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Abstract The network modeling approach is applied to
provide a new insight into the onset of non-Darcy flow
through porous media. The analytical solutions of one-
dimensional Navier-Stokes equation in sinusoidal and con-
ical converging/diverging throats are used to calculate the
pressure drop/flow rate responses in the capillaries of the
network. The analysis of flow in a single pore revealed that
there are two different regions for the flow coefficient ratio
as a function of the aspect ratio. It is found that the critical
Reynolds number strongly depends on the pore geometri-
cal properties including throat length, average aspect ratio,
and average coordination number of the porous media, and
an estimation of such properties is required to achieve more
reliable predictions. New criteria for the onset of non-Darcy
flow are also proposed to overcome the lack of geomet-
rical data. Although the average aspect ratio is the main
parameter which controls the inertia effects, the effect of
tortuosity on the onset of non-Darcy flow increases when
the coordination number of media decreases. In addition,
the higher non-Darcy coefficient does not essentially accel-
erate the onset of inertial flow. The results of this work can
help to better understand how the onset of inertial flow may
be controlled/changed by the pore architecture of porous
media.
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1 Introduction

1.1 Onset of inertial flow

The relationship between flow rate and pressure drop in the
porous media is controlled by flow regime [1, 2]. Although
inertial effects are present in all velocity ranges, at low
flow rates at which viscous forces are dominated pressure-
flow rate relation is linear and Darcy’s law is sufficient for
modeling of the flow behavior [3, 4]. However, Darcy’s
law underestimates the pressure drop along porous media
when velocity increases and inertia flow regime begins [3,
5, 6]. In particular, predictive models suffer from the inade-
quate accuracy induced by inertial effect when the velocity
increases. In oil and gas reservoirs, diverging from the
Darcy flow may occur, e.g., at the near wellbore conditions
[7]. In order to capture the nonlinearities due to the iner-
tia, Forchheimer [8] proposed an extended form of Darcy
equation as follows:

−�P

L
= μ

K
v + βρv2 (1)

where �P represents the pressure drop along the porous
media, L is the length of the medium, μ is the viscosity
of the fluid passes through porous media, ρ is the density
of the fluid, ν is the apparent velocity of the fluid, and
K and β are the permeability and non-Darcy coefficient
of the porous media, respectively. It is generally accepted
that the Forchheimer equation predicts the effects of iner-
tia on laminar flow through the non-Darcy coefficient as an
important inherent property of the porous media [3]. Fand
et al. [9] conducted a comprehensive study on regimes of
flow in porous media. They indicated six flow regimes by
increasing velocity as pre-Darcy, Darcy, transition between
Darcy and Forchheimer, Forchheimer, transition between
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Forchheimer and turbulent, and turbulent flow. According
to their study, the pre-Darcy regime occurs in extremely low
Reynolds numbers and the transition between Darcy and
Forchheimer regimes, weak inertia regime, can be approxi-
mated by a point due to its narrow range and difficulty in its
characterization.

Chaudhary et al. [4] studied the flow behavior in porous
media using converging/diverging pores and computational
fluid dynamics. Their results show that inertial effects exist
at all flow conditions and deviation from Darcy’s law
depends on the growth of these inertial effects. Chaudhary
et al. [10] analyzed the impact of pore geometry on flow
field in converging/diverging pores using a finite element
method. They observed eddies in converging/diverging
pores at laminar flow condition. Their finding indicates that
growth rates of eddies by increasing the Reynolds number
are different for different pore geometries and their behavior
is complicated. Based on their results, change in hydraulic
conductivity and the onset of non-Darcy flow in a porous
medium are highly dependent on pore geometry.

Mei and Auriault [11] found that cubic equation of
flow can represent weak inertia effects on flow behavior
in porous media. However, Fourar et al. [12] confirmed
that the Reynolds number range of weak inertia regime
is very limited and, in a practical point of view, can be
ignored in three-dimensional flow. Balhoff et al. [13] devel-
oped a model to predict corrections to Darcy’s law in low
Reynolds numbers. They concluded that the first correc-
tion to Darcy equation is cubic and terms with higher order
are insignificant; however, in practice, Darcy’s law can be
employed with acceptable approximation and cubic term
can also be ignored. Dullien [14] presented a comprehensive
discussion on whether or not Eq. 1 is the correct physi-
cal model over the practical range of flow rates in porous
media, and concluded that the Forchheimer equation is ade-
quate in this manner. Some studies have also recovered the
validity of the quadratic Forchheimer equation using vari-
ous techniques such as Chen et al. [15], Whitaker [6], and
Hassanizadeh and Gray [16]. In addition, Fourar et al. [12]
mentioned that the Forchheimer equation is usually applied
for predicting Darcy and non-Darcy flow regimes as well as
their transition [12]. We also utilized the Forchheimer equa-
tion for analysis of flow behavior passing through porous
media. Balhoff and Wheeler [17] mentioned that the per-
meability in Eq. 1 is not the intrinsic permeability of the
porous media, and even Fourar et al. [12] suggested calling
it Forchheimer’s permeability to emphasize the difference
between Darcy’s and Forchheimer’s permeability. On the
other hand, Balhoff and Wheeler [17] mentioned that the
difference between the intrinsic (obtained fromDarcy’s law)
and Forchheimer’s permeability is negligible for practical
purposes. The permeability utilized in analysis presented in
this study is Forchheimer’s permeability.

According to the significance of non-Darcy behavior,
many studies are conducted to consider its influence on
description of the fluid flow through porous media which
makes the numerical simulations so costly and reduces the
precision [18]. This means that the presence of a suitable
criterion for predicting the onset of non-Darcy effect seems
necessary. Plenty of experimental and theoretical efforts
have been made in order to acquire the upper limit of
Darcy’s law. This is usually obtained by allotting a critical
Reynolds number to that limit, beyond which Darcy’s law
could not provide reliable results.

Chilton and Colburn [19] defined the Reynolds num-
ber as Re = ρDpv

/
μ , where Dp is the diameter of

packed particles in porous media and obtained the critical
Reynolds number between 40 and 48 Ergun [2] re-defined
this Reynolds number as Re = ρDpu

/
μ(1 − φ) , where u

is the velocity of fluid at pores and claimed that the critical
Reynolds number was in the range of 3 to 10. In addition,
through defining Re = ρvl/μ (where l is the characteristic
length of the porous medium), the critical Reynolds num-
ber was found to be 1 [20], 2 [21, 22], and 5 [22], according
to their experimental observations. Green and Duwez [23]
mentioned that the critical Reynolds number varied between
0.1 and 0.2 while the definition of their Reynolds number
was Re = Kβρv

/
μ .

Pore network modeling coupled with its related fluid
mechanics is introduced as a promising tool for investigat-
ing the various facets of transport phenomena in porous
media [24–27] and macroscopic properties such as perme-
ability, relative permeability, capillary pressure, diffusion,
and non-Darcy coefficient [17, 28–32]. The network mod-
eling approach seems to be also attractive for evaluating
the upper limit of Darcy flow in porous media. Numeri-
cal modeling reported the critical Reynolds number in the
range of 5 and 13 [33], and the critical Reynolds number
equal to 10 was suggested by Hassanizadeh and Gray [16]
using the general continuum approach adopted to thermo-
dynamic processes in porous media. Thauvin and Mohanty
[30] employed an interconnected network of spherical and
cylindrical pores and obtained this critical value equal to
0.11 by defining the Reynolds number as Re = ρru/μ

(where r is the pore throat radius). In two latter studies, the
network was fixed and the sensitivity of critical Reynolds
number to the pore structure was not considered. Through
applying representative unit cells composed of three duct
sections, Du Plessis and Masliyah [34] concluded that the
critical Reynolds number ranges between 3 and 17 where
Re = ρvdt

/
μ and dt was the diameter of the throats.

Ma and Ruth [35] used a periodic representative unit cell
made up of the cylindrical capillaries with constant radii
for modeling of the non-Darcy flow and found the criti-
cal Reynolds number between 3 and 10. However, here,
an interconnected network of converging/diverging throats
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with various throat profiles is applied to achieve more
realistic results.

The other well-known criterion for prediction of the
onset of non-Darcy flow is the critical Forchheimer num-
ber (Foc). Using permeability at zero velocity (Ko) and the
non-Darcy coefficient of the porous media, Ma and Ruth
[35] proposed that the Forchheimer number can be defined
as Fo = Koβρv

/
μ . Utilizing this definition, they found

that the onset of nonlinearities occurs at the critical Forch-
heimer numbers between 0.005 and 0.02. Zeng and Grigg
[36] presented the Forchheimer number regarding the crit-
ical non-Darcy effect and claimed with a 10% non-Darcy
effect, the Forchheimer number would be 0.11.

Various ranges of the critical Reynolds number with dif-
ferent definitions lead to the difficulty for choosing an
appropriate criterion for the onset of non-Darcy flow. This
study tries to examine how the critical Reynolds number
changes with alteration in the pore geometrical parameters
of a porous medium. In other words, finding a more suit-
able range for the critical Reynolds number applicable to
predict the onset of inertial flow in porous media with differ-
ent pore structures is the main objective of this paper. Also,
we specifically address this question: how a unique crite-
rion can be introduced instead of critical Reynolds number
which eliminates the dependency on geometrical properties
of the pores. In what follows, the relation between Reynolds
number (with various definitions) and the pore geometrical
parameters including average aspect ratio, throat length, and
coordination number for two kinds of throat profiles is pre-
cisely examined and new proper criteria, valid in the wide
range of situations, are proposed. Due to the requirement
of these criteria to the value of non-Darcy coefficient, some
correlations for prediction of the non-Darcy flow coefficient
and their validation are also presented.

1.2 Brief background on modeling approach

Earlier attempts for modeling of the subsurface packed beds
have been done by assuming the porous medium as a bundle
of tubes, such as Carman-Kozeny and Ergun equations [37].
Even though these models were successful to describe the
macroscopic characteristics of porous media to some extent,
they were not persuasive methods for studying the other
phenomena, for instance, mixing effects. Later, in order to
model the two-phase flow through compacted porous media,
Fatt [38] proposed a better and more realistic approach for
modeling of the porous media structure which was pre-
sented by an interconnected pore/throat network. In the first
works that used Fatt’s pore network modeling approach, it
was assumed that the interconnections of network (nodes)
were nullified, while it was evident that in the real porous
media, nodes are actually the representatives of larger voids;
hence, next models tried to involve the effects of nodes

using innovative approaches, such as assuming separated
specific elements for nodes and connected throats [30, 39].

Naturally, the porous media is of high degree of com-
plexity from a morphological point of view [31, 37, 40, 41].
As much as a pore network model considers these structural
intricacies, it would resemble the natural subsurface packed
beds in a more realistic manner. On account of the con-
verging/diverging nature of pores in the real porous media
[17, 31, 42, 43], depiction of the pore space as a converg-
ing/diverging environment seems to be more realistic. As a
result, in this study, the geometry of porous media is com-
posed of an interconnected framework of sinusoidal and
conical pore throats. Modeling the porous media in that
manner, referred to earlier, is conducted by Balhoff and
Wheeler [17]. They used an empirical correlation for calcu-
lating the pressure as a function of the flow rate in diverg-
ing/converging capillary tubes. Conversely, in this work,
the pressure drop is related to the passing volumetric flow
rate using the analytical solution of Navier-Stokes equation.
Recently, we have discussed the role of pore space profiles
on non-Darcy flow behavior in isotropic and anisotropic
porous media using network modeling [44]. Here, we fol-
low the pore network modeling procedure applied in our
previous work to investigate flow behavior in Darcy and
Forchheimer (non-Darcy) regimes.

Due to importance of coordination number in micro-
scopic and macroscopic scale flow analysis in porous media,
constructing networks with different coordination patterns
has attracted attention in the literature [45–49]. In spite of
different coordination patterns, considering cubic lattice as
a bulk volume is popular in network modeling [17, 30, 31,
46] which may be because of necessity of considering a
cubic form of lattice to apply boundary conditions such as
periodic boundary condition to the boundary planes which
are perpendicular to the flow direction. In the present work,
different coordination numbers were assigned to pores of
a cubic lattice by random elimination of throats to con-
struct a network with predetermined values of the average
coordination number.

In this study, a cubic lattice composed of converg-
ing/diverging throats is constructed to apply pore network
modeling. The flow behavior as well as the intrinsic proper-
ties of reservoir rocks such as permeability, tortuosity, and
non-Darcy coefficient are analyzed at different values of
pore-scale characteristics like coordination number, aspect
ratio, and throat length, to show/describe how these pore
topology aspects control the permeability and non-Darcy
coefficient, thus throwing light on the relative significance
of these aspects on controlling the pore-scale flow behavior.
New correlations for predicting the non-Darcy coefficient
as a function of permeability and porosity and also other
correlations for predicting tortuosity as a function of perme-
ability/coordination number are presented.
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2 Modeling

2.1 Model geometry description

Network models in the literature usually consisted of spher-
ical pores and cylindrical pore throats as capillary tubes
[31, 37, 42]. Each pore network model must fulfill the con-
verging/diverging nature of the porous media. There are
four options of pore throat profiles comprising conical,
parabolic, hyperbolic, and sinusoidal. Among these profiles,
conical structure is chosen because its profile does not have
the curvature and sinusoidal profile structure is also selected
since it can be the representative of the maximum curva-
ture. Our network can be represented by a cubic lattice.
The nodes of the lattice are representative of the pores, and
the pore throats are represented by two connected half con-
verging/diverging micro tubes. As a matter of fact, the pore
bodies are not separated parts from the throats. However, we
have attributed this name (pore body) to the end of throats
to make a distinct difference between pores as diverging and
throats as converging sections.

Figure 1 depicts the geometry of a complete converg-
ing/diverging tube with sinusoidal profile. The radius of this
tube, R, as a function of the axis (x-axis) is as follows:

r(x) = a − b cos(kx) − L/2 ≤ x ≤ L/2 (2)

where

a = Rmax + Rmin

2
, b = Rmax − Rmin

2
, k = 2π

L
. (3)

Figure 2 demonstrates the schematic of the capillary with
conical profile. Likewise, for this profile, the radius (r)
based on the tube length is

r(x) = a + b|x| − L/2 ≤ x ≤ L/2 (4)

and

a = Rmin and b = 2(Rmax − Rmin)

L
. (5)

Figure 3 shows the exact structure of each pore throat in
our model. The throats are consisted of two half tubes con-
nected to each other at the middle of the throat. The random
radius and length of each half section are determined using a

Fig. 1 Schematic of a capillary tube with sinusoidal profile [44]

Fig. 2 Schematic of capillary tube with conical profile [44]

special form of the Weibull distribution which is expressed
in Eq. 6.

R = −σ(Ri,max − Ri,min)

× ln

(
rand ×

(
1 − exp

(
− 1

σ

))
+ exp

(
− 1

σ

)) 1
η

+Ri,min (6)

where σ and η are fixed parameters. The minimum and
maximum values (Ri,min, Ri,max) are input parameters of
this function. The Weibull distribution function is applied
because of its versatility, flexibility, and mathematical ease
[50]. Similar functions are used by previous authors such as
Diaz et al. [51] or Ioannidis and Chatzis [50]. The sum of
the lengths of two half sections has a constant value which is
equal to the throat length (L); the length of each half section
has been calculated using Eqs. 7 and 8

L1 + L2 = L (7)

and
R1

R2
= L1

L2
. (8)

The section with the bigger radius at pore side has the longer
length. The minimum radius of each part is equal to the
throat radius generated by the Weibull distribution. Throats
between the bigger bodies have larger radii. Actually, each
throat between two nodes is correlated to the average size of
these nodes. In this model, there is no relation that assigns
pores to pores or throats to throats. In other words, two bodies
with any different radius can be located near each other.

The larger radii of the six half throats which are con-
nected to each other at each specific node are equal; it can

Fig. 3 Schematic of an axisymmetric capillary tube composed of two
half tubes with different body radii [44]



Comput Geosci (2018) 22:329–346 333

be assumed that they are hypothetically connected to each
other at the pore body. A schematic of how these half throats
are connected to each other is depicted in Fig. 4a. Figure 4b
illustrates a network constructed by pores with different
coordination numbers.

Using Eqs. 2 and 4, the volume of each half throat can
be obtained. For instance, the volume of a half sinusoidal
throat can be expressed as follows:

Vth = πL

(
b2

2
+ a2

)
(9)

where a and b can be obtained using Eq. 3.
The summation of the volumes of all throats can be

used in order to calculate the porosity of model. However,
according to Fig. 4a, since the throats of lattice have over-
lap with each other, the volume of each pore body will be
approximately calculated three times the real value and this
leads to the incorrect values of porosity. So, for the calcula-
tion of the rough value of porosity, Eq. 10 is suggested and
used in this study.

φ =
∑

Vth − 2 × ∑
Vb

L3
cube

(10)

where Lcube is the length of the network. For simplifica-
tion, hypothetic pore bodies are assumed to be spherical,
and consequently, their volumes can be yielded as

Vb = 4πr3body

3
. (11)

However, there may be slight inaccuracy in determination
of overlapped spaces due to assuming pore body as sphere,
and porosity calculated by Eq. 10 can be utilized as a
representative of porosity of the network.

2.2 Flow modeling

Some of models for predicting the behavior of porous media
at high velocity flow use turbulent flow correlations for
bends and pipes which are not proper for that environment

[17]. In reality, the flow in oil reservoirs usually remains in
the laminar domain and an increase in the inertial effects
causes the additional pressure drop which might be well
predicted by the Forchheimer equation [30]. Although in
complex systems multi-dimensional flow modeling could
provide precise results, implementation of one-dimensional
flow model in single capillary tubes of a network model not
only provides the benefits for usage of analytical solution
of Navier-Stokes equation but also gives low computa-
tional cost. Equations 12 and 13 come from the well-
known Navier-Stokes equations based on the continuity
and momentum balance along an axisymmetric tube in one
dimension. To apply one-dimensional Navier-Stokes equa-
tion, it is assumed that the flow in capillary is axisymmetric,
and also, flow profile is simplified in a lump parameter,
so-called momentum correction factor; thus, dependency to
θ and r directions are neglected [52–54]. In the following
equations, the gravity forces are ignored [53].

∂A

∂t
+ ∂Q

∂x
= 0 (12)

and

∂Q

∂t
+ ∂

∂x

(
αQ2

A

)
+ A

ρ

∂P

∂x
+ κ

Q

A
= 0. (13)

where A represents the cross-sectional area of the tube, P

is the pressure, t is the time, Q is the volumetric flow rate
(Q = Aū), x is the distance along the axis of the tube, α is
the correction factor for axial momentum expressed by α =∫

u2dA
/
Aū2 [53], ρ is the fluid density, μ is the viscosity

of fluid, and κ is the viscosity friction coefficient which can
be determined by κ = 2παμ

/
ρ(α − 1) [52].

For steady-state conditions, the term belongs to the time
in Eq. 13 becomes zero and

−∂P

∂x
= ρ

A

∂

∂x

(
αQ2

A

)
+ κρ

Q

A2
= κρ

Q

A2
− ραQ2

A3

∂A

∂x
.

(14)

Fig. 4 a Connection of
capillaries at pore body. b
Two-dimensional view of a
network constructed by pores
with different coordination
numbers [44]
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The negative sign behind the left side of Eq. 14 is due to the
pressure gradient in positive x direction (direction towards
the axis of the tube). Equation 14 can be integrated to yield
the pressure as a function of distance as follows:

�P = ραQ2

2

[
1

A2

]L/2

−L/2
+ κρQ

∫ L/2

−L/2

dx

A2
. (15)

For a symmetrical sinusoidal tube, the first term in the right-
hand side of Eq. 15 becomes zero. According to Fig. 1, after
integrating from Eq. 15, the pressure drop for symmetrical
sinusoidal tube can be represented as [52]

�P = κρQL
[
2(Rmax+Rmin)

3+3(Rmax−Rmin)
2(Rmax+Rmin)

]

16π2(RmaxRmin)7/2
.

(16)

Similarly, for symmetrical conical capillary [52],

�P = κρQL

3π2(Rmax − Rmin)

[
1

R3
min

− 1

R3
max

]

. (17)

As discussed before, each throat in our network is composed
of two half conical/sinusoidal tubes. Hence, the pressure
drop along this geometry can be calculated by summation
of the pressure drops along two parts of the each throat.
Because 1

/
A2 is an even function, the pressure drop in

each section equals to the half of value accounted from
Eqs. 16 and 17 plus the amount of pressure drop obtained
by Eqs. 18 or 19

P = ραQ2

2

[
1

A2

]L/2

0
(18)

P = ραQ2

2

[
1

A2

]0

−L/2
. (19)

Whether that section is diverging or converging part of the
throat, Eqs. 18 or 19 should be used. For each section, the
minimum radius is at the origin of tube axis. When the
pressure drop is calculated in diverging part (half throat),
Eq. 18 must be used; otherwise, for converging section,
Eq. 19 is suitable. Since Eqs. 16 and 17 are derived using
the one-dimensional Navier-Stokes equations, they include
the pressure drops due to the inertial effects.

In laminar flow, the velocity profile is approximately
parabolic and, due to the eddy motion, becomes flatter in
turbulent flow. Since the value of α depends on the veloc-
ity profile of flowing fluid in the capillary, calculation of α

which in some occasions has semi-empirical nature could
be a complex and time-consuming process [55]. Thus, in
this study, for the sake of simplicity, the value of α = 4

/
3

is used which corresponds to the assumption of parabolic
velocity profile in the capillary tubes of the network [55].

The scope of this work is based on utilizing the ana-
lytical solution of one-dimensional Navier Stokes equation
in capillary tubes of the network model. In this regard,
the assumptions are made, and axisymmetric flow in capil-
lary tubes and simplified flow profile in a lump parameter,
so-called momentum correction factor, are reasonable [52–
54]. Analysis of flow behavior in capillary tubes based on
the two- or three-dimensional geometrical model as well
as variable momentum correction factor needs to numeri-
cal mesh techniques and can be in scope of future work.
However, for high aspect ratio, pore application of con-
stant momentum correction factor may be limited. Unless,
the flow profile being far from turbulence which in porous
media rarely flow reaches the turbulent regime [3].

The three-dimensional network is constructed using one-
dimensional capillary tubes. Analytical expressions derived
in these capillaries coupled with mass balance governing
equations are applied for obtaining the macroscopic prop-
erties of the generated three-dimensional network models.
Actually, the permeability, tortuosity, and non-Darcy coef-
ficient are calculated by imposing different pore topology
aspects like coordination number, aspect ratio, and throat
length to the pores of this lattice. It should be noted that
these imposed pore topology aspects do not change the
one-dimensional nature of flow field in single capillaries;
however, they alters the macroscopic properties of the flow-
ing flow through network in all directions. The procedure of
model implication is discussed in the next section.

It is noteworthy to mention that Eqs. 16 and 17 are also
consistent for the cylindrical capillary tube. If the minimum
and maximum radii of the conical or sinusoidal tube be the
same (Rmax = Rmin), in Eqs. 16 or 17, a linear relation
exists between the pressure drop and the volumetric flow
rate which is known as the Hagen-Poiseuille equation.

2.3 Model implementation

At first, a certain amount of pressure drop is applied on one
of the three directions of fixed lattice while periodic bound-
ary conditions are imposed across the two other perpendic-
ular directions of the cube. The pressure drop along each
throat as a function of the flow rate can be obtained using
the procedure discussed in the previous section. Then, a
simple mass balance is needed to be applied at each node by

∑
Qi = 0 (20)

whereQi is the entrance flow rate from the ith throat. Insert-
ing the sum of Eqs. 16 to 19 in mass balance equation results
in a set of nonlinear equations with unknown pressures at
each node. This set of nonlinear equations can be solved
using the Newton-Raphson method. First, an approximate
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pressure value for each node is presumed. Then, the itera-
tion process must be performed until the mass balance be
established at all pores. Once the set of nonlinear equations
has been solved, the flow rate at each throat and then the
total inflow to lattice can be determined.

Rewriting Eq. 1 in the form of Eq. 21 can be used
for simultaneous determination of K and β. Plotting the
�P

/
(Lcubevμ) versus ρv

/
μ for different pressure drops

leads to a straight line with a slope of β and an intercept of
1

/
K (Forchheimer plot).

�P

Lcubevμ
= 1

K
+ β

(
ρv

μ

)
. (21)

In addition, applying this model can provide the value of
dynamic tortuosity, obtained from the ratio of the stream-
line lengths to the straight distance. Once the flow rates at
throats have been determined, a hypothetic particle can be
introduced to the one of the faces of lattice. This particle
can be followed in order to calculate the real path that tra-
verses through the media. When the hypothesized particle
arrives to each node, it is assumed that it moves toward the
throat with the lowest restriction against the flow (i.e., the
throat with the highest value of flow rate). This procedure is
repeated for 15 particles that enter to the lattice from diffe-
rent nodes, and the final reported tortuosity is the average of
the tortuosity of all particles. Also, the porosity of system can
be obtained using the sum of the throat volumes and Eq. 10.

3 Results and discussion

Thauvin and Mohanty [30] claimed that the magnitude of
the porous media has a negligible influence on the estimated
properties of network when the size of system is larger
than 14×14×14. Accordingly, the base model in this study
is considered as a cube with the size of 15×15×15. The
properties of the base model are listed in Table 1 which rep-
resents the minimum and maximum input of Weibull func-
tion to distribute throat and body radii (R) and the length
of each throat (Lthroat) employed to construct the lattice.

To find the more suitable distributions of pore and throat
sizes, some sensitivity analysis is performed on the fixed

Table 1 Input parameters of base case used for numerical simulation

Input parameter Value

Rthroat,min (μm) 0

Rthroat,max (μm) 6

Rbody,min (μm) 6

Rbody,max (μm) 30

Lthroat (μm) 90

Size of system 15×15×15

η

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Fig. 5 Effect of parameters of Weibull function on output size
distribution

parameters of Weibull distribution function, values of σ and
η. σ and η were changed from 0.2 to 0.8 and from 0.8 to 1.6,
respectively. The results of sensitivity analysis are shown
in Fig. 5. According to this figure, an increase in the fixed
parameters causes the average sizes of pores and throats
tend to the maximum radius as an input parameter (the red
and blue regions indicate the higher frequencies of radius
size, close to the maximum and minimum input, respec-
tively). Figure 6 shows that using σ = 0.8 and η = 1.6 gives
the pore body and pore throat size distributions with high-
est frequencies close to the average of input parameters, i.e.,
maximum and minimum radii.

Rmin Rmax
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Fig. 6 Pore size distribution obtained by the Weibull distribution
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3.1 Flow parameter sensitivity analysis

3.1.1 Single pore analysis

The objective of this section is to analyze the relation
between permeability and pore structure of a single pore
using the Navier-Stokes analytical solution. To achieve
this aim, two types of converging/diverging capillaries are
considered sinusoidal and conical. The flow rate can be
obtained as a function of the pressure drop by rearrang-
ing Eqs. 16 and 17. The obtained expressions for the flow
rate can be inserted in Darcy’s equation to calculate the
flow coefficient (ψ) for a single symmetric capillary. Equa-
tions 22 and 23 represent the flow coefficients for conical
and sinusoidal profiles, respectively.

ψC = KCAC = 1.5π(Rmax − Rmin)(α − 1)

α

(
1

R3
max

− 1
R3
min

) , (22)

ψS = KSAS

= 8π(RmaxRmin)
3.5(α−1)

α
(
2(Rmax+Rmin)3+3(Rmax−Rmin)2(Rmax+Rmin)

),

(23)

and

AC = L
∫ +L/2
−L/2

dx

π(aC+bC|x|)2
, (24)

AS = L
∫ +L/2
−L/2

dx

π(aS−bS cos(kx))2

. (25)

where

∫
dx

π (aC + bC |x|)2 = − x

πaCbC |x| + πb2Cx2
, (26)

and

∫
dx

π(aS−bS cos(kx))2
=

⎛

⎜⎜⎜
⎝

aS
(
b2S − a2S

) (
aS

(
tan2

(
kx
2

) + 1
) + bS

(
tan2

(
kx
2

) − 1
) (
tan2

(
kx
2

) + 1
)) × · · ·

(
ln

(∣∣∣∣(bS + aS) tan
(

kx
2

) +
√

b2S − a2S

∣∣∣∣

)
− ln

(∣∣∣∣(bS + aS) tan
(

kx
2

) −
√

b2S − a2S

∣∣∣∣

))
− · · ·

2bS

(
b2S − a2S

) 3
2 tan

(
kx
2

)

⎞

⎟⎟⎟
⎠

π (bS − aS)
(
b2S − a2S

) 3
2 k

(
(bS + aS) tan

(
kx
2

) −
√

b2S − a2S

)(
(bS + aS) tan

(
kx
2

) +
√

b2S − a2S

) .

(27)

Since the values ofAC andAS for the same length of conical
and sinusoidal capillaries are approximately equal, the ratio
of ψS to ψC is the representative of KS

/
KC .

Figure 7 demonstrates the relation between the ψS
/
ψC

and Rmax
/
Rmin (throat aspect ratio). The Rmax is con-

stantly kept at the value of 30 μm while the Rmin changes in
the range of 0.1 and 30 μm. By converging the Rmax

/
Rmin

to 1, the capillaries gain the shape of a cylinder, and con-
sequently, their flow coefficient will be equal. In general,
an increase in the Rmax

/
Rmin causes a decrease in the

ψS
/
ψC which means when the difference between the

Rmax and Rmin increases, the permeability of sinusoidal
capillary shows more reduction than conical. As can be
seen in this plot, in region A, the rate of reduction in the
ψS

/
ψC is much more than that in region B. In region A, the

Rmax
/
Rmin changes in the range of 1 to 30 and the dom-

inant parameter affecting the ψS
/
ψC is the curvature of

tubes. The alteration of curvature for the sinusoidal duct is
more drastic than the conical which reduces the sinusoidal
flow coefficient. On the contrary, in region B, theRmin plays
an more important role in variation of ψS

/
ψC and this is

true for both types of the capillaries which results in this fact

that an increase in the Rmax
/
Rmin cannot remarkably alter

the ψS
/
ψC .
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3.1.2 Network-scale analysis

Pore-scale morphology has significant effects on the macro-
scopic properties of porous media. In order to study the
flow properties of porous media, necessary inputs of the
pore space characterizing are pore body size, pore throat
size, and pore coordination number [50]. Here, the average
aspect ratio is defined as the average of body to throat radius
ratios (Rb

/
Rt ). The length of throat (L) is another effective

parameter on the geometry of pore space.
As shown in Fig. 8, once the throat length decreases, the

permeability rises. Reduction in the length of throats results
in the increasing of pore profile curvature which automat-
ically raises the restriction against the flow, but it also
reduces the friction. On the other hand, increasing throat
length of the network decreases the ratio of normal to flow
area which allows passing of fluid in microscopic scale to
the area which is considered in macroscopic flow equations.

Figure 9 illustrates the permeability alteration versus the
average coordination number of the system for two types
of networks, composed of the sinusoidal and conical cap-
illaries, respectively. It can be found that the more average
coordination number results in the more permeability. With
a decrease in the average coordination number, the fluid
should flow through the tortuous path; so, the permeability
of porous media decreases. Based on the results, the conical
network is a bit more sensitive to the average coordination
number.

Because of the considerable effect of average aspect ratio
on the permeability, the analysis is conducted in two ranges.
According to Fig. 10, at low ranges of the average aspect
ratio (1 to 2.6), an increase in the average aspect ratio causes
a decrease in permeability, an increase in the non-Darcy
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Fig. 8 Effect of throat length on the permeability of the system. The
average aspect ratio and the average coordination number are 5.9 and
6, respectively
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Fig. 9 Effect of average coordination number on the permeability of
the sinusoidal and conical networks. The average aspect ratio and the
throat length are 5.9 and 90 μm, respectively

coefficient, and an additional difference between the values
of permeability and non-Darcy coefficient for the conical
and sinusoidal network models. Continuing in the increase
of average aspect ratio (which is observable in Fig. 11)
results in the convergence of permeability of two networks;
on the contrary, for the non-Darcy coefficient, a diverging
trend continues which shows that the aspect ratio is the dom-
inant parameter on the non-Darcy coefficient. By changing
the shape of capillaries from cylindrical to conical and sinu-
soidal, the difference between the permeability values of
two networks increases. This is because of the restriction
induced by various curvatures. At high values of the average
aspect ratio, the radius of throats becomes the controlling
parameter. As the value of throat radius is the same for two
systems, the permeability of them is close to each other.

Figures 12 and 13 contain information about the per-
meability and non-Darcy coefficient values based on the
different lengths, average aspect ratios, and average coor-
dination numbers. For alteration of the aspect ratio, it is
possible to change the average of pore body radii while the
average of pore throat sizes is constant or change the aver-
age throat size once the average of pore body radii being
kept constant. Both of these scenarios are applied to the
model; however, it was found that just alteration of the aver-
age throat size can remarkably affect the permeability of
network. Accordingly, here, just the results of simulation by
changing the average of pore throat radii are shown. Aspect
ratio is a controlling parameter of the pore space curva-
ture when a particular type of capillary is used to construct
the network. The increase of aspect ratio brings about the
increase of curvature and inertial effects and more resis-
tance against the flow in a particular capillary geometry.



338 Comput Geosci (2018) 22:329–346

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

500

1000

1500

Average Aspect Ratio (Rb/Rt)

Pe
rm

ea
bi

lit
y 

(m
d)

Sinusoidal
Conical

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

0

0.5

1

1.5

2

2.5

3

Average Aspect Ratio (Rb/Rt)

Sinusoidal
Conical

 (m
-1

) 
 1

0-8

(a)

(b)

Fig. 10 Dependency of a permeability and b non-Darcy coefficient
on the average aspect ratio at low ranges. The average coordination
number and the throat length are 6 and 90 μm. respectively

Also, the aspect ratio directly affects the amount of friction
at pore throat section. As a result, it seems reasonable that
the aspect ratio be more effective on the permeability and
non-Darcy coefficient than the throat length or the coordi-
nation number. The permeability and non-Darcy coefficient
also showmore sensitivity to alteration of the average aspect
ratio at higher values than lower values. Meanwhile, the
effect of change in the average aspect ratio on the alteration
of permeability and non-Darcy coefficient of sinusoidal
network is more than the conical one.

3.2 Non-Darcy flow onset

The more the velocity of fluid, the more the effect of iner-
tia. The pressure drop along the porous media versus the
volumetric flow rate for different aspect ratios and coor-
dination numbers is shown in Fig. 14. As can be seen,
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Fig. 11 Dependency of a permeability and b non-Darcy coefficient
on the average aspect ratio at high ranges. The average coordination
number and the throat length are 6 and 90 μm, respectively

increasing average aspect ratio and decreasing average coor-
dination number result in an increase of pressure drop along
porous media and decrease the value of flow rate at which
non-Darcy flow begins. Even at low flow rates, the inertial
effects exist; however, at a specific flow rate, the inertial
pressure drop becomes dominant. It is assumed that this spe-
cific flow rate is the flow rate at which, the pressure drop
related to the inertia consists 30% of the total pressure drop.
This specific flow rate is called the onset of non-Darcy flow.
It is hypothesized that at flow rates lower than this onset, the
inertial effects are insignificant. For the conical and sinu-
soidal networks of the base case, the velocities of non-Darcy
onset are 0.00249 and 0.00431 m/s, respectively. The throat
Reynolds number is defined as ReT = 2ρvRt

/
μ , where

Rt is the average throat radius. For the base case composed
of conical throats, the onset happens when ReT = 0.0156,
while for sinusoidal network, the onset is at ReT = 0.0271.
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Fig. 12 Permeability relation
with throat length, average
aspect ratio, and average
coordination number 4.5 (dash
line) and 6 (solid line) for
networks composed of a conical
and b sinusoidal capillaries
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The onset based on the throat Reynolds number varies
with the alteration of morphological properties of throats. In
Fig. 15, the onset on Forchheimer regime expressed as the

(a)

(b)

(c)

Fig. 15 Effect of a average aspect ratio, b average coordination num-
ber, and c throat length on the onset of non-Darcy flow for conical and
sinusoidal networks

throat Reynolds number is shown versus the throat length,
average coordination number, and average aspect ratio of
the system for conical and sinusoidal networks. The effect
of throat length on the onset is less than the effect of aver-
age aspect ratio alteration or average coordination number
of the system. Figure 15a, b demonstrates the effect of
the average aspect ratio and coordination number on the
onset of non-Darcy flow based on the throat Reynolds num-
ber, respectively. A decrease in the average aspect ratio
and average coordination number leads to the less value of
apparent velocity required for the beginning of inertial flow.
An increase in the throat length does the same. It is obvi-
ous with an increase in the value of average aspect ratio
the throat Reynolds numbers, at which the onset of non-
Darcy flow happens, for the sinusoidal and conical networks
converge to each other. As discussed before, at high val-
ues of the average aspect ratio, pore throat radius is the
controlling parameter of the permeability which causes the
convergence of permeability values. On the other hand, the
average aspect ratio is the dominant factor on the non-Darcy
coefficient. Likewise, the convergence of non-Darcy flow
onset values indicates that at high values of the aspect ratio,
the main element that affects the flow behavior is pore throat
radius. According to Fig. 15b, the decreasing coordination
number causes the reducing of the Reynolds throat number
at which the onset of non-Darcy flow occurs. This stems
from that the reduction in the average coordination number
leads to the increase in tortuosity of the system. Generally, it
can be inferred that tortuosity considerably affects the onset
of non-Darcy flow and flow behavior. Also, Figs. 16 and 17
show the critical throat Reynolds number versus the throat
length and average aspect ratio for conical and sinusoidal
networks with various average coordination numbers.

Another definition of Reynolds number is based on the
characteristic length or permeability of the porous media
which can be shown as ReK = ρv

√
K

/
μ and here is

called permeability Reynolds number. Figures 18 and 19
present the permeability Reynolds number versus the throat
length, average aspect ratio, and average coordination num-
ber for conical and sinusoidal networks. The permeability
Reynolds number shows the similar behavior to the throat
Reynolds number with alteration of the geometrical parame-
ters. According to Figs. 16 to 19, it is possible to estimate the
onset of inertial flow based on the pore geometrical param-
eters such as throat length, average aspect ratio, and average
coordination number.

The other remarkable finding is that even though the
permeability of conical network is more than the perme-
ability of sinusoidal and also the non-Darcy coefficient
value of conical network is higher than sinusoidal system,
the non-Darcy flow onset of conical framework occurs at
lower apparent velocity. It is widely accepted in the litera-
ture thatin porous media with a higher value of non-Darcy
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Fig. 16 Throat Reynolds number versus throat length and average
aspect ratio for a conical and b sinusoidal networks with the average
coordination number = 6

coefficient, the inertial flow begins at lower apparent veloc-
ity. Therefore, understanding the relation between perme-
ability and non-Darcy coefficient of the porous media is a
crucial parameter in the determination of the inertial flow
onset. It seems that the throat Reynolds number is not a
proper criterion for the prediction of non-Darcy flow onset
because it just considers the throat radius while many other
pore characteristics affect the onset. In addition, critical
throat and permeability Reynolds numbers usually happen
in a range. A good criterion should contain the macroscopic
properties such as permeability, non-Darcy coefficient, or
both of them which better reflects those pore characteristics
and also it should be constant and valid for all conditions.

The clearly defined relation between the permeability
and non-Darcy coefficient is regarded by the Forchheimer
number. At higher flow rates, the inertial pressure drop
increases until the Darcy flow can be ignored and flow rate
becomes proportional to the square of pressure drop gra-
dient. This can be seen in Fig. 20 which is based on the
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Fig. 17 Throat Reynolds number versus throat length and average
aspect ratio for a) conical and b) sinusoidal networks with average
coordination number=4.5

Forchheimer number (Fo = Kβρv
/
μ ), where v is the

apparent velocity of porous media. The Forchheimer num-
ber is the ratio of the inertial forces to the viscous forces [5].
Darcy pressure drop and non-Darcy pressure drop values
are equal at the Forchheimer number equal to 1. Non-Darcy
effect (E) is the ratio of the inertial pressure drop to the total
pressure drop [36]. The relation between Fo and E can be
represented in Eq. (28) as follows:

Fo = E

1 − E
. (28)

By assuming a specific limit for the onset of non-Darcy
flow, the critical Forchheimer number at which the inertial
flow begins will be a constant value. For instance, here, the
upper limit for Darcy flow is once the ratio of the inertial
pressure drop to the total pressure drop be 30%. In this case,
the critical Forchheimer number would be 0.42.

The necessity to know the value of non-Darcy coeffi-
cient is the major shortcoming of using the Forchheimer
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Fig. 18 Permeability Reynolds number versus throat length and aver-
age aspect ratio for a conical and b sinusoidal networks with the
average coordination number = 6

number. To overcome this problem, applying correlations
(proper correlations based on the model are proposed in the
next section) for the non-Darcy coefficient can be a promis-
ing solution. The critical velocity at which the onset of
non-Darcy flow occurs can be determined using Eq. 29.

VC = −1.8830 × 107
μE

(1 − E)K−0.2478ρ
. (29)

Since Eq. 29 is correlation based, it is dimensionally incon-
sistent. In fact, the critical velocity can be re-defined by
rearrangement of the Forchheimer equation to eliminate the
dependency on the non-Darcy coefficient, as Eq. 30, which
shows the critical velocity as a function of the non-Darcy
effect (E) and pressure gradient.

VC = − dp
dx

(1 − E)K

μ
. (30)
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Fig. 19 Permeability Reynolds number versus throat length and aver-
age aspect ratio for a conical and b sinusoidal networks with the
average coordination number = 4.5

According to the assumed value of non-Darcy effect (limit
of the non-Darcy flow) and total pressure drop along the
length of porous media, the critical velocity can be calcu-
lated. In Eqs. 29 and 30, permeability (K) is in m2.

3.3 Correlations

No correlation can relate the dependent variable to the inde-
pendent one exactly. The correlations presented here are
not exceptional. Since the non-Darcy coefficient and tortu-
osity are the innate properties of each porous media, they
must be in relation with the other inherent characteristics
of porous media like porosity and permeability. The tor-
tuosity is a measure of flow path deviation from straight
line. In microscopic scale, as tortuosity of a porous medium
increases, fluid has to pass a longer tortuous path through
the medium which results confronting with more resistance
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against the flow. On the other hand, when a porous medium
is more permeable, it provides a less resistance path for
flowing of fluid. Thus, in a porous medium, there should
be a direct relationship between non-Darcy coefficient and
tortuosity and an inverse relationship between non-Darcy
coefficient and permeability. It is widely accepted in the lit-
erature that the non-Darcy coefficient has a direct relation
with the tortuosity and an inverse relation with the poros-
ity and permeability; thus, correlations can be achieved by
applying this general relation [30, 56–58]

β = aτbK−cϕ−d . (31)

The coefficient optimization is done by the imperialist
competitive algorithm. The general correlation that reveals
the value of non-Darcy coefficient as a function of the
permeability can be expressed as

β = 2.8148 × 1011K−1.2478 (32)

and the relation which correlates the non-Darcy coefficient
to the permeability/porosity is

β = 6.9051 × 109K−1.0477φ−1.5649. (33)

The correlation coefficients for Eqs. 32 and 33 are 0.998058
and 0.998007, respectively. The unit of permeability is md,
and the non-Darcy coefficient is in m−1.

In order to examine the validity of model predictions,
the correlation results are compared with some experimen-
tal data presented in Table 2. In this table, samples 1 to 9
are from Geertsma [59], and the other data are reported by
Firoozabadi and Katz [60]. Unfortunately, our seeking for a
set of experimental data which simultaneously includes the
non-Darcy coefficient, permeability, porosity, and tortuosity

Table 2 Natural sample properties presented by Geertsma [59] and
Firoozabadi and Katz [60]

Sample Permeability (md) Porosity Measured non-Darcy
Coefficient (1/m)

1 570 0.152 1.1 × 108

2 19.5 0.112 7 × 109

3 1265 0.204 3.6 × 107

4 235 0.135 2 × 108

5 644 0.208 2.5 × 107

6 181 0.184 9.9 × 107

7 313 0.195 6.9 × 107

8 66 0.138 1.5 × 109

9 73 0.242 3.8 × 108

10 2087 0.267 1.03 × 107

11 1158 0.266 2.3 × 107

12 614 0.24 5.1 × 107

13 178 0.201 1.62 × 108

14 248 0.20 1.29 × 107

15 811 0.233 2.4 × 108

16 1232 0.214 1.46 × 107

17 63 0.217 3.44 × 108

18 16 0.183 7.34 × 109

19 1049 0.255 1.13 × 107

20 117 0.211 3.83 × 108

21 40 0.142 1.16 × 109

22 240 0.153 3.07 × 108

23 665 0.255 4.16 × 107

was not successful. In general, a model predicts the exper-
imental data well if the difference between the measured
values and the model’s predicted values be small and unbi-
ased. Thus, to determine how the predicted data are close
to the observed non-Darcy coefficients, the quality plots for
Eqs. 32 and 33 are presented in Figs. 21 and 22, respec-
tively. The R-squared for the quality plot of Eq. 32 is 0.9289
and for Eq. 33 is 0.8643. According to the obtained coeffi-
cients of determination (R-squared values), the presence of
the porosity in correlations does not necessarily improve the
quality of predicted results. Accordingly, in some cases, cor-
relating the flow-related rock properties to the porosity may
not be suitable. This is due to that the porosity is the ratio
of the void space to the total volume of porous media and
is not an indicator of the pore space geometry which mainly
affects the flow behavior.

Table 3 includes the information about the comparison
between the R-squared values for the correlations pre-
sented here and other proposed correlations in the literature.
According to this table, suggested correlations based on the
model show better agreement with the experimental data.
This validation with the experimental data for the non-
Darcy coefficient is so supportive and provides confidence
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Fig. 21 Quality plot for predicted results by Eq. 32

to utilize the model to predict the tortuosity based on the
other inherent properties of porous media. Notwithstand-
ing, the general implementation of model requires more
comparisons with some other valid data.

Also, it seems helpful to have some correlations for
the value of tortuosity based on the results of the model.
As mentioned above, tortuosity as an intrinsic property of
porous media is straightforwardly defined as the ratio of the
average real passed path to the length of the network in the
orientation of applied macroscopic flux. In the case of flow
through the soft porous materials, awareness of the value of
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Fig. 22 Quality plot for predicted results by Eq. 33

Table 3 Comparison between R-squared of predicted results of vari-
ous correlations and experimental data

Model Correlation R-squared

Equation 32 β =2.8148× 1011K−1.2478 0.9289

Equation 33 β =6.9051× 109K−1.0477φ−1.5649 0.8643

Thauvin and Mohanty
[30]

β =2.5× 1010K−1 −17.93

Jones [56] β =2.0172× 1011K−1.55 −3.635

Geertsma [59] β =1.5915× 105K−0.5φ−5.5 −0.3754

Janicek and Katz
[57]

β =1.82× 1010K−1.25φ−0.75 −5.194

Coles and Hartman
[58]

β =8.1672× 1011K−1.79φ−0.54 0.7317

tortuosity becomes important as the flow can cause a strain
on the matrix and impacts its permeability [61].

Our analysis shows that tortuosity of the network model
changes approximately of 5% by changing the average
aspect ratio from 5.9 to 22.65, while a variation of the
average coordination number from 6 to 4.6 causes a 21%
increase in tortuosity. Figure 23 illustrates the relation
between the tortuosity and average coordination number of
porous media which is the main parameter affecting the tor-
tuosity. On the basis of this data, the correlation between the
tortuosity and average coordination number is presented in
Eq. 34.

τ = −0.793 ln(1.011Cn) + 2.770 (34)

where Cn is the average coordination number of the sys-
tem. The value of coordination number is usually unavail-
able; hence, a correlation between the tortuosity and other
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Fig. 23 Relation between average coordination number and tortuosity
obtained from network modeling
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macroscopic properties of porous media is required. Such
correlations are given as follows:

τ = −0.372 ln(0.134K) + 2.981 (35)

where K is in md and

τ = 0.235 ln(0.448β) − 2.858. (36)

The correlation coefficients of Eqs. 35 and 36 are 0.92 and
0.91, respectively.

4 Conclusions

This study brings some advances in the area of pore network
modeling, where the role of more realistic pore geometry
on the onset of non-Darcy flow is not well incorporated.
Analytical solutions of the one-dimensional Navier-Stokes
equations are used to calculate the pressure drop/volumetric
flow rate responses along the conical as well as sinu-
soidal converging/diverging capillary tubes. Suitable pore
and throat size distributions are obtained when the fixed
parameters of σ = 0.8 and η = 1.6 are used in the
Weibull distribution function. A detailed sensitivity analy-
sis of various metrics of pore topology characteristics on
the permeability and onset of non-Darcy flow as well as
new correlations for predicting the tortuosity and non-Darcy
coefficient of the medium are presented. Based on the results
obtained here, the following conclusions can be drawn:

• Results of this work enable us to estimate the critical
Reynolds number at which the onset of non-Darcy flow
commences based on the pore geometrical parameters
including throat length, average coordination number,
and average throat aspect ratio of the porous media.

• New criteria for the onset of non-Darcy flow behavior
are presented. The Reynolds number is not sufficient for
predicting the onset of inertial flow and some estima-
tions of the pore space geometry are required to provide
a more reliable prediction.

• The analysis of flow in single pores with the conical and
sinusoidal profiles revealed that there are two different
regions for the flow coefficient ratio as a function of
the aspect ratio. In one region, an increase in the aspect
ratio drastically reduces the permeability ratio of sinu-
soidal to conical throats while in the other region, it
stays approximately constant.

• At network scale, the increase of average aspect ratio
initially elevates the difference between the perme-
ability of sinusoidal and conical networks. Then, by
additional increase in this ratio, each network perme-
ability approaches to the other. In contrast, the increase
of aspect ratio causes the more difference between the
non-Darcy coefficients of networks.

• The onset of non-Darcy flow is majorly affected by the
aspect ratio and coordination number of throats while
the role of throat length is negligible.

• The higher non-Darcy coefficient does not necessarily
mean the lower values of the critical apparent velocity
of non-Darcy flow onset.

• New correlations for predicting the tortuosity of porous
media are developed. The availability of the permeabil-
ity or non-Darcy coefficient data as an input of the
proposed correlations makes them attractive for related
engineering applications.
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