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Abstract Improved and enhanced oil recovery methods
require sophisticated simulation tools to predict the injected
flow pass together with the chemical reactions inside it. One
approach is application of higher-order numerical schemes
to avoid excessive numerical diffusion that is very typical
for transport processes. In this work, we provide a first step
towards higher-order schemes applicable on general poly-
hedral and corner-point grids typically used in reservoir
simulation. We compare three possible approaches of linear
reconstruction and slope limiting techniques on a variety of
different meshes in two and three spatial dimensions and
discuss advantages and disadvantages.
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1 Introduction

In a typical oil reservoir, more than half of the oil remains
trapped in the reservoir after abandonment. That is why gov-
ernment agencies and companies are interested in improved
(enhanced) oil recovery (IOR and EOR) methods that can
increase oil production significantly. The injection of gas,
”smart water,” polymers, etc. in the reservoir is promis-
ing technique in the family of IOR methods. In order to
implement these techniques successfully, companies need
a simulator that can predict the injected flow pass together
with the chemical reactions inside it. Presence of chemical
reactions in the flow makes numerical approximations and
modeling a challenging task. The typically used low-order
methods suffer from excessive numerical diffusion that
leads to smeared fronts and incorrect species concentrations
(cf. [19] and references therein).

One suitable way to reduce the numerical diffusion in
transport phenomena modeling is provided by higher-order
numerical methods. Over the last decades, a lot of different
types of higher-order numerical methods were developed
and studied, e.g., finite volume, finite element, and discon-
tinuous Galerkin schemes (cf. [28] and references therein).
These methods are widely used not only in subsurface appli-
cation [1, 13, 27] but also in global climate modeling [17],
or computational fluid dynamics applications [18].

In reservoir simulation, traditionally, finite volume meth-
ods are favored over finite element methods due to con-
servation properties, simplicity, and robustness on general
polyhedral meshes, which are of great help in resolving
complicated geological structures. Higher-order approaches
for finite volume schemes originate with early works
from the 1970s conducted by [23], which gained further
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developed in many works, e.g., [5, 6, 15, 16, 22]. However,
such techniques are not available in standard reservoir sim-
ulators to the extent necessary for IOR and EOR methods.

In this paper, we discuss three (dimension-independent)
approaches to implement second-order finite volume
schemes for tracer transport on general polyhedral meshes.
These approaches are compared on a series of different
meshes in two and three space dimensions. The implemen-
tation is based on the DUNE framework [2, 3, 9] and is
available under an open-source license.

2 Problem formulation

Finite volume schemes were developed for first-order
hyperbolic conservation laws of the form

∂tu + ∇ · f (x, t, u) = 0, (1)

in some domain � ⊂ R
d , subject to initial values and

suitable boundary conditions.
Let T be a computational grid of the domain� ⊂ R

d and
denote by ∂T a tessellation of the boundary ∂�. Following
the DUNE concept, we consider intersections of an element
E ∈ T either with an adjacent element or with the domain
boundary:

I(E) := {
(E, F )

∣∣ F ∈ T ∪ ∂T , dimE ∩ F = d − 1
}
.

For each intersection i = (E, F ), we denote by νi the
unique outer normal to E on E ∩ F . By abuse of notation,
we will also use the symbol i to denote E ∩ F . By I(T ) :=⋃

E∈T I(E), we denote the set of all intersections.
Let us assume that we are given cell averages (u0E)E∈T

for the initial data. Then, a classical first-order finite volume
scheme for Eq. 1 reads as follows:

un+1
E = un

E − �t

|E|
∑

i∈I(E)

gi

(
tn, un

i,−, un
i,+

)
. (2)

Here, the numerical flux gi is an approximation of the flux
through intersection i at a given time, i.e.,

gi(t, ui,−, ui,+) ≈
∫

i

f (x, t, u) · νi dx,

which we require to be consistent, conservative, and mono-
tone. For the definition of these terms, we refer to standard
text books on finite volume schemes, such as [21] which
also describes the Enquist-Osher flux used for numerical
computations carried out in this paper.

The values un
i,± are defined as follows:

un
i,− = un

E and un
i,+ =

{
un

E′ i = (E, E′) ∈ I(T ),

bn
i (un

E) i = (E, ∂�) ∈ I(T ),

where we require a mapping bn
i : U → U for each boundary

intersection i = (E, F ) ∈ I(T ), F ∈ ∂T , and each time tn.

We seek to compute the function u : R
d → U ⊂ R

r ,
where U is the set of states and r is the dimension of the
range space. Without loss of generality, we assume r = 1
but all results and implementations hold for r > 1.

3 Second-order finite volume schemes

For the considered conservation law, a variety of higher-
order schemes is available and has been studied intensively
throughout the past two decades. In this paper, we consider
slope limiting techniques applied to linear reconstructions
introduced in early works such as [23] and also found in
standard textbooks such as [12, 21, 24, 29]. In particular,
we compare three different approaches for reconstruction of
linear functions on arbitrary polyhedral meshes.

For a higher-order finite volume scheme based on recon-
structions, we want to compute a linear reconstruction for
each element LE , which, in its turn, is then used to compute
the numerical fluxes in Eq. 2,

un+1
E = un

E − �t

|E|
∑

i∈I(E)

gi

(
tn, Ln

i,−, Ln
i,+

)
, (3)

where Ln
i,− and Ln

i,+ are the evaluations of the linear recon-
structions on the intersections barycenter on element E and
its neighbor Ei , respectively. As described in [8], the linear
functions are defined as follows:

LE(x) = uE + ∇LE · (x − wE), (4)

where wE is the barycenter of E and ∇LE ∈ R
r×d is

the gradient of LE that needs to be computed. The com-
putation of ∇LE only relies on the cell and its neighbor
barycenter, the volume, intersection normals at the center of
the intersection, and the solution u on the element and its
surrounding neighbors. In the following, we compare three
different techniques to compute a suitable reconstruction of
the linear function LE .

3.1 Least squares reconstruction

A simple and straightforward approach to obtain a linear
reconstruction is to compute a least squares approximation
(see, e.g., [12]). More precisely, we seek a reconstruction
LE satisfying (4) and

LE(wE′) = uE′ ∀(E, E′) ∈ I(E). (5)

As this system is overdetermined even on simplex grid, we
only require condition (5) to be fulfilled in a least squares
sense. Let us assume that the neighbors {E′|(E, E′) ∈
I(E)} are enumerated as {E1, . . . , ENE

} with NE being
the number of neighbors of cell E. Then, the solution to
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the above problem can be readily computed by solving the
linear d × d system

(AT
E AE)∇LE = AT

EbE,

AE := (wEl
− wE)l=1,...,NE

∈ R
NE×d ,

bE := (uEl
− uE)l=1,...,NE

∈ R
NE .

To avoid oscillations, we apply a limiter function to the
reconstruction (4), i.e., for l = 1, . . . , NE we compute

ml :=
⎧
⎨

⎩

0 if gl dl ≤ 0,
dl/gl if gl dl > 0 and |gl | > |dl |,
1 otherwise.

(6)

where

gl = ∇LE · (wEl
− wE) and dl := uEl

− uE.

Notice that g = AE ∇LE and d = bE in our case. The
limited reconstruction is then obtained by

L̃E(x) = uE + min
l=1,...,NE

ml ∇LE · (x − wE). (7)

The function in Eq. 6 is often referred to asMinmod limiter.
Other limiter functions such as van Leer or Superbee can
be applied seamlessly. A comprehensive list of limiter func-
tions is provided in standard textbooks such as [12, 21, 24,
29].

3.2 Selective linear reconstruction

Another approach to compute linear reconstructions was
introduced in [10] and improved in [30] to work with
conforming triangular meshes. In [8], this approach was
generalized to work with non-conforming meshes in two
and three space dimensions.

A set of possible linear reconstruction can be obtained by
using the cell’s value and d (the spatial dimension) disjoint
neighboring cell values, where each linear reconstruction
has to fulfill the conditions in Eq. 5. Let j denote the set of d
neighboring elements which have been selected to compute
Lj . Figure 1b shows an example where neighbors 1 and 2
have been used to compute Lj with j := {1, 2}. The set
of all possible combinations is denoted by YE and contains

NE !
d!(NE−d)! combinations, where NE is the number of neigh-
bors. For all j ∈ YE , we need to solve a d × d linear system
of the form

∇Lj = A−1
j bj ,

Ajl
:= (wEjl

− wE), ∀l = 1, ..., d,

bjl
:= uEjl

− uE, ∀l = 1, ..., d.

Since the size of Ajl
does only depend on the spatial dimen-

sion d, the inverse can be easily computed using Cramer’s
rule even if we consider systems of equations. As described
in [8], special treatment is necessary in case the rows of
Ajl

are linearly dependent, which, for example, occurs on

Fig. 1 Stencils for two of the considered reconstruction methods. In
the least squares approach (a), all neighbors are considered for recon-
struction and limiting, whereas in the selective approach (b), all pairs
of d disjoint neighbors are considered

Cartesian grids. For polygonal and polyhedral grids in par-
ticular, another problem arises. When an element has many
neighbors, the number of linear functions to compute grows
super linear as described earlier. In the example from Fig. 1,
one gets 21 possible linear functions to compute. This num-
ber is even bigger in our 3D examples where cells with 8
neighbors and thus 56 combinations occur.

In comparison to the above-presented least squares
approach in order to apply limiter function, we now consider
only a subset of all neighbors, e.g., the function values at
neighboring cells j̃ := {3, 4, 5, 6, 7}. For each linear recon-
struction j ∈ YE , we apply a limiter using the cell values of
cells contained in j̃ . For each cell i ∈ j̃ , we compute

gj,i := ∇Lj · (wEi
− wE) and dj,i := uEi

− uE,

mj,i :=
⎧
⎨

⎩

0 if gj,i di < 0,
di/gj,i if gj,i di > 0 and |gj,i | > |di |,
1 otherwise.

(8)

which then yields a limited reconstruction L̃j by selecting
the minimal value of all mj,i ,

L̃j (x) := uE + min
i∈j̃

mj,i∇Lj · (x − wE).

From the set of admissible linear reconstructions L̃j , j ∈
YE , we select the one with the steepest gradient.

3.3 Optimization-based reconstruction

A more recent approach by May and Berger [7, 26] con-
siders reconstruction and limitation as a single step. Their
goal is a reconstruction LE satisfying (4) and approximat-
ing condition (5) on the neighboring values in an l1-optimal
sense, i.e., LE minimizes

J (L) :=
NE∑

i=1

∣∣uEi
− L(wEi

)
∣∣.
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Fig. 2 Results for the solid body rotation problem at Tfinal = 1.5708

To avoid oscillations, we additionally enforce the mono-
tonicity condition

min{uE, uEi
} ≤ LE(wEi

) ≤ max{uE, uEi
}. (9)

for i = 1, . . . , NE . It can be shown that the gradient
∇LE of the reconstruction LE minimizing J (L) subject to
Eqs. 4 and 9 is given as the solution of the following linear
programming problem:

maximize
NE∑

l=1

sign(dl) (wEl
− wE) · ∇LE,

subject to 0 ≤ sign(dl) (wEl
− wE) · ∇LE ≤ |dl |.

This problem can be solved by a variant of the classical
simplex algorithm detailed in the appendix of [26]. Our ini-
tial guess is ∇LE = 0, as the constant reconstruction must
be admissible. Moreover, we need to select d initially active
constraints from the set

0 ≤ sign(dl) (wEl
− wE) · ∇LE l = 1, . . . , NE.

Notice that for the method to work reliably, care must be
taken to choose d constraints with linear independent wEl

−
wE . While usually it is not an issue on fully unstructured
grids, it naturally arises for Cartesian or extruded grids.

4 Modifications for implicit time stepping

Both reconstructions work fine with implicit Runge-Kutta
methods based on Jacobian-free Newton-Krylov methods,
which are, for example, described in [20]. The following
modifications to the procedures above have to be applied.
For both schemes, the limiter functions is only to be com-
puted once per Runge-Kutta step and all applications of the
operator during Newton and Krylov solves have to use the
same m to scale the gradient of the linear reconstruction on
one element. For the selective reconstruction scheme, the
selected combination of neighboring elements to compute
the linear reconstruction is also fixed during Newton and
Krylov solves.

5 Implementation

The implementation of the finite volume scheme and the
reconstruction is based on the DUNE framework (cf. [2,
3]). This work uses the DUNE release 2.4 [4]. The finite
volume scheme and the reconstructions are openly available

Fig. 3 Grids used for the 2D
test cases. The triangular grid
series is part of Benchmark on
Discretization Schemes for
Anisotropic Diffusion Problems
on General Grids [14]. The
polygonal grid is the dual grid
of the triangular grid
constructed by connecting the
cell barycenters with the edge
midpoints



Comput Geosci (2017) 21:909–919 913

Fig. 4 Convergence and CPU times for the solid body rotation test
case on a series of triangular (top) and polygonal (bottom) grids at
Tfinal = 1.5708

in the DUNE module polygonal-fv.1 Furthermore, the
code also uses the discretization module DUNE-FEM [9].
The PolygonGrid.2 used for the 2D computations is a
standalone implementation. The PolyhedralGrid used
for the 3D computations is part of the Open Porous Media
(OPM) Initiative.3

6 Numerical simulation results and convergence
study

In the following, we compare presented approaches to
reconstruction on a variety of meshes in two and three spa-
tial dimensions. For selected meshes, we will also compare
different limiter functions. Finally, we show that the pre-
sented approaches work on grids that are typically used in
reservoir simulation.

6.1 Solid body rotation in 2D

As a first test, we consider a standard benchmark for higher-
order finite volume schemes, the so-called solid body rota-
tion, see, e.g., [25]. In this test case, three different shapes
are rotating at a constant velocity around the center of the
unit square [0, 1]2 ⊂ R

2.
More precisely, we consider a transport problem, i.e.,

f (x, u) = u v(x), where the velocity field is given by
v(x) = ( 12 − x2, x1 − 1

2 ). For the initial data, we consider
a slotted cylinder at c1 = ( 12 ,

3
4 )

T , a cone at c2 = ( 12 ,
1
4 )

T ,
and a hump at c3 = ( 14 ,

1
2 )

T , each with a radius of r = 1
15 ,

i.e.,

u0(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|x − c1| < r and
1,

(|x1 − c1,1| ≥ 1
40 or

x2 ≥ c1,2 + 1
10

)
,

1 − 1
r
|x − c2| |x − c2| < r,

1
4 + 1

4 cos
(

π
r

|x − c3|
)
, |x − c3| < r,

0, otherwise.

All boundary values are assumed to be zero.
We compute the solution of the solid body rotation for

a quarter rotation until Tfinal = 1.5708. The results for first
(1st) and second (2nd) order schemes are shown in Fig. 2.
Typical grids used for the selection of 2D test cases are
shown in Fig. 3.

In Fig. 4 (top), we present the results for variety of dif-
ferent schemes on a series of triangular meshes. All second-
order schemes work well, the selected reconstruction

1https://gitlab.dune-project.org/robert.kloefkorn/polygonal-fv.git.
2https://gitlab.dune-project.org/martin.nolte/dune-polygongrid.
3http://www.opm-project.org. patched version at https://github.com/
dr-robertk

https://gitlab.dune-project.org/robert.kloefkorn/polygonal-fv.git
https://gitlab.dune-project.org/martin.nolte/dune-polygongrid
http://www.opm-project.org
https://github.com/dr-robertk
https://github.com/dr-robertk
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Fig. 5 Solutions of the Buckley-Leverett problem on a polygonal grid.
The plot shows the solution for a fixed y-coordinate, y = 0.5. The first-
order scheme and the selected reconstruction with Superbee limiter
deviate significantly from the shock position

being the best in terms of accuracy and accuracy vs. run
time. The least squares approach (LS) provides the weakest
second-order scheme followed by the optimization scheme
(LP) which in this case produces results very similar to the
selected reconstruction (R) using a Minmod limiter func-
tion. The best approaches is provided using the R scheme
and either a Superbee or van Leer limiter. It is very clear
that all second-order approaches outperform the first-order
scheme by orders of magnitude in terms of accuracy vs. run
time. A similar behavior is discovered for the schemes when
run on the series of polygonal meshes in Fig. 4 (bottom). In
contrast to the triangular meshes, the LS scheme with Super-
bee limiter performs better than the R scheme withMinmod.
Overall, the R scheme with Van Leer or Superbee and the
optimization scheme (LP) are the best choices in both cases.

6.2 Buckley-Leverett problem in 2D

In this section, we test the proposed schemes for non-linear
scalar problem. More precisely, we consider a Buckley-
Leverett type problem, i.e., f (x, u) = fBL(u) v(x), where

fBL(u) =
⎧
⎨

⎩

1 if u > 1,
0 if u < 0,

u2/(u2 + 1
2 (1 − u)2) otherwise.

Fig. 6 Convergence and CPU times for the Buckley-Leverett test
case on a series of triangular (top) and polygonal (bottom) grids at
Tfinal = 0.45
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Fig. 7 Grids used for the 3D
test cases. Both grid series are
part of the 3D Benchmark on
Discretization Schemes for
Anisotropic Diffusion Problems
on General Grids [11]

and the velocity is simply v(x) = (1, 0)T . This is a simpli-
fied model for water-oil displacement in a reservoir. Again,
we consider the domain [0, 1]2 ⊂ R

2.
Initially, the shock is located at x = 0. The shock, which

travels to the right, is followed by a rarefaction wave. For
this problem, a quasi-exact solution can be computed (see
for example [24, Chapter 4.7], which allows us to study
the convergence behavior of the schemes). We also use
the quasi-exact solution to set the boundary values for all
schemes.

In Fig. 5, the plot of the solution along a line with fixed y-
coordinate y = 0.5 is presented. Due to the non-linearity of
the problem, a self-sharpening effect of the front is present.
However, the first-order scheme does not correctly predict
the position of the front. This is cured by most of the second-
order schemes, except for the selected reconstruction with
the Superbee limiter, which seems to lag a bit behind.

In Fig. 6, a comparison of the different schemes in terms
of accuracy is presented. Again, the second-order schemes
outperform the first-order scheme in terms of accuracy and
in terms of run time to accuracy. Similar to the linear test
case, the selected reconstruction (R) and the optimization
problem (LP) perform best. For the R scheme, it seems that
the Van Leer limiter suits this problem better. To reach the
accuracy provided by the best schemes on a moderately fine
grid, one would have to use a very fine grid with the low-
order scheme resulting in two orders of magnitude more
runtime. This behavior is consistently reproduced for the
different meshes for this test case.

6.3 Transport in 3D

In 3D, we test a standard first-order and the three recon-
struction approaches on two different grids—tetrahedral
and hexagonal prisms grids. Both grids are part of the 3D
Benchmark on Discretization Schemes for Anisotropic Dif-
fusion Problems on General Grids presented in [11]. The

coarsest version of these grids is depicted in Fig. 7. The
solid body rotation test is not suitable for the considered
3D meshes since the coarse resolution does not allow to
resolve the structures correctly. All the simulations are per-
formed on a unit cube that is initially empty. A tracer
enters the cube trough the side x = 0 with the veloc-
ity v = (1, 0, 0)T . The simulation stops at the final time
Tfinal = 0.5.

In Fig. 8 (top), we present the convergence of the differ-
ent schemes and the CPU times for the 3D transport test case
on tetrahedral grids. All schemes behave as expected except
for the optimization-based reconstruction which failed to
converge for the finer tetrahedral grids. This might be due to
need of picking suitable start conditions for the linear pro-
gramming. For the other schemes, the behavior is similar as
for the transport problem in 2D on triangular meshes. This is
not the case for the results on polyhedral meshes which are
presented in the lower part of Fig. 8. We discover that, due to
the large number of neighbors a grid cell can have, the least
squares approach (LS) does not yield a higher-order scheme
on these meshes. The selected reconstruction (R) and the
optimization-based reconstruction (LP) are able to provide
a higher-order alternative in this case. Again, LP and the R
scheme with Minmod limiter produce similar results. The
best scheme in this case is the R scheme with the van Leer
limiter in both accuracy and run time to accuracy followed
by the LP scheme. The first-order scheme cannot match the
resolution of the second-order schemes on the coarsest grids
when running on the finest grid. This means that for these
more complicated grids the truly second schemes clearly
outperform the low-order schemes by orders of magnitude.

6.4 Buckley-Leverett in 3D

In this section, we repeat the test case from Section 6.2 on
the series of tetrahedral and polyhedral meshes representing
the three-dimensional unit cube.
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Fig. 8 Convergence and CPU times for the 3D transport test case on a
series of tetrahedral (top) and polyhedral (bottom) grids at Tfinal = 0.5

Fig. 9 Convergence and CPU times for the 3D Buckley-Leverett test
case on a series of tetrahedral (top) and polyhedral (bottom) grids at
Tfinal = 0.45
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Fig. 10 Comparison of the
first- and second-order R
(Minmod) scheme for a realistic
reservoir geometry

In Fig. 9 (top), we present the convergence of the differ-
ent schemes and the CPU times. The selected reconstruction
scheme (R) and the optimization scheme (LP) provide the
best mesh size to error ratio. In terms of performance,
these schemes also provide the best accuracy for CPU
time ratio. As expected, the LP scheme coincides with
the selected reconstruction using a Minmod limiter func-
tion. Using the van Leer or Superbee limiter, the selected
reconstruction yields slightly better results. Overall, the
second-order schemes provide an excellent alternative com-
pared to the standard first-order scheme. For example, to
achieve an error of 0.3, the selected reconstruction scheme
uses about 1 s of CPU time, whereas the first-order scheme
can only provide this on five-times finer grid using a CPU
time of around 50 s. When compared on the same grid,
the least squares approach is about twice more expensive
compared to the first-order scheme, whereas the selected
reconstruction is about three times more expensive keeping
in mind that the resulting error is much better.

In Fig. 9 (bottom), we present the convergence of the dif-
ferent schemes and the CPU times for the Buckley-Leverett
test case on polyhedral grids. As for the 3D transport case,
we see that the least squares approach (LS) does not yield
a higher-order scheme on these meshes due to the many
constraints the cell can have (many neighboring cells) and,

thus, results in a first-order scheme. The selected recon-
struction (R) and the optimization problem (LP) are again
able to provide a higher-order alternative in this case. Again,
LP and the R scheme with Minmod limiter produce similar
results. The best scheme in this case is the R scheme with
the van Leer limiter in both accuracy and run time to accu-
racy followed by the LP scheme. The first-order scheme
run on the finest mesh cannot match the resolution of the
second-order schemes when run on the coarsest grid. This
means that for these more complicated grids the truly sec-
ond schemes clearly outperform the low-order schemes by
orders of magnitude.

6.5 Reservoir grids

We use the tracer test from the previous section to show
the effectiveness of the proposed reconstructions on more
complicated reservoir geometries. The tracer enters trough
the side x = 0 with the velocity v = (1, 0, 0)T .
Since the geometry is smaller, the simulation stops at the
final time Tfinal = 0.05. In Fig. 10, the results for the
first- and the second-order R scheme are presented. Both
schemes shows good performance on this more complicated
geological representation. However, there is a clear advan-
tage of the higher-order scheme on this grid.
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7 Conclusions and future work

We presented a reconstruction based approach for second-
order finite volume schemes on polygonal and polyhedral
meshes. A comparison between a simple least squares
approach, a more sophisticated selective reconstruction
approach, and an optimization-based reconstruction tech-
nique has been carried out on 2D Cartesian, triangular
and polygonal meshes as well as 3D tetrahedral meshes
and prism meshes with hexagonal basis. While all second-
order schemes show consistently better results on triangular
meshes, the potentially large number of neighbors of polyg-
onal and polyhedral meshes adds to the complexity of the
problem.

The simplicity of the least squares approach leads to an
efficient reconstruction, but tends to overeager limitation.
The selective reconstruction, on the other hand, provides
better accuracy at the expense of around 50% more CPU
time consumption over the least squares approach. The
reconstruction based on linear programming provides a
good compromise between the two approaches in terms
of complexity and accuracy. It is, however, limited to
Minmod-type reconstructions and the selective reconstruc-
tion scheme yields better accuracy when used with a van
Leer or Superbee limiter.

The presented results also show that both the selective
reconstruction scheme and the LP reconstruction work on
grids typically used in reservoir simulation.

Future work will focus on further improvement of the
selective reconstruction scheme to for avoidance of the
super linear dependence on the number of neighbors. In
addition, we will focus on the integration of the second-
order schemes in the open-source framework Open Porous
Media (OPM).
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Ohlberger, M., Sander, O.: A generic grid interface for parallel and
adaptive scientific computing. Part I: abstract framework. Com-
puting 82(2–3), 103–119 (2008). doi:10.1007/s00607-008-0003-x

4. Blatt, M., Burchardt, A., Dedner, A., Engwer, C., Fahlke, J.,
Flemisch, B., Gersbacher, C., Gräser, C., Gruber, F., Grüninger,
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