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Received: 16 January 2017 / Accepted: 3 May 2017 / Published online: 18 May 2017
© Springer International Publishing Switzerland 2017

Abstract Pore-scale simulation is increasingly used to
study various phenomena that cannot be reproduced by
conventional Darcy-based simulators. Direct numerical sim-
ulation on systems larger than a few millimeters is too com-
putationally demanding. Pore network modeling (PNM) is
a practical way to study the flow at pore scale for a rep-
resentative elementary volume (REV) in a reasonable time.
Pore network models can be divided into dynamic and
quasi-static models. Dynamic models explicitly consider the
competition between capillary and viscous forces. As they
require pressure gradient calculation, they can be compu-
tationally expensive. Quasi-static models assume that the
flow is only driven by capillary forces and avoids the need
for pressure computations. Although they are very com-
putationally efficient, the usage of these models is limited
to capillary-dominated flow regimes obtained generally at
low capillary numbers. We propose to combine the two
approaches in an adaptive model, taking advantage of the
speed of a quasi-static algorithm when the flow is governed
by capillary forces, and that can simulate viscous effects
when they are significant. We propose a criterion to local-
ize the pressure solution in important areas to enhance the
computational efficiency of the algorithm even in viscous
dominated regimes. In this paper, we first describe our adap-
tive pore network model. Then, we show that using the
capillary number as a switching criterion is not good enough
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to characterize the domain where the flow is controlled by
capillary forces. Therefore, we present a newly defined cri-
terion to switch between the dynamic and quasi-static flow
regimes. Finally, we present several test cases where we
show that the adaptive algorithm can considerably improve
the computational performance of the pore network sim-
ulator without losing accuracy of the solution by treating
large regions of models with the quasi-static algorithm.
For capillary-dominated regimes, the observed speed-up can
reach 16,000 for one million-node 3D networks. For vis-
cous dominated regimes, the speed-up can reach 43 for one
million-node 3D networks.

Keywords PNM · Pore scale · Speed-up · Dynamic ·
Quasi-static · Adaptive

1 Introduction

Flow in porous media is generally governed by the compe-
tition between viscous and capillary forces. However, the
corresponding pore-scale phenomena determining the flow
regime are not explicitly taken into account by classical
reservoir simulators. As a consequence, reservoir simulators
are unable to reproduce certain flow behaviours observed
experimentally (Riaz et al. [16]). Pore network modelling
(PNM) is a simulation technique that implements physics at
the pore scale, and that can be used to understand the impact
of parameters such as wettability, water salinity or pore size
distribution on general flow behaviour. Pore network mod-
els of multiphase flow can be divided into dynamic and
quasi-static models. Dynamic models explicitly consider the
competition between capillary and viscous forces and there-
fore can simulate regimes such as viscous fingering and
stable displacement. However, they can be computationally
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expensive as they require computation of the pressure gradi-
ents. Dynamic models have been studied by several authors
in recent decades. Some have used a single-pressure formu-
lation where one pressure is assigned to a pore node regard-
less of its occupancy. In these models, either only a single
fluid was present at the pore body/throat or both fluids
could be present in the pore throat/body and an equivalent
fluid can be defined with equivalent viscosity (Lenormand
et al. [8]; McDougall and Sorbie [10]; Al-Gharbi [2]; Aghaei
and Piri [1]; Regaieg [12]). A more recent approach of
dynamic pore network models named two-pressure formu-
lation considers each pore body filled with both fluids with
each having each own pressure (Thompson [19]; Joekar-
Niasar and Hassanizadeh [5]). Khayrat [6] used the pore
network formulation of Joekar-Niasar and Hassanizadeh
[5] and extended it by developing a multiscale hybrid
approach in order to improve the computational efficiency
of his dynamic pore network simulator. At low flow rates,
the displacement tends to become dominated by capillary
forces and simple flow rules can be defined to simulate the
flow, thus avoiding pressure calculations (McDougall and
Sorbie [11]; Valvatne and Blunt [20]; Ryazanov et al. [17]).
These models are very efficient computationally; however,
their usage is limited to capillary-dominated flow regimes
obtained generally at low capillary numbers. The motiva-
tion for the current work is to overcome these shortcomings
by combining the best of dynamic and quasi-static pore net-
work models in a highly efficient adaptive pore network
simulator which is based upon a single-pressure dynamic
pore network model developed by Regaieg et al. [13] and
Regaieg [12]. This model has been used in viscous fingering
studies (Regaieg et al. [14]) and has been validated against
micromodel experiments on a pore-by-pore basis and by
comparing some macroscopic parameters such as satura-
tion, relative permeability and saturation profiles (Yang
et al. [21]).

We propose to develop an adaptive approach using
a single-pressure dynamic pore network model which
is faster than two-pressure simulators (Joekar-Niasar and
Hassanizadeh [5]), but our approach and our criteria can
also be applied to two-pressure pore network models. We
do not use a multiscale algorithm as in Khayrat [6], but our
method can be combined with a multiscale method for the
global pressure computations. Firstly, we divide our pore
network into coarse sub-networks that can be single phase,
quasi static or dynamic. Single-phase sub-networks are kept
unchanged as long as a two-phase interface is not entering
in contact with them. For the quasi-static sub-networks, we
do not need to compute the pressure and we can simulate
the flow using a cheap quasi-static algorithm. However, in
the dynamic sub-networks, we use a dynamic pore network
model to simulate viscous effects and this requires calculating

the pressure gradients in that sub-network. Secondly, we
localize the pressure solution in the important areas only
(i.e., at the interface between the fluids), making the code
faster even in viscous dominated flow regimes. This makes
the pressure matrices smaller. Finally, we need to perform
global pressure solutions at a specified frequency to check
if our choice of quasi-static and dynamic sub-networks is
still valid. Subsequently, we adaptively modify the nature of
the coarse sub-networks using a criterion based on the local
physics. Although we do not yet use a multiscale approach
to perform the global pressure solutions, we already observe
very encouraging speed-ups in our algorithm compared to
a fully dynamic code. In this paper, we first describe our
adaptive pore network model. Then, we show that using the
capillary number as a switching criterion is not reliable to
characterize the domain where the flow is controlled by cap-
illary forces. Therefore, we use a newly defined criterion
to determine the capillary-dominated domains where it is
relevant to use a quasi-static algorithm. Subsequently, we
present test cases where the new adaptive algorithm con-
siderably improves the computational performance of the
pore network simulator without losing the accuracy of the
solution. Finally, we report the speed-ups obtained with
the adaptive algorithm for networks of several sizes on our
implementation.

2 Description of the pore network model

2.1 Description of the dynamic algorithm

In this paper, we have used an improved version of the
dynamic pore network model introduced by Regaieg et al.
[12–15] to simulate fluid flow when viscous forces cannot
be neglected. Firstly, a digital rock is either loaded from
an extracted pore network (Dong and Blunt [4]) or gener-
ated stochastically from a given pore size distribution. The
simulator offers the possibility to model the empty space
in a rock either as an ensemble of pore bodies connected
by throats or as a network of interconnected channels.
We consider channel-only networks in all our simulations.
However, the same work can be done using networks with
more complex pore structure composed of pore bodies and
pore throats. Once the network is loaded/created, all pore
bodies and throats are filled with the defending phase (oil)
and injection of the invading phase (water) begins. The net-
work boundaries are considered closed, except for the inlet
and outlet. We consider a constant injection rate boundary
condition at the inlet where an injection channel is added
before the network in order to make the pressure homoge-
neous at the inlet. However, at the outlet, we consider a fixed
pressure boundary condition. The first step in simulating the
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network flow consists of solving the pressure field which is
the slowest step and generally accounts for about 90% of the
simulation time.

Having solved the global pressure field, the local flow
rates are computed from the pressure gradients and are used
to update the fluid saturations at the pore throats/bodies
situated across the interface between the fluids. We note
that the interface between the phases is considered sharp
and well defined and multiple pore throat and body inva-
sions are possible; however, only one pore body/throat can
be fully invaded during one time step. This feature makes
possible the simulation of simultaneous menisci movements
occurring at high rates (an important consideration when
modelling viscous instabilities). We note that the incom-
pressible nature of the fluids used in our simulations and
the fact that the pressure equations are based on mass con-
servation ensure that we inject the appropriate volume of
fluid at each time step. This procedure is then repeated until
reaching a stopping condition which can either be attaining
a fixed saturation value, reaching breakthrough, performing
a fixed number of steps or injecting a fixed volume of the
invading phase.

The two-phase flow within pore throats situated at the
interface separating wetting and nonwetting phases must
account for the capillary pressure drop across that interface.
Using the Washburn formula{

Qij = Gij

(
Pi − Pj + Pc

)
, if Pi − Pj > −Pc

Qij = 0, ifPi − Pj ≤ −Pc
(1)

where Qij is the dimensional flow rate from node i to j ,
Gij is the dimensional conductance from nodes i to j , Pi is
the pressure at node i and Pc is the capillary entry pressure
defined by the Young-Laplace law

Pc = 2σ cos θ

R
(2)

σ is the interfacial tension, θ is the contact angle (θ = 180◦
for a strongly oil wet system) and R is the radius of the pore
throat. It should be noted that the capillary entry pressure
is negative for an oil wet system. We note that the counter-
flow invasions are not considered in this model but nothing
prevents from including them in our adaptive approach.

The mass conservation equation for node 3 is written as
(Fig. 1)

Q32 + Q34 + Q35 + Q36 = 0 (3)

After writing the mass conservation for all the nodes of the
network, we can write the problem in matrix form

G × p = qb + Cs × qc (4)

where G is the matrix of conductances, p is the vector of
pressures, qb is the vector of source terms and qc is the

Fig. 1 A simple network of water injection (white) into oil (red)

vector of capillary pressure effects. More details about the
calculations can be found in Appendix.

2.2 Description of the adaptive algorithm

The first step consists in dividing the network into coarse
sub-networks. This is followed by a global pressure solu-
tion. This allows us to find the state of each sub-network.
There are three possible outcomes:

• Single-phase sub-network: If a single phase is present
in this sub-network;

• Quasi-static sub-network: If two phases are present in
this sub-network and the flow is dominated by capillary
forces. The flow can be simulated using a quasi-static
algorithm in this situation;

• Dynamic sub-network: If there are two phases in this
sub-network and the viscous forces are affecting the
flow. A dynamic algorithm is needed to simulate the
flow in this sub-network.

For the moment, the grid is not optimized. For instance, we
may have a situation where most of a sub-network is filled
with a single phase and the sub-network may be considered
dynamic. In the future, we may consider optimizing the grid
by dividing such sub-networks into several smaller entities
and thus having a smaller dynamic domain. The criterion
determining if the sub-network is dynamic or quasi static is
discussed in detail in the next section of this paper.

After identifying the state of the sub-networks, we com-
pute the localized pressure matrix using only the dynamic
sub-networks and considering the pressures from the global
solution as boundary conditions of our localized problem.
For instance, in the example of Figs. 2 and 3, the conduc-
tance matrix size will be 8 × 8 instead of 36 × 36 which
improves the computational performance. Subsequently, we
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Fig. 2 A schematic figure
showing a pore network where
water (white) is injected into oil
(red). The black lines show the
limits of each sub-network

adaptively modify the nature of the coarse sub-networks
using a criterion based on the local physics. In order to deter-
mine the new state of the sub-networks, a global pressure
solution is needed after few time steps and the frequency
of the global pressure solution is chosen by the user. More-
over, we make sure that the mass is conserved for every
quasi-static and dynamic sub-network. This is done by com-
puting the volume entering the quasi-static sub-networks
and updating their saturation using a quasi-static algorithm.

The algorithm can be summarized as follows:

1. The pore network is divided into sub-networks;
2. The pressure is solved globally;
3. The pressure is solved for the dynamic domain, and

the saturation is updated accordingly until reaching the
global pressure solution frequency;

4. The volumes entering the quasi-static sub-networks are
recorded, and the saturations are updated in order to
keep the mass conservation;

5. This is repeated.

3 Switching criterion

The interplay of the viscous and capillary forces completely
determines the flow regime. For instance, if the displacement

is dominated by capillary forces, capillary fingering regime
is obtained, whilst if the flow is dominated by viscous
forces, a stable displacement flow is obtained for favourable
viscosity ratios and viscous fingering regime is observed for
unfavourable viscosity ratios. Finding the correct domain of
capillary fingering regime where capillary forces dominate
the flow is crucial for our model in order to maximize the
usage of the quasi-static algorithm without losing the accu-
racy of the solution. Usually, the capillary number is used to
define the limits of the capillary fingering regime. The cap-
illary number is a measure of the viscous to capillary forces
balance and is usually defined as (Lake [7])

Nca = μinvadingV

σ
(5)

where μinvading is the viscosity of the invading fluid, V is the
Darcy velocity and σ is the interfacial tension between the
invading and defending fluids.

However, the classical definition of the capillary num-
ber has several limits because the physical justification for
defining the capillary number is often absent (Cense and
Berg [3]). This classic definition does not take into account
other parameters such as the contact angle value and the
viscosity ratio which have important effects on the force
balance between viscous and capillary forces. Moreover, it

Fig. 3 A schematic figure
showing a pore network with
sub-networks having different
states. The green colour shows
the dynamic sub-networks, the
red colour shows the
quasi-static sub-networks and
the yellow colour shows the
single-phase sub-networks
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is generally considered that capillary numbers of the order
of 10−6 correspond to capillary-dominated behaviour (Lake
[7]). However, Skauge et al. [18] have performed water-
flooding experiments in heavy oil where they observed a
viscous fingering phenomenon for capillary numbers of
the order of 10−9. Lenormand et al. [8] have proposed
that immiscible displacements in porous media with both
capillary and viscous effects can be characterized by two
dimensionless numbers; the capillary number, which is the
ratio of viscous forces to capillary forces; and the viscosity
ratio of the fluids. For certain values of these numbers, either
viscous or capillary forces dominate and determine the flow
regime. However, Zhang et al. [22] have performed a sim-
ilar study using different micromodels and created a phase
diagram delimiting the domain of each flow regime. The
boundaries of their phase diagram were different from the
ones obtained by Lenormand et al. [8]. Combining the cap-
illary number with the viscosity ratio information may not
even be enough to determine the balance of viscous and cap-
illary forces. Therefore, using a threshold capillary number
to choose whether viscous forces are important for the flow
is not practical as for each set of parameters (viscosity ratio,
wettability, etc.), the threshold capillary number is different.
In a recent work, Regaieg and Moncorge [15] have con-
sidered the macroscopic capillary number to determine the
capillary fingering domain. This criterion was efficient for
drainage simulations. But, it required a “magic” threshold
number to be chosen and was difficult to generalize to more
complicated wettability scenarios. When a global pressure
solution is performed, the pore bodies and pore throats that
are accessible to the invading phase are determined. If these
pores follow the filling order that a quasi-static algorithm
would predict in a particular sub-network, we assume that
this sub-network is quasi static. Otherwise, if the global
pressure solution shows that the pore throats and bodies
accessible dynamically in a sub-network are different from
what a quasi-static algorithm would predict, we consider
that the viscous forces are affecting the flow and we con-
sider that the sub-network is dynamic. For instance, after
a global pressure solution, the saturation is updated and
menisci advance in some pore throats/nodes. In the drainage
situation illustrated in Fig. 4a, the largest pore throat was
invaded dynamically. This follows the invasion order of a
quasi-static algorithm. This is a clear indication that the flow
is capillary dominated. Therefore, if such situation occurs
in a sub-network, it is considered quasi static. However, if
following a global pressure solution, a situation similar to
Fig. 4b, c is observed where the filling order is differ-
ent from the quasi-static order—in these particular exam-
ples, small pore throats were filled before larger ones in a
drainage scenario, the viscous forces are affecting the flow
and the sub-network is considered dynamic.

Step 1 Step 2

(a) 

(b) 

(c) 

Fig. 4 Filling for a drainage scenario in three different situations after
a global pressure solution. a Viscous forces do not affect the flow.
b Viscous forces affect the flow and change the order of the filling
sequence. c Viscous forces affect the flow, and multiple-pore filling is
observed into pore throats with different sizes

This criterion is general and automatic and does not need
magic threshold numbers to decide whether the viscous
forces are affecting the flow.

4 Simulations

We propose to test our adaptive pore network algorithm
using several viscosity ratios, injection rates and wettability
scenarios to study the accuracy and the robustness of our
switching criterion. We consider relatively small unstruc-
tured networks (200 × 200), and we compare the saturation
maps for the adaptive and the fully dynamic model. All
these simulations were performed using constant rate injec-
tion boundary conditions, 8 × 8 mesh and a global pressure
frequency of 50 – the global pressure is resolved after
50 invasions. Figures 5, 6, 7, 8, 9 and 10 show that for
all the cases, despite small minor differences, the adaptive
algorithm could reproduce similar saturation maps to the
ones obtained with the fully dynamic pore network sim-
ulator. These simulations cover a wide range of viscosity
ratios, injection rates and wettability scenarios, giving us
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(a) 

(b) 

Nca= 2.4E-10 Nca= 2.4E-09 Nca= 2.4E-08 Nca= 2.4E-07 Nca= 2.4E-06

Fig. 5 Comparison between the saturation maps of fully dynamic (a) and adaptive (b) constant rate injection simulations for several capillary
numbers, a viscosity ratio M = 1 and strongly oil wet conditions

(a) 

(b) 

Nca= 2.4E-10 Nca= 2.4E-09 Nca= 2.4E-08 Nca= 2.4E-07 Nca= 2.4E-06

Fig. 6 Comparison between the saturation maps of fully dynamic (a) and adaptive (b) constant rate injection simulations for several capillary
numbers, a viscosity ratio M = 100 and strongly oil wet conditions

(a) 

(b) 

Nca= 2.4E-10 Nca= 2.4E-09 Nca= 2.4E-08 Nca= 2.4E-07 Nca= 2.4E-06

Fig. 7 Comparison between the saturation maps of fully dynamic (a) and adaptive (b) constant rate injection simulations for several capillary
numbers, a viscosity ratio M = 7000 and strongly oil wet conditions
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(a) 

(b) 

Nca= 2.4E-10 Nca= 2.4E-09 Nca= 2.4E-08 Nca= 2.4E-07 Nca= 2.4E-06

Fig. 8 Comparison between the saturation maps of fully dynamic (a) and adaptive (.) constant rate injection simulations for several capillary
numbers, a viscosity ratio M = 1 and strongly water wet conditions

(a) 

(b) 

Nca= 2.4E-10 Nca= 2.4E-09 Nca= 2.4E-08 Nca= 2.4E-07 Nca= 2.4E-06

Fig. 9 Comparison between the saturation maps of fully dynamic (a) and adaptive (b) constant rate injection simulations for several capillary
numbers, a viscosity ratio M = 1 and fractional wet conditions

(a) 

(b) 

Nca= 2.4E-10 Nca= 2.4E-09 Nca= 2.4E-08 Nca= 2.4E-07 Nca= 2.4E-06

Fig. 10 Comparison between the saturation maps of fully dynamic (a) and adaptive (b) constant rate injection simulations for several capillary
numbers, a viscosity ratio M = 7000 and strongly water wet conditions
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confidence in our switching criterion. We note that at low
rates, the simulations are 100% quasi static. However, as the
rate increases, more dynamic regions are considered. This
is demonstrated in Fig. 11 where we observe the cumula-
tive dynamic sub-network percentage in the simulations of
Figs. 5b, 6b and 7b. These plots show the dynamic domain
evolution as a function of saturation. At high injection rates
and an unfavourable viscosity ratio, a viscous fingering
regime is observed and large areas of the network are not
swept as a result of the viscous instability. These areas
can be considered as single-phase sub-networks and are

removed from the pressure matrices result in faster simula-
tions. This can be confirmed by Fig. 11 that the dynamic
percentage in this regime never exceeded 40% in the consid-
ered cases. At high injection rates and a favourable viscosity
ratio, although the sweep efficiency was good, the adaptive
algorithm was very efficient and the dynamic percentage
was lower than 20% (Fig. 11). Actually, mainly the sub-
networks at the saturation front were dynamic in this regime
and the sub-networks behind the front were quasi-static.
This shows that, for all the flow regimes, the adaptive
algorithm was very efficient and the dynamic domain was

(c)(b)(a)

Nca= 2.4E-10 

Nca= 2.4E-09 

Nca= 2.4E-08 

Nca= 2.4E-07 

Nca= 2.4E-06 

Fig. 11 Comparison between the cumulative dynamic sub-network
percentage in the constant rate injection simulations of Figs. 7b, 8b and
9b. These curves show the dynamic domain evolution as a function of

invading phase saturation for viscosity ratios M = 1 (a), M = 100 (b)
and M = 7000 (c) and for several capillary numbers
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smaller than 40% of the network in all the cases. We note
here that the dynamic domain can become smaller by opti-
mizing the grid meshing, an exercise that was not done in
these simulations. We point out that our algorithm does not
take into account the interaction between the dynamic and
the non-dynamic domains between global pressure solu-
tions. For all the considered cases, this assumption proved to
be reasonable. However, if more challenging situations are
encountered, this may not be the case anymore. A possible
way to solve this is to increase the global pressure fre-
quency which leads to a better agreement with the dynamic
simulations as shown in Fig. 12. For the moment, finding
the appropriate global frequency is not automatic. However,
we are currently working on implementing an automatic
criterion to detect if global pressure solutions are needed.
Although we only presented test cases with constant rate
boundary, we have verified that our algorithm can also be
used on constant pressure simulations.

The simulations performed on small networks showed
that the adaptive algorithm gives better computational per-
formance than the fully dynamic pore network model whilst
keeping a good accuracy. Still, the real potential of the algo-
rithm can be mainly realized for simulations performed on
larger networks. Therefore, we perform a series of simu-
lations for different network sizes in order to quantify the
speed-ups realized using the adaptive algorithm. Whilst the
speed-ups that we observe are obviously dependent on the
implementation, they provide an idea about the potential of
the approach. The numerical parameters used in these simu-
lations are reported in Table 1. First, we consider a capillary
fingering case where the enhancement of the computational
performance is realized by avoiding solving the pressure and
using a quasi-static algorithm. As we can see in Fig. 13, better
computational performance was achieved. For instance, for

(a) 

(b) 

Nca= 2.4E-10 Nca= 2.4E-09

Fig. 12 Comparison between the saturation maps of fully dynamic
(a) and adaptive (b) simulations of Fig. 10 with higher global pressure
frequencies of 10 (Nca = 2.4E−10) and 25 (Nca = 2.4E−09)

Table 1 Numerical parameters of the simulations of Figs. 11, 12, 13,
14, 15 and 16

Network size Mesh Global frequency

200 × 200 10 × 10 100
500 × 500 25 × 25 250
1000 × 1000 50 × 50 500
35 × 35 × 35 3 × 3 × 3 100
50 × 50 × 50 5 × 5 × 5 250
100 × 100 × 100 10 × 10 × 10 500

a 43,000-node 3D pore network, the adaptive algorithm was
560 times faster, and for one million-node 3D network, the
adaptive algorithm was 16,000 times faster than the fully
dynamic algorithm. We also notice that the speed improve-
ment was greater in 3D networks, which was expected as
solving the pressure in 3D topology is more complex than
that in 2D. Subsequently, we consider a viscous fingering
regime where large areas are left unswept and thus can be
considered as single phase. Therefore, large parts of the
network can be removed from the pressure calculations.
Although these simulations were viscous dominated, better
computational efficiency was achieved using the adaptive
algorithm. We observed in 2D simulations a speed-up of 4
for a 43,000-node 2D network and 15 for a one million-
node network (Fig. 14). Three-dimensional simulations of
viscous fingering regime showed speed-ups of 5.0 for a
43,000-node network and 30 for a one million-node net-
work. Finally, we consider a stable displacement regime
where the dynamic calculations were mainly performed at
the saturation front and avoided in the already swept and
single-phase areas. Therefore, the pressure matrices become
smaller and speed-ups are observed. For 2D simulations, a
speed-up of 4.5 for a 43,000-node 2D network and 17 for
a one million-node network (Fig. 15). Three-dimensional
simulations of stable displacement regime showed speed-
ups of 6.0 for a 43,000-node network and 43 for a one
million-node network. We note that our code does not con-
sider the ganglia mobilization phenomenon for the moment.
This means that if we would like to simulate such phe-
nomenon, more dynamic regions should be considered even
behind the waterfront.

As these running times may depend on the specificities
of the implementation, in addition to reporting the speed-ups
of Figs. 13, 14 and 15, we also report the percentage of
dynamic sub-networks during the simulations in Figs. 16,
17 and 18. For all the cases, the dynamic domain is less than
40% of the total domain. Moreover, it is observed that the
larger the network, the smaller the dynamic domains. Most
dynamic regions are situated at the injection front, and these
regions represent a smaller fraction of the total system for
larger and larger networks. As a consequence, the larger the
network, the more efficient is the adaptive algorithm.
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Fig. 13 Speed-up of the adaptive algorithm compared to the fully
dynamic one for capillary-dominated constant rate injection simula-
tions performed at different network sizes with a viscosity ratioM = 1.
In these simulations, 2D and 3D networks were used and the running
times were compared at invading phase saturation of 5%
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Fig. 14 Speed-up of the adaptive algorithm compared to the fully
dynamic one for viscous fingering constant rate injection simulations
performed at different network sizes with a viscosity ratio M = 7000.
In these simulations, 2D and 3D networks were used and the running
times were compared at invading phase saturation of 5%
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Fig. 15 Speed-up of the adaptive algorithm compared to the fully
dynamic one for stable displacement regime performed at different
network sizes with a viscosity ratioM = 1. In these constant rate injec-
tion simulations, 2D and 3D networks were used and the running times
were compared at invading phase saturation of 5%
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Fig. 16 Percentage of dynamic sub-networks for capillary-dominated
simulations performed at different network sizes with a viscosity ratio
M = 1. In these simulations, 2D and 3D networks were used and the
running times were compared at invading phase saturation of 5%. As
the test cases are 100% quasi static, the percentage of dynamic sub-
networks stays at 0%
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Fig. 17 Percentage of dynamic sub-networks for viscous fingering
simulations performed at different network sizes with a viscosity ratio
M = 7000. In these simulations, 2D and 3D networks were used and
the running times were compared at invading phase saturation of 5%
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Fig. 18 Percentage of dynamic sub-networks for stable displacement
simulations performed at different network sizes with a viscosity ratio
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5 Conclusions

In this paper, an adaptive pore network model has been
developed and applied to a range of simulations with dif-
ferent viscosity ratios and wettability scenarios. We com-
bine quasi-static and dynamic pore network models in an
adaptive algorithm that takes advantage of the speed of
quasi-static algorithms when flow is governed by capil-
lary forces, and that can simulate the viscous effects when
they are important. The network was divided into several
sub-networks, and the state of the force balance in each
sub-network was determined using a newly defined crite-
rion. Furthermore, for viscous dominated simulations, this
algorithm localizes the pressure solution within the invaded
zone, thus removing single-phase regions from the pressure
matrix. This has resulted in improvements of the computa-
tional efficiency of our code for all the flow regimes. This
algorithm can be used for single-pressure and two-pressure
algorithms and can also be combined with a multiscale
approach to solve the global pressure systems. This work
made possible the simulation of large systems of tens of cen-
timeters. In Loubens et al. [9], we have simulated viscous
fingering in 2D systems as large as 3× 90 cm and compared
them to X-ray images of the corresponding experiments.
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Appendix

In the example of Fig. 1, after writing the dimensional mass
conservation equation for node 3 (contributions from nodes
2, 4, 5 and 6), we have

G32 (P3 − P2) + G34 (P3 − P4) + G35

(
P3 − P5 + 2σ cos θ35

R35

)

+G36

(
P3 − P6 + 2σ cos θ36

R36

)
= 0 (6)

where

• Ps is the pressure scale;
• Ls is the length scale;

• Gs is the conductance scale taken as Gs = L3
S

PsTs
(where

Ts is a time scale always taken equal to 1);
• Rij is the radius of the throat relating nodes i and j .

After dividing (1) by GsPs , we obtain the non-
dimensional form:

(g32 + g34 + g35 + g36)p3 − g32p2 − g34p4 − g35p5 − g36p6

= Csg35

(
−cos θ35

r35

)
+ Csg36

(
−cos θ36

r36

)
(7)

where gij is the non-dimensional conductance between
nodes i and j , pi is the non-dimensional pressure of node i,
Cs is the capillary scale defined as Cs = 2σ

PsLs
and rij is the

non-dimensional radius of the throat between nodes i and j .
Note that the RHS of Eq. 2 includes a term representing

the effect of the capillary entry pressure, making the matrix
form of the problem as G × p = qb + Cs × qc. For the
example of Fig. 1, the pressure matrix and vectors become

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

g1
−g12
0
0
0
0

−g12
g2

−g23
−g24
0
0

0
−g23
g3

−g34
−g35
−g36

0
−g24
−g34
g4
0
0

0
0

−g35
0
g5

−g56

0
0

−g36
0

−g56
g6

⎞
⎟⎟⎟⎟⎟⎟⎠

, p

=

⎛
⎜⎜⎜⎜⎜⎜⎝

p1

p2

p3

p4

p5

p6

⎞
⎟⎟⎟⎟⎟⎟⎠
, qb =

⎛
⎜⎜⎜⎜⎜⎜⎝

q01
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, and

qc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

g35 ×
(
− cos θ35

r35

)
+ g36 ×

(
− cos θ36

r36

)
0

g35 ×
(

cosθ35
r35

)
g36 ×

(
cosθ36

r36

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where we have defined

⎛
⎜⎜⎜⎜⎜⎜⎝

g1
g2
g3
g4
g5
g6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

g12
g12 + g23 + g24
g23 + g34 + g35 + g36
g24 + g34
g35 + g56 + g57
g56 + g36

⎞
⎟⎟⎟⎟⎟⎟⎠

and

• qb and qc are respectively the vector of source terms and
the vector of capillary effects at fluid-fluid interfaces.

• q01 represents the fixed injection rate at the inlet
(between nodes 0 and 1).
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