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Abstract
Digital rock physics (DRP) is a rapidly evolving technology targeting fast turnaround times for repeatable core analysis
and multi-physics simulation of rock properties. We develop and validate a rapid and scalable distributed-parallel single-
phase pore-scale flow simulator for permeability estimation on real 3D pore-scale micro-CT images using a novel variant
of the lattice Boltzmann method (LBM). The LBM code implementation is designed to take maximum advantage of
distributed computing on multiple general-purpose graphics processing units (GPGPUs). We describe and extensively test
the distributed parallel implementation of an innovative LBM algorithm for simulating flow in pore-scale media based on
the multiple-relaxation-time (MRT) model that utilizes a precise treatment of body force. While the individual components
of the resulting simulator can be separately found in various references, our novel contributions are (1) the integration of all
of the mathematical and high-performance computing components together with a highly optimized code implementation
and (2) the delivery of quantitative results with the simulator in terms of robustness, accuracy, and computational efficiency
for a variety of flow geometries including various types of real rock images. We report on extensive validations of the
simulator in terms of accuracy and provide near-ideal distributed parallel scalability results on large pore-scale image
volumes that were largely computationally inaccessible prior to our implementation. We validate the accuracy of the MRT-
LBM simulator on model geometries with analytical solutions. Permeability estimation results are then provided on large
3D binary microstructures including a sphere pack and rocks from various sandstone and carbonate formations. We quantify
the scalability behavior of the distributed parallel implementation of MRT-LBM as a function of model type/size and the
number of utilized GPGPUs for a panoply of permeability estimation problems.
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1 Introduction

Digital rock physics (DRP) technology is a rapidly evolving
multidisciplinary tool for computing rock properties (e.g.,
porosity, permeability, formation factors, resistivity index
vs. water saturation (I-Sw) curves, capillary pressure curves,
relative permeability) and characterizing microstructural
attributes using high-resolution images (e.g., x-ray comput-
erized tomography, scanning electron microscopy) [1–3, 5,
6, 9, 10, 12, 15, 22, 23, 37–39, 51, 58–60, 60–63]. The focus
of the work documented in this paper is on the computation
of absolute permeability by use of single-phase incom-
pressible flow simulations performed on high-resolution
three-dimensional (3D) image volumes of porous media by
use of a robust and efficient implementation of the lattice
Boltzmann method (LBM) [8, 34, 70, 71].

The LBM is a member of the lattice gas and lattice
Boltzmann family of methods for simulating fluid flow.
The mesoscale lattice Boltzmann model overcomes the
noisy small-scale dynamics and lack of Galilean invariance
problems of the lattice gas models [49]. As such, they
have superseded lattice gas models for most applications.
In the low Mach number limit, the Boltzmann equation
reduces to the incompressible Navier-Stokes equation.
The LBM solves a discrete continuum-scale form of the
Boltzmann equation on a grid. The advantages of LBM over
alternative methods are (1) relatively more straightforward
handling of solid-fluid boundaries, (2) rapid convergence
as a pressure solver, and (3) superior distributed-parallel
scalability. Because of its computational efficiency and
algorithmic simplicity, the LBM has become standard for
computational fluid dynamics (CFD) based on simulation
problems in a large number of fields. In this work, we
describe and extensively test a novel LBM-based simulator
for very fast distributed-parallel single-phase pore-scale
flow simulations to compute velocity and pressure fields,
and thereby, estimate the permeability of large binary (pore-
and-rock) models in porous media.

The motivation for the development of a very fast and
robust LBM algorithm for solving the absolute permeability
estimation problem on large pore-scale images is sum-
marized as follows: There are several commercial finite-
volume/finite-element method (FVM/FEM)-based CFD
codes available that simulate pore-scale flow [4, 20, 54].
However, they are too computationally demanding and
not designed for running simulations directly on complex
domains that are supplied by pore-scale imaging without an
iterative (and generally cumbersome) mesh generation step.
Moreover, they are too slow for realistic problem sizes and
unfeasible for practical work. There are relatively fast com-
mercial LBM and FVM codes available [18, 50, 73, 75].
Having stated that, not all of the commercial tools deliver
a good compromise of accuracy against computational

performance [61]. Moreover, access to the code for flex-
ible customization and optimization is unavailable in this
mode of operation. On the other hand, there are open source
LBM codes available in the literature [45, 46, 52] but they
are not computationally effective for realistic problem sizes.
Moreover, they lack the robustness and rigor to serve as an
industry-grade simulation tool. Thus, we develop, validate,
and apply a very fast and robust LBM algorithm, which
lends itself naturally to computation on multiple general-
purpose graphics processing unit (GPGPU) nodes, using
a massively parallel programming paradigm. The promise
here is accessing the multi-core compute performance that
stems from modern GPGPUs to solve direct numerical
simulation problems of relevant size for DRP workflows.

We describe and test an algorithm for simulating flow
in pore-scale media based on the multiple-relaxation-time
(MRT) model accompanied by a precise treatment of the
body-force term. The Boltzmann equation is discretized in
space, velocity (momentum), and time coordinates using
a 3D 19-velocity grid (D3Q19 scheme), which provides
a good compromise between accuracy and computational
efficiency since it utilizes a sufficiently large number
of velocity components for accuracy, for example, larger
than the D3Q15 scheme, but without being overly com-
putationally demanding unlike, for instance, the D3Q27
scheme. The benefits of the MRT model over the con-
ventional single-relaxation time Bhatnagar–Gross–Krook
(BGK) model [13] are (I) enhanced numerical stability
in the incompressible flow limit and at relatively high
Reynolds numbers, (II) independent bulk and shear vis-
cosities, and (III) viscosity-independent, non-slip boundary
conditions. The drawback of the MRT model is that it is
slightly more computationally demanding compared to the
BGK model. We discuss the results of our efforts to acceler-
ate pore-scale flow simulations via MRT-LBM algorithm on
multiple GPGPUs. We implement all major computational
elements of the MRT-LBM algorithm on GPGPUs via the
Compute Unified Device Architecture (CUDA) program-
ming language and utilizing domain-decomposition and
asynchronous data exchange protocols for enhanced compu-
tational performance. It is important to highlight that the lat-
ter is a requirement rather than a choice, because this is the
only way to access sufficient compute performance to reach
acceptably low compute times for relevant problem sizes.
The above combination of algorithms and hardware enables
the simulation of pore-scale models with billions of voxels
in minutes, thereby enabling fast permeability computa-
tions on real rock images. The individual components of the
MRT-LBM-based simulator were described in various ref-
erences. The novel contribution of our work is integrating
all of the mathematical, algorithmic, and GPGPU-based high-
performance computing code implementation components
together into an accurate and computationally effective



Comput Geosci (2018) 22:815–832 817

simulator specifically targeting permeability estimation. In
this paper, we also quantitatively demonstrate the robust-
ness, accuracy, and computational efficiency of the resulting
simulator on large-scale problems that were largely not
computationally accessible before.

Recently, the MRT-LBM implementation discussed in
this paper has been used for rapid evaluations of the effect of
segmentation threshold on permeability computation [62],
benchmarking pore-scale flow simulators for permeability
estimation [61], and representative elementary volume
(REV) estimation for digital rock permeability [63]. A
total of 1500 permeabilities were computed for five rock
samples of size 1024×1024×1024 in [62]. One hundred
segmentation realizations were generated for each rock
and permeabilities were computed in the x, y, and z

directions.
We briefly describe the MRT-LBM algorithm and its

code implementation. The accuracy of MRT-LBM is val-
idated by use of microstructures of geometries for which
analytical and semi-analytical expressions for absolute per-
meability exist. As part of the validation work, we also
compare the computed permeability of digital rocks with
that measured in the laboratory for two rock types. Dis-
tributed parallel performance of MRT-LBM is evaluated for
a realistic sphere pack and a panoply of rock image vol-
umes acquired for clastic and carbonate rocks, including
Fontainebleau sandstone, Castlegate sandstone, and Gros-
mont carbonate. We report the computed permeabilities
in all three (x, y, and z) directions for the microstruc-
tures used in the scalability tests. Whenever available,
we provide measured permeability of these rocks from
which the image sample is taken. Microstructures of dras-
tically different resolutions for the above-listed rocks are
purposefully utilized to fully probe and quantify the scal-
ability characteristics of the MRT-LBM implementation.
We also briefly describe an example use of the veloc-
ity fields generated by MRT-LBM for REV investigations.
Finally, we provide a summary of the work and established
conclusions.

2Multiple-relaxation-time lattice Boltzmann
method

We utilize a novel implementation of LBM to estimate the
permeability of binary microstructures. The LBM solves a
discrete, meso-scale form of the Boltzmann equation [30],
which reduces to the incompressible Navier-Stokes equation
in the low Mach number limit [41, 42]. Furthermore, the
LBM solves the Stokes equation in the low Reynolds
number regime permitting the definition of “permeability”
as a concept. The LBM approach is commonly used to
study flow in porous media at the pore scale [17, 24,

35, 47, 71] because of its computational efficiency and
simplicity. It is very well suited to solve for the flow in
complex geometries. For a general introduction to the lattice
Boltzmann theory, we refer to [8, 34, 70, 71]. Most LBM
implementations for pore-scale simulation utilize the BGK
collision operator [13] for halfway bounce-back scheme at
solid-fluid boundaries. However, the BGK approach suffers
from deficiencies such as viscosity-dependent slip at the
walls [31] and numerical instabilities when the Reynolds
number is relatively high (i.e., the relaxation time is pushed
to the limit of 0.5). Thus, it is difficult to obtain the “ground
truth” flow properties of a porous medium with the BGK
method.

On the other hand, the MRT technique provides an effec-
tive cure to these deficiencies and offers greater flexibility
for capturing complex flow physics [21, 43]. Thus, the MRT
technique is implemented to the computational engine of
the LBM-based code for permeability estimation used in
this work. In the MRT technique, the distribution func-
tion is transformed into a set of moments, each of which
may be relaxed with an individual rate [21, 43]. When
a single-relaxation-time approach is used, strong spurious
velocities may originate from long-range contributions to
the equilibrium distribution functions from the bounce-back
boundary conditions. Introducing an MRT technique sig-
nificantly suppresses spurious velocities [21, 55]. This is
achieved by eliminating the effect of the non-hydrodynamic
modes by setting the relaxation time for these modes to 1.0,
which results in automatically setting the distribution func-
tions to their equilibrium values at each time step. Moreover,
it has been demonstrated that the introduction of the MRT
approach improves the numerical stability of the algo-
rithm for two-phase two-component flow [36]. Viscosity
independence is also achieved for the bounce-back bound-
ary conditions [53] by tuning the relaxation parameters
that correspond to the non-hydrodynamic modes. Although
boundary interpolation schemes demonstrate slightly more
consistent behavior [16, 25], it has been found that the
standard bounce-back method gives accurate results for
flow in complex porous media [26, 66]. Thus, the stan-
dard bounce-back method is implemented in MRT-LBM for
computational efficiency. In that sense, our implementation
of the MRT technique is similar to the one described in [26].
However, our implementation differs from it in various sig-
nificant aspects. Our MRT-LBM algorithm does not take
advantage of the transformation of the distribution func-
tion originally proposed by [65] and later enhanced by [26]
for improved accuracy using single precision arithmetic.
We rather directly use double precision arithmetic in our
implementation of the MRT-LBM code.

The fluid is driven by a body-force term in MRT-LBM by
use of a loop boundary condition imposed on the inlet and
outlet faces of the domain. The loop boundary condition is
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similar to the popular periodic boundary condition but does
not require mirroring of the domain. A fluid package that
exits the domain at a given domain-boundary surface (e.g.,
outlet) enters into the domain at the opposing boundary-
surface (e.g., inlet) under the effect of the same body
force, so long as there is a fluid cell at the entry point.
A precise treatment of body force is a requirement to
eliminate the error terms in velocity gradients [28]. The
body force implementation by [27, 40] is incorporated into
the MRT-LBM. The MRT method is described in detail in
[21, 55]. There are two options for the domain boundaries
perpendicular to the main flow direction, namely, the
loop boundary condition and the no-flow (i.e., closed)
boundary condition. The zero-slip boundary condition (for
the velocity vector) is imposed on the surfaces between
rock-grains (solid) and fluid saturating the pore space. We
briefly describe the main elements of the MRT method
below by closely following the formalism of [26]:

The MRT computations operate with the following steps:
First, the macroscopic node variables, namely density ρ and
velocity u are obtained from the distribution function f (x, t)
through the following equations:

ρ =
18∑

i=0

fi, (1)

and

ρu =
18∑

i=0

eifi+ρg
2

. (2)

The definition for velocity is according to the forcing
scheme of [27], where g is a body force and ei is the ith
component of the velocity vectors at each node. We use
the D3Q19 lattice structure for the velocity vectors, hence
i = 0, · · · , 18. Figure 1 illustrates 19 velocity vectors in 3D
space (D3Q19 scheme), which are defined as

e=c

[
0 1 −1
0 0 0
0 0 0

0 0 0
1 −1 0
0 0 1

0 1 −1
0 1 1

−1 0 0

1 −1 0
−1 −1 1
0 0 1

0 0 0
−1 1 −1
1 −1 −1

1 −1 1
0 0 0
1 1 −1

−1
0

−1

]T

,

(3)

where c = dx
/
dt is the lattice speed. The lattice spacing

dx and time-step dt are both unity.
The equilibrium distribution f eq (ρ,u) and forcing term

F are then computed from the density and velocity of the
node where the components are, respectively, computed by

f
eq
i (ρ,u) = ρwi

[
1 + 3ei ·u+9

2
(ei ·u)2 −3

2
u2

]
(4)

and

Fi= 3wi [ei ·g+ug: (3eiei−I)] . (5)

In the above equations, wi is the weight coefficient for
the corresponding velocity vector, given by w0 = 1

/
3 ,

w1−7 = 1
/

18 , w8−18 = 1
/

36 , and I is the identity matrix.
The post-collision distribution function f′ (x, t) is com-

puted using the MRT operator

f
′
(x, t) = f (x,t)+M−1

[
SM

(
feq−f

) +
(
I−1

2
S
)
MF

]

(6)

where M is the orthogonal matrix which transforms the
distribution function into moment space and M−1 as its
inverse. S is the diagonal matrix of relaxation rates for each
moment. Further details of the MRT model can be found in
[21]. Finally, the post-collisional distribution is streamed to
the neighboring nodes by

fi (x+eidt,t+dt) = f
′
i (x,t) (7)

Permeability for a given flow direction is computed using
the following formula

ki = Qiμ

Ag
, (8)

where the subscript index i runs as x, y, and z; Qi denotes
the flux in a given flow direction; μ is the fluid viscosity;
A is the total surface area for single-phase flow. Since
we define the flux in a given direction as follows in our
implementation

Qi = ũiφA, (9)

where ũi represents the average velocity in a given direction
and φ denotes the porosity. Then, the permeability equation
becomes

ki = ũiφμ

g
. (10)

Since ki is in lattice units, we multiply Eq. 9 with the
squared value of voxel resolution (specified in [1.0×10−6m
= μm]) to convert to [Darcy] and then with 1.0 × 103 to
convert to [mDarcy].

3 Parallel GPGPU implementation

A recent development in scientific computing is conduct-
ing high-performance numerical computations on GPGPUs.
GPGPUs were developed in the 1990s to accelerate the render-
ing of images (2D and 3D) for output to a display. Since
then, the stream processing capabilities of GPGPUs have
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Fig. 1 An example
computational domain and its
conceptualization (top frame)
for direct numerical simulation
including various types of
boundary definitions per lattice
element (i.e., internal solid-fluid
boundary (solid wall), �wall

h ;
external domain surface, �ext

h ;
internal solid-solid boundary,
�int
h ). The lattice structure of the

D3Q19 scheme with 19 velocity
components (adapted from [56])
(bottom frame)

been focused on scientific computing, and the application to
scientific computing has led to commercial lines of GPG-
PUs that have thousands of double-precision computation
cores with error checking. GPGPU computation can become
much faster (e.g., 10–1000 times faster compared to CPU
computation) if a problem, or computation, lends itself well
to many lightweight computation threads such as the col-
lision and propagation kernels of LBM. In fact, a number
of LBM implementations have already been made taking
advantage of GPGPU computing, e.g., [11, 14, 72]. More
recently, [19] demonstrated the use of CUDA and OpenCL
in the optimization of a BGK-based LBM implementation
on heterogeneous computing platforms. None of the above
references demonstrate a 3D implementation of the MRT-
LBM algorithm taking advantage of multi-node GPGPU
computing.

A novel massively parallel hardware-dedicated imple-
mentation of the above-discussed MRT-LBM algorithm is
made for NVIDIA GPGPU cards by use of the CUDA pro-
gramming language. CUDA is a variant of the C++ prog-
ramming language with extra functions to control the device
(GPGPU) from the host (CPU). In addition, the MRT-LBM
code utilizes a one-dimensional domain decomposition

scheme with a single ghost-layer communicating the solu-
tions along domain boundaries (Fig. 2). The domain decom-
position communications are managed by use of message
passing interface (MPI). For brevity, the MRT-LBM code is
also referred to as MRT-LBM in the text.

Simulations with MRT-LBM are performed on a large
Linux-based CPU-GPGPU HPC cluster. In order to mini-
mize the impact on other users, unless otherwise stated, all
simulations are performed using only four cluster nodes each
with two Tesla K80 GPGPU cards. The technical specification
of each CPU-GPGPU node is as follows: HP Proliant XL250a
Gen9, 24 Cores - Intel(R) Haswell - Xeon(R) CPU E5-2680
v3 @ 2.50 GHz, 256-GB DRAM, 0.8 TB/scratch, 10 Gbps
Ethernet, 56 Gbps fully non-blocking FDR (FBB) Infini-
band), and 2 Tesla K80 GPGPU cards per node. It is impor-
tant to note that each Tesla K80 has ∼5000 CUDA cores
and 24 GB of RAM. Therefore, the compute resource dedi-
cated to each run can be summarized with ∼40,000 CUDA
cores and ∼200 GB of RAM. On average, the MRT-LBM
code required ∼60 GB of RAM for a given simulation. The
simulations utilized 100% of the GPGPU nodes’ processing
potential. In other words, no two simultaneous simulation
jobs were submitted to the same GPGPU nodes.
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Fig. 2 Schematic description of the 1D domain decomposition
approach with asynchronous data change is shown in the top frame.
The model slices represented by varying colors in the bottom frame
indicate the decomposition of the simulation domain by use of the
1D domain decomposition approach implemented in MRT-LBM. Four
GPGPUs (one cluster node) are used with MRT-LBM

4 Validation

First set of validation tests are conducted using geometries
for which analytical or semi-analytical solutions for
permeability exist. First, we briefly review these solutions
below:

Darcy’s law states that the volume flux Q of a viscous
fluid per unit time, through a sample of porous material is
linearly proportional to the pressure difference �P applied
to the opposite faces of the porous sample and the cross-
section area A, and inversely proportional to the fluid
viscosity μ and sample length L:

Q= −k
A

μ

�P

L
(11)

for creeping flow, i.e., at low Reynolds numbers [29]. The
proportionality constant k is a fundamental property of the
porous medium referred to as the absolute permeability,
which has units of length squared. The most common
permeability unit is Darcy or milliDarcy (mD), such that 1
Darcy ∼= 10−12 m2 and 1 mD ∼= 10−15 m2. In general, for a
specific sedimentary rock, permeability increases with grain
size and porosity but in a non-unique manner.

The exact expressions for incompressible viscous flow
through circular, square, and equilateral triangular cross-
sections are known [48]. The permeability of a circular
cross-section with radius R is given by

k = π

8

R4

A
. (12)

Fig. 3 Comparison of the
MRT-LBM and
analytical/semi-analytical
solutions for permeability used
in the validation test cases
including results obtained for
eight alternative methods.
Numerically computed
permeability values are
normalized by the ones
computed by
analytical/semi-analytical
solutions

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Permeability / Analytical [mDarcy/mDarcy]

LBM #1
LBM #2
F-CFD #1
F-CFD #2
F-CFD #3
CFD #1
CFD #2
Geo
MRT-LBM
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Fig. 4 Digital rock
microstructures used in the
validation tests [61]

Similarly, for a square cross-section pipe whose side is l

k= 0.035144
l4

A
, (13)

and for a pipe of triangular cross-section with a uniform side
length l is given by

k =
√

3l
4

320A
. (14)

Various authors [67–69] report approximate expressions for
flow in a pipe (of arbitrary cross-section) with sinusoidally
varying radius. Sochi [69] derives pressure drop (p) across
a sinusoidal pipe as

p = LQη
2(Rmax+Rmin)

3+3(Rmax+Rmin)(Rmax−Rmin)
2

2π(RmaxRmin)
7/2

.

(15)

In Eq. 14, Rmax and Rmin are the maximum and minimum
radii, respectively. Using Eq. 14, we can calculate the
change in permeability of a pipe as its diameter varies
sinusoidally.

Analytical solutions for non-pipe 3D microstructures are
also known in some cases. For instance, many approximate
expressions for permeability of sphere packs have also been
proposed [32, 33, 57, 74]. Rumpf and Gupte [57] suggest
an expression for the permeability of monodisperse sphere
packs

k = φ5.5D
2

5.6
. (16)

In Eq. 15, φ is the sphere pack porosity and D is the sphere
diameter.

Validation tests are performed for several geometries
with an analytical/semi-analytical solution for permeability.
These geometries were documented in [61] and their brief
descriptions are as follows:

(a) Three two-dimensional structures, which are each
permeated with a single pipe of circular cross-section
that is parallel to the flow direction (cir. pi. 200, cir. pi.
400, and cir. pi. 800).

(b) Three two-dimensional structures, which are each
permeated with a single pipe of square cross-section
that is parallel to the flow direction (sq. pi. 200, sq. pi.
400, and sq. pi. 800).

Fig. 5 Computed permeability normalized by laboratory
measurements
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Fig. 6 2D and 3D example
views of the sphere pack
pore-scale image volume. The
discrete image of the sphere
pack geometry is reported in [2]

Sphere Pack Image Volume 

Image Size: ; Voxel Size: m

(c) Three two-dimensional structures, which are each
permeated with a single pipe of equilateral triangle
cross-section that is parallel to the flow direction (tri.
pi. 200, tri. pi. 400, and tri. pi. 800).

(d) One two-dimensional structure which is permeated
with four circular cross section pipes of various
diameter that are parallel to the flow direction (mix.
pi.).

(e) Twelve structures with sinusoidally varying cross-
sections in the flow direction (cosine function)
modified from (a)–(c) (cir. cos. 200, cir. cos. 400, cir.
cos. 800, sq. cos. 200, sq. cos. 400, sq. cos. 800, tri.
cos. 200, tri. cos. 400, and tri. cos. 800).

(f) One three-dimensional pack of identical spheres
permeable in all three directions (x, y, and z), which
will also be used in parallel scalability investigations
[sp. pa.-x, sp. pa.-y, and sp. pa.-z].

Permeability values computed by use of MRT-LBM are
compared with analytical/semi-analytical solutions (11–15)
for the above-described geometries in Fig. 4. MRT-LBM
solutions are compared not only against analytical solu-
tions but also to the ones stemming from eight alternative
simulation methods varying from alternative LBM imple-
mentations to conventional (and computationally intensive)

Eulerian CFD techniques. Investigated techniques include
an approximate geometric approach as well. Detailed
description of these methods is kept beyond the scope
of this paper. We refer the reader to [61] for a detailed
benchmarking study involving MRT-LBM and alternative
methods. The overall agreement of MRT-LBM solutions
with analytical results is in general within ±10% except for
two cases involving two large bore sinusoidal pipes. All
numerical solution techniques including MRT-LBM exhibit
a relatively larger departure from the analytical solution
and a larger spread among predicted permeability values
in the top part of Fig. 3, which contains relatively more
complex geometries such as sinusoidal pipes and a sphere
pack in which flows are simulated in three different (x,
y, and z) directions. Analytical solutions for permeability
are asymptotic approximations for these cases. Moreover,
we must note that the known analytical solutions for pipes
(of infinite length) cannot be considered as “exact” solu-
tions for the investigated digital microstructures, since the
digital microstructures are both finite in length and vox-
elated in surface texture. It is evident that uncertainties
associated with the approximate nature of both (reference)
semi-analytical and numerical solutions for sinusoidal pipes
have a notable effect in the comparison as the calculated

Table 1 Permeability
computation results for the
sphere pack pore-scale image
volume (porosity = 34.3%)

Reference permeability
(mD)

Flow direction Permeability (mD)
MRT-LBM (GPGPU)
Loop BC

Permeability (mD)
MRT-LBM (GPGPU)
No-flow BC

221,587–270,220 X 272,285 254,301

Y 258,301 241,036

Z 262,750 247,867
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Fig. 7 Parallel scalability results for the sphere pack image volume.
Loop boundary conditions are used at global domain boundaries

permeabilities using investigated solvers are more spread
out with respect to reference solutions. Having stated that,
for sinusoidal pipes, MRT-LBM predictions of permeabil-
ity are reasonably accurate considering the large variability
in the predicted permeabilities by all solvers. In the case of
the sphere pack, which is the closest idealized geometry to
a real rock, the numerical permeability values predicted by
MRT-LBM are in very good agreement with the analytical
solution (15). Overall, MRT-LBM delivers an accuracy level
that is better than the aggregate trend obtained from eight
alternative methods. In fact, MRT-LBM is one of the most
accurate methods (Fig. 3).

As part of the validation work, we also compare the com-
puted permeability of digital rocks with that measured in the
laboratory for two rocks: Rock 1 is from the Fontainebleau
formation which is a sub-rounded to rounded Oligocene age
sandstone that has a mean grain size of approximately 450
µm and is moderately well sorted with a Trask coefficient

Fig. 8 2D and 3D example
views of the Fontainebleau
sandstone pore-scale image
volume

Fontainebleau Sandstone Image Volume 

Image Size: ; Voxel Size: m

of 1.43. Roughly 20% of the samples are quartz cement,
leaving relatively low porosity of approximately 12%. Rock
2 is from the Castlegate formation of Utah which is a
sub-angular to sub-rounded Mesozoic sandstone that has a
mean grain size of approximately 350 µm and is moderately
sorted with a Trask sorting coefficient of 1.69. Petrologic
assessment of the sample indicates a minimal quartz cement
volume of between 2 and 3% with similar amounts of
carbonate cement and approximately 19% macro-porosity.
Digital rock image volumes used in this study (each of size
1024×1024×1024) are shown in Fig. 4 for Rock 1 and Rock 2.

Direct comparison between digitally computed and lab-
oratory measured permeability is indeed difficult due to
many reasons: Firstly, laboratory measurements for this
study were stressed whereas digital images were acquired
under ambient pressure. Secondly, the two sets of results
are obtained at different scales, DRP computations were
carried on 2-mm-sized samples whereas laboratory mea-
surements were performed on 25-mm cylindrical core plugs.
Thirdly, the binarized digital images are subject to sub-
stantial uncertainty by the imaging and image processing
workflow [44]. Finally, in this study, DRP computations do
not sample identical portions of the rock used in the labora-
tory measurements. The computed porosities of the digital
rock image volumes were found to be close to the laboratory
measured porosity. Overall, we find that digitally com-
puted permeability agrees reasonably well with laboratory
measured permeability for the investigated rocks (Fig. 5).

5 Permeability computation and distributed
parallel scalability

The computational performance of the MRT-LBM algo-
rithm is evaluated from the accuracy and distributed par-
allel scalability perspectives for a sphere pack and three
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Table 2 Permeability computation results for the Fontainebleau sandstone pore-scale image volume (porosity = 14.7%)

Measured
permeability (mD)

Flow direction Permeability (mD)
Reference algorithm
(CPU)

Permeability (mD)
MRT-LBM
(GPGPU) Loop BC

Permeability (mD)
MRT-LBM
(GPGPU) No-flow
BC

Speed-up (Loop BC)

∼1100 X 1626.92 1259.0 1126.2 17.0

Y 1412.90 1180.9 1105.2 23.7

Z 1698.94 1392.9 1327.0 21.8

benchmark rocks, namely, Fontainebleau sandstone, Gros-
mont carbonate, and Castlegate sandstone. One of the cen-
tral underlying assumptions of the work is that the solid and
pore space is accurately resolved in the microstructures rep-
resenting the porous media. In other words, the effects of
imaging, image processing [44, 62], and meshing uncertain-
ties (e.g., [63, 66]) are kept beyond the scope of the paper.
Moreover, for permeability computation problems used as
realistic background for exploring the scalability character-
istics of the code, detailed investigations involving image
size and resolution for establishing REV is also kept beyond
the scope of the study. We refer the reader to [63] for REV
studies conducted by use of MRT-LBM.

5.1 Sphere pack

Packs of spherical grains are classical models of porous
media. They serve as proxies for sedimentary granular
geomaterials. A three-dimensional random pack of identical
spheres was constructed by use of a granular dynamics
discrete element simulation and utilized in a benchmarking
study by [2, 3] (Fig. 6). The sphere pack is discretized with a
uniform Cartesian grid. It was sampled using a voxel length
of 7μm, corresponding to 100 voxels per grain diameter
and resulting in a total image volume of 788×791×793
voxels. The sphere pack is permeable in all three (x,
y, and z) directions. The porosity of the sphere pack
is 34.3%.

Permeability computation results for the sphere pack
image volume are documented in Table 1 together with
the reference permeability range reported by [2]. For
permeability computations, both loop and no-flow boundary
condition cases are investigated for domain boundaries
perpendicular to the main flow direction. The computed
permeability range of 241,036–272,285 mD agrees well
with the reference permeability range of 221,587–270,220
mD from [2].

Parallel scalability results for the sphere pack are illus-
trated in Fig. 7. Loop boundary conditions are used at global
domain boundaries for the scalability tests. MRT-LBM

implementation scales very well for the sphere pack prob-
lem with a parallel efficiency of ∼85% on 24 GPGPUs.
From the parallel scalability viewpoint, the optimal number
of GPGPUs is 8–16 beyond which the parallel scalability
starts to become affected by internode communications.

5.2 Fontainebleau sandstone

The Fontainebleau sandstone sample image was originally
reported in [2]. This image has a voxel scale of 7.5
μm. Figure 8 shows the segmented binary digital rock
(288×288×300) with grain and pore voxels. The model
slices represented by varying colors in the top frame indicate
the decomposition of the simulation domain by use of
the 1D domain decomposition approach implemented in
MRT-LBM. For this sample, the porosity is 14.7%, and
permeability is between 1100 and 2000 mD [3, 34].

Permeability computation results for the Fontainebleau
sandstone pore-scale image volume are documented in
Table 2 together with the measured permeability of the
core-plug from which the image sample is taken. For

Fig. 9 Parallel scalability results for the Fontainebleau sandstone
image volume. Loop boundary conditions are used at global domain
boundaries
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Fig. 10 2D and 3D example
views of the Grosmont
carbonate pore-scale image
volume. The CT scan volume of
the Grosmont carbonate sample
is reported in [2]

Grosmont Carbonate Image Volume 

Image Size: ; Voxel Size: m

permeability computations, both loop and no-flow bound-
ary condition cases are investigated for global domain
boundaries perpendicular to the main flow direction. The
computed permeability range of 1105–1393 mD agrees
well with the experimentally measured permeability of
∼1,100 mD.

Parallel scalability results for the Fontainebleau sand-
stone image volume are illustrated in Fig. 9. Loop boundary
conditions are used at global domain boundaries for scala-
bility tests. The optimal number of GPGPUs is eight beyond
which the parallel scalability starts degrading. The com-
munication costs significantly affect the parallel scalability
beyond 16 GPGPUs.

5.3 Grosmont carbonate

The carbonate sample was taken from [2]. The sample
was extracted from the Grosmont formation, Alberta,
Canada. Figure 10 shows the digital rock sample of size
1024×1024×1024. The voxel edge length is 2.02 μm.

The sample porosity is 24%, and laboratory-measured
permeability ranges from 150 to 470 mD.

Permeability computation results for the Grosmont
carbonate pore-scale image volume are documented in
Table 3 together with the measured permeability of
the core-plug from which the image sample is taken.
For permeability computations, both loop and no-flow
boundary condition cases are investigated for global domain
boundaries perpendicular to the main flow direction. The
computed permeability range of 412–938 mD differs
from the measured permeability range of 150–470 mD.
Excluding the computed permeability in the z direction
gives rise to a computed permeability range of 412–534
mD, which is relatively more consistent with the high end
of the measured permeability range. The difference between
measured and computed permeability ranges indicate that
the image sample may not be sufficiently large to be a
representative elementary volume. It is important to note
that, in general, carbonate rocks are significantly more
heterogeneous compared to clastic rocks.

Table 3 Permeability
computation results for the
Grosmont carbonate pore-scale
image volume (porosity =
27.2%)

Measured
permeability (mD)

Flow direction Permeability (mD)
MRT-LBM
(GPGPU)
Loop BC

Permeability (mD)
MRT-LBM
(GPGPU) No-flow
BC

150–470 X 443.5 412.2

Y 533.6 486.4

Z 937.8 884.4
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Fig. 11 Parallel scalability results for the Grosmont carbonate image
volume. Loop boundary conditions are used at global domain
boundaries

Parallel scalability results for the Grosmont carbonate
image volume are illustrated in Fig. 11. Loop boundary
conditions are used at global domain boundaries for
scalability tests. Communication costs affect the parallel

Table 4 Permeability computation results for the Castlegate sandstone
pore-scale image volume (porosity = 21.4%)

Flow direction Permeability (mD)
MRT-LBM
(GPGPU)
Loop BC

Permeability (mD)
MRT-LBM
(GPGPU) No-flow
BC

X 1437.1 1376.0

Y 1272.1 1214.5

Z 1333.2 1278.5

scalability of the MRT-LBM beyond eight GPGPUs. The
relatively more emphasized heterogeneity of the carbonate
sample and the simple 1D domain decomposition approach,
which divides the domain based on a uniform division
of the total number of lattices along the main flow
direction (Fig. 2). govern the parallel scalability behavior
of MRT-LBM, and give rise to a relatively less smooth
speed-up curve compared to the previously investigated
cases. Having stated that, the scalability is still at ∼67% on
24 nodes, which is acceptable.

Fig. 12 2D and 3D example
views of the micro-CT image of
the Castlegate sandstone (top
frame). The CT scan volume of
the Castlegate sample (bottom
frames)

Castlegate Sandstone Image Volume 

Image Size: ; Voxel Size: m
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Fig. 13 Parallel scalability results for the Castlegate sandstone image
volume. Loop boundary conditions are used at global domain
boundaries

5.4 Castlegate sandstone

A detailed study is performed by use of various samples
of the Castlegate rock with different porosities. We start
with a 1024×1024×1024 image volume of voxel resolution
2.072 μm and porosity 21.4% (Fig. 12). We compute
permeabilities for this image in x, y, and z directions using
both loop and no-flow boundary conditions, separately. The
results are documented in Table 4. Parallel scalability results
for the Castlegate sandstone image volume are illustrated
in Fig. 13. Loop boundary conditions are used at global
domain boundaries for scalability tests. The scalability

profile of the MRT-LBM implementation is near ideal with
a parallel efficiency of ∼96% on 24 GPGPUs.

Subsequent to the above study, permeability computa-
tions are performed for 11 Castlegate sandstone images with
porosities in the range of 17.9–26.8%. We compute per-
meabilities in all three (x, y, and z) directions using loop
boundary conditions on global domain boundaries. Com-
puted permeability results along with run time information
are documented in Table 5. For all runs, four compute nodes
are used each with two NVIDIA Tesla K80 GPGPU cards
amounting to a total GPGPU count of 16. The computa-
tional performance results are also documented in terms
of speed-up with respect to the run times delivered by a
commercial reference tool on a comparable compute archi-
tecture (Table 5).

While individual results are not reported for brevity,
the MRT-LBM and commercial tool computed permeability
results are within 10 to 13% of each other depending
on the flow direction. The differences in the computed
permeability between MRT-LBM and the reference tool are
in fact smaller than, for example, the computed permeability
uncertainty that arises from the choice of segmentation
threshold [62]. Nonetheless, at this point, it is important
to emphasize the fact that it is unknown which tool’s
solutions are closer to “true” permeabilities. Having stated
that, extensive validation tests performed for MRT-LBM,
some of which were documented earlier in the paper,
constitute quantitative evidence for the reliable accuracy
level delivered by the MRT-LBM.

Larger versions the Castlegate sandstone image volume
are generated through downscaling to explore the limits of

Table 5 Permeability computation results for the Castlegate sandstone pore image for various segmentation thresholds

Segmented image name Porosity Permeability (mD) Run time (min) Total run time (h) Speed-up wrt. commercial tool

% X Y Z X Y Z X Y Z

CG1 R-49 17.9 799 715 738 221 30.2 34.6 4.8 1 6 5

CG1 R-40 18.7 929 829 861 30.9 30.7 33.6 1.6 6 6 6

CG1 R-30 19.5 1070 952 993 30.8 29.3 36.2 1.6 9 8 5

CG1 R-20 20.2 1213 1077 1127 33.2 38.7 30.1 1.7 7 6 7

CG1 R-10 20.9 1361 1206 1265 29.1 27.7 30.4 1.5 8 9 7

CG1 R0 21.7 1520 1347 1414 157.5 27.8 29.8 3.6 1 11 7

CG1 R10 22.4 1682 1489 1562 28.3 27.1 29.2 1.4 8 8 8

CG1 R20 23.3 1884 1665 1746 28 26.7 29 1.4 8 9 10

CG1 R30 24.3 2126 1874 1965 27.3 29.8 28.2 1.4 9 8 10

CG1 R40 25.4 2426 2132 2235 27.3 36.9 30.5 1.6 9 8 8

CG1 R50 26.8 2818 2471 2591 27.5 25.3 27.8 1.3 10 16 11

Loop boundary conditions are used on global domain boundaries. Resources utilized for the runs: 4 compute nodes each with 2-Tesla K80 GPGPU
cards. Each K80 card has ∼5000 CUDA cores and ∼24 GB of RAM (∼40,000 CUDA cores and ∼200 GB of RAM utilized)
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Fig. 14 2D and 3D example
views of a large micro-CT
image of a Castlegate sandstone

Castlegate Sandstone Large Image Volume 

Image Size: ; Voxel Size: m

the permeability computation capability. An example large
case of size 1900×1900×1900 (Fig. 14) is simulated on
eight compute nodes by use of 32 GPGPUs for computing
permeabilities in three dimensions using loop and no-flow
boundary conditions. The permeability computation results
are reported in Table 6 along with run time information,
which varies between 261 to 324 min.

6 Representative elementary volume
determination

The velocity fields generated by the MRT-LBM can be used
to quantitatively and qualitatively investigate the effects
of the image volume size and the boundary conditions
(imposed on the global domain) on flow fields, and hence,
on the computed digital rock permeability. The goal here
is to identify the minimum image volume size and the
boundary conditions that will lead to an analysis volume at
which the flow fields internal to the domain are insensitive
to these parameters, i.e., one of the definitions of REV
for permeability, which differs from the commonly used
averaging method definition [7]. An example study for a
Berea sandstone microstructure is shown in Fig. 15 [63].

Single-phase flow simulations were performed with MRT-
LBM on 1024×1024×1024, 768×768×768, 512×512×512,
and 256×256×256 size image volumes. The central sub-
cubes of size 256×256×256 were extracted from each of
these simulations and the velocity fields are visualized
on these sub-cubes. The simulations were performed for
loop and no-flow boundary conditions on global domain
boundaries that are perpendicular to the main flow direction.
As the flow domain size increases, the velocity field in
the central sub-cube becomes less sensitive to the domain
size. Effects of global domain boundary conditions on the
velocity field diminish with increasing domain size. Further
details of the REV work for digital rock permeability can be
found in [63].

In the above-mentioned study, the authors fix the
computing domain center when performing REV tests. In
order to account for the effect of spatial heterogeneity in
a statistical fashion, one could also consider conducting
statistical REV tests [76]. In this approach, one moves
the computational domain throughout the entire sample
space and evaluates the mean and standard deviation of
the quantity of interest (e.g., permeability). Then, the
computational domain size is increased and the process is
repeated. It is expected that the standard deviation decreases

Table 6 Permeability computation results for the Castlegate sandstone large pore image

Segmented image name Boundary condition Porosity Permeability (mD) Run time (min)

% X Y Z X Y Z

CG1 2015 1900 Solid 21.4 1326.0 1169.7 1230.0 293.8 306.5 323.8

Loop 1386.0 1226.2 1283.4 261.3 287.2 305.5

Resources utilized for the runs: 8 compute nodes each with 2-Tesla K80 GPGPU cards. Each K80 card has ∼5000 CUDA cores and ∼24 GB of
RAM (∼80,000 CUDA cores and 384 GB of RAM utilized)



Comput Geosci (2018) 22:815–832 829

Fig. 15 Velocity fields
computed by use of MRT-LBM
within the framework of a REV
study. Single-phase flow
simulations were performed
with MRT-LBM on
1024×1024×1024,
768×768×768, 512×512×512,
and 256×256×256 size image
volumes. The central sub-cubes
of size 256×256×256 were
extracted from each of these
simulations and the velocity
fields are visualized on these
sub-cubes. The simulations were
performed for loop and no-flow
boundary conditions on global
domain boundaries that are
perpendicular to the main flow
direction. Figure adapted from
[64]
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with the increase of the computational domain size. When
the standard deviation is sufficiently small (compared to
a specified criterion) and the computational domain size
is sufficiently large, convergence to REV is declared.
Although the authors did not perform statistical REV tests in
the study reported in [63], the MRT-LBM code can readily
be used in such a study.

7 Summary and conclusions

We describe and extensively test the distributed parallel
implementation of an innovative LBM algorithm for
simulating flow in pore-scale media based on the MRT
model that utilizes a precise treatment of body force.
As novel contributions to the scientific literature, we
(1) integrate all of the mathematical, algorithmic, and
high-performance computing (using GPGPUs) elements
together with an optimized implementation in CUDA,
and (2) provide quantitative results with the resulting
simulator (MRT-LBM) in terms of robustness, accuracy, and
computational efficiency for a variety of flow geometries
including various types of real rock images. We report on
extensive validations of the simulator in terms of accuracy
and provide near-ideal distributed parallel scalability results
on large pore-scale image volumes that were largely
computationally inaccessible prior to our implementation.

The MRT-LBM code implementation is applied to the
computation of absolute permeability in several validation
cases and real-life 3D pore-scale images used in distributed
parallel scalability tests. The following conclusions are
reached as the results of validation, parallel scalability, and
application studies:

• The MRT-LBM method delivers a good level of
accuracy for computed permeability on microstructures
for which an analytical or semi-analytical solution exist.

• The computed permeabilities agree well with reference
measured permeabilities for investigated rocks.

• The distributed parallel GPGPU code implementation
of the MRT-LBM algorithm scales well for large
problems with larger than 1 billion voxels. It enables the
simulation of pore-scale models with billions of voxels
in the order of a few minutes to a few hours, thereby
enabling fast and accurate permeability computations
on real rock images.

• The velocity fields generated by MRT-LBM can be
quantitatively and qualitatively utilized within REV
investigations for digital rock permeability.

• The MRT-LBM simulator can serve as one of the key-
enabler components of an integrated DRP workflow for
permeability estimation.

• Future work will focus on utilizing MRT-LBM as a
fast and efficient momentum balance solver for a two-
phase two-component Helmholtz free-energy LBM-
based pore-scale flow simulator.
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