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Abstract Fully implicit time-space discretizations applied
to the two-phase Darcy flow problem leads to the systems of
nonlinear equations, which are traditionally solved by some
variant of Newton’s method. The efficiency of the result-
ing algorithms heavily depends on the choice of the primary
unknowns since Newton’s method is not invariant with
respect to a nonlinear change of variable. In this regard, the
role of capillary pressure/saturation relation is paramount
because the choice of primary unknowns is restricted by its
shape. We propose an elegant mathematical framework for
two-phase flow in heterogeneous porous media resulting in
a family of formulations, which apply to general monotone
capillary pressure/saturation relations and handle the satu-
ration jumps at rocktype interfaces. The presented approach
is applied to the hybrid dimensional model of two-phase
water-gas Darcy flow in fractured porous media for which
the fractures are modelled as interfaces of co-dimension
one. The problem is discretized using an extension of ver-
tex approximate gradient scheme. As for the phase pressure
formulation, the discrete model requires only two unknowns
by degree of freedom.
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Côte d’Azur, Nice, France

2 Team Coffee, INRIA Sophia Antipolis - Méditerranée,
Valbonne, France

3 Expertise Centre - Sub Surface Department, Storengy,
Bois-Colombes, France

4 Weierstrass Institute, Berlin, Germany

Keywords Two-phase Darcy flow · Capillary pressure ·
Heterogeneous porous media · Discrete fracture network ·
Finite volume discretization

1 Introduction

We consider a hybrid dimensional model of two-phase gas-
water Darcy flow in fractured porous media. This type of
models, introduced in [2, 4] for single-phase Darcy flows
and in [5, 13, 16, 17] for two-phase Darcy flows, treats frac-
tures as interfaces of co-dimension 1. We will also assume
that the pressure of the phases is continuous at the interfaces
between the fractures and the matrix domain, which corre-
sponds physically to pervious fractures for which the ratio
of the transversal permeability of the fracture to the width
of the fracture is large compared with the ratio of the per-
meability of the matrix to the size of the domain. Note that
it does not cover the case of fractures acting as barriers for
which the pressure is discontinuous at the matrix fracture
interfaces and which are considered in [1, 3, 6, 12, 14, 15,
18, 20] for single-phase flows, and [7] for two-phase flows.

In the framework of two-phase Darcy flows in fractured
porous media, highly contrasted capillary pressure curves
are expected in particular between the matrix and the frac-
tures. Hence, it is crucial to take into account in the model
formulation the saturation jumps at the matrix fracture inter-
faces. In order to do so, as it has been stressed out in [8],
the capillary pressure curves have to be extended into the
monotone graphs (see e.g. Fig. 2).

In several recent works [5, 11], the vertex approximate
gradient (VAG) discretization, employing phase pressures
formulation, was applied to model two-phase Darcy flows
in heterogeneous porous media. In the context of vertex-
centered schemes, the phase pressure formulation allows
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to capture the saturation jump condition at the interface
between different rocktypes without introducing any addi-
tional unknowns at these interfaces. It is, however, limited
to strictly increasing capillary pressure curves and lacks
robustness compared to pressure-saturation formulations. In
this article, we extend the scheme introduced in [5] to the
case of general increasing capillary pressure curves.

Let � be a bounded domain of Rd , d = 2, 3 assumed to
be polyhedral for d = 3 and polygonal for d = 2. To fix
ideas, the dimension will be fixed to d = 3 when it needs to
be specified, for instance in the naming of the geometrical
objects or for the space discretization in the next section.
The adaptations to the case d = 2 are straightforward. Let
� = ⋃

i∈I �i denotes the network of fractures �i ⊂ �, i ∈
I , such that each �i is a planar polygonal simply connected
open domain included in some plane of Rd (see Fig. 1).

In the matrix domain � (resp. in the fracture network
�), we denote by φm(x) (resp. φf (x)) the porosity and by
�m(x) (resp. �f (x)) the permeability (resp. tangential per-
meability) tensor. The thickness of the fractures is denoted
by df (x) for x ∈ �. For each phase α = w, g (where w

stands for “water” and g for “gas”), we denote by kα
r,m(s, x)

(resp. kα
r,f (s, x)), the phase relative permeabilities, and by

S
g
m(p, x) (resp. S

g
f (p, x)) the possibly set-valued inverses

of the monotone graph extension of the capillary pressure
curves. For α = w, g, we will also denote by ρα the phase
densities and by μα the phase viscosities which for the sake
of clarity are assumed constant.

We denote by uα the pressure of phase α = w, g and
by s

g
m (resp. s

g
f ) the saturation of gas phase in the matrix

(resp. the fracture network) domain. We define the water
saturations by

sw
m = 1 − s

g
m and sw

f = 1 − s
g
f .

The Darcy flux of phase α = w, g in the matrix domain is
defined by

qα
m = −kα

r,m(sα
m, x)

μα
�m(∇uα − ραg),

Fig. 1 Example of a 2D domain � with three intersecting fractures
�i, i = 1, 2, 3

where g = g∇z stands for the gravity vector. The flow in
matrix domain is described by the mass balance equation

φm∂t s
α
m + div(qα

m) = 0, (1)

and the macroscopic capillary pressure law

s
g
m ∈ S

g
m(ug − uw, x). (2)

On each fracture �i , i ∈ I , we denote formally by γi the
trace operator, by ∇τi

the tangential gradient and by divτi

the tangential divergence. In addition, for all i ∈ I , we can
define the two sides ± of the fracture �i in � \ � and the
corresponding unit normal vectors n±

i at �i outward to the
sides ±. Let qα,±

m ·n±
i formally denote the two normal traces

of matrix fluxes at both sides of the fracture �i . The Darcy
flux of phase α = w, g in the fracture �i integrated over the
width of the fracture is defined by

qα
f,i = −df

kα
r,f (sα

f , x)

μα
�f (∇τi

γiu
α − ραgτi

),

with gτi
= g − (g · n+

i )n+
i . The flow in each fracture �i is

described by

df φf ∂t s
α
f + divτi

(qα
f,i) − qα,+

m · n+
i − qα,−

m · n−
i = 0 (3)

and

s
g
f ∈ S

g
f (γiu

g − γiu
w, x). (4)

The hybrid dimensional two-phase flow model looks for
s
g
m, s

g
f , and (uα)α=g,w satisfying Eqs. 1–4. In addition to

Eqs. 1–4, we prescribe a no-flux boundary conditions at the
tips of the immersed fractures, that is to say on ∂� \ ∂�,
and the mass conservation and pressure continuity condi-
tions at the fracture intersections. We refer to [5] for more
details on those conditions. Finally, one should provide
some appropriate initial and boundary data.

Remark that for a fixed x ∈ � (resp. x ∈ �), the functions
S

g
m and S

g
f are, generally speaking, set-valued; this is the

case, e.g. when the capillary pressure is neglected. Indeed,
in such situation the gas saturation takes any value in [0, 1]
as long as ug − uw = 0. In addition, S

g
m and S

g
f depend

on the space variable x, and we will assume that S
g
m(·, x)

is piecewise constant and is defined with respect to a set of
so-called rocktypes. Let us denote by H the multi-valued
Heavisied function defined by

H(ξ) =
⎧
⎨

⎩

0, ξ < 0,
[0, 1] , ξ = 0,
1, ξ > 0.

The following assumptions hold on S
g
m and S

g
f :

(A1) � can be decomposed into a set of disjoint
connected open polyhedral sets

(
�j

)
j∈Jm

with
⋃

j∈Jm
�j = �, such that S

g
m(p, x) = S

g
m,j (p)

for a.e. x ∈ �j and all p ∈ R. Similarly, we
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suppose that there exists a family of disjoint con-
nected polygonal open sets (ϒj )j∈Jf

such that
⋃

j∈Jf
ϒj = � and such that S

g
f (p, x) = S

g
f,j (p)

for a.e. x ∈ ϒj and all p ∈ R.

(A2) We assume that for all l = m, f and j ∈ Jl

there exist a non decreasing continuous piecewise
C1 function al,j from R to R, a positive integer rl,j

and
(
pk

l,j

)

k∈{1,...,rl,j } ∈ Rrl,j ,
(
bk
l,j

)

k∈{1,...,rl,j } ∈
(
R+)rl,j such that

S
g
l,j (p) = al,j (p) +

rl,j∑

k=1

bl,j,kH(p − pl,j,k)

for all p ∈ R. We also assume that Sg
l,j (p) ⊂ [0, 1].

Remark that the assumption A2 allows in particular for
negative capillary pressure.

The matrix and fracture relative permeabilities are piece-
wise constant w.r.t. x on the same partitions of the matrix
and fracture network domains as the capillary pressure
curves. In the following, we will denote the mobilities (ratio
of the phase relative permeability to the phase viscosity)
by kα

m,j (s) in the matrix for each rocktype j ∈ Jm and by
kα
f,j (s) in the fracture network for each rocktype j ∈ Jf .
In order to illustrate the difficulty of dealing with both

heterogeneous and multi-valued saturation curves S
g
m and

S
g
f , let us admit for the moment that S

g
m are S

g
f do not

depend on x and that S
g
m(p), S

g
f (p) are single-valued con-

tinuous increasing functions satisfying for l = m, f

S
g
l (p ≤ pent,l) = 0 and lim

p→+∞ S
g
l (p) = 1

with pent,l ∈ R, l = m, f been an entry pressure. Figure 2a
exhibits a typical form of multi-valued capillary pressure
curves corresponding to S

g
m(p) are S

g
f (p).

When the system (1)–(4) is solved numerically it is desir-
able to reduce the number of unknowns by eliminating the
algebraic Eqs. 2 and 4, in particular, one may expect to have
as many as two unknowns by degree of freedom. Note that
as long as the functions S

g
l , l = m, f , are single valued

(which is the case when the capillary pressure graphs do
not have “horizontal” parts), it is possible to express s

g
m and

s
g
f in terms of ug and uw. In other words, (uw, ug) is an
admissible couple of primary unknowns. The other admis-
sible couple is (uw, s

g
f ) since ug and s

g
m can be expressed

as

ug = uw + (S
g
f )−1(s

g
f ) and s

g
m = S

g
m ◦ (S

g
f )−1(s

g
f ).

In contrast, unless pent,m is less or equal to pent,f , it is not
possible to describe any possible values of ug and s

g
f at the

matrix/fracture interface using the pair (ug, s
g
m). However,

this formulation still can be applied “away” from �.

(b)

(a)

Fig. 2 Typical form of capillary pressure curves in matrix and fracture
domains

Let us remark that both (uw, ug) and (uw, s
g
f ) formu-

lations lead, after a space-time discretization of Eqs. 1
and 3, to the equivalent systems of nonlinear algebraic
equations. Nevertheless, in practice, the performance of
numerical algorithm would heavily depend on the choice
of primary variables. In particular, it is well known that
the use of the formulation based on ug and uw has to be
avoided when modelling imbibition in very dry soil. This
is explained by the fact that applying the Newton-Raphson
method (or some other linearization scheme) for solving
nonlinear problems resulting from both formulation breaks
the equivalence between nonlinear problems resulting from
different formulation.

Next, let us assume that the capillary pressure is
neglected in the fracture network domain (see Fig. 2b). In
that case, both S

g
f and its inverse are set-valued, which in
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particular implies that neither (uw, s
g
f ) nor (uw, ug) can be

used as a pair of primary variables for the whole range
of values of saturation and capillary pressure. Instead one
may switch, as capillary pressure grows, from (uw, s

g
f ) to

(uw, ug), and even possibly from (uw, ug) to (uw, s
g
m) for

ug − uw ≥ pent,m. Note that if the capillary pressure in
the fracture domain is very small, but not strictly zero,
one cannot expect the numerical scheme based on (uw, s

g
f )

formulation to be computationally efficient.
Finally, let us remark that there is no reason to restrict the

choice of primary variables to the set of natural variables,
that is to say, to uw, ug, s

g
m and s

g
f . Consider the functions

P and (Sg
l )l=m,f (5)

defined on an open convex set I ⊂ R such that P(I) = R
and such that for τ ∈ I

Sg
l (τ ) ∈ S

g
l (P(τ )) for all l = m, f (6)

Then, the couple (uw, τ) is an admissible couple of primary
unknowns with

ug = uw + P(τ ) and s
g
l = Sg

l (τ ), l = m, f.

The map τ 
→ (P(τ ),Sg
l (τ )), l = m, f , can be seen as the

parametrization of the curve S
g
l . The parametrization (5) is

not uniquely defined by Eq. 6 even under some additional
regularity assumptions (see Proposition 1), and hence, one
can try to choose the functions P(τ ) and Sg

l (τ ), l = m, f ,
in order to improve the convergence of the nonlinear solver.

The remaining of this article is organized as follows.
In the next section, we briefly recall the VAG scheme
introduced in [5] using ug and uw as primary unknowns.
Then, we detail the parametrization approach presented
above and provide the extension of the VAG discretiza-
tion accounting for general monotone capillary pressure
graphs related to multiple rocktypes, and finally, we present
numerical experiments, which aims to compare the clas-
sical pressure-saturation formulations with more advanced
parametrizations following the above ideas.

2 Vertex approximate gradient discretization

In this section, we will recall the numerical scheme pre-
sented in [5], while assuming that S

g
m(·, x) and S

g
f (·, x) are

single valued. More precisely, in addition to (A2), we will
assume the following

(A2a)
(
S

g
m,j

)

j∈Jm

and
(
S

g
f,j

)

j∈Jf

are non decreasing

continuous piecewise C1 functions from R to
[0, 1].

The VAG discretization of hybrid dimensional two-phase
Darcy flows introduced in [5] considers generalised polyhe-
dral meshes of � in the spirit of [10]. Let us briefly recall
some notation related to the space discretization. We will
denote byM be the set of disjoint open polyhedral cells, by
F the set of faces and by V the set of nodes of the mesh. For
each cell K ∈ M, we denote by FK ⊂ F the set of its faces
and by VK the set of its nodes. Similarly, we will denote by
Vσ the set of nodes of σ ∈ F .

The mesh is supposed to be conforming w.r.t. the frac-
ture network � in the sense that for all i ∈ I , there exist
the subsets F�i

of F such that �i = ⋃
σ∈F�i

σ . We will

denote by F� the set of fracture faces
⋃

i∈I F�i
. The space

discretization is also assumed to be compatible with the sets
(�j )j∈Jm and (ϒj )j∈Jf

; that is to say, for all K ∈ M, there
exists jK ∈ Jm such that K ⊂ �jK

and for all σ ∈ F� ,
there exists jσ ∈ Jf such that σ ⊂ ϒjσ . In other words,
jK is the rocktype of cell K and jσ is the rocktype of the
fracture face σ . This geometrical discretization of � and �

is denoted in the following by D. The VAG discretization
proposed in [5] is based upon the following vector space of
degrees of freedom:

XD = {vK, vs, vσ ∈ R, K ∈ M, s ∈ V, σ ∈ F�},
and its subspace with homogeneous Dirichlet boundary
conditions on ∂�:

X0
D = {v ∈ XD | vs = 0 for s ∈ Vext},

where Vext = V ∩ ∂� denotes the set of boundary vertices,
and Vint = V \ ∂� denotes the set of interior vertices. The
degrees of freedom are exhibited in Fig. 3 for a given cell K
with one fracture face σ in bold.

The VAG scheme is a control volume scheme in the sense
that it results, for each interior degree of freedom and each
phase, in a mass balance equation. The two main ingredi-
ents are therefore the conservative fluxes and the control
volumes. The VAG matrix and fracture fluxes are exhibited

Fig. 3 For a cell K and a fracture face σ (in bold), examples of VAG
degrees of freedom uK , us, uσ , us′ and VAG fluxes FK,σ , FK,s, FK,s′ ,
Fσ,s
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in Fig. 3. For u ∈ XD, the matrix fluxes FK,ν(u) connect
the cell K ∈ M to the degrees of freedom located at the
boundary of K , namely ν ∈ �K = VK ∪ (FK ∩ F�). The
fracture fluxes Fσ,s(u) connect each fracture face σ ∈ F� to
its nodes s ∈ Vσ . Note also that the expression of the matrix
(resp. the fracture) fluxes is local to the cell (resp. fracture
face) we refer to [5] for a more detailed presentation.

The construction of the control volumes is done by dis-
tributing porous volume associated with the cells K ∈
M and fracture faces σ ∈ F� among the degrees of
freedom located on their respective boundaries. For each
K ∈ M, we define a set of nonnegative volume fractions
(
αK,ν

)
ν∈�K∩Vint

satisfying
∑

ν∈�K

αK,ν ≤ 1, and we set

φK =
⎛

⎝1 −
∑

ν∈�K∩Vint

αK,ν

⎞

⎠
∫

K

φm(x)dx,

φK,ν = αK,ν

∫

K

φm(x)dx

Similarly, for all σ ∈ F� , we set

φσ =
⎛

⎝1 −
∑

s∈Vσ ∩Vint

ασ,s

⎞

⎠
∫

σ

φf (x)df (x)dτ(x),

φσ,s = ασ,s

∫

σ

φf (x)df (x)dτ(x),

where we denote by dτ(x) the d − 1 dimensional
Lebesgue measure on �, and where the volume fractions
(
ασ,s

)
s∈Vσ ∩Vint

are nonnegative and satisfy
∑

s∈Vσ ∩Vint

ασ,s≤1.

As it has been shown in [5], the flexibility in the choice of
αK,s and ασ,s is a crucial asset, compared with usual CVFE
approaches, and allows to significantly improve the accu-
racy of the scheme when the permeability field is highly
heterogeneous. As exhibited in Fig. 4, as opposed to usual
CVFE approaches, this flexibility allows to define the con-
trol volumes in the fractures with no contribution from the
matrix in order to avoid to enlarge artificially the flow path
in the fractures.

Fig. 4 Example of control volumes at cells, fracture face and nodes,
in the case of two cells K and L splitted by one fracture face σ (the
width of the fracture has been enlarged in this figure)

For N ∈ N∗, let us consider the time discretization t0 =
0 < t1 < · · · < tn−1 < tn · · · < tN = T of the time
interval [0, T ]. We denote the time steps by�tn = tn−tn−1

for all n = 1, · · · , N .
Considering homogeneous Dirichlet boundary condi-

tions for convenience, the VAG discretization of the hybrid
dimensional two-phase Darcy flow model (1)–(4) looks for
ug,n, uw,n ∈ X0

D, n = 1, · · · , N , such that one has for all
vα ∈ X0

D and for α = g, w:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

K∈M

⎛

⎝ φK

�tn
(S

α,n
K − S

α,n−1
K )

+
∑

ν∈�K

kα
m,jK

(S
α,n
K,ν,up)F

α,n
K,ν

⎞

⎠ vα
K

+
∑

K∈M

∑

ν∈�K\Vext

(
φK,ν

�tn
(S

α,n
K,ν − S

α,n−1
K,ν )

−kα
m,jK

(S
α,n
K,ν,up)F

α,n
K,ν

)

vα
ν

+
∑

σ∈F�

⎛

⎝ φσ

�tn
(Sα,n

σ − Sα,n−1
σ )

+
∑

s∈Vσ

kα
f,jσ

(Sα,n
σ,s,up)Fα,n

σ,s

⎞

⎠ vα
σ

+
∑

σ∈F�

∑

s∈Vσ \Vext

(
φσ,s

�tn
(Sα,n

σ,s − Sα,n−1
σ,s )

−kα
f,jσ

(Sα,n
σ,s,up)Fα,n

σ,s

)

vα
s = 0.

(7)

In Eq. 7, the phase fluxes are defined by
{

F
α,n
K,ν(u) = FK,ν(u

α,n) + ραgFK,ν(Z),

F
α,n
σ,s (u) = Fσ,s(u

α,n) + ραgFσ,s(Z),
(8)

with Z denoting the vector (zK, zs, zσ )K∈M,s∈V,σ∈F�
. The

upstream values of the saturations S
α,n
K,ν,up and S

α,n
σ,s,up are

defined by
{

S
α,n
K,ν,up = S

α,n
K if Fα

K,ν(u
α,n) ≥ 0,

S
α,n
K,ν,up = S

α,n
K,ν if Fα

K,ν(u
α,n) < 0,

and

{
S

α,n
σ,s,up = Sα,n

σ if Fα
σ,s(u

α,n) ≥ 0,
S

α,n
σ,s,up = S

α,n
σ,s if Fα

σ,s(u
α,n) < 0.

(9)

As exhibited in Fig. 5, the definition of the saturations at
the matrix fracture interfaces takes into account the jump
of the saturations induced by the different rocktypes. More
precisely, for all K ∈ M and ν ∈ �K \ Vext, we set

S
g,n
K = S

g
m,jK

(u
g,n
K − u

w,n
K ), S

w,n
K = 1 − S

g,n
K ,

S
g,n
K,ν = S

g
m,jK

(u
g,n
ν − uw,n

ν ), S
w,n
K,ν = 1 − S

g,n
K,ν,

(10)
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Fig. 5 Saturations inside the cells K and L, the fracture face σ and at
the matrix fracture interfaces taking into account the saturation jumps
induced by the different rocktypes

and for all σ ∈ F� and s ∈ Vσ \ Vext, we set

S
g,n
σ = S

g
f,jσ

(u
g,n
σ − uw,n

σ ), Sw,n
σ = 1 − S

g,n
σ ,

S
g,n
σ,s = S

g
f,jσ

(u
g,n
s − u

w,n
s ), S

w,n
σ,s = 1 − S

g,n
σ,s .

(11)

3 Parametrization of saturation curves
at the rocktype interfaces

Now let us demonstrate how the discretization (7)–(11) can
be extended to the case of the inverse capillary pressure
graphs satisfying (A2) but not (A2a).

Let J = Jm ∪ Jf , for all K ∈ M we set χK = {jK}. For
all σ ∈ F� , we set χσ = {jσ } ∪

(⋃
{K | σ∈FK }{jK}

)
. For all

s ∈ V , we set

χs =
⎛

⎝
⋃

{K | s∈VK }
{jK}

⎞

⎠ ∪
⎛

⎝
⋃

{σ | s∈Vσ }
{jσ }

⎞

⎠ .

Roughly speaking, for each ν ∈ M∪F�∪V , the set χν ∈ 2J

denotes the collection of rocktypes intersecting at the degree
of freedom ν. We finally define

χD =
⋃

K∈M
{χK}

⋃

σ∈F�

{χσ }
⋃

s∈V
{χs},

where χD is seen as a subset of 2J .
The following proposition justifies the fact that a pair of

unknowns is sufficient at any degrees of freedom located on
the rocktype intersection.

Proposition 1 Let χ ∈ χD and
(
S

g
j

)

j∈χ
be a finite family

of maximal monotone graphs satisfying assumption A2 (the
second index, m or f , is omitted). Then, there exists a fam-
ily of non decreasing continuous piecewise C1 functions Pχ

and
(
Sg

χ,j

)

j∈χ
defined on an open convex set I ⊂ R such

that Pχ (I) = R and such that for τ ∈ I and j ∈ χ

Sg
χ,j (τ ) ∈ S

g
j (Pχ (τ )); (12)

moreover, they can be chosen such that the following non-
degeneracy condition

∑

j∈χ

d

dτ

(
Sg

χ,j (τ ),Pχ (τ )
)

�= (0, 0) (13)

is satisfied for a.e. τ ∈ I.

Proof In addition to A2 and without loss of generality,
we may assume that there exist a finite family of real
p1 < p2 < . . . < prχ and a family of nonnegative(
bj,k

)
k=1,...,rχ ,j∈χ

such that

S
g
j (p) = aj (p) +

rχ∑

k=1

bj,kH(p − pk)

for all p ∈ R and all j ∈ χ . Let (ζk)k∈rχ
be a family of

nonnegative real values satisfying ζk = 0 if and only if∑
j∈χ bj,k = 0 for all k = 1, . . . , rχ . We set I = R and

we construct the functions Pχ and
(
Sg

χ,j

)

j∈χ
as follows.

Let π1 = p1, πk = pk + ∑k−1
i=1 ζi for k = 2, . . . , rχ and

πrχ+1 = +∞. We set

Pχ (τ ) =

⎧
⎪⎪⎨

⎪⎪⎩

τ, τ ≤ π1

pk, πk < τ ≤ πk + ζk, k = 1, . . . , rχ
pk + τ− πk − ζk,

πk + ζk < τ ≤ πk+1, k = 1, . . . , rχ

It is easy to verify that Pχ is continuous and piecewise C1

on I with Pχ (I) = R.
For all k = 1, . . . , rχ and j ∈ χ , let us denote by

sj,k(p) a single-valued restriction of S
g
j on (pk, pk+1), that

is sj,k(p) = aj (p) + ∑k
i=1 bj,i . The restriction of S

g
j on

(−∞, p1) will be denoted by sj,0(p) = aj (p). For any
j ∈ χ , the function Sg

χ,j is defined by

Sg
χ,j (τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sj,0(Pχ (τ )), τ ≤ π1

sj,k−1(pk) + bj,k

ζk

(τ − πk),

πk < τ ≤ πk + ζk, k = 1, . . . , rχ
sj,k(Pχ (τ )),

πk + ζk < τ ≤ πk+1, k = 1, . . . , rχ .

By direct computation, one can verify that Sg
χ,j (τ ) is contin-

uous, and that Eq. 12 holds. Since each of sj,k is piecewise
C1 on I, the function Sg

χ,j (τ ) is piecewise C1 on I too.
Finally, the property (13) is recovered since sj,k and Pχ are
non decreasing and in view of the fact that

∑
j∈χ bj,k > 0

as soon as the set {τ |πk < τ ≤ πk + ζk} is not empty.

For all χ ∈ χD, let Pχ and
(
Sg

χ,j

)

j∈χ
be some fam-

ily of non decreasing functions associated with the family
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of graphs
(
S

g
j

)

j∈χ
and satisfying Eqs. 12 and 13. The

saturations are defined by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S
g,n
K = Sg

χK,jK
(τn

K)

S
w,n
K = 1 − S

g,n
K for all K ∈ M,

S
g,n
σ = Sg

χσ ,jσ
(τn

σ ),

Sw,n
σ = 1 − Sg,n

σ for all σ ∈ F�,

S
g,n
K,ν = Sg

χν,jK
(τn

ν ),

S
w,n
K,ν = 1 − S

g,n
K,ν for all K ∈ M, ν ∈ �K,

S
g,n
σ,s = Sg

χs,jσ
(τn

s ),

Sw,n
σ,s = 1 − S

g,n
σ,s for all σ ∈ F�, s ∈ Vσ ,

(14)

and the water pressures by
⎧
⎨

⎩

u
w,n
K = u

g,n
K + PχK

(τn
K) for all K ∈ M,

uw,n
σ = u

g,n
σ + Pχσ (τn

σ ) for all σ ∈ F�,

u
w,n
s = u

g,n
s + Pχs(τ

n
s ) for all s ∈ V.

(15)

The new scheme consist in finding ug,n, τw,n ∈ X0
D,

n = 1, · · · , N , satisfying Eqs. 7, 8 and 9 along with Eqs. 14
and 15.

4 Implementation and numerical experiments

In this section, we present numerical experiments which
aims to compare the robustness and efficiency of the clas-
sical pressure-saturation formulation with more advanced
choices of primary unknowns which are implemented using
the graph parametrization approach presented above. The
pressure-pressure formulation is excluded from the compar-
ison since is has a very poor efficiency when dealing with
dry (sg close to 1) media. In practice, the pressure-pressure
formulation has also been tested, and it failed to converge
for matrix fracture capillarity ratio bm

bf
larger than 10 (see

below for the definition of this ratio).
We consider only two rocktypes, the matrix rocktype

denoted by j = m and the fracture (or fault) rocktype
denoted by j = f . The phase mobilities are defined for
both rocktypes j = m, f and for α = g, w by the following
Corey law

kα
j (sα, x) = kα

j,max(s̄
α)

nα
j

μα
, (16)

where s̄w = sw−sw
r,j

1−sw
r,j −s

g
r,j

, and s̄g = sg−s
g
r,j

1−s
g
r,j −sw

r,j

are the reduced

saturations and μα is the phase viscosity.
The capillary pressure/saturation relation are also given

for the matrix (j = m) and fracture (j = f ) rocktypes by
the following Corey law

S
g
j (p) =

{
0 if p − pent,j < 0,

1 − e
− p−pent,j

bj if p − pent,j ≥ 0,
(17)

where the parameter pent,j > 0 stands for the entry pres-
sure. Both bj and pent,j depend on the rocktype j = m, f .
Figure 6 exhibits, the typical shape of the matrix and frac-
ture capillary pressure graphs Pcm and Pcf , which are the
multi-valued inverses of S

g
m and S

g
f , respectively. Remark

that, when bj tends to 0, the graph of S
g
j tends to the graph of

the multi-valued Heaviside function centered at p = pent,j .
Let us remark that the choice of capillary pressure law

(17) is mainly motivated by an ease of its implementation
and the small number of required parameters. Our method
may be extended to other analytical capillary pressure ver-
sus saturation relations, such as Van Genuchten law. From
the theoretical point of view, the parametrization approach
applies also to the case of tabulated capillary pressure
functions (see Proposition 1). However, its practical imple-
mentation in that case may be less straightforward, mainly
because the choice of the primary unknowns has to be made
automatically. The same difficulty arises when more than

Fig. 6 The graphs of the capillary pressures Pcm in the matrix, and
Pcf in the fractures for bm = 105 Pa, bf = 104 Pa, pent,m = 105

Pa, pent,f = 0 (left) and bm = 105 Pa, bf = 0, pent,m = 105 Pa,
pent,f = 0 (right)
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Fig. 7 Pcm in the matrix, and Pcf in the fractures for bm = 105 Pa,
bf = 104 Pa, pent,m = pent,f = 0

two rocktypes intersect at the degrees of freedom, which for
VAG scheme may happen at the nodal d.o.f.

The following numerical experiments compare, for dif-
ferent values of the parameters bj and pent,j , j = m, f ,
the pressure-saturation formulation using gas pressure and

gas saturation as the primary unknowns with some more
advanced parametrizations inspired by variable switch tech-
niques. Since only one fracture and one matrix rocktypes
are considered, the set χD is equal to

χD = {{m}, {m, f }},

where χ = {m} corresponds to degrees of freedom located
in the matrix only and χ = {m, f } corresponds to degrees
of freedom located at the matrix fracture interfaces. In the
following, the primary unknowns for χ = {m} are fixed
for both formulations to (ug, s

g
m) since this is an efficient

and simple choice for a single rocktype. The choices of
parametrization at the matrix fracture interfaces, i.e. for
χ = {m, f } will result in functions Sg

m, Sg
f , P , which we

define below for several types of capillary pressures curves
given by Corey law. We will distinguish the following five
cases ordered with increasing complexity.

The first two cases, denoted C1 and C2, assume a zero
entry pressure in matrix and fracture network rocktypes
and a strictly increasing capillary pressure curve in matrix
domain; more precisely, we will assume that bm > 0,
pent,m = pent,f = 0 for both cases, and that 0 < bf < bm

for C1, while bf = 0 in the case C2.

Fig. 8 Sg
m, Sg

f and P curves for the pressure-saturation (on the top) and variable switch formulation (at the bottom) for bm = 105 Pa, bf = 104

Pa and pent,m = pent,f = 0



Comput Geosci (2017) 21:1075–1094 1083

Fig. 9 Sg
m, Sg

f and P curves for the variable switch formulation and bm = 105 Pa, bf = 0 and pent,m = pent,f = 0

Then, we will address the problem (cases C3 and C4)
with a positive entry pressure in the matrix, assuming for
both cases that bm > 0, pent,f = 0 and that again 0 < bf <

bm for C3 and bf = 0 for C4. In addition, as we are inter-
ested in large capillary barriers for both C3 and C4, we will
assume that bf < pent,m.

Finally, the case C5 will defined by pent,m > 0, pent,f =
0 and bm = 0 = bf = 0.

The choices of the primary unknowns will be compared
in terms numerical behaviour of the simulations based on
the number of linear and nonlinear iterations and on the
CPU time.

Fig. 10 Sg
m, Sg

f and P curves for the pressure-saturation formulation (on the top) and variable switch formulation (at the bottom) for bm = 105

Pa, bf = 104 Pa,pent,m = 105 Pa, pent,f = 0
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4.1 Parametrizations for the pressure-saturation and
variable switch formulations

4.1.1 C1 and C2 cases

In this case, the entry pressures are both set to zero, i.e.
pent,j = 0, j = m, f leading to the following Corey laws

S
g
j (p) =

{
0 if p < 0,

1 − e
− p

bj if p ≥ 0,
(18)

Figure 7 exhibits the capillary pressure graphs Pcm and Pcf

for bm = 105 Pa and the ratio bm

bf
= 10.

Pressure-saturation formulation The formulation is
defined by the following set of functions (see the curves on
the top of Fig. 8)
⎧
⎪⎨

⎪⎩

Sg
m(τ) = τ

Sg
f (τ ) = Pc

−1
f (Pcm(τ)) = 1 − (1 − τ)

bm
bf

P(τ ) = Pcm(τ) = −bm ln(1 − τ)

(19)

with τ ∈ [0, 1).
This formulation can not be applied in the case C2, at

fact, when bm

bf
goes to infinity (i.e. when bm > 0 while the

capillary pressure in the fracture network goes to zero), the
function Sg

f (τ ) tends to the graph, which is multi-valued at
τ = 0. Numerically, this would lead to the loss of robustness
for large values of bm

bf
. This pressure-saturation formulation

is compared to the variable switch (ug, s
g
f )/(ug, s

g
m) formu-

lation picking the “steepest” saturation unknown, that is to
say the one which has a largest derivative with respect to
the capillary pressure. Figure 8 present the curves resulting
from both parametrizations for some values of the parameters.

Variable switch formulation This formulation is obtained
using the relation (12) together with conditions

max

(
dSg

m

dτ
,
dSg

f

dτ

)

= 1

and

Sg
m(0) = Sg

f (0) = 0.

The computations give

Sg
f (τ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τ, τ ∈ [0, τ1),

Pc
−1
f (Pcm(τ − τ1

+Pc
−1
m (Pcf (τ1))))

= 1 − (τ1 + (1 − τ1)
bf
bm − τ)

bm
bf , τ ∈ [τ1, τ2),

(20)

Fig. 11 The capillary pressure curves Pcm in the matrix and Pcf in
the fractures for bm = bf = 0, pent,m = 105 Pa, and pent,f = 0

Sg
m(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Pc
−1
m (Pcf (τ ))

= 1 − (1 − τ)
bf
bm , τ ∈ [0, τ1),

τ − τ1 + Pc
−1
m (Pcf (τ1))

= τ − τ1 + 1 − (1 − τ1)
bf
bm , τ ∈ [τ1, τ2),

(21)

and

P(τ )=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pcf (Sg
f (τ )) = −bf ln(1 − τ), τ ∈ [0, τ1),

Pcm(Sg
m(τ))

= −bm ln(τ1+(1−τ1)
bf
bm −τ), τ ∈ [τ1, τ2),

(22)

Fig. 12 Theprismaticmesheswith their layer of pyramids for each refined
box around each fracture located at the center of each box (the thickness
of the prisms and pyramids has been enlarged for the sake of clarity)
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Fig. 13 Connection of the prismatic mesh around one fracture with the surrounding tetrahedral mesh using a layer of pyramids (the thickness of
the prisms and pyramids has been enlarged for the sake of clarity)

where τ1 = 1 − (
bf

bm
)

bm
bm−bf and τ2 = τ1 + (1 − τ1)

bf
bm .

It is worth noticing that, by construction, the derivatives
of the functions Sg

f (τ ), Sg
m(τ) and P(τ ) are continuous

at τ = τ1 and that
dSg

m

dτ
(τ1) = dSg

f

dτ
(τ1) = 1. When,

for a fixed bm, the ratio bm

bf
goes to infinity, the variable

switch parametrization tends to the following formulation
(see Fig. 9):

Sg
f (τ ) =

{
τ, τ ∈ [0, τ1),
1, τ ∈ [τ1, τ2), (23)

Sg
m(τ) =

{
0, τ ∈ [0, τ1),
τ − τ1, τ ∈ [τ1, τ2), (24)

and

P(τ ) =
⎧
⎨

⎩

0, τ ∈ [0, τ1),
Pcm(Sg

m(τ)

= −bm ln(1 − (τ − τ1)), τ ∈ [τ1, τ2),
(25)

with τ1 = 1, τ2 = 2. Note that this limit case of a vanishing
capillary pressure in the fractures cannot be accounted for
by the pressure-saturation formulation.

Table 1 Number Ncells of cells, number Nnodes of nodes, number
NFracF of fracture faces and number of d.o.f. in the linear system after
elimination of the cell d.o.f. (two physical unknowns per d.o.f.)

Ncells Nnodes NFracF Linear system d.o.f.

232 920 45 193 1 634 46 827

4.1.2 C3 and C4 cases

Next we consider the test cases with non zero entry pressure
in the matrix pent,m > 0 and with zero entry pressure in
the fractures pent,f = 0. The graphs of Pcj , j = m, f are
represented in Fig. 6 for pent,m = 105 Pa, bm = 105 Pa and
bf = 104 Pa.

Pressure-saturation formulation At the matrix fracture
interfaces, the capillary pressure (see Fig. 6) cannot be
expressed as a function of s

g
m for p < pent,m, but it is how-

ever a function of s
g
f as long as bf > 0. Hence, we choose

s
g
f as primary unknown at the matrix fracture interfaces,
which leads to

Sg
f (τ ) = τ, Pm(τ) = (S

g
f )−1(τ ) = −bf ln(1 − τ),

and

Sg
m(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, τ < S
g
f (pent,m) = 1 − e

−pent,m
bf ,

Pc
−1
m (Pcf (τ ))

= 1 − e
pent,m

bm (1 − τ)
bf
bm ,

τ ≥ 1 − e

−pent,m
bf .

As in the previous case, the pressure-saturation formula-
tion can not be extended to the degenerate case C4. Remark
that when bm

bf
goes to infinity the function Pc

−1
m (Pcf (τ ))

becomes multi-valued at τ = 1 (see Fig. 10), which
results in severe numerical instabilities. As a result, we were
unable to obtain the convergence of the nonlinear solver for
bm

bf
> 10.
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Table 2 Numerical results for the pressure-saturation and variable
switch formulations for bm = 105 Pa, pent,m = pent,f = 0 and differ-
ent values of the ratio bm

bf
(cases C1 and C2): number N�t of successful

time steps, number NChop of time step chops, number NNewton of New-
ton iterations per successful time step, number NGMRes of GMRes
iterations by Newton iteration and CPU time in seconds

Pressure-saturation Variable switch

bm

bf
N�t NChop NNewton NGMRes CPU (s) N�t NChop NNewton NGMRes CPU (s)

10 226 2 4.2 25.9 4 638 226 2 4.3 26.2 5 523

102 294 21 10.7 20.1 14 557 246 8 7.5 22.2 9 016

103 297 22 11.7 19.7 16 183 225 1 5.5 24.2 6 245

104 304 24 12.9 19.8 17 742 225 1 4.8 25.1 5 492

105 313 26 12.8 19.6 18 346 235 4 5.4 23.9 6 260

∞ n/a n/a n/a n/a n/a 235 4 5.3 23.9 6 448

Variable switch formulation When bf = 0, it is clear that
the capillary pressure is no longer a function of the satura-
tion for its values in the interval (0, pent,m). At fact, for those
values of capillary pressure, the relevant pair of unknowns is
(uw, ug) or (uw, ug − uw). As we are interested in treating
the limit case bf = 0, we investigate the following formula-
tion (see Fig. 10), which roughly speaking switches between
the primary variables (ug, s

g
f ), (ug, ug − uw) and (ug, s

g
m)

Sg
f (τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ, τ ∈ [0, τ1),

Pc
−1
f (pent,m(τ − τ1) + Pcf (τ1))

= 1 − (1 − τ1)e
− pent,m

bf
(τ−τ1)

,

τ ∈ [τ1, τ2),

Pc
−1
f (Pcm(τ − τ2))

= 1 − (1 − (τ − τ2))
bm
bf e

−pent,m
bf ,

τ ∈ [τ2, τ3),

(26)

Sg
m(τ) =

{
0, τ ∈ [0, τ2),
τ − τ2, τ ∈ [τ2, τ3], (27)

and

P(τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pcf (τ ) = −bf ln(1 − τ), τ ∈ [0, τ1),

pent,m(τ − τ1) + Pcf (τ1)

= pent,m(τ − τ1) − bf ln(1 − τ1),

τ ∈ [τ1, τ2),

Pcm(τ − τ2)

= pent,m − bm ln(1 − (τ − τ2)),

τ ∈ [τ2, τ3).

(28)

The value τ1 = 1 − bf

pent,m
used for the switch between

(ug, s
g
f ) and (ug, ug − uw), and the value τ2 = τ1 + 1 −

Pcf (τ1)

pent,m
used for the switch between (ug, ug − uw) and

Table 3 Numerical results for the pressure-saturation and variable
switch formulations for bm = 105 Pa, pent,m = 105 Pa, pent,f = 0
and different values of the ratio bm

bf
(cases C3 and C4): number N�t

of successful time steps, number NChop of time step chops, number
NNewton of Newton iterations per successful time step, number NGMRes
of GMRes iterations by Newton iteration and CPU time in seconds

Pressure-saturation Variable switch

bm

bf
N�t NChop NNewton NGMRes CPU(s) N�t NChop NNewton NGMRes CPU (s)

2 221 0 3 29.2 3 937 221 0 3.1 28.9 4 479

10 398 52 9.9 20.2 23 400 262 13 6.8 22.7 10 378

102 n/c n/c n/c n/c n/c 269 14 9.9 20.8 14 185

103 n/c n/c n/c n/c n/c 285 18 8.9 20.1 13 740

104 n/c n/c n/c n/c n/c 242 6 6.9 22.8 9 067

105 n/c n/c n/c n/c n/c 276 16 7.5 21.3 11 516

∞ n/a n/a n/a n/a n/a 299 22 8.1 19.1 10 770
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Fig. 14 For test case C1 with bm = 105 Pa, pent,m = pent,f = 0,
bm

bf
= 1000: cumulated number of Newton iterations as a function of

time for the pressure-saturation and variable switch formulations (left),
CFL numbers in the matrix and in the fractures as a function of time
obtained with the variable switch formulation (right)

(ug, s
g
m) are chosen such that the derivatives of the func-

tions Sg
f (τ ), Sg

m(τ), P(τ ) remain continuous on [0, τ3),
with τ3 = τ2 + 1. Remark that Pcf (τ1) < pent,m thanks
to the assumption bf < pent,m and that P(τ2) = pent,m.
When the ratio bm

bf
goes to infinity, the following formulas

are recovered

Sg
f (τ ) =

{
τ, τ ∈ [0, τ1),
1, τ ∈ [τ1, τ3), (29)

Sg
m(τ) =

{
0, τ ∈ [0, τ2),
τ − τ2, τ ∈ [τ2, τ3), (30)

and

P(τ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, τ ∈ [0, τ1),
pent,m(τ − τ1), τ ∈ [τ1, τ2),
Pcm(Sg

m(τ)

= −bm ln(1 − (τ − τ2)) + pent,m,

τ ∈ [τ2, τ3),
(31)

where τ1 = 1, τ2 = 2 and τ3 = 3. Remark that for bf = 0
and τ ∈ [τ1, τ2], the matrix rocktype acts as a barrier for
both phases so that none of them can penetrate it unless the
capillary pressure rises or drops enough.

4.1.3 C5 case

Finally, we consider the case bm = bf = 0, and pent,m > 0,
and pent,f = 0 (see Fig. 11). This test case can only be
treated using the formulation involving multiple primary
variable switches.

In the spirit of the previous case, we define the following
parametrization:

Sg
f (τ ) =

{
τ, τ ∈ [0, τ1),
1, τ ∈ [τ1, τ3), (32)

Sg
m(τ) =

{
0, τ ∈ [0, τ2),
τ − τ2, τ ∈ [τ2, τ3], (33)

Table 4 Numerical results for the pressure-saturation and variable
switch formulations for bm = bf = 0, pent,m = 105 Pa and pent,f = 0
(case C5): number N�t of successful time steps, number NChop of time
step chops, number NNewton of Newton iterations per successful time
step, number NGMRes of GMRes iterations by Newton iteration, and
CPU time in seconds

Variable switch

N�t NChop NNewton NGMRes CPU (s)

221 0 5.8 26.3 5 948

and

P(τ ) =
⎧
⎨

⎩

0, τ ∈ [0, τ1),
pent,m(τ − τ1), τ ∈ [τ1, τ2),
pent,m, τ ∈ [τ2, τ3],

(34)

with τ1 = 1, τ2 = 2 and τ3 = 3.

4.2 Tight gas test case

The family of test cases presented here simulates the liquid
gas two-phase Darcy flow in a tight gas reservoir. The data
set is similar to Example 2 of [9] except for the choice of
the capillary pressure curves. The reservoir is defined by the
domain � = (−500, 500) × (−250, 250) × (−100, 100)
(in meters). Three transverse fractures �i, i = 1, 2, 3 of
width df = 0.02 m are initiated by hydraulic fracturing
from a horizontal well. They are defined by the squares
{xi} × (−50, 50) × (−50 × 50) with x1 = −250, x2 = 0,
x3 = +250. An horizontal well of radius rw = 0.1 m
is located along y = z = 0 and perforates each fracture
�i, i = 1, 2, 3 in a triangular equilateral face of center
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Fig. 15 Water saturation in the perforated face in the fracture at x = 0
(blue) and cut of the water saturation in the matrix (red) along the line
y = z = 0 as a function of the distance to the fracture at the end
of each simulation period t = 1 day (top), t = 4 days (middle) and

t = 300 days (bottom). The left column correspond to bm = 105 Pa,
bf = 104 Pa, pent,m = pent,f = 0, and the right column to bm = 105

Pa, bf = 0, pent,m = pent,f = 0

xi, y = z = 0 and of edge size 1 m. During the water
injection phase, the water penetrates only a few tens of cen-
timeters in the matrix due to the low permeability of the
reservoir. Therefore, in order to obtain an accurate water
saturation in the neighbourhood of the fractures with a rea-
sonable number of cells, a strong anisotropic refinement is
needed in the normal direction in the neihbourhood of each
fracture. As exhibited in Figs. 12 and 13, this anisotropic
refinement is obtained using prismatic meshes with triangu-
lar base. In order to match the boundaries of these refined
boxes with the surrounding tetrahedral mesh of the reser-
voir, a layer of pyramids is added around each fracture
box as exhibited in Fig. 12. The tetrahedral mesh match-
ing the triangulation of the fracture box boundaries has been

obtained using TetGen [19]. Table 1 summarizes the char-
acteristics of the resulting hybrid mesh that will be used in
the following numerical test cases. This mesh includes ten
layers of prisms of thickness 0.1 m on both sides of each
fracture.

In this test case, the mobilities are defined by sw
r,m = 0.2,

s
g
r,m = 0, kw

m,max = 0.3, k
g
m,max = 0.6, nw

m = 1.5, n
g
m = 3

in the matrix, and by sw
r,f = s

g
r,f = 0, kw

f,max = k
g
f,max = 1,

nw
f = n

g
f = 1 in the fractures. The parameters of the Corey

capillary pressures are fixed to bm = 105 Pa for cases C1,
C2, C3 and C4, and to pent,m = 105 Pa for cases C3, C4

and C5. For cases C1 and C3, we will investigate the set of
values bf = 1, 10, 102, 103, 104 Pa in the fractures.
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(a) (b)

Fig. 16 Water saturation in the perforated face in the fracture at x = 0
(blue) and cut of the water saturation in the matrix (red) along the line
y = z = 0 as a function of the distance to the fracture at the end of each
simulation period t = 1 day (top), t = 4 days (middle) and t = 300

days (bottom). The left column correspond to bm = 105 Pa, bf = 0,
pent,m = 105 Pa, pent,f = 0, and the right column to bm = bf = 0,
pent,m = 105 Pa, pent,f = 0

The viscosities of the two phases are set to μw = 10−3

μg = 2.3510−5 Pa·s, and their densities are fixed to the
constant value ρw = 1000 kg/m3 for the water phase, and
to the perfect gas density ρg(ug) = M

RTug kg/m3 for the
gas phase with M = 0.016 kg corresponding to methane
and R = 8.32 J·mol−1 ·K−1. The reservoir is initially at
the liquid pressure uw = 40, 0105 Pa, at the residual water
saturation in the matrix and at water saturation close to 0
in the fractures obtained by the continuity of the capillary
pressure at the matrix fracture interfaces. The permeability
of the matrix is isotropic and given by �m = λmId with
λm = 210−17 m2, very low compared with the permeability

of the fractures �f = λf Id with λf = 210−12 m2.
The porosity is equal to φm = 0.1 in the matrix and to
φf = 0.3 in the fractures.

The liquid is first injected at high hydraulic fracturing
pressure 100, 0105 Pa fixed at each perforation during 1 day.
This high-pressure water injection phase mimics indeed the
invasion of the matrix by fracturing fluid during hydraulic
fracturing operations. After injection, the well is closed dur-
ing the next 3 days. The well is then put in production at
a constant bottom pressure of 30, 0105 Pa during the next
296 days. Only a part of the invaded water will be back-
produced in this early phase of production. The simulation
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runs over a period of 300 days and the nonlinear systems
obtained at each time step are solved by a Newton-Raphson
method. The time stepping is defined by an initial time step
of 0.001 h and a maximum time step of 0.05 days during the
water injection period, of 0.1 days during the well closure,
and of 5 days during the production period. If the New-
ton method does not converge after 35 iterations, the time
step is chopped by a factor 2 and recomputed. The time
step is increased by a factor 1.2 after each successful time
step until it reaches the maximum time step. The stopping
criteria on the relative residuals are fixed to 10−6 for the
GMRes solver preconditioned by ILU0 and to 10−5 for the
Newton method.

Finally, let us remark that the variable switch formula-
tions introduced in Section 4.1 result in Lipschitz continu-
ous saturation functions Sg

m and Sg
f (with Lipschitz constant

less or equal to 1). This is an advantage compare to clas-
sical pressure-saturation formulation. However, the second
derivative of the functions Sg

m and Sg
f may become arbi-

trarily large depending on the values of the capillary curve
parameters bm and bf . Indeed, the lack of smoothness
occurs at the switching values of the parameter τ , namely

Fig. 17 Instantaneous flow rates of water (top) and of gas (bottom) in
m3/day as a function of time

Fig. 18 Cumulated flow rates in cubic meter of water (top) and gas
(bottom) as a function of time

Fig. 19 On the left: geometry of the basin� = (0.400)m×(0.800)m
with the fault network in red and the matrix domain in blue. On
the right: coarse triangular mesh (with 2441 cells) of the 2D basin
conforming to the fault network
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Fig. 20 Amount of oil in the faults in m3 as a function of time for the
following four test cases. C1: bm = 106 Pa, bf = 105 Pa, pent,m =
pent,f = 0, C2: bm = 106 Pa, bf = 0, pent,m = pent,f = 0, C4:
bm = 106 Pa, bf = 0, pent,m = 106 Pa, pent,f = 0, C5: bm = bf = 0,
pent,m = 106 Pa, pent,f = 0

at τ1 for the cases C1 and C2, and at τ1, τ2 for the cases
C3 − C5. In order to deal with this issue, the Newton iter-
ations are damped using the following rule: if the Newton
iterate for τ variable tries to jump from below to above the
value τi = τ1, τ2 (or from above to below), it is projected
onto τ = τi − ε

2 (τ = τi + ε
2 correspondingly). More pre-

cisely, let ε > 0, and let τ k
ν , �τk

ν denote the value of the
unknown and its increment at the degree of freedom ν, at
the iteration k of nonlinear solver. If

τ k
ν < τi − ε and τ k

ν + �τk
ν > τi

we set τ k+1
ν = τi − ε

2 ; otherwise, we set τ
k+1
ν = τ k

ν + �τk
ν .

Similarly, the Newton iteration is damped as soon as τ k
ν >

τi + ε and τ k
ν + �τk

ν < τi. Compare to the straightforward
Newton’s method, this procedure may result in a slightly
larger number of iterations. In return, it increases the robust-
ness of the nonlinear solver. In the following numerical
experiments, we have taken ε = 10−5.

The numerical behaviour of the simulations for both vari-
able switch and pressure-saturation formulations (cases C1

and C3), and for the variable switch formulation only (cases
C2, C4 and C5), is exhibited in Tables 2, 3 and 4. These
tables present the number of successful time steps, the num-
ber of time step chops, the number of Newton iterations by
successful time steps, the number of GMRes iterations by
Newton iteration, and the CPU time. Figure 14 exhibits in
case C1 for bm

bf
= 1000 the cumulated number of Newton

iterations as a function of time for the pressure-saturation
and variable switch formulations. It is clear that most of
the time step failures occur for the pressure-saturation for-
mulation during the water injection period. Figure 14 also
plots, for the same test case, CFL numbers in the matrix
and in the fractures as a function of time obtained with
the variable switch formulation. These CFL numbers cor-
respond to the one obtained by an explicit Euler integra-
tion of the scalar hyperbolic equation for the saturation
unknown using the total velocity and the fractional flow.
It illustrates that the time steps used in this simulation are
many orders of magnitude larger than the ones obtained
using an IMPES scheme both in the fractures and in the
matrix.

The variable switch formulation turns out to be more effi-
cient and more robust w.r.t. the value of bm

bf
both in terms of

number of Newton iterations and the number of time step
chops. Note that, as it can be expected, for bm

bf
= ∞ the vari-

able switch formulation performs similarly as for the case
bm

bf
= 105. As shown in Table 3, in the case of the entry pres-

sure pent,m = 105 Pa, the pressure-saturation formulation
fails to converge except for small ratio bm

bf
. Table 4 shows

that the variable switch formulation still performs efficiently
in the degenerate case C5.

Figures 15 and 16 exhibit, at the end of each simula-
tion period at t = 1 day, t = 4 days and t = 300
days, the water saturation in the perforated face in the frac-
ture and the cut of the water saturation in the matrix along
the line y = z = 0 as a function of the distance to the

Table 5 Numerical results for the pressure-saturation, and variable
switch formulations for bm = 106 Pa, pent,m = pent,f = 0, and differ-
ent values of the ratio bm

bf
(cases C1 and C2): number N�t of successful

time steps, number NChop of time step chops, number NNewton of New-
ton iterations per successful time step, number NGMRes of GMRes
iterations by Newton iteration and CPU time in seconds

Pressure-saturation Variable switch

bm

bf
N�t NChop NNewton NGMRes CPU (s) N�t NChop NNewton NGMRes CPU (s)

10 95 0 4.99 38.96 554 95 0 5.23 37.12 602

100 95 0 5.78 23.15 524 95 0 7.29 22.89 693

105 364 72 15.72 14.52 3791 110 4 13.47 19.26 1565

106 304 57 15.52 13.47 3311 110 4 13.41 19.23 1397

∞ n/a n/a n/a n/a n/a 102 2 12.74 20.79 1188
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Table 6 Numerical results for the pressure-saturation and variable
switch formulations for bm = 106 Pa, pent,m = 106 Pa, pent,f = 0
and different values of the ratio bm

bf
(cases C3 and C4): number N�t

of successful time steps, number NChop of time step chops, number
NNewton of Newton iterations per successful time step, number NGMRes
of GMRes iterations by Newton iteration and CPU time in seconds

Pressure-saturation Variable switch

bm

bf
N�t NChop NNewton NGMRes CPU (s) N�t NChop NNewton NGMRes CPU (s)

10 102 2 6.07 30.67 707 95 0 5.62 28.49 572

100 n/c n/c n/c n/c n/c 95 0 7.38 26.37 727

105 n/c n/c n/c n/c n/c 121 7 12.76 23.89 1633

106 n/c n/c n/c n/c n/c 106 3 11.81 26.31 1277

∞ n/a n/a n/a n/a n/a 114 5 12.46 22.65 1321

fracture. One clearly sees that the water phase fills the frac-
tures during the water injection period and penetrates the
matrix less than one meter from the fractures. At the end
of the well closure period, water has been sucked by imbi-
bition from the fractures to the matrix. At the end of the
simulation, the fractures are again fully filled with the gas
phase and the water phase above the residual saturation is
only partially removed during the production period due
to the water retention by capillary effect. Figures 17 and
18 exhibit the instantaneous and cumulated flow rates of
water and gas at the well with a positive value for pro-
duction and a negative value for injection. Figures 15, 16,
17 and 18 show that the larger the difference between
the capillary pressure in the matrix and in the fractures,
leads to a larger amount of water which is retained in the
matrix.

4.3 Oil migration in a 2D basin

In this section, we consider the oil migration in a faulted
2D basin exhibited in Fig. 19 initially saturated with water.
Note that, according to our previous notations, the oil phase
stands for the phase α = g in this test case. The domain �

is of extension (0.400) m × (0.800) m and the fault width
is assumed to be constantly df = 4 m. The 2D triangular
mesh of the domain� (see Fig. 19) is extended to 3D by one
layer of prisms since our code deals with 3D meshes. The
characteristics of the resulting mesh are presented in table
below

Nbcells Nbnodes NbFracF Linear system d.o.f.

16 889 17 226 176 17 284

Initially, the reservoir is saturated with the water phase
(of constant density 1000 kg/m3 and viscosity 10−3 Pa·s),

and the oil phase (of constant density 700 kg/m3 and vis-
cosity 510−3 Pa·s) is injected at the bottom boundary of
the bottom fault, which is managed by imposing non-
homogeneous Neumann conditions at the injection location.
The oil then rises by gravity, thanks to its lower density
compared to water and by the overpressure induced by the
imposed injection rate (Fig. 20). Dirichlet boundary con-
ditions are imposed at the upper boundary of the domain,
while the homogeneous Neumann boundary conditions are
prescribed elsewhere.

The permeability field is isotropic and given by �m =
λmId with λm = 10−13 m2, and �f = λf Id with λf =
10−10 m2. The parameters of the Corey capillary pres-
sures are fixed to bm = 106 Pa for cases C1, C2, C3 and
C4, and to pent,m = 106 Pa for cases C3, C4 and C5.
For cases C1 and C3, we will investigate the set of values
bf = 1, 10, 104, 105 Pa in the faults. The porosity is equal
to φm = 0.2 in the matrix and to φf = 0.4 in the faults. The
mobilities are given for both the matrix and fault rocktypes
j = m, f by the Corey laws (17) with sw

r,m = s
g
r,m = 0,

kw
m,max = k

g
m,max = 1, nw

m = n
g
m = 2 in the matrix, and by

sw
r,f = s

g
r,f = 0, kw

f,max = k
g
f,max = 1, nw

f = n
g
f = 1 in

the faults. The simulation is run over a period of 5400 days

Table 7 Numerical results for the pressure-saturation and variable
switch formulations for bm = bf = 0, pent,m = 106 Pa, and
pent,f = 0 (case C5): number N�t of successful time steps, number
NChop of time step chops, number NNewton of Newton iterations per
successful time step, number NGMRes of GMRes iterations by Newton
iteration and CPU time in seconds

Variable switch

N�t NChop NNewton NGMRes CPU (s)

185 17 14.28 25.92 2147
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Fig. 21 For test case C1 with
bm = 106 Pa,
pent,m = pent,f = 0, bm

bf
= 105:

cumulated number of Newton
iterations as a function of time
for the pressure-saturation and
variable switch formulations
(left), CFL in the matrix and in
the fractures as a function of
time obtained with the variable
switch formulation (right)

with an initial time step of 1 day and a maximum time step
fixed to 180 days.

The numerical behaviour of the simulations for both vari-
able switch and pressure-saturation formulations (for the
cases C1 and C3), and for the variable switch formula-
tion only (cases C2, C4 and C5), is exhibited in Tables 5,
6 and 7. These tables exhibit the number of successful
time steps, the number of time step chops, the number of
Newton iterations by successful time steps, the number of
GMRes iterations by Newton iteration, and the CPU time.
Table 5 shows that, for the small values of bm

bf
, the pressure-

saturation formulation performs slightly better than the vari-
able switch formulation. However the latter one turns out to
be more robust w.r.t. the value of the ratio bm

bf
both in terms

of number of Newton iterations and number of time step
chops. The difference in the numerical behaviour between
both is more striking in the case of the nonzero entry pres-
sure pent,m = 106 Pa (see Table 6). Again, in that case,
the pressure-saturation formulation fails except for very
small ratios bm

bf
. Table 7 shows the good performance of the

variable switch formulation even for the degenerate case C5

both in terms of time step chops and Newton iterations.

Figure 21 exhibits in case C1 for bm

bf
= 105 the cumu-

lated number of Newton iterations as a function of time
for the pressure-saturation and variable switch formulations.
Most of the time step failures occur for the pressure-
saturation formulation during the infill of the bottom frac-
tures. Figure 21 also plots, on the same test case, the CFL
numbers in the matrix and in the fractures as a function of
time defined as in the previous test case and obtained with
the variable switch formulation. It shows that the time steps
used in this simulation are from 1 to 3 orders of magnitude
larger than the ones obtained with an IMPES scheme in the
fractures.

Figure 20 exhibits the volume of oil in the faults as a
function of time for C1, C2, C4 and C5 test case solu-
tions obtained with the variable switch formulation. As
expected, larger contrasts of capillary pressures between
the matrix and the faults result in a larger amount of oil
in the fault up to the total pore volume and a quicker
infill. Figure 22 shows the propagation of the oil satura-
tion in the basin at times t = 360, 2880, 5400 days for the
C1 case with bm

bf
= 10 obtained with the variable switch

formulation.

Fig. 22 Oil saturation at
t = 360 days (left), t = 2880
days (middle) and t = 5400 at
the end (right) of simulation
obtained for the C1 case with
bm
bf

= 10 and the variable switch
formulation
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