each layer of the strata is
a morphing of it, with edges being stretched and points being assigned with heights. We also designed a compact file format
to store GPG data and implemented the flux calculation method for GPG in a reservoir simulator. The attractive features of
GPG are demonstrated through four examples. The conciseness and flexibility of GPG make it a potential new standard grid
format replacing CPG.

Keywords Unstructured grids · Reservoir simulation · Fractured reservoir · Homeomorphic mapping

1 Introduction

A numerical reservoir simulation is performed to model a
reservoir’s dynamic status on a discrete grid. Due to the
form of Darcy’s law and the complexities of modeling mul-
tiphase flow, the control volume finite difference (CVFD)
method remains the most commonly used discretization
method for reservoir simulation. This approach requires

the orthogonality of the grid; otherwise, the flux calculation
would lose accuracy. Structured grids are naturally orthog-
onal, but the discontinuous nature of geological bodies
makes it almost impossible to align structured grids with
arbitrarily distributed geological objects, e.g., horizons,
pinch-outs, faults, fractures, bore holes, etc. Although the
improved finite difference (FD) schemes, such as MPFA [1–
3], mimetic finite difference (MFD) [4–7], and nonlinear
two-point flux approximation(NTPFA) [8, 9], can diminish
the effect of non-orthogonality, these schemes complicate
the flux stencil, introducing additional difficulties to the
solution of the discretized equations. To preserve the geo-
metrical details and keep the flux stencil simple, building a
high-quality grid is always the optimal choice.

A grid that can faithfully model irregular and discontinu-
ous reservoirs should have the following abilities:

– Conformation to the stratum: a grid block should not be
partially in one layer and partially in another, because
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most reservoirs are a layered sedimentary bed. Hence,
the grid arrangement should allow cell degeneracy and
disappearance to represent pinch-outs.

– Representation of faults: faults are discontinuous faces
in both geometry and mechanics. In a reservoir
simulation, the usual way to represent the barrier effect
of faults is to scale the transmissivities between the grid
blocks on the opposite sides of the fault. The grid should
allow misaligned and hanging cells. The corresponding
flux stencil should include non-neighbor connections.

– Representation of fractures: Fractured reservoirs make
up a large and increasing percentage of the world’s
oil and gas resources [10]. Fractures act as high-speed
flow paths for reservoir fluids. Modeling fractures
in a reservoir simulation is always a complex prob-
lem. On the one hand, the pseudo-continuum method
averages the fractures as an equivalent permeability.
Although greatly simplifying the grid, it loses geomet-
ric details and fails to capture the transient behaviors
of flows. On the other hand, explicitly modeling frac-
tures is challenging both to the gridding algorithm
and to the numerical solution. When the fracture net-
work is complicated, generating meshes with smoothly
changing cell densities around the fractures is diffi-
cult; whereas, the smooth transition between small size
cells and large size cells constitutes a guarantee for the
convergence of the solution. Moreover, strong hetero-
geneity and large grid number would reduce solution
speed.

– Representation of boreholes: In reality, a well bore is
unlikely to be exactly parallel or perpendicular to the
layer. Grid blocks built only in respect to well bores
would usually conflict with the stratum, and vice versa.
Furthermore, the pressure gradient near the well is
radial and close to logarithmic. Therefore, there should
be enough transitional grid blocks between the well
bore and stratum, and the grid around the well bore
should be radial-shaped and logarithmically refined.

The corner-point grid (CPG) [11–15] is a structured and
pillar-based grid widely utilized in industrial reservoir
simulators. CPG is made of hexahedral cells numbered by
(I, J, and K) indices. Each CPG cell is defined by four
pillars and the heights of the eight corners, each two of
which are attached to one of the pillars. CPG uses grid
layers to model sedimentary bedding layers. The cells can
degenerate (have less than eight corners) to adapt to eroded
beds. The CPG format allows discontinuities across cell
faces and degeneracies of cell thicknesses to model faults
and pinch-outs, respectively. However, CPG only offers
limited flexibility in matching with geologists’ perceptions
of reservoirs and is often inexact to model fractures and
wells due to the constraint of grid regularity [16].

Another choice is using an unstructured grid. Essentially,
there are two categories of unstructured grid, i.e., the
Voronoi grid [17–22] and the triangular-shaped grid [23,
24]. The Voronoi grid, whose edges are orthogonal to grid-
centroid connecting lines, is commonly used in reservoir
simulation and known as the perpendicular bisection (PEBI)
grid. In fact, a PEBI grid is defined as a convex polygon
within which any point is closer to its own center than to
any other block center. The two main types of PEBI grids
are the full-3D PEBI grid and the 2.5D PEBI grid. Full-
3D PEBI grids allow faces to have arbitrary numbers of
edges. The trade-off for this flexibility is losing the layered
grid structure [16, 25]. 2.5D PEBI grids are prism grids
with the mesh of each layer being the same. The contacted
faces of any pair of grid blocks are aligned. The trade-
off here is losing the ability to model declining geological
objects. Triangular-shaped grids also comprise two main
types: the tetrahedron grid and the prismatic grid [26, 27].
The tetrahedron grid offers the best flexibility to model
subsurface structures. The prismatic grid, which is also
known as the triangular prism grid, is not as flexible as the
tetrahedron grid but is more suitable for layered structures.
The applications of triangular-shaped grids are extensive in
computational fluid dynamics and structural mechanics but
limited in reservoir simulations. The reasons for this are (1)
the triangular-shaped grids are hardly orthogonal if being
conformed to subsurface structures, making the CVFD
scheme inaccurate; and (2) the well inflow calculation is
more difficult to implement compared with that in CPG or
PEBI grids [23, 28]. From a practical perspective, a layered
grid is always preferred to a non-layered grid in reservoir
simulations.

By reconsidering the advantages and disadvantages of
CPG and PEBI grids, we propose a new type of 3D grid,
the generalized prism grid (GPG), to meet the requirements
of both flexibility and practicability. GPG is a pillar-based
grid like CPG, but the basic grid block is extended to a
polygon prism. Different from the full-3D PEBI grid, GPG
is a layered grid. GPG also differs from the 2.5D PEBI grid,
in that the GPG allows a high degree of grid misalignment.
In this work, we built a gridding algorithm for GPG. The
algorithm can be summarized as the following four steps:

1) Setting up control points for determined geological
objects. The control points draw the outlines of the
horizontal projections of the geological objects. They
will not move in 2D reference mesh generation (step 2).

2) Generating the 2D reference mesh. The reference mesh
is a 2D Voronoi mesh used to constrain the topology of
each layer of the final GPG. In this work, we generate
the dual mesh (Delaunay triangular) first, using
the “advancing front method.” This method requires
knowing the grids’ density field in advance, which is
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governed by a Poisson equation taking wells and
fractures as sources [29].

3) Constructing the GPG layer by layer. The mapping
from the reference mesh to a GPG layer is homeo-
morphic, i.e., the topology remains constant. However,
the points of the GPG layer could have displacements
to the reference mesh, because the geological struc-
tures may incline. To smooth the point distribution and
prevent polygon-overlapping after mesh morphing, for
each layer, the (x, y) coordinates of points are opti-
mized using the “equilibrium spring” method [30], with
the fixed displacement boundary condition.

4) Assigning depths to the grid points of each layer.
With a known contour map, the Discrete Smoothing
Interpolation [31, 32] is a good choice.

The remainder of this paper is arranged as follows.
Section 2 describes the basic definition of GPG. Section 3
presents the gridding algorithm, including fracture and fault
representation, 2D reference mesh generation, and layer
morphing. Section 4 introduces a compact data format to
store GPG. Section 5 proposes the method of calculating
the flux terms for reservoir simulations based on GPG.
Section 6 presents four GPG examples to demonstrate the
modeling of the well trajectory, the declining fractures, the

3D faults, and the complex fracture networks, respectively.
The work is concluded in Section 7 with a discussion of the
advantages of GPG.

2 Definition of GPG

The basic idea of GPG is to approximate layered stratum
using columns of prisms. In each column, the prisms stack
neatly and share the same set of pillars (Fig. 1a). Let S ={
Si

j

}
i=1...n,j=1...m

be a set of points in 3D space, where n

is the number of the pillars and m is the layer number. A
GPG cell is a polyhedron � = {

s1a , ..., sn
a ; s1a+1, ..., s

n
a+1,

}
,

where the superscripts (1 to n) are the pillar indexes and
the subscripts (a and a+1) are the layer indexes. The 2.5D
PEBI grid is a special case of GPG with all prisms being
vertical. The CPG and prismatic grid are special cases of
GPG where all elements are hexahedrons and tetrahedrons,
respectively. The index of GPG is a tuple (I , K), where I

is the column number and K is the layer number. This
is different from the triple index of CPG. Figure 1 is the
schematic diagram of GPG. In GPG, the horizons can split
(Fig. 1b), the layers can degenerate (Fig. 1d), and the pillars
can bend and overlap (Fig. 1e).

Fig. 1 Schematic diagram of GPG
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3 Generation of GPG

GPG can be considered a combination of single-layered
meshes. To avoid the breaks of pillars, the topologies of
different layers should be identical. However, the pillars are
not necessarily straight lines, which means that the absolute
positions of mesh points are not fixed, so the single-layered
meshes can morph. This flexibility makes GPG different
from the 2.5D PEBI grid. To achieve a representation of
3D geological objects with GPG involves mapping the
2D cross-sections of geological objects to single-layered
meshes like the tomography. We divide the generation of
GPG into five steps (the final step is optional):

1) Setting up 2D control points for the determined
geological objects;

2) Generating a 2D mesh as the topology reference;
3) Morphing the 2D mesh to form the mesh of each layer;
4) Assigning depths to the grid points of each layer;
5) (Optional) Smoothing the grid through minor adjust-

ments to the locations of unfixed points [33, 34].

3.1 Representation of fractures

Geometric parameters that describe a fracture include
direction, inclination, dip angle, and fracture width. To
reflect all of the above parameters of fractures, we designed
the fracture grid as shown in Fig. 2. The basic shape of
a fracture grid is a rectangle, and the intersection grid is
a polygon prism. As the pillars that define prism grids
can incline or bend, the fracture can incline or bend, but
the fracture grids from different layers still possess the
same topological structure. When creating the 2D reference
mesh, control points of fractures (black dots in Fig. 3a) are
inserted into the set of boundary points, which constrains
Delaunay triangulation. The control points of fractures form
a series of right triangles, and the fracture edges are just the

connections of hypotenuse midpoints. When two fractures
intersect, the triangular edges that emit from the intersection
point should be equal, e.g., L1 = L2 in Fig. 3a, to make
the resultant dual grid close to axisymmetric. When the
intersection angle of two fractures (θ in Fig. 3b) is small, to
keep the size of the intersection grid small, two additional
control points are placed at the bisector of the obtuse angle.
The obtuse angle is formed by the central lines of the two
fractures. This point inserting method follows the work of
Yang et al. [35].

3.2 Representation of faults

The displacement, inclination, shape, and width of faults
bring great challenges to gridding. In GPG, faults are
misalignments of grids. The footwall and hanging wall of
a fault are defined by two sets of pillars. These pillars
are also parts of reservoir grids. In GPG, by bending the
pillars, a fault could have volume (Fig. 1b) between the
footwall and the hanging wall, thus being more realistic;
whereas, in CPG, faults are only volumeless faces. Like
the representation of fractures, control points of faults are
inserted as fixed points into the 2D reference mesh. In this
work, we make the fault a piece of polyline in 2D, as shown
in Fig. 4b, and points of the polyline are the control points
in Delaunay triangulation. We distribute other points around
the polyline using a constrained Voronoi method [36]. When
two faults intersect, the control points are placed on the two
circles (the inner circle and the outer circle in Fig. 4a) that
are centered at the intersection. Both circles are protected
areas, which means that no point is allowed to add into the
areas. The pair of points on the opposite sides of a fault
edge forms a mirror image with respect to the edge. For
instance, on the inner circle in Fig. 4a, the pairs of points
are P4 and P23, P17 and P22, P11 and P16, and P5 and P10.
Until this step, the footwall and hanging wall of the fault
are still sealed. After mesh morphing, however, the footwall

Fig. 2 Illustration of fracture
grids
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Fig. 3 Fixed-point distribution of fractures

and the hanging wall will split and the fault will become a
body (Fig. 4b).

The key to representing x and y faults is the allowance
of pillars overlapping and grid degeneration. In GPG, the y

fault is two pillars overlapping at the lower half under the
inflexion point (Fig. 5a). The x fault is two pillars touching
at the inflexion point (Fig. 5b). We setup a synthetic case to
showhow theGPGgenerates x and y faults. The synthetic case
is a square domain with one x fault and one y fault (Fig. 6).

3.3 Generation of the referencemesh

The reference mesh is a polygon mesh that defines the 2D
topologic structure, which includes representations of geo-
logical objects and information about grid adaption. Grid
adaption is essential for balancing accuracy and efficiency
in reservoir simulations. Different from in structured grids,
grid adaption in GPG is more natural, by inserting points

according to a “density field” prior to the Delaunay triangu-
lation. The construction of the reference mesh includes three
steps: (1) calculating the density field; (2) inserting points
using the “advancing front method”; and (3) performing
Delaunay triangulation to the inserted points. The polygon
mesh is the dual-grid of the triangular mesh.

3.3.1 Density field calculation

For the consistency of accuracy, the grid density should be
proportional to the pressure gradient, and thus the pressure
difference between any two grid blocks is identical. As the
reservoir equation is a Poisson-type equation with wells
and fractures as sources, the grid density field should also
be governed by a Poisson equation with the same sources.
The intensities of the sources in the Poisson equation are
specified according to some prior knowledge, such as the
ratio of fracture permeability to matrix permeability.

Fig. 4 Representation of faults.
a The control points of two
intersected faults; b the split of
hanging wall and footwall after
mesh morphing
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Fig. 5 Representation of x and
y faults, with the red lines being
the pillars: a the y fault; b the x

fault

The governing equation of density field follows the work
of Pirzadeh [37] and is written as:

∇2S = G (x) (1)

where G is the sum of source terms; and S is the reciprocal
of grid spacing. There are two kinds of source terms, i.e., the
point source terms (for vertical wells) and the linear source
terms (for horizontal wells and fractures). G is a Green
function written as:

G (x) =
N∑

n=1

ψn(S × Jn − In) (2)

where ψn is the priori known intensity factor of the nth
source term; and Jn and In are the spacing parameters
of the nth source term. For point sources, Jn and In are,
respectively:

In = Sn

r2n
(3)

Jn = 1

r2n
(4)

where rn is the distance between the source and point x; and
Sn is the prescribed value of the spacing parameter of the
nth source. 1

/
Sn equals the desired diameter of the source

grid.

For line source, In and Jn are defined as line-averaged
spacing parameters, respectively:

In = 1

ln

∫ ln

0

f (l)

r(l)2
dl (5)

Jn = 1

ln

∫ ln

0

dl

r(l)2
(6)

where r (l) is the distance from a point of the line to point
x; and f (l) is the spacing parameter varying along the line.
ln

/
f (l) equals the desired length of the discrete source

segment. For segments with equal length, f (l) is constant.
In this work, Eq. 2 is discretized and solved on a Nx ×Ny

square mesh. The discrete equation is written as:

L × s = b (7)

where s and b are column vectors of length N = Nx × Ny .

The nth value of b is −
D2

N∑
n=1

ψnIn

4+D2
N∑

n=1

ψnJn

, where D is the

length of the mesh square. The coefficient matrix L is a

Fig. 6 An example of x and y

faults
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Fig. 7 Effect of source intensity
on the polygon mesh

N ×N diagonally dominant pentadiagonal matrix, in which
the (i, j) element is:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if j = i
1

4+h2
N∑

n=1

ψnJn

if j = i+1, i − 1, i + Nx, or i − Nx

0 others

(8)

Linear (8) is solved by Pardiso [38, 39], which is a direct
solver based on sparse Gaussian elimination. Parameter ψn

controls the impact area of the nth source. The effect of ψn

is demonstrated in Fig. 7. The figure shows a rectangular
domain with three fractures. Essentially, the larger the ψn,
the larger the impacted area.

3.3.2 Advancing front method

With the control points being fixed, the blank area is
filled with points through the advancing front method. The
“front” refers to a series of connected points holding an
area; the “advancing” of the front is to insert some points
outside of the area, connect the new points with some old
points, and expand the area. The ideal situation is that the
newly inserted point forms an equilateral triangle with an
edge of the front. The general way to insert a point is
to place a trial point on the perpendicular bisector (the
red line in Fig. 8) of the edge and adjust the distance
between the trial point and the edge. The initial distance
is interpolated from the density field. Previous advancing
front methods [26, 40] need to keep the integrity of the
front to distinguish interior and outer areas. A trial point
is accepted if it falls into the outer area, and also has no
front point lying in the searching region. The searching
region is a circle centered at the trial point. Its radius is

comparable with the initial distance between the trial point
and the edge. If the trial point falls into the interior area, it
is abandoned and replaced with the closest front point, and
thus the new triangle is still forming and the front is still
advancing. An extreme case occurs when the closest front
point lies out of the searching region and expanding the
searching radius would make the triangle obtuse. This case
could occur frequently in applications of GPG. As shown
in Fig. 9, when two fractures intersect in a small angle,
the edge near the intersection may fail to find a valid trial
point, because the trial point may cross the front of another
fracture and the searching radius is too small to find an
alternate point on the front. In Fig. 9, T is the trial point of
front edge CH, ST crosses another front edge CG, and there
is no alternate front point inside the searching region. The

Fig. 8 Illustration of the advancing front method. The initial front is A-
B-C-D-E-F-G-H-A. After inserting point I, front edge AB is updated
with edges AI and IB
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Fig. 9 A failing situation of the
traditional advancing front
method. Red dashed lines are
central lines of two fractures.
Black solid segments are front
edges. ST crosses CG and CD,
are there is no alterate front
point in the searching region
(the circle)

so-called combined Delaunay-advancing method [41, 42]
can avoid this situation, but the dual grid of the triangular
mesh may violate the outlines of fractures. In this work,
we proposed a modified advancing front method, using
multiple independent edges instead of one integral front.
Each edge has a unit normal vector pointing outward.
The edges do not necessarily connect head-to-tail. With
this method, the outlines of the geological objects are still
represented faithfully, and the front advancing process can
finish unconditionally. This new method is more suitable
for building reservoir grids, especially for cases with many
fractures.

We use a list to store the front edges that are to be
expanded. These front edges are named “active front edges.”
Initially, the list contains all of the edges made of the control
points. Each active front edge is used only once. Whether
or not the trial point is valid, the corresponding front edge
is removed from the head of the list. The validity of the
trial point is checked locally as soon as it is created. The
local searching algorithm utilized here is the “background

chessboard” method [37]. The whole region is divided as a
Nx × Ny chessboard. The lattice to which any point or edge
belongs is easy to identify. The density information is stored
on the vertices of the lattice. The detailed algorithm is listed
as follows:

1) Initializing the front. The initial front is a series of
closed connecting lines of the control points of the
geological objects, including faults, boundaries, frac-
tures, horizontal wells, and vertical wells. The control
points of boundaries and horizontal wells are set up in
the same way as the control points of faults and frac-
tures, respectively. The control points of vertical wells
are vertices of nested equilateral polygons. An example
of the initial front is shown in Fig. 10a.

2) Selecting the edge at the head of the list (S1 in Fig. 10b),
assuming its length is l.

3) Finding the background lattice that contains the
midpoint of S1. The density value m is obtained by
inverse distance weighted interpolation of the four
vertices of the lattice.

Fig. 10 The modified advancing
front method. a The initial front;
b finding an ideal trial point for
an edge with the outward
direction being defined
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4) Computing the position of ideal trial point Pi on the
perpendicular bisector of S1. The distance is according
to Farrashkhalvat’s criterion [26]:

d =
⎧⎨
⎩
0.55 l if 1

/
m < 0.55 l

1
/
m if 0.55 l < 1

/
m < 2.0 l

2 l if 1
/
m > 2.0 l

(9)

This formula keeps the triangle acute by constraint d.

5) Searching the nearby front points. A recommendation
for the searching radius is r = 0.8 d [26]. If any front
points lie inside the circle, choose the closest one to
replace the ideal trial point.

6) If the following conditions are all satisfied: (1) there
are no front points near the trial point, (2) the trial
point falls into the outer region, and (3) neither of the
new edges crosses existing front edges; the trial point is
reserved. Otherwise, the trial point is abandoned.

7) Pop the edge from the list of active front edges. If step
6 succeeds, two new active front edges are formed and
pushed back to the list. Return to step 2.

8) Repeat steps 2 to 7 until the list of active edges is empty.

In steps 5 and 6, the searching of nearby points and
intersected edges is not performed globally. As the whole
region is divided as a Nx × Ny chessboard, searching only
occurs in the lattices that contain the searching region or the
new edges.

Another benefit of the modified front advancing method
is the potential for parallelization. As the point insertion
operation only involves nearby front edges, edges that are
sufficiently far away can advance simultaneously, and the
whole algorithm can be accelerated with the divide-and-
conquer method.

3.3.3 Delaunay triangulation

The modified advancing front method inserts points into the
domain but does not create triangles. The control points and
the inserted points form a point set suitable for Delaunay
triangulation. Delaunay triangulation is a classical and well-
developed technique. In this work, we use the program
“Triangle” [43] to triangulate the point set. “Triangle”
is a fast, robust, and open-source program for Delaunay
triangulation.

The final polygon mesh is the dual grid of the Delaunay
triangular mesh. The dual grid is created by connecting the
circumcenters of the adjacent triangles. In the Delaunay
triangular mesh, since no extra points fall inside of the
circumcircle of any triangle, the circumcenter connecting
line of two adjacent triangles is always the perpendicular
bisecting their common edge. Therefore, the final polygon
mesh is a PEBI grid. The orthogonality of the PEBI grid
is a favorable property for the CVFD scheme. Figure 11

Fig. 11 Generation of the reference mesh. Red dotted lines are the
Delaunay triangular mesh; black solid lines are the reference mesh

shows the reference mesh of a case with three fractures. The
red dotted lines are the Delaunay triangular mesh; the black
solid lines are the reference mesh.

The steps of constructing the reference mesh are listed in
Table 1.

3.4 Meshmorphing

In GPG, all 3D layers have the same topology. This feature
simplifies the flow calculation for reservoir simulation,
but from a pragmatic perspective, the polygons of a same
column should deform to adapt to geological objects
inclining from verticality. By definition, the pillars of
GPG can bend. This feature offers the possibility to create
deformed, but homeomorphic, 3D layers. An example is
presented in Fig. 12, in which the absolute positions of
the fracture elements (red lines) are distinctly different on
two layers, while the topology does not change. The first
layer (Fig. 12a) is the 2D reference mesh. The second

Table 1 The steps of constructing the reference mesh

1. Place control points of the determined geological objects.

2. Construct the Nx × Ny background chessboard, discrete the density

field equation, and compute the density values on the vertices.

3. Distribute the remaining points using the modified advancing

front method.

4. Perform Delaunay triangulation and obtain the dual mesh.
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Fig. 12 Mesh morphing. a The
reference layer; b the deformed
layer, which is a
homeopmorphic mapping of the
reference layer

layer (Fig. 12b) is a homeomorphic mapping of the first
layer.

In the 2D reference mesh, the control points of geological
objects are predetermined. However, as the geological
objects may incline, their vertical projections onto a 3D
layer may shift from the reference layer. The shifting of
a predetermined point may exceed the size of the polygon
to which it belongs. Locally adjusting the x–y coordinates
of the inserted points could save the convexity of one
polygon, but may destroy others’ or, even worse, cause
the overlapping of polygons. In this work, we introduced a
method that adjusts the x–y coordinates of inserted points
globally. This guarantees both convexity and topological
equality. This method is performed once for each 3D
layer.

The problem of mesh morphing is to fix some points
and re-distribute the others. In computational graphics, this
problem is called mesh manipulation. Some methods are
readily available, including: (1) the free-form deforma-
tion method (FFD) [44–46]; (2) the differential domain
deformation method [47–49]; and (3) the equilibrium spring
method [30, 50, 51]. FFD is the most direct method but
only modifies the grid locally. FFD is based on absolute
Euclidean coordinates, while the differential domain defor-
mation method is based on differential coordinates. The
differential coordinate is defined as the difference between
a point and the average of its neighbors. The differen-
tial domain deformation method is a global method, but
in our problems, it usually produces overlapped polygons.
The equilibrium spring method simulates edges as springs
and predetermined points as anchors. The displacements of
inserted points are solved by minimizing the overall elastic
potential energy, which is a quadric form. This method is
also global. In this work, we found that it rarely produces
overlapped polygons.

The overall elastic potential energy is written as:

E = 1

2

∑
i

∑
j∈N(i)

kij

{[(
xi −x0

i

)
−

(
xj −x0

j

)]2

+
[(

yi −y0
i

)
+

(
yj −y0

j

)]2}
(10)

where N(i) is the set of neighboring points of i; both iand
j include all fixed points; (x∗, y∗) and

(
x0∗, y0∗

)
are the new

and original x–y coordinates of point “*,” respectively;
the subscript “*” stands for i or j , and kij is the Hook’s
coefficient of spring i–j .

The original x–y coordinate of point i—
(
x0
i , y0

i

)
is its

coordinate on the reference layer. Vector
(
xi − x0

i , yi − y0
i

)
is the 2D displacement of pointi after mesh morphing. As
proposed by Batina [30], the Hook’s coefficient is taken as
the inverse of the initial spring length (11):

kij= 1√(
x0
i −x0

j

)2 +
(
y0
i −y0

j

)2 (11)

Minimizing the elastic potential energy is to let function
(9) have zero first-order derivatives, which is equivalent to
solving the x- and y-direction static equilibrium equations,
respectively. These equations are two sparse linear equa-
tions with variable vectors of x and y, respectively. In this
work, the two equations are solved using Pardiso. Figure 13
shows the example that has already appeared in Figs. 10, 11,
and 12. The 2nd and 3rd layers are produced using the equi-
librium spring method. As Fig. 13 shows, all polygons are
convex, the layer morphing is smooth, and the topology
is constant.

The equilibrium spring method solves the issue of
determining x- and y-coordinates for points on 3D layers.
For z-coordinate evaluation, we use discrete smoothing
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Fig. 13 A 3D GPG example
with inclined fractures

interpolation, which is a classic method to assign properties
to scattered points.

4 Data format of GPG

In the workflow of a reservoir simulation, GPG is created
by the gridding program, saved as a file, and loaded by
the simulator. The general way to store polygon grids is
to store vertex coordinates and the connection list. The

connection list defines which vertices form faces and which
faces form bodies. However, as GPG has a layered structure,
the storage of GPG can be greatly simplified. In this work,
we define a data format that contains the essential geometric
information of GPG and is also friendly to the simulator.
The data consist of pillar points, pillar indices of columns,
and z-coordinates of vertices. This format consumes much
less space than the general format. Instead of storing all
vertices and the 3D connection list, this format only stores
pillar points and the 2D connection list. The total number

Table 2 The text formats of GPG

Keywords Contents

GPG 5 integers, indicating the size of memory space:

1st integer: the total number of grids (NG)

2nd integer: the number of grid vertices (NV). The overlapped vertex of 2 adjacent grids is counted as 2 vertices. The
pinch-out vertex of the upper and lower faces of a grid is also counted as 2 vertices.

3rd integer: the number of layers (Nly)

4th integer: the number of pillars (NP)

5th integer: the total number of points that constitutes pillars (NPP)

PCOORD Integers and real numbers, specifying pillar points. Each pillar data are 1 line of data. In each line of data, the first datum is
an integer (nPP), which specifies the number of points that constitutes the pillar. The next nPP × 3 real numbers are the x−,
y−, and d−coordinates (d is depth) of the nPP points.

PIND Integer arrays, the 2D connection list. Each array defines a polygon in 2D, by specifying the pillar indices counter-clockwise.
The first entry of each array is the length of the array. As all layers are aligned in GPG, PIND only contains the data for 1 layer.

PZCORN Real number array with the length NV, specifying the depths of grid vertices. Each grid block’s data are a group with length
nV (the number of vertices of the grid). Each grid block has its upper and lower faces. The pinch-out vertex of the top and
bottom faces is counted as 2 vertices, and thus nV must be an even number. In each group, the first nV/2 numbers are the
vertex depths of the upper face and the last nV/2 numbers are the vertex depths of the lower face. The arrangement order of
each nV/2 vertices is consistent with the order of pillars in PIND.

PFAULTS Tables, each of which defines a fault.

1st column: the name of the fault

2nd column: the starting layer of the fault (k1)

3rd column: the terminal layer of the fault (k2)

4th column: the flow conductivity multiplier (m1)

5th column: the heat conductivity multiplier (m2)

6th column: the number of pillars that constitute the fault (NFP)

7th to (NFP + 6)th columns: the pillar indices of the fault

The NFP pillar indices are arranged from left to right or right to left in the top-down view. For 2 adjacent grids separated by
the fault surface, if 1 of them is located between layers k1 and k2 (including k1 and k2 layer), the flow or heat conductivity
between the two grids is multiplied by m1 or m2, respectively.
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Table 3 Finding horizontal connections for GPG

1. From the “PIND” data, collect all 2D edges as data structures [(p1, p2); i], where p1 and p2 are pillar indices and i is the grid index. i

refers to the grid in the reference layer. Make sure that p1<p2. Push the edges into a vector.

2. Arrange the vector in ascending order by comparing the (p1, p2) tuples.

3. If 2 adjacent nodes in the vector have the same (p1, p2) components but different “i” components, the 2 grids contact through a side face.

4. Push back [(p1, p2); (i1, i2)] to a list. The list is the connection table of the reference layer or the “reference connection table.”

5. In each 3D layer, the grid connections follow the reference connection table, unless a fault appears. When a fault appears, grid blocks on

different layers should be examined to determine whether they contact.

of pillar points is less than or equal to the total number of
polygon vertices. A straight vertical pillar can be defined by
only one point. The 2D connection list is also shorter than
the 3D connection list. Another advantage of this format
is the simplification of fault definition. Instead of enumer-
ating all fault faces, the fault is defined directly with the
corresponding pillars and the z-coordinates of fault faces.

The GPG data can be saved as readable text. The text
is divided into five sections, each of which is headed by
a title. The titles and their contents are listed in Table 2.
An example that illustrates the data format is provided in
Appendix 1.

5 Calculating transmissivities for GPG

5.1 Finding grid connections

The data format of GPG does not explicitly define any
connections or transmissivities. These questions are left to
the simulator to answer. The simulator reads in the data
file of GPG detects all grid connections and calculates the
transmissivities. A benefit of GPG is the simple neighboring
relationship, which can be summarized as follows:

1. Any two grids possess at most one interface.
2. In the same column of grid blocks, the top face of a

grid in the lower layer and the bottom face of a grid in
the upper layer are always aligned, and if the depths of
the two faces are identical, the two grids are connected
vertically.

3. Two adjacent grids within the same layer may contact
through a side face, and the shape of the interface
depends on the coordinates of the face nodes.

Finding vertical connections for GPG is direct, while
finding horizontal connections requires an algorithm, which
is presented in Table 3.

In step 5 of Table 3, the contacted area of a cross-
layer grid couple may not be quadrilateral. Determining
the contacted area constitutes a special case of finding the
overlapped area of two polygons, where the two polygons
are quadrilaterals. For two quadrilaterals with a pair of
opposite edges being collinear, there are a total of 35 types
of overlapping, some of which are presented in Fig. 14.

5.2 Calculating transmissivity factors and well
indices

We use two-point flux approximation (TPFA), which is a
CVFD scheme, to calculate transmissivity factors. TPFA
allows unaligned grid couples, e.g., two grids on different
sides of a fault. In GPG, the permeability can have vertical-
horizontal anisotropy, i.e., kz �= kh, where kz is vertical
permeability and kh is horizontal permeability. GPG has
good orthogonality, because the reference layer is a PEBI
grid and the 3D layers are topologically matched. Near the
inclined fractures, the geometric orthogonality may break.
However, as the dip angles of fractures are usually small,
the introduced error is not significant.

Calculating well indices in GPG is also simple, because
the grid blocks near the wellbore are specially treated during
grid generation. The grid blocks surrounding vertical wells
are like radial grids; whereas, the grid blocks surrounding
horizontal wells are like rectangular grids. In this work,
we use Palagi and Aziz’s method ........[22, 28] to calculate
vertical wells’ indices and Peaceman’s formula ....[52] to
calculate horizontal wells’ indices.

Fig. 14 Some types of fault
connections
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Table 4 Computational
performance of the GPG
generation algorithm (time
elapsed in seconds)

Case number Vertex GPG cell Point Delaunay Mesh Total

number number distribution (s) triangulation (s) morphing (s) time (s)

1 81396 6859 0.267 0.015 0.800 1.082

2 1318980 112100 2.669 0.022 1.000 12.691

3 376428 31452 2.420 0.022 0.720 3.202

4-1 2015248 216428 77.295 0.084 4.044 81.420

4-2 2720424 276024 133.305 0.096 6.664 134.065

4-3 3604272 350364 201.413 0.115 10.508 212.036

4-4 5762528 530048 394.932 0.154 22.604 417.69

4-5 8254640 737056 679.070 0.217 36.198 715.485

4-6 10263792 904280 953.579 0.254 44.840 998.693

Fig. 15 A view of case 1. a The
3D view; b the top view

Fig. 16 Another view of case 1. a The x − z cross section of the mesh; b the well trajectory; c and the isolated well grid blocks. The color scale
represents depth
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Fig. 17 The 3D view of case 3. The color scale represents depth

6 Examples

In this section, we present four cases to illustrate the features
of GPG. These cases cover the major situations that are
difficult for CPG. They include twisted well trajectory,
declining fractures, 3D faults, and horizontal fracturing
wells. All cases are simulated using a reservoir simulator.
We integrate the code of GPG data format interpretation and
transmissivity calculation to a reservoir simulator named

the unconventional oil and gas simulator (UNCONG) ...[53,
54], so that the simulator connects the GPG gridding
program seamlessly. UNCONG is a compositional reservoir
simulator for shale oil, shale gas, CBM reservoirs, etc. A
key development in UNCONG is to integrate state-of-the-
art methods to model fractured reservoirs. We compared
the simulation results of case 3 with the results of CPG to
cross-validate the two types of grids in the simulator. In
case 4, we compared the simulation results of the versions

Fig. 18 View of the fracture grids. The color scale represents depth
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Fig. 19 The resultant GPG for case 3. The color scale represents depth

with different grid densities to verify the convergence of
precision. The time costs of the four cases are summarized
in Table 4.

Case 1: twisted well trajectory Case 1 is a vertical well with
a twisted trajectory in a square domain. Figure 15 shows
the resultant grid, which has 6,859 grid blocks. The grid
blocks near the well are refined smoothly. The density of
grid blocks near the well can be adjusted by changing the
value of the intensity factor (ψ in Eq. (2)). The top layer is
the reference layer. Other layers are generated by deforming
the reference layer with the boundaries being fixed and the
central grid blocks shifting with the well trajectory. The
pillars of the central prism are bent to conform to the well
trajectory, so that the borehole is represented faithfully. The
cut view of the mesh and the isolated well grid blocks are
presented in Fig. 16.

Case 2: declining fractures Case 2 is a rectangular reservoir
with a horizontal fracturing well and some large fractures.
Figure 17 shows the resultant grid, which has 37,064 grid
blocks. The grid blocks are refined near the horizontal well
and the fractures naturally. In case 2, the top layer is also the
reference layer. Other layers are homeomorphic mappings
of this layer with the boundaries being fixed and the fracture
grid blocks morphing with depth. Figure 18 presents the
fracture grids by making the matrix grids transparent. The
grid faithfully represents the fractures. The pillars of the
prisms are bent to conform to the fracture shapes.

Case 3: 3D faults Case 3 is a faulted reservoir with nine
vertical wells. The reservoir is modeled with both GPG
and CPG. Figure 19 shows the resultant GPG, which has
112,100 grid blocks. The zoomed-in views reveal that the
fault pillars are bent according to the fault shapes, and

Fig. 20 The pressure distribution at day 400. The color scale represents depth
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Fig. 21 Comparison of field oil
total production of GPG and
CPG

the faults are represented as 3D bodies. The reservoir is
simulated dynamically using UNCONG. The effect of faults
can be observed in Fig. 20, which presents the pressure
distribution of GPG and CPG cases at day 400. Figure 21 is
the comparison of field oil total production of GPG and CPG
cases. Good agreement between GPG and CPG is achieved.

Case 4: horizontal fractured wells Case 4 is a reservoir with
three horizontal fractured wells and many fractures. We
generate six models (Fig. 22) with different grid intensities.
The grid numbers are 216,428, 276,024, 350,364, 530,048,

737,056, and 904,280. The transparent view (Fig. 23) of
the grid, whose grid number is 216,428, shows that the
gridding algorithm can constrain the intersection grids to
sizes that are similar to those of the non-intersected fracture
grids. We simulate these models using UNCONG. The
pressure distributions of the six models at the 1100th day are
presented in Fig. 22. The curves of total gas production are
compared in Fig. 24. From these results, we can confirm the
convergence of precision with the growing number of grids,
and an asymptote exists. When the number of grids is larger
than a threshold and continues growing, the simulation

Fig. 22 The GPG of the six models, which have different grid densities. The color scale represents pressure
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Fig. 23 The transparent view of
the GPG with 216,428 cells. The
color scale represents depth

results tend to be stable. In this case, the threshold is
approximately 300,000.

Computational performance We evaluate the performance
of the gridding algorithm via the four cases above. The
results are listed in Table 4. All cases are tested on a single
CPU running at 2.60 GHz. The gridding program is not
parallelized. The total CPU time equals the summation of
time spent in point distribution, Delaunay triangulation, and
mesh morphing. The time of height interpolation is not
included. The time costs of point distribution, Delaunay
triangulation, and each layer’s mesh morphing almost
grow linearly with the vertex number per layer. The point
distribution is always the most time-consuming part of the
whole algorithm. As we described in Section 3.3, the point
distribution includes density field calculation and point
insertion (the advancing front method). The former requires
solving large sparse linear equations, and the latter involves
a large amount of distance and intersection calculations.

Fortunately, both steps can be accelerated by parallelization.
The solving of the pentadiagonal matrix could easily have
a near-linear acceleration ratio. In fact, it is already quite
optimized in Pardiso. Since the modified advancing front
method can be parallelized with the divide-and-conquer
strategy, it could also have a near-linear acceleration ratio.
The mesh-morphing step takes a minor part of the total
time. Although the equilibrium spring method also requires
solving large sparse linear equations, in these cases, the
time cost is much less than point insertion. Moreover,
solving an unstructured, sparse, and symmetric positive
definite matrix is already quite optimized in Pardiso.
The Delaunay triangulation step comprises a very small
part of the total time, because after point distribution,
we already have a very good point set for Delaunay
triangulation. Consequently, accelerating the point insertion
step is critical to improve the speed of the current
algorithm. It also constitutes an important part of our future
work.

Fig. 24 Comparing gas total
production curves of the six
models of case 4
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7 Conclusions

This paper presents a novel 3D unstructured grid, the GPG,
for reservoir simulations. GPG is a pillar-based layered grid.
In the design of GPG, the pillars can overlap or bend,
the layers can slit or degenerate, and the cells can deform
through depth. These flexibilities enable GPG to model
complicated geological structures, including horizons,
pinch-outs, faults, fractures, and boreholes, with geometric
details preserved. We propose an effective gridding
algorithm that fulfils the features of GPG.

The implementation of GPG is a systematic work. We
designed a file format that contains only the necessary
information of GPG but is still easy to interpret. We also
integrated the ability of modeling with GPG into a reservoir
simulator. The methods that we utilized to calculate the
transmissivities and well indices are presented.

Cases are presented to demonstrate the flexibility,
accuracy, and practicability of GPG, as well as the
efficiency of the proposed gridding algorithm. GPG is
capable of representing both high permeability zones and
barrier zones with a reasonable number of grids and rather
simple topology, which benefits its applications in reservoir
simulations. The final example highlights the capabilities
of GPG. With GPG, very complicated fracture networks
are represented faithfully, while the geometric topology
remains simple. The error converges quickly with the
increasing of grid number. Compared with the traditional
CPG, GPG is much more flexible yet still pragmatic. GPG
performs better in capturing geological structures while
minimizing grid orientation effects. The conciseness and
flexibility of GPG make it a potential new standard grid
format that can replace CPG.

AchallengewithGPG is thedifficulty tomodel anisotropic
permeability in the x–y plane. If using the simple two-point
flux approximation (TPFA), the “K-orthogonal” condition
would be violated and the flow calculation would lose
accuracy. The NTPFA or MFD method may be employed
to keep the accuracy in the non-K-orthogonal grid, which
constitutes a topic of our ongoing work.
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Appendix 1: A simple example to illustrate
the data format of GPG

In the following script, each “#” leads a comment line. The
grid is shown in Fig. 25.

GPG

# NG NV Nly NP NPP

8 72 2 11 26

PCOORD

# nPP x1 y1 d1 x2 y2 d2 x3 y3 d3

2 41.3 54.9 0.0 41.3 54.9 8.0

3 41.7 41.7 0.0 41.7 41.2 6.0 41.7 40.7 8.0

2 52.0 54.8 0.0 52.0 54.8 8.0

2 14.7 53.8 0.0 14.7 53.8 8.0

3 20.8 40.4 0.0 20.8 39.4 6.0 20.8 38.4 8.0

3 29.9 34.3 0.0 29.9 33.8 6.0 29.9 33.3 8.0

2 41.3 70.1 0.0 41.3 70.1 8.0

2 59.9 63.8 0.0 59.8 58.0 5.0 59.8 58.0 8.0

2 59.8 58 0.0 59.8 58.0 8.0

2 28.0 75.6 0.0 28.0 75.6 8.0

2 14.2 66.2 0.0 14.2 66.2 8.0

PIND

# Length and Pillar indices

3 1 2 3

5 4 5 6 2 1

5 1 7 8 9 3

5 1 7 10 11 4
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Fig. 25 The 3D view of the
simple GPG example

PZCORN

# Every two lines are to define the depths of the top and the

# bottom faces of a prism grid, respectively. The order of

# numbers is coincided with the order of pillars defined in

# PIND.

2.0 2.0 2.0

6.0 6.0 6.0

2.0 2.0 2.0 2.0 2.0

6.0 6.0 6.0 6.0 6.0

0.0 0.0 0.0 0.0 0.0

5.0 5.0 5.0 5.0 5.0

0.0 0.0 0.0 0.0 0.0

5.0 5.0 5.0 5.0 5.0

6.0 6.0 6.0

8.0 6.4 8.0

6.0 6.0 6.0 6.0 6.0

8.0 6.4 6.0 6.4 8.0

5.0 5.0 5.0 5.0 5.0

8.0 8.0 8.0 8.0 8.0

5.0 5.0 5.0 5.0 5.0

8.0 8.0 8.0 8.0 8.0

PFAULTS

# name k1 k2 m1m2 NFP p1 p2 p3

‘Fault1’ 1 2 0 0 3 4 1 3
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