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Abstract
Three sets of synthetic images were created from two original datasets. A suite exhibiting greyscale contrast was produced
from an 8.96-μm voxel size 3D X-ray microscopy image of a sandstone rock and a two suites (one showing greyscale
contrast and one showing both greyscale and textural contrast) were produced from a 5 × 5 × 5 nm voxel size FIB-SEM
image of a shale rock. The performance of three image segmentation algorithms (global multi-Otsu thresholding, seeded
watershed region growing, and machine learning-based multivariant classification) was then assessed by their ability to
recover their respective original segmented 3D images. While all algorithms performed well at low noise levels, machine
learning-based classification proved significantly more noise tolerant than either of the traditional algorithms. It was also
able to segment the non-greyscale (textural based) contrast, something the traditional completely failed to do, with voxel
misclassification rates for the traditional techniques above 50% at a 0 noise level within the textural contrast regions.
Machine learning-based classification, in contrast, achieved misclassification rates of less than 5% in the same regions.

Keywords Image processing · Image segmentation · Digital rock physics

1 Introduction

Digital rock analysis, a field which has developed from a
primarily academic pursuit to an increasingly used indus-
trial tool, is interested in the processes and mechanisms
behind single and multiphase flow. In these analyses, prop-
erties of hydrogeological interest (e.g., porosity, absolute
permeability, and the relative permeability and capillary
pressure saturation functions) are computed computation-
ally from discreet descriptions of the pore structure of
the rock [1–3], generated using high-resolution microscopy
techniques [4]. Recent advances have even allowed for the
in situ measurement of fluid distributions [5–7], reactive
transport [8, 9], and basic petrophysical properties such as
local capillary pressures [10, 11] and contact angle [12–15].
These properties are then used to inform and populate reser-
voir simulation models, which in turn inform petroleum
reservoir management decisions. They are, however, inti-
mately related to the local pore microstructure, and as

such, errors in segmentation result in errors in all subse-
quent analyses. Recent benchmarking efforts have shown
that traditional segmentation techniques have the poten-
tial of inducing significant errors, particularly in flow and
electrical transport parameters [16–18]. This is because, fre-
quently, raw greyscale datasets contain both a variety of
modality-specific artifacts and noise that cause, as resulting
images become more complex, the failure of traditional seg-
mentation approaches [19]. When visually inspecting such
images, the brain acts to smooth out this noise and recog-
nize patterns in the data to extract information through the
artefacts, but such a process has frequently proved hard to
automate and capture in a computational form. Tradition-
ally, science has relied on the hard work of researchers to
manually segment such artefact-ridden images. As datasets
grow larger, more complex, and more multidimensional,
however, these manual approaches become more and more
34 challenging to scale.

The last 20 years has seen a transformation in a wide
range of fields, widely grouped together under the umbrella
of “machine learning.” While these technologies have trans-
formed many areas of data science ranging from medi-
cal diagnosis to stock market analysis, image analysis for
microscopy (outside some specific areas of application) has
lagged behind developments in other fields. The power of
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such algorithms when applied to segmentation and clas-
sification problems in microscopy lies in their ability to
create arbitrary classifiers which operate in much higher-
dimensional space than simply the image output from a spe-
cific microscope detector. These higher-dimensional spaces
may be (spatially and/or temporally correlated) images
acquired in different imaging modalities (i.e., using differ-
ent detectors, energies, or techniques to extract different
properties from the sample) or images derived from the orig-
inal dataset by applying a range of filters to the sample (e.g.,
gradient, smoothing, or textural filters to extract different
local and non-local features from the image). These fea-
tures are then concatenated to from a single “feature vector,”
a set of numbers corresponding to all the (local, nonlocal,
and textural) information created about that pixel. These
techniques have begun to be applied to the segmentation of
microscopic images, with recent studies on rock and soil
samples including Chauhan et al. [20], Koebernick et al.
[21], and Schweizer et al. [22].

In this paper, we perform quantitative benchmarking
of classifiers created using machine learning algorithms
against traditional image processing workflows across a
range of samples of interest in the petroleum geosciences.
One of the challenges in digital rock analysis is the multi-
tude of different rock types of interest for analysis, requiring
a multitude of imaging techniques to fully characterize.
These range from high-porosity, high-permeability conven-
tional resources (such as Siliciclastic sandstones [23, 24])
which have pore structures on the scale of tens of microns,
through to unconventional shale resources with pore struc-
tures on the nanometer scale [25–29]. To examine the
impact of differing segmentation techniques, three suites
of 3D synthetic datasets were constructed from segmented
real datasets of key samples, specifically high-resolution
nanoscale focused ion beam-scanning electron microscopy
(FIB-SEM) dataset (with a voxel size of 2.5 × 2.5 × 5 nm,
binned to a voxel size of 5 × 5 × 5 nm) of an economic
shale sample and a micron-scale X-ray microscopy (XRM,
also known as micro-computed tomography or micro-CT)
dataset (with a voxel size of 8.96 × 8.96 × 8.96 μm) of a
model sandstone.

2 Synthetic image reconstruction

The two rock types analyzed in this study were Ben-
theimer Sandstone, an early Cretaceous high-porosity, high-
permeability Quartz Arenite [30], and the Vaca Muerta
shale, a late Triassic-early Jurassic economic low-to-
intermediate maturity onshore Argentinian shale. For the
sandstone sample, the central portion of a micro-plug
10 mm in diameter and 50 mm in length was imaged
using a ZEISS Xradia 520 Versa X-ray microscope or XRM

(ZEISS X-ray Microscopy, Pleasanton, CA). 3D volumes
with a voxel size of 8.96 μm were reconstructed using
a proprietary filtered back projection algorithm [31] from
a series of 1600 projections. Each projection consisted of
1024 × 1024 pixels and was reconstructed into a 3D vol-
ume of size 1024 × 1024 × 1024 voxels, representing a
physical volume of 9.14 mm × 9.14 mm × 9.14 mm. This
dataset was then segmented into two phases (pore and grain)
using ZEISS Zen Intellesis [32], a graphical interface allow-
ing for interactive training of machine learning classifiers
from microscopy datasets. It uses open-source packages for
both feature extraction (scikit-image (www.scikit-image.
org) and SciPy (www.scipy.org)), multivariant classifier
construction, simplification and application (scikit-learn
(www.scikit-learn.org)), and task scheduling (Dask (https://
dask.pydata.org/en/latest/)). The interface allows for a direct
and interactive “painting” of training data onto an image.
Thirty-three features are then extracted from each greyscale
channel, including 20 Gaussian filters (with standard devi-
ations ranging from 0.7 to 8 pixels), five mean filters (of
similarly varying kernel size), four Gabor filters (with two
values for standard deviation (1 and 3) and two wavelengths
(5 and 10 pixels)), one Hessian filter (giving three feature
vectors corresponding to the xx, xy, and yy second-order
partial derivatives), and one Sobel feature vector. A multi-
variant classifier is then trained on these features using a
“forest of random decision trees” approach [33]. This clas-
sifier is then applied to either the current 2D slice displayed
for a 3D stack or a local region in a large 2D image. The user
then iteratively adds or removes training data on multiple
2D slices through the 3D volume until a visually satisfac-
tory segmentation is found. Once a desirable model has
been trained, it can be applied across the entire 3D dataset,
producing the final image segmentation (Fig. 1a, b).

This segmentation was then scaled such that the
average greyscale value of each phase (pore and void)
matched the average greyscale of that phase in the
original XRM image. This ensured that resulting synthetic
datasets had a greyscale value range representative of
the original image, thereby maximizing the similarity
of the resulting synthetic datasets to the original data.
This volume was then forward-projected back into the
projection domain, and a Gaussian blur (with a standard
deviation of 1 pixel) was applied to the projection data
(Fig. 1c). This data was represented as a dimensionless
“absorption factor,” ranging from 0 (where 0% of X-rays
incident on the detector had been absorbed during X-
ray projection) to 1 (where 100% of X-rays incident on
the detector had been absorbed during X-ray projection).
Gaussian noise with differing standard deviations was
then applied to the projection data, creating a suite of
synthetic projection datasets with noise levels ranging
over an order of magnitude from 0.01 (representing a
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Fig. 1 The process for the generation of synthetic XRM data. a The
original XRM data, showing pore (darkest phase) and grains (lighter
phases). This was then segmented (b). The segmented data was then
rescaled and re-projected (c), where a Gaussian blur and variable levels

of noise were applied to the datasets before the suite of synthetic data
was then reconstructed and variable noise levels (d–h). In each dataset
(e–h), the noise level (σ ) is shown in the top right of the cross-sectional
slice

1% standard deviation of variation in absorption) to 0.1
(representing a 10% standard deviation of variation in
absorption). These projection data were then reconstructed
using the same proprietary filtered back projection as was
used to reconstruct the original XRM data (Fig. 1a). By
applying noise in the projection domain, the datasets more
faithfully reproduce the sort of noise and the sort of
artefacts common in such 3D XRM data. Theoretically,
detector noise is more accurately modelled using Poisson or
“shot” noise; however, at large incident event numbers, the
Gaussian distribution provides a strong approximation, with
significant advantages in terms of computational simplicity
and ease of interpretation, for which reason it was used in
this study.

The shale dataset, acquired on a ZEISS Crossbeam 550
microscope (ZEISS Microscopy, Pleasanton, CA), had an
anisotropic voxel size of 2.5 × 2.5 × 5 nm and a total
voxel array of 2048 × 1722 × 606 voxels (representing
a real physical volume of 5.1 × 4.3 × 3 μm). This data
was then binned in the X and Y direction, creating a voxel
array of 1024 × 861 × 606 voxels with an isotropic voxel
size of 5 × 5 × 5 nm. The FIB-SEM dataset contained
five mineral phases, providing a much more significant
segmentation challenge than the XRM, and as such was
an attractive target for synthetic image generation and
quantitative segmentation performance characterization.
The dataset was first segmented using supervised machine

learning into five phases (porosity, organic phases, quartz,
calcite, and pyrite, in the order of their apparent greyscale
value) to provide an initial segmentation baseline to
which subsequent segmentations were then compared. One
challenge when imaging porous materials using FIB-SEM
is that of “pore backs”—an artefact where out-of-plane
information is visible, interfering with segmentation of
that slice. To simulate this in the synthetic data, a 1D
convolutional ramp kernel was applied in the Z (image slice)
direction, effectively blurring the image in one direction
(towards the front of the image). This kernel was only
applied through the pore phase (out-of-plane information
is only visible if it can be seen through the porosity) and
had the effect of making nearby pore walls visible in plane
(Fig. 2c, d). After this, 2D Gaussian blur (with a kernel
size of 1 voxel) was applied. Two suites of data were
then created. To create the first, the dataset was rescaled
such that the average of each phase was equal to the
average of that phase in the original FIB-SEM dataset,
after which variable levels of Gaussian noise were added
(with standard deviations ranging from 0 to 30 greyscale
units) (Fig. 2e). This recreated the segmentation challenge
faced with the XRM data, but with a greater number of
desired phases for the final segmentation (five in the case
of the FIB-SEM data, rather than two in the case of the
XRM data). The second suite of synthetic FIB-SEM data
constituted a qualitatively different (and more difficult to



1506 Comput Geosci (2018) 22:1503–1512

Fig. 2 The creation of a suite of synthetic FIB-SEM data from an orig-
inal (real) dataset with a voxel size of 2.5 × 2.5 × 5 nm (a). b A
five-phase segmentation of the dataset into (in order of greyscale inten-
sity) pore, organic, quartz, calcite, and pyrite. c This segmentation was
then rescaled back such that the average greyscale value of each pixel
was equal to the average greyscale value of the associated phase in

the original image. d “Pore Back” artefacts were introduced. e Vari-
able levels of Gaussian noise were then applied to create a suite of
“greyscale contrast” datasets. f “Textural contrast” datasets were cre-
ated by applying a bidirectional sinusoid function through the “calcite”
phase before adding Gaussian noise (g)

solve) segmentation challenge—that of coupled greyscale
and textural segmentation.

Frequently, the features of interest (such as different
minerals or local microfacies) do not exhibit significant
greyscale contrast. They may, however, display differences
in texture or morphology [34], which are challenging to
incorporate into a traditional image processing and analysis
workflow (particularly when the segmentation is performed
in parallel with segmentation relying on greyscale contrast).
Machine learning presents a particularly powerful tool for
segmentation using these parameters, so to simulate the
impact of variations in texture in the synthetic data, the data
was rescaled such that the average of each phase was equal
to the average of that phase in the original FIB-SEM dataset
apart from the second brightest phase (corresponding to
the calcite mineral). This phase was given a greyscale
equal to the average greyscale of the third brightest phase
(corresponding to the quartz mineral)—there was therefore
no difference in the average greyscale value of the regions
corresponding to the quartz and the calcite in the “textural
contrast” synthetic image. In order to differentiate these
two phases, textural contrast was added to the “calcite”
region by modulating the greyscale intensity of that region
by a randomly modulating bidirectional sinusoidal function
with a wavelength of 6 pixels. Varying levels of Gaussian
noise were then applied to the resulting dataset, similar to

the purely “greyscale contrast” dataset (and the suite of
synthetic XRM datasets). The greyscale of the “calcite”
region was therefore given by

Icalcite, synthetic = Iqz+A×sinX/λ +B×sin Y/λ+NoiseGauss

with Iqz being the average greyscale value of the “quartz”
phase in the original FIB-SEM image, A and B being
uniformly distributed random variables, X and Y being
the pixel position in X and Y respectively, λ being the
wavelength of the sinusoid function, and NoiseGauss being
the varying levels of Gaussian noise (Fig. 2g).

These “combined textural and greyscale contrast”
datasets provide an extreme challenge for traditional image-
processing algorithms as the problem extends beyond a sim-
ple denoising challenge to extracting differential contrast on
differing regions of the image, something which could lead
to an extremely involved and challenging-to-identify image
processing workflow. The FIB-SEM dataset was chosen as
the base for the combined textural and greyscale contrast
dataset suite (rather than another dataset natively exhibit-
ing textural contrast) as it displayed significant structural
complexity (with five distinct phases), and so posed a par-
ticular challenge for the algorithm. It also allows for the
comparison of algorithmic performance between two suites
of datasets reconstructed from the same original dataset to
contain differing contrast mechanisms.
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Fig. 3 Benchmarking XRM dataset of varying noise levels. a Origi-
nal segmentation. b Segmentation using multi-Otsu techniques at noise
σ = 0.01. c Segmentation using seeded watershed algorithm at noise
σ = 0.01. d Segmentation using machine learning at noise σ = 0.01.

e Segmentation using multiOtsu techniques at noise σ = 0.1. f Seg-
mentation using seeded watershed at noise σ = 0.1. g Segmentation
using machine learning algorithms at noise σ = 0.1. h Relationship
between number of misclassified voxels and projection noise level

3 Benchmarking

Each of the synthetic datasets was then segmented using
three different techniques. First, multi-Otsu thresholding
was used [35], an automated technique for finding a
universal greyscale threshold by minimizing inter-class
variance. Second, a watershed algorithm computed off
a seed generated using a 2D histogram was performed

[36]. Finally, a multiphase segmentation was performed,
using the same workflow as described above. Multi-
Otsu thresholding and seeded watershed region growing
were performed in ORS Dragonfly whereas the machine
learning-based segmentation was performed in ZEISS
Zen Intellesis. To analyze the fidelity with which each
segmentation technique recovered the original segmented
phase distribution, a logical XOR operation was performed
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between the original segmentation and the newly segmented
images. The number of misclassified voxels belonging to
a phase different to those in the original segmentation
was then counted and expressed as a proportion of the
original image. This was used as a quantitative metric for the
performance of each image processing algorithm (Fig. 3).
Frequently, image processing algorithms use pre- or post-
segmentation de-noising filters to facilitate and improve
the resulting segmentation. Pre-segmentation filters vary in
complexity from simple mean pixel averaging through to
complex non-linear edge preserving filters (e.g., the non-
local means (NLM) filter [37, 38]), and post-segmentation
filters include morphological filters such as image Opening,
Closing, and Majority filtering. Their impact may seem to
be an appropriate target for benchmarking efforts. In order
to isolate the impact of specifically the segmentation step on

the resulting data, however, only the segmentation technique
was varied during benchmarking (no other image processing
was performed). This represents variations in image quality
of the image immediately prior to the segmentation step
(independent of the rest of a potentially complex image
processing workflow).

At low noise levels (Fig. 3b–d), all segmentation algo-
rithms perform well with proportions of misclassified vox-
els (<5%). At high noise levels (Fig. 3e–g), however,
traditional techniques have a higher level of voxel misclas-
sification. This can be seen in the segmented reconstructed
image cross sections (Fig. 3e, f) by pore voxels in regions
shown in Fig. 3a (the original segmentation) as grain and
vice versa. The machine learning segmentation (Fig. 3g),
however, performs well across the noise range. This can be
seen in the plot of the noise level against the number of

Fig. 4 Re-segmentation of
FIB-SEM datasets. a Original
segmented data. b Segmentation
using multi-Otsu techniques at
noise σ = 10. c Segmentation
using seeded watershed
algorithm at noise σ = 20. d
Segmentation using machine
learning at noise σ = 10. e
Relationship between percent
misclassified voxels and noise
standard deviations
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misclassified voxels—machine learning techniques retain
a low level of misclassification (around 5%), whereas the
traditional technique misclassification rate increases sig-
nificantly. One interesting feature of this analysis is that
even when that dataset has no additional noise applied to
the dataset, there is still a number of misclassified voxels
(around 2.5%). The filtered back projection process neces-
sarily introduces some artefacts in the reconstructed data,
which in turn introduces uncertainty in the location of the
training regions. This is essentially reproducing the fact that,
even in high-quality data, the human eye cannot interpret
the data with 100% accuracy.

A similar analysis was performed for the “greyscale
contrast” suite of synthetic FIB-SEM data (Fig. 4). All
segmentation techniques produce good results (with low

numbers of misclassified voxels) at low noise standard
deviations; however, as the standard deviation of the noise
increases, the level of greyscale misclassification increases
dramatically. Interestingly, at intermediate noise in the
FIB-SEM derived dataset, watershed outperforms simple
Otsu thresholding. This may be because of the impact
of partial volume artefacts (regions on phase interfaces
where the greyscale value passes continuously through
values associated with intermediate phases with average
greyscale values between the average greyscale values of
the two phases on either side of the interface) on voxel
misclassifications at this noise level. We might expect
region growing algorithms seeded in low-gradient areas
to be less susceptible to the impact of this effect as
it is the high-gradient regions that display these partial

Fig. 5 Re-segmentation of FIB-
SEM datasets exhibiting textural
contrast. a Original segmented
data. b Segmentation using
multi-Otsu techniques at noise
σ = 10. c Segmentation using
seeded watershed algorithm at
noise σ = 10. d Segmentation
using machine learning at noise
σ = 10. e Relationship between
percent misclassified voxels and
noise standard deviations
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volume effects. At higher noise levels, however, both
traditional algorithms perform equally poorly. The machine
learning-based segmentation performs much better—even
at the highest noise levels, it shows relatively low voxel
misclassifications (<10%).

The final suite of synthetic data to be analyzed
were those where the data displayed both greyscale and
textural contrast (with the textural contrast specifically
displayed only in the region occupied by the “calcite”
phase with the fourth highest greyscale in the original
dataset (Fig. 5)). This textural contrast is a particularly
interesting case as, frequently, when we visually inspect
images, textural or morphological differences present the
most striking differences between different phases. In the
petroleum geosciences, there is particular interest in this as,
frequently, mineralogical differences may be expressed by
such variations in image texture or morphology.

The combined greyscale / textural contrast dataset shows
broadly similar patterns to the greyscale contrast only
dataset, but with some critical differences, particularly in the
region exhibiting textural contrast. Similar to the greyscale-
only synthetic data, this textural contrast data shows relative
performance improvements of seeded watershed techniques
over multi-Otsu thresholding at intermediate noise datasets
(σ = 10), but very similar (poor) performance at larger
noise levels. Machine learning techniques perform well
across all image noise levels. An interesting difference rela-
tive to the greyscale only contrast dataset is the significantly
increased voxel misclassification at very low noise lev-
els. An interesting difference, however, is the significantly

increased voxel misclassification at very low noise levels.
This is associated with misclassifications within the “cal-
cite” region displaying textural contrast. Machine learning,
however, gives a much lower level of voxel misclassifi-
cation, similar to that in the original greyscale contrast
suite of synthetic data. This is because traditional image
processing techniques are sensitive only to a greyscale
contrast—within the textural contrast region, they perform
no better than simply randomly assigning voxel classifica-
tions. The machine learning-based segmentation, however,
has features (such as Hessian and Gabor filters). These
features are then used as components for a multivariant
classification scheme. Regions exhibiting greyscale con-
trast (the phases corresponding to the pores, organics,
and pyrite) are being classified using local and non-local
greyscale features, and the regions distinguished by the
textural contrast region (corresponding to the quartz and
calcite in the original image) are being classified using a
combination of textural and greyscale features. The relative
capacity of the different segmentation to classify based on
texture can be seen by examining the fraction of misclassi-
fied voxels within the textural contrast phase (Fig. 6).

Within this region, voxel misclassifications for tradi-
tional techniques are high even at low noise levels, and were
above 50% across the noise range. Machine learning tech-
niques, however, have feature vector components built into
them that extract textural information and allow this infor-
mation to be used for discrimination in classification. This
allows misclassifications to be kept low (< 15%) across the
noise range even within the textural contrast region.

Fig. 6 Voxel misclassifications
within the textural contrast
region
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4 Conclusions

The relative performance of three segmentation techniques
(multi-Otsu thresholding, seeded watershed region growing,
and machine learning-based classification) were quantita-
tively assessed on three suites of synthetic data constructed
from two different imaging modalities. The first suite of
synthetic data was produced from an XRM dataset of a
sandstone sample, to which variable levels of noise were
introduced into the projection domain. This found that,
while traditional techniques perform well at low noise lev-
els, at high noise levels they fail to recover the original
segmented geometry, with large numbers of misclassified
voxels. Similar behavior was found for the second suite
of synthetic data, constructed from a five-phase nanoscale
FIB-SEM image of a shale sample exhibiting only greyscale
contrast information, with traditional techniques perform-
ing well at low noise levels but poorly (with high rates
of voxel misclassification) at higher noise levels. The final
suite of synthetic data was constructed from the same FIB-
SEM shale image as the second suite of synthetic data
but with one of the phases exhibiting textural (rather than
greyscale) contrast. All traditional techniques completely
failed to perform accurate segmentation within this tex-
tural contrast region, even at low noise levels; traditional
techniques are completely insensitive to non-greyscale con-
trast. Overall, machine learning outperformed traditional
techniques across a wide range of noise levels across mul-
tiple sample types, especially when trying to discriminate
features based on texture.

The advent of machine learning technologies presents
a unique opportunity in microstructural analysis. The
increased noise tolerance of machine learning-based classi-
fication techniques has the potential for allowing the same
analytical results to be performed with significantly nois-
ier data, creating the opportunity for significantly reduced
acquisition times without sacrificing analytical accuracy.
This could allow for the examination of dynamic in situ
experimentation at a higher temporal resolution. It also has
the potential for automating industrial analytical workflows,
particularly on repetitive samples. Machine learning-based
classification could be trained on one dataset then applied
across multiple samples to give repetitive, non-subjective
results. The ability to classify based on features other than
just local greyscale value, particularly the ability to clas-
sify based on textural information, has the potential of
being transformative in our ability to extract information
from images in the geosciences, ranging from 3D seg-
mentation of mineralogical information to 3D segmentation
of microfacies, to automated segmentation of mineralogy
from transmitted light microscopy data. Beyond this, there

are a host of different applications of machine learning
techniques beyond the relatively simple challenge of pixel
classification, including whole image classification, object
detection, and defect recognition.
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