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Abstract
In this paper, we describe a single-relaxation-time (SRT) lattice Boltzmann formulation, which can be effectively applied to
anisotropic advection-dispersion equations (AADE). The formulation can be applied to space and time variable anisotropic
hydrodynamic dispersion tensor. The approach utilizes diffusion velocity lattice Boltzmann formulation which in the case of
AADE can represent anisotropic diagonal and off-diagonal elements of the dispersion matrix by the coupling of advective
and diffusive fluxes in equilibrium function. With this approach, AADE can be applied to the SRT lattice Boltzmann
formulation using the same equilibrium function and without any changes to collision step nor in the application of boundary
conditions. The approach shows good stability even for highly anisotropic dispersion tensor and is tested on selected
illustrative examples which demonstrate the accuracy and applicability of the proposed method.

Keywords Lattice Boltzmann method · Anisotropic advection-dispersion equation · Single relaxation time ·
Diffusion velocity flux
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1 Introduction

In recent years, the lattice Boltzmann method has proven
to be very effective approach in the simulation of flow and
transport porous media at the pore scale, due to its inher-
ent ability to handle very complex geometries. The purpose
of such studies is to gain understanding on process-level
[5, 18, 20] or to perform upscaling of physical properties
from pore to continuum scale, i.e., effective properties [6,
7, 24]. However, LBM can be also applied to model pro-
cesses on continuum scale [16, 28] using bulk physical
properties such as porosity, effective diffusion, permeabil-
ity, or hydrodynamic dispersion. Hydrodynamic dispersion
plays an important role in macroscopic advective-dispersion
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transport phenomena in porous media and is usually con-
ceptualized by two separate mechanisms, namely molecular
diffusion and mechanical dispersion. The importance of
dispersion in solute transport is recognized and studied
thoroughly in many fields [5, 13, 19]. Molecular diffu-
sion occurs as a result of thermal motion of the molecules.
Mechanical dispersion, on the other hand, is a result of dif-
ferent water flow paths resulting from different pore sizes,
orientation, and trace lengths. Physically, the mechanical
dispersion can be the product of advective velocity and the
dispersion [2], but it can also depend on concentration [23]
or saturation degree [22].

In its original form, the single-relaxation-time (SRT) lat-
tice Boltzmann models for advective-diffusive (dispersion)
equation are limited to the description of isotropic diffu-
sion problems. This is based on the fact that in SRT (also
termed BGK formulation), only a single relaxation pro-
cess is used to characterize the collision effects. In other
words, all modes relax to their equilibria with the same
rate. In the case of classical SRT formulation, the dissipa-
tion parameter can only be a scalar value, while anisotropic
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advective-dispersion equations (AADE) introduces a hydro-
dynamic dispersion tensor, which requires different relax-
ation modes during the collision process [17, 32]. Zhang et
al. [34] introduced the approach using direction-dependent
relaxation parameters which enabled the implementation of
anisotropic diffusion within the SRT lattice Boltzmann. The
model of Zhang et al. [34] is implemented in SRT and
has four relaxation parameters in nine directions. Conser-
vation of mass is ensured by taking a weighted summation
of the particle distribution function. This model was used
in the example of Karst flows and transport processes [1].
However, in [9], it is argued that the SRT-type construc-
tion cannot have a mass conserving equilibrium function
when the relaxation parameters differ temporarily. Ginzburg
[9] alleviates the problem of mass conservation of [34]
by introducing link-wise collision operator. This config-
uration is called the two-relaxation-time (TRT) operator
which retains the simplicity of SRT, but improves its sta-
bility and accuracy. Rasin et al. [27] and Yoshida et al.
[33] proposed MRT method to incorporate full anisotropy
associated with reduced models with five discrete veloci-
ties in two dimensions (D2Q5) and seven discrete velocities
in three dimensions (D3Q7). All these approaches are com-
bined and investigated for the numerical diffusion and the
associated stability towards the anisotropy in work [11]. The
multi-relaxation-time (MRT) formulation approach to solve
nonlinear AADE is recently presented by [15] or [4]. MRT
models involve a number of tunable parameters which can
be tuned to improve stability and accuracy, but for a general
system, this optimum is not straightforward to determine.
The use of non-coordinate discrete velocity stencils for the
non-diagonal diffusion terms in the existing SRT and TRT
models are alleviated in the present model via the coupling
of the advective and diffusive fluxes in the equilibrium func-
tion. As demonstrated in this work, the approach offers an
easy to implement and accurate way to solve anisotropic
physical problems with SRT formulation. The same for-
mulation can be introduced within TRT approach, which
would additionally improve the stability and accuracy. The
advantage of the new approach are:

– The equilibrium function formulation remains the same
as for isotropic problems (i.e., Eq. 5).

– Diffusion velocity formulation is stable for large
variations of dissipation parameters and anisotropy
ratios.

– Minimal velocity set lattices, D2Q5 or D3Q7, can be
used to model fully anisotropic ADE.

– The model is straightforward to implement.

In this work, no additional analysis has been performed
in terms of numerical dispersion. Since the formulation of
the equilibrium function remains identical to the standard
SRT formulation as given in Eq. 5 (with additional velocity

resulting from diffusion velocity approach), it is expected
that the numerical dispersion due to truncation errors
would be similar to the one of SRT. However, in order to
compare this method with the known results on the other
formulations, similar analysis should be done in future.
Boundary conditions can also be applied in the same way as
for the classical SRT advection-dispersion equation.

2 Physical and numerical framework

The central physical framework elaborated in this paper is
a solute transport in porous media, which is described by
advection-dispersion transport equation in Eq. 1.

∂θC

∂t
= −∇ · J + R (1)

J = −θ D∇C + uC (2)

where C is the concentration [ML−3], J is the flux
[ML−2 T−1], D is the hydrodynamic dispersion [L2 T−1],
u is the volume averaged velocity of the fluid [L T−1], and
R represents the volumetric source term [ML−3 T−1]. θ

is the porosity [-] which is a property of porous media.
For the purpose of this article, we simplify the derivation,
without loss of generality, to θ = 1. Interested reader can
see possible implementations in the existing literature [14,
25, 31].

The focus of this work is in the solution of the macro-
scopic advection-dispersion transport equation, solved by
the lattice Boltzmann method in its simplest form, where
the collision term �SRT of discrete Boltzmann equation is
described by a single relaxation time [3] as:

fi(r + ei �t, t + �t) = fi(r, t) + �SRT (r, t) (3)

�SRT (r, t) = �t

τ

(
f

eq
i (r, t) − fi(r, t)

)
. (4)

where r is the position vector, fi represents the particle
distribution functions along the ith lattice direction in
velocity space, e is the velocity vector in the ith direction,
which depends on the type of lattice, �t is the lattice time
step (further derivation and analysis in this work assume
�t = 1), τ is relaxation time, and f

eq
i is the particle

equilibrium distribution functions given by:

f
eq
i (r, t) = wi C

(
1 + ei · u

e2s

)
(5)

where wi are the weights for the particle distribution
function along the ith direction, es is “pseudo-sound-speed”
[LT−1] [21], and u is the velocity vector in lattice units. The
lattice velocity e2s is e2/3 for D2Q5 lattice in our analysis. It
is acknowledged that also wi and e2s are tunable and have an
effect to the stability, e.g., [10, 12], but we keep these values
constant in this work.
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Using the particle equilibrium distribution function given
by Eq. 5 on appropriate lattices (D2Q5 in this work), it
is possible to recover (1) using the multiscale Chapman-
Enskog expansion [8] from which the relation between
lattice Boltzmann diffusion coefficient (D) (i.e., diffusion
coefficient in lattice units) and relaxation time is defined

D = e2s

(
τ − 1

2

)
. (6)

3 Hydrodynamic dispersion within
the diffusion velocity formulation

In [26], a novel idea on the treatment of large contrasts
in dissipation parameters has been introduced. This idea
is based on the diffusion velocity (the name is taken
after [30]) where the physical dissipation parameter (e.g.,
hydrodynamic dispersion) can be divided into a reference
valueDref, which is constant over entire domain and a tensor
of fluctuating values D̃ which represents a deviation from
the reference. This can be written as

D = Dref I + D̃ (7)

The reference part is used to define the physical time scale
as in Eq. 6 but now with Dref instead of D. The fluctuating
part, on the other hand, is transferred to a new velocity
(hence termed diffusion velocity), which contributes to a
new advection term. The whole hydrodynamic dispersion
tensor comprises pore diffusion diagonal matrix and a
dispersion tensor D∗.

D = I · Dp + D∗ (8)

Combining (7) and (8), we derive the tensor of fluctuating
values D̃

D̃ = I · Dp − Dref I + D∗ (9)

where Dp is the pore water diffusion coefficient with
{Dp,x, Dp,y, Dp,z} components in three dimensions. The
fluctuation tensor in 3D in Eq. 9 reads:

D̃ =
∣∣∣∣∣∣

D̃xx D̃xy D̃xz

D̃yx D̃yy D̃yz

D̃zx D̃zy D̃zz

∣∣∣∣∣∣
(10)

and expansion by Eq. 9 gives

D̃=
∣∣
∣∣∣
∣

Dp,x −Dref +D∗
xx D∗

xy D∗
xz

D∗
yx Dp,y − Dref +D∗

yy D∗
yz

D∗
zx D∗

zy Dp,z−Dref +D∗
zz

∣∣∣
∣∣∣
. (11)

The diffusion velocity is derived from the assumption
that the total flux in the system J remains constant and mass
fluxes belonging to the fluctuating part are expressed by
advective flux (see [26]) as described by Eq. 12.

C ud = −D̃∇C, (12)

where ud is the diffusion velocity. Using Eqs. 12 and 7,
we can express the total flux in Eq. 2 by diffusive fluxes
associated with the reference diffusion, with the fluctuating
dispersion tensor expressed as the diffusion velocity flux
resulting from diffusion velocity ud and by the flux resulting
from fluid flow defined by field velocity ua .

J = −IDref ∇C − D̃∇C + C ua = −IDref ∇C + C (ud + ua) (13)

Substitution of Eqs. 10 to Eq. 12 yields for Cartesian
β ∈ {x, y, z} components

C ud,x = −
(

D̃xx

∂C

∂x
+ D̃xy

∂C

∂y
+ D̃xz

∂C

∂z

)
(14)

C ud,y = −
(

D̃xy

∂C

∂x
+ D̃yy

∂C

∂y
+ D̃yz

∂C

∂z

)

C ud,z = −
(

D̃xz

∂C

∂x
+ D̃yz

∂C

∂y
+ D̃zz

∂C

∂z

)

Within the LB framework, the diffusion velocity is
derived from the first-order expansion terms of the
Chapman-Enskog multiscale expansion, which represent
mass conservation. The concentration gradients are locally
calculated neglecting second and higher order terms as

∂C

∂xβ

≈ − 1

τ e2s

(∑

i

fi ei β − C (ua,β + ud,β)

)
. (15)

with diffusion velocity ud,β and in case of advection-driven
transport, field velocity ua,β . Hence, uβ = ud,β + ua,β .
Spatial derivatives in Eq. 14 can be expanded by the
calculation of gradients defined in Eq. 15 for the diffusion
velocity fluxes:

C ud,x = − 1

τ e2s

(
D̃∗

xx

(∑

i

fi ei x − C (ua,x − ud,x)

)
+ (16)

D̃∗
xy

(∑

i

fi ei y − C (ua,y − ud,y)

)
+

D̃∗
xz

(∑

i

fi ei z − C (ua,z − ud,z)

))

C ud,y = − 1

τ e2s

(
D̃∗

yx

(∑

i

fi ei x − C (ua,x − ud,x)

)
+

D̃∗
yy

(∑

i

fi ei y − C (ua,y − ud,y)

)
+

D̃∗
yz

(∑

i

fi ei z − C (ua,z − ud,z)

))

C ud,z = − 1

τ e2s

(
D̃∗

zx

(∑

i

fi ei x − C (ua,x − ud,x)

)
+

D̃∗
zy

(∑

i

fi ei y − C (ua,y − ud,y)

)
+

D̃∗
zz

(∑

i

fi ei z − C (ua,z − ud,z)

))
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Hence, the diffusion velocities for all components can be
determined by solving the system of equations in Eq. 16 for
the diffusion velocity fluxes C ud,x , C ud,y , and C ud,z.

C ux,d = Fx −
det

⎡

⎣
Fx 0 0
0 (1 + Dyy) Dyz

0 Dzy (1 + Dzz)

⎤

⎦

�
(17)

+
det

⎡

⎣
Dxy 0 Dxz

0 Fy 0
Dzy 0 (1 + Dzz)

⎤

⎦

�

+
det

⎡

⎣
Dxz Dxy 0
Dyz (1 + Dyy) 0
0 0 Fz

⎤

⎦

�

C uy,d = Fy +
det

⎡

⎣
Fx 0 0
0 Dyx Dyz

0 Dzx (1 + Dzz)

⎤

⎦

�
(18)

−
det

⎡

⎣
(1 + Dxx) 0 Dxz

0 Fy 0
Dzx 0 (1 + Dzz)

⎤

⎦

�

+
det

⎡

⎣
(1 + Dxx) Dxz 0
Dyx Dyz 0
0 0 Fz

⎤

⎦

�

C uz,d = Fz +
det

⎡

⎣
Fx 0 0
0 (1 + Dyy) Dzy

0 Dyx Dzx

⎤

⎦

�
(19)

+
det

⎡

⎣
(1 + Dxx) 0 Dxy

0 Fy 0
Dzx 0 Dzy

⎤

⎦

�

−
det

⎡

⎣
(1 + Dxx) Dxy 0
Dyx (1 + Dyy) 0
0 0 Fz

⎤

⎦

�

where we introduced the following variables for the purpose
of shorter notation:

D = D̃
∗ 1

τ e2s

Fβ =
∑

i

fi ei β − C ua,β

and

� = det

⎡

⎣
(1 + Dxx) Dxy Dxz

Dyx (1 + Dyy) Dyz

Dzx Dzy (1 + Dzz)

⎤

⎦

If D values remain the same (e.g., in a constant flow
field), these values need to be calculated only one time.
On the other hand, F values depend on the concentration
gradient and need to be calculated at each time step.
Expanded 2D expression (with x and y components)
significantly simplifies to:

C ux,d =
Dxx Fx + Dxy Fy − Dxy

(1+Dyy )
(Dyy Fy + Dyx Fx)

(
1 + Dxx − Dxy Dyx

1+Dyy

) (20)

C uy,d = Dyy Fy + Dyx Fx − Dyx

(1+Dxx )
(Dxx Fx + Dxy Fy)

(
1 + Dyy − Dxy Dyx

1+Dxx

)

The velocity vector calculated from the directional
velocities in Eq. 17 or Eq. 20 for the 3D and 2D problem,
respectively is used in the calculation of the equilibrium
function (5) as an additional advective term:

f
eq
i (r, t) = wi C

(
1 + ei · (ua + ud)

e2s

)
(21)

where C ud is calculated in Eqs. 17–20.
It should be noted that the presented formulation reduces

to the original SRT lattice Boltzmann method when Dref =
Dp for an isotropic system and all properties of the method
in terms of accuracy and stability apply to the original SRT
formulation. Dref is a free parameter, which can be tuned
to define the time step in the same way as diffusion in the
original SRT model.

3.1 Numerical results and discussion

Two numerical examples are shown to demonstrate the
ability and accuracy of the presented formulation. The
first example is a dispersion of a Gaussian hill, which
is often used to validate the numerical method as
already demonstrated in [4, 11, 15]. The second example
demonstrates the applicability of the formulation on
spatially variable flow field and dispersion tensor with
higher Pe number.

3.1.1 Anisotropic dispersion with spatially constant velocity

The Gaussian hill problem considers a source within a
domain which is transported by spatially constant velocity
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Fig. 1 Contours of the Gaussian
hill problem at time 10 s. Values
of contours of a scalar variable
are 10−5 (full), 5·10−5

(dash-dot), 10−4 (dotted), 10−3

(dashed)

and diffusion tensor within Eq. 1. Initially, the concentration
is defined by

C(x, y, t = 0) = exp
− (x2+y2)

2C2
0 (22)

For this example, under given boundary and initial
conditions, an analytical solution in Eq. 23 exists for this
problem.

C(x, y, t)= C0

|det(σ )|1/2
(

−σ−1 : ((x − ua t)(x − ua t)ᵀ)

2

)

(23)

where x = (x, y)ᵀ, ua = (ux,a, uy,a)
ᵀ and σ =

C2
0 I + 2D t , σ−1 is inverse matrix of σ , and det σ is the

determinant of σ . The problem domain is bounded within
[−1, 1] × [−1, 1] [m] and results are compared at time
t = 10 s at which the boundary conditions can be defined as
zero flux or periodic boundary conditions. C0 = 0.01 and
velocity vector components are ua = (0.01, 0.01) m/s. The
ability of the present formulation to solve AADE is shown
in Fig. 1 for the three types of dispersion tensor as in [4] as
given in Eq. 24.

D =
([

1 0
0 1

]
,

[
1 0
0 2

]
,

[
1 1
1 2

])
× 10−3m2/s (24)

For the analysis of accuracy, the global relative error
(GRE) defined by Eq. 25 and maximal error defined by
Eq. 26 are used:

GRE =
∑

i

∣∣C(r, t)analytic − C(r, t)numeric
∣∣

∑
i

∣∣C(r, t)analytic
∣∣ , (25)

Errmax = max
∣∣C(r, t)analytic − C(r, t)numeric

∣∣ . (26)

The values in Table 1 are given for different nodal distances
(space discretization)�x =0.02,0.01,0.005,0.0033,0.0025m
corresponding to the number of nodes N = 100 ×
100, 200 × 200, 400 × 400, 600 × 600, 800 × 800,
respectively in a square domain {−1, 1} × {−1, 1} in order
to determine the rate of convergence.

From Fig. 2, it can be seen that the mesh convergence is
of second order. The error is slightly lower for the isotropic
case than for diagonally and fully anisotropic case, which
is similar to the MRT results shown in [4] but with lower
differences between different levels of dispersion tensor
anisotropies.

Diffusion velocity formulation has two free parameters,
the reference diffusion coefficient Dref and the relaxation
time τ . The time step can be controlled by changing Dref

and keeping the relaxation time τ constant or changing the
relaxation time τ while keeping Dref constant or adapting
both. Figure 3 presents the first two cases with keeping
either Dref or τ constant. The stability and accuracy are
studied for different Péclet numbers for the fully anisotropic

Table 1 Global relative error and maximum error for three analyzed
cases

�x GRE Errmax

Isotropic dispersion

0.02 3.46·10−2 1.63·10−4

0.01 8.49·10−4 3.14·10−6

0.005 2.10·10−4 7.82·10−7

0.0033 9.30·10−5 3.46·10−7

0.0025 5.22·10−5 1.94·10−7

Diagonal anisotropic dispersion

0.02 3.46·10−2 1.14·10−4

0.01 1.20·10−3 3.73·10−6

0.005 2.98·10−4 9.23·10−7

0.0033 1.34·10−4 4.09·10−7

0.0025 8.14·10−6 5.35·10−6

Full anisotropic dispersion

0.02 3.59·10−2 1.66·10−4

0.01 2.04·10−3 8.31·10−6

0.005 5.07·10−4 2.06·10−6

0.0033 2.26·10−4 9.13·10−7

0.0025 1.28·10−4 5.13·10−7
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Fig. 2 Global relative error at different lattice spacing. 1st and 2nd
lines represent the order of mesh convergence

case of Eq. 24 on 200× 200 mesh. The local Péclet number
for fully anisotropic dispersion case in 2D is calculated as

Pe = ‖u‖�x (u2x + u2y)
3/2

Dxx u2x + Dxy ux uy + Dyx ux uy + Dyy u2y

Fig. 3 Global relative error and stability at various Péclet numbers for
different Dref/Dp ratios and variations of the relaxation time τ

The above definition of Péclet number is taken from
COMSOL Multiphysics software because the last analysis
with anisotropic dispersion with spatially varying velocities
is compared with this modeling tool.

The behavior of both approaches (by changing eitherDref

or τ ) in terms of errors is shown in Fig. 3 for different local
(mesh) Péclet numbers: Pe = 0.057 based on u = 0.01 m/s,
Pe = 0.28 based on u = 0.05 m/s, Pe = 0.57 based on
u = 0.1 m/s, Pe = 1.71 based on u = 0.3 m/s, Pe = 2.85
based on u = 0.5 m/s, and Pe = 5.7 based on u = 1.0 m/s.
The dispersion matrix is the same as given in Eq. 24, and
diffusion is Dp = 10−3 m2/s. In order to ensure that the
Gaussian hill remains within the domain at different Pe

numbers, the final time is adapted as follows: t = 10 s for
Pe = 0.057, t = 6 s for Pe = 0.28, t = 4 s for Pe = 0.57,
t = 2 s for Pe = 1.71, t = 1 s for Pe = 2.85, and t = 0.5 s
for Pe = 5.7.

The results for diffusion velocity formulation in Fig. 3
are denoted by full lines for Dref/Dp ratios of 1/6, 1/2,
1, 2, 3, 5, 7, 10, 15, and 20 and τ = 1. For comparison,
we computed results by changing the relaxation time τ in
such a way that the number of time steps for each case
is the same as for the diffusion velocity cases resulting
in τ 3.5, 1.5, 1, 0.75, 0.667, 0.6, 0.5714, 0.555, 0.5333,
and 0.525 while keeping Dref = Dp. These results are
denoted by dashed lines in Fig. 3. The comparison shows
that the accuracy of the model changes decreases with larger
Pe. The exponential trend is similar for both, diffusion
velocity and relaxation time, approaches. However, in a
stable region, the accuracy of diffusion velocity formulation
is up to two times better than when using the relaxation
time formulation, especially for the cases with higher Pe.
Hence, it is preferred to vary Dref and fix the relaxation
time τ . The stability region is similar for both approaches

Fig. 4 Contour plots for advection-dispersion equation at time 10 s of
the 2D Gaussian hill at the anisotropic limit: Dxx = Dyy = Dxy =
Dyx = 10−3 m2/s. Values of contours of a scalar variable are 10−5

(full), 5·10−5 (dash-dot), 10−4 (dotted), 10−3 (dashed)
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and approximately denoted by gray shaded region when the
calculations were not stable.

As described in [11], the theoretical anisotropic limit is
when the off-diagonal dispersion tensor elements are equal
to the diagonal ones. To test the ability of the proposed
model to simulate highly anisotropic tensors, which results
in sharp concentration gradients, is demonstrated in Fig. 4.
The simulation is made for the dispersion matrix Dxx =
Dyy = Dxy = Dyx = 10−3 m2/s using 400 × 400 nodes in
the domain size x ∈ {−1, 1}m. The tuning parameters are
set to Dref = Dp = 10−3 m2/s and τ = 1.

The results show a very good agreement between the
theoretical and numerical results.

3.1.2 Anisotropic dispersion with spatially varying velocity

The full potential of the proposed model is illustrated with
a numerical example with a spatially variable flow pattern.
The test problem devised by Smith and Hutton [29] is
defined with convection and diffusion of a scalar field in
a prescribed velocity field, u(x, y, z) with a constant Dp.
The Smith and Hutton problem was originally proposed for
the estimation of numerical diffusion, but in this work, it
is applied for the analysis of hydrodynamic dispersion. The
problem is defined in quasi 3D with invariant z-direction.
Hence, the problem can be defined in x–y plane only.
The velocity field is derived from a stream function ψ =
(1 − x2)(1 − y2). From this stream function, the velocities
component in the x-, y-, and z-direction are

ux = −ψ

y
= 2 y (1 − x2); x ∈ [−1, 1], y ∈ [0, 1] (27)

uy = ψ

x
= −2 x (1 − y2)

uz = 0

The flow domain considered is a rectangle with
dimensions −1 ≤ x[m] ≤ 1 and 0 ≤ y[m] ≤ 1 as

Fig. 5 Calculation domain with streamlines (black dotted line)
indicating the direction of flow field and boundary concentration
profile (red full line)

shown in Fig. 5. Concentration is defined along the left
bottom boundary (−1 ≤ x[m] ≤ 0, y = 0 m). The
other part of the bottom boundary (0 ≤ x[m] ≤ 1, y =
0 m) is defined by open boundary. As the original goal
was to quantify numerical diffusion of a specific numerical
scheme, Smith and Hutton defined a sharp pulse-like shape
of the scalar variable from 0 to 1 at the middle of the
boundary (−1 ≤ x[m] ≤ 0, y = 0 m). Because of the
symmetrical flow field, solute is transported across the
domain from the boundary −1 ≤ x[m] ≤ 0, y = 0 m to the
other side 0 < x[m] ≤ 1, y = 0 m where the concentration
profile is recorded. In this numerical example, the focus
is on the verification of numerical scheme with a problem
where the dissipation plays an essential role. Further, no
specific model accuracy analysis is made because the results
are compared between the two numerical models. The inlet
concentration profile is symmetrical with respect to the
boundary (−1 ≤ x[m] ≤ 0, y = 0 m) in order to see
the effect of a varying fluid flow magnitude and direction
which results in an asymmetrical profile at the outflow. The
boundary concentration is defined as

C(x, t) = tanh(ϒ (0.6 + x)) − tanh(ϒ (0.4 + x))

2
; x ∈ [−1, 0]

where the parameter ϒ defines the sharpness of the
concentration profile transition. For our example, we used
value of ϒ = 100, which results in a sharp profile. The
right portion of the bottom boundary (x ∈ [0, 1]) is an open
boundary. All other boundaries are Neumann boundaries
with zero flux.

Multiple numerical examples are shown for the demon-
stration, each one with a specific set of transversal dispersiv-
ity coefficient, αT and longitudinal dispersivity coefficient,
αL. The dispersion tensor D∗ is in an explicit form for the
x-, y-, and z-direction in the Cartesian three-dimensional
coordinate system.

D∗
xx = 1

ū
[αT (u2y + u2z) + αL u2x] (28)

D∗
yy = 1

ū
[αT (u2x + u2z) + αL u2y]

D∗
zz = 1

ū
[αT (u2x + u2y) + αL u2z]

D∗
xy = D∗

yx = ux uy

ū
[αL − αT ]

D∗
xz = D∗

zx = ux uz

ū
[αL − αT ]

D∗
yz = D∗

zy = uy uz

ū
[αL − αT ]

ū is the velocity magnitude, defined as
√

u2x + u2y + u2z .

Diffusion coefficient Dp is set to 5 · 10−4 m2/day. The
domain is discretized in 200 × 100 nodes. Relaxation time
τ is set to 1, while Dref is 5 · 10−2 m2/day. Boundary
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Fig. 6 Concentration field at time 1.7 days for the case with a αL =
0.1 m and αT = 0.01 m and b αL = 1 m and αT = 0.001 m.
Color scale is denoted with blue and red colors for 0 and 1 concentrations,
respectively. Red arrows denote the direction and magnitude of flow field

profiles at 0 ≤ x[m] ≤ 1 and y = 0 m are shown at
1.7 days. This time enables to clearly compare the effect
of longitudinal dispersivity between the two examples.
Results are benchmarked against the well-known FEM
commercial code COMSOLMultiphysics. The same spatial
discretization is used as in the case of lattice Boltzmann
solution. We used direct UMFPACK time-dependent solver
in COMSOL Multiphysics with relative tolerance of 0.01.
In the first example a typical ratio of 10 between αL and
αT is used with the dispersivity coefficients αL = 0.1
m and αT = 0.01 m with maximal cell Péclet number
Pe = 1. These values represent large dissipation which
results in a large spread over the domain. The results are
shown in Fig. 6a. In order to demonstrate the potential of the
presented approach, larger ratio between the longitudinal
and transversal dispersivity of 1000 is shown in the second
case. This case assumes larger longitudinal dispersivity
αL = 1 m and lower transversal dispersivity αT =
0.001 m resulting in maximal cell Péclet number Pe =
0.01. As shown in Fig. 6b, the concentration field extends
longitudinally more in the same time compared to the
previous case due to larger longitudinal dispersivity. On the
other hand, transversal dissipation perpendicular to the flow
direction is lower as a consequence of lower transversal
dispersivity.

Concentration profile on an outflow portion of a bottom
boundary in Fig. 7 shows the magnitude of dispersion
compared to the initial profile (black line) and shift of

Fig. 7 Concentration at the inlet and outlet boundary at 1.7 days for
the case with a αL = 0.1 m and αT = 0.01 m and b αL = 1 m and
αT = 0.001 m

peak concentration towards the middle where the velocities
are higher. Larger dissipation in transversal direction at the
output is clearly observed in Fig. 7a compared to Fig. 7b. In
both cases, the agreement with the reference solution is very
good.

Fig. 8 Concentration field at time 1.7 days for a COMSOL
Multiphysics solution and b LB-SRT solution. Color scale is denoted
with blue and red colors for 0 and 1 concentrations, respectively
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With lower dispersivity coefficients also, the dispersion
decreases which leads to a higher Péclet number. This
results in lower stability of the solution. In Fig. 8, we can
clearly observe the unstable solution for αL = 0.001 m and
αT = 0.0001 m obtained by COMSOL Multiphysics and
stable solution obtained by the proposed formulation based
on the above-mentioned simulation parameters at maximal
cell Péclet number, Pe= 8.

4 Conclusions

In this paper, a new approach to implement anisotropic
advection-dispersion equations into single-relaxation-time
lattice Boltzmann method is presented. This approach is
based on the diffusion velocity formulation, which is an
alternative to the existing approaches using either multiple-
relaxation rates collisions, or anisotropic equilibrium
weights (or the combination of both). The described
approach has the following properties: (1) Mass balance
is preserved because the equilibrium function formulation
remains the same as in classical SRT formulation. (2) The
formulation is stable for large variations of dissipation
parameters and anisotropy ratios as shown in the example
where the anisotropy ratio is three orders of magnitude. (3)
The model is straightforward to implement because the LB
procedure and equilibrium function formulation remains the
same. The only difference is the calculation of diffusion
velocity ud , which is added to the usual advective vector.
This model introduces two tuning parameters, the reference
diffusion Dref which is set on the basis of the desired time
step and stability already discussed in [26] and τ . Analyses
in this work show that the results are more accurate when
adjusting Dref while keeping the relaxation time τ = 1
fixed. The reference diffusion is usually chosen to be equal
to the molecular diffusion, but can be chosen differently in
the cases with higher Pe to assure stability. The results also
demonstrate that the accuracy of the solution does do not
depend significantly on the level of anisotropy.
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