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Abstract Minimizing a sum of squared data mismatches is
a key ingredient in many assisted history matching (AHM)
workflows. A novel approach is developed to efficiently
find multiple local minima of a data mismatch objective
function, by performing Gauss-Newton (GN) minimizations
concurrently while sharing information between dispersed
regions in the reduced parameter space dynamically. To
start, a large number of different initial parameter values
(i.e., model realizations) are randomly generated and are
used as initial search points and base-cases for each sub-
sequent optimization. Predicted data for all realizations are
obtained by simulating these search points concurrently, and
relevant simulation results for all successful simulation jobs
are recorded in a training data set. A local quadratic model
around each base-case is constructed using the GN formula-
tion, where the required sensitivity matrix is approximated
by linear regression of nondegenerated points, collected in
the training data set, that are closest to the given base-
case. A new search point for each base-case is generated by
minimizing the local quadratic approximate model within
a trust region, and the training data set is updated accord-
ingly once the simulation job corresponding to each search
point is successfully completed. The base-cases are updated
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iteratively if their corresponding search points improve the
data mismatch. Finally, each base-case will converge to a
local minimum in the region of attraction of the initial base-
case. The proposed approach is applied to different test
problems with uncertain parameters being limited to hun-
dreds or fewer. Most local minima of these test problems are
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1 Introduction

1.1 Formulating history matching within the Bayesian
framework

Input properties of a reservoir simulation model such as
permeability and porosity, potentially in each gridblock,
are uncertain parameters that have to be adjusted to honor
production data using an automatic (or assisted) history
matching (AHM) technique [51, 52]. Generally, a history
matching problem can be formulated within the Bayesian
framework [52, 64, 65], where the posterior probability
density function (PDF) of uncertain model parameters (x),
conditioned to production data (dobs), can be expressed as

P (x|dobs) = cP (dobs|x) P (x) . (1)

In Eq. 1, P(x) is the prior PDF of uncertain model param-
eters (x), P (dobs|x) is the likelihood of dobs for given x,
and c = 1/P (dobs)is a normalization constant. Here, x is an
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n−dimensional vector that contains all uncertainty parame-
ters to be tuned during the process of history matching, and
dobs is an Nd−dimensional vector that contains all observed
data. If we assume that the prior PDF of x is Gaussian with
a mean xprior and covariance matrix CM and the measure-
ment errors for dobs are also Gaussian with zero mean and
covariance matrix CD , then the posterior PDF of Eq. 1 can
be rewritten as

P (x|dobs) = c exp [−f (x)] ,

where f (x) is an objective function defined as

f (x) = 1

2

(
x − xprior

)T
C−1

M

(
x − xprior

)

+1

2
(y(x) − dobs)

T C−1
D (y(x) − dobs) . (2)

In Eq. 2, y (x) represents the simulated data responses from
a reservoir model with parameters x.

To quantify the impact of uncertainty on simulated fore-
cast results, the posterior probability distribution of Eq.
1 has to be properly sampled in AHM workflows. One
approach is to compute the (global) maximum a posteri-
ori (MAP) estimate by minimizing the objective function
defined in Eq. 2 and then generate an ensemble of approx-
imate conditional realizations by linearization of the reser-
voir responses around the MAP estimate [2, 15]. More
recently, we proposed to use all (local) MAP points and
apply linearization locally such that the posterior is approx-
imated by a “Gaussian mixture model” (GMM), i.e., a
superposition of Gaussian distributions [27].

Alternatively, the randomized maximum likelihood
(RML) method [37, 49] can be applied to generate approxi-
mate conditional realizations by minimizing a large number
of perturbed objective functions,
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In Eq. 3, x
(i)
uc ∼ N

[
xprior, CM

]
and d

(i)
uc ∼ N[dobs, CD]

for i = 1, 2, . . . , Ne, where Ne is the number of realizations
to be generated.

1.2 Gauss-Newton formulation

As discussed by Christie et al. [13], inverse problems in
which the data response is (highly) nonlinear may have
nonunique best-match solutions. However, most optimiza-
tion methods, especially local search methods, are designed
for finding one optimum. Even stochastic optimization
methods, which may have a larger chance of finding a global
optimum than local search methods, will converge to a sin-
gle optimum. Obviously, it is very challenging to design a
generic method to find a large number of (local) optima of

an arbitrary objective function. Since our ultimate objective
is to develop efficient AHM and uncertainty quantification
workflows, we shall limit ourselves to least-squares-type
objective functions of the form shown in Eq. 2. The Gauss-
Newton (GN) formulation, either with line search methods
such as in the Levenberg-Marquardt (LM) method or with
trust region search methods, is tailored for this type of
problems. However, the only straightforward way to find
multiple minima with these standard (or traditional) GN
methods is to repeat the optimization with a large number
of different starting or initial values. In this paper, we will
develop a much more efficient strategy.

A brief summary of the GN formulation is provided here
for clarity. Let J (x) be the sensitivity matrix evaluated at
x. The l-th row and m-th column entry of the sensitivity
matrix is defined as the partial derivative of the l-th data (for
l = 1,2,..., Nd) with respect to the m-th (m = 1,2,..., n)

parameter, i.e.,

Jl,m = ∂yl

∂xm

. (4)

The gradient of the objective function defined in Eqs. 2 and
3 can be expressed as

∇f (x) = C−1
M [x − xprior] + J T (x)C−1

D (y(x) − dobs). (5)

∇f
(i)
RML(x) = C−1

M [x − x(i)
uc ] + J T (x)C−1

D (y(x) − d(i)
uc ). (6)

If the second- and higher-order derivatives of the data
responses y(x) are neglected, the Hessian of the objec-
tive function can be approximated by the following GN
formulation:

H(x) = C−1
M + J T (x)C−1

D J (x). (7)

1.3 Review of derivative-free optimization methods

It has been shown that gradient-based quasi-Newton opti-
mization algorithms are quite efficient and robust for large-
scale history matching problems [22, 23] and production
optimization problems [40, 41] when the adjoint method
is available to compute gradients or sensitivities [5, 8, 39].
Unfortunately, most commercial reservoir simulators do not
have an adjoint method implementation to compute gra-
dients and sensitivities. In these situations, derivative-free
optimization methods that do not require analytical evalua-
tion of the gradient of the objective function or the sensitiv-
ity of a datum are necessary. Recently, different derivative-
free optimization methods suitable for history matching
approaches have been developed. These derivative-free opti-
mization (DFO) algorithms can be roughly divided into
three classes: stochastic global search, direct search, and
model-based local search.

Stochastic global search methods include genetic algo-
rithms [32], simulated annealing [36], particle swarming
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[35], etc. By introducing probabilistic factors in the search
process that encourage global exploration, global search
methods may escape from a local optimum. Because our
major objective is to efficiently find multiple local minima
of the objective function, global stochastic search algo-
rithms do not fit our purpose and will not be discussed in this
paper; interested researchers may see Ouenes and Bhagavan
[53], Cheng et al. [12], Hajizadeh et al. [31], and Mohamed
et al. [42, 43], for references.

Direct search methods include the simplex method [46],
direct pattern search [29, 34], and the mesh adaptive direct
search [3]. Because direct search methods do not use the
smooth features of an objective function to guide the search
direction, they generally converge quite slowly. As bench-
marked by More and Wild [45], model-based local search
methods, e.g., NEWUOA developed by Powell [55], per-
form much better than direct search methods for problems
with smooth objective functions. However, as shown by
Gao et al. [26], direct search performs more robustly than
model-based methods for nonsmooth problems, especially
when numerical noise is present. A hybrid method that
integrates direct pattern search with quasi-Newton and/or
Gauss-Newton methods using trust region search strategy
was proposed by Gao et al. [26].

Model-based DFO local search algorithms exploit the
smooth features of the objective function by constructing an
analytical model to approximate the actual objective func-
tion in the neighbourhood of the best solution found in the
current iteration. Although other types of local analytical
models are also feasible, e.g., radial-basis function [66], a
local quadratic model is the most popular model [54, 55, 66,
67]. The Hessian matrix and the gradient of the quadratic
model are approximated by interpolating or fitting values
of the objective function at different points that have been
evaluated in previous iterations. In addition to the aforemen-
tioned interpolation methods, the gradient of the objective
function can also be estimated by stochastic approaches,
such as the stochastic noise reaction method proposed by
Okano and Koda [48], the simultaneous perturbation and
stochastic approximation (SPSA) method [24, 38, 62, 67],
and the stochastic simplex approximate gradient (StoSAG)
method [21], or by ensemble-based approaches such as the
EnOpt method [10]. As shown by Do and Reynolds [16],
different algorithms to estimate the gradient such as the
simplex, preconditioned simplex, and EnOpt algorithms are
theoretically connected, and they can be derived directly
from a modified SPSA-type algorithm.

Once a local quadratic model is constructed, a new search
point in the next iteration can be generated using either a
line search strategy or a trust region search strategy.

In a line search strategy, a search direction is first selected
and then a proper step size along the search direction is
determined. If the Hessian of the quadratic model, H(k), is

positive definite, the search direction can be determined by

p = − [
H(k)

]−1 ∇f (k), where ∇f (k) is the gradient of the
objective function evaluated at the current solution x(k). A
proper step size can then be determined by a backtracking
method or quadratic fitting method. Generally, the step size
has to satisfy the Wolfe conditions to guarantee its conver-
gence; see Nocedal and Wright [47] for more details about
line search.

In a trust region search strategy, a new search point is
generated by finding the global minimum of the quadratic
model within a given ball-shaped trust region by solving the
following trust region subproblem:

min q(k)(s) =
{
1

2
sT H(k)s + sT ∇f (k) + f (k) s.t. ‖s‖2

≤ �(k)
}

. (8)

In Eq. 8, �(k) is the radius of the ball-shaped trust region.
Different methods have been developed to solve the trust
region subproblem (TRS) defined in Eq. 8. Direct trust
region solvers are based on the Cholesky decomposi-
tion of the Hessian matrix; see More and Sorensen [44]
and Gould et al. [28]. Iterative trust region solvers apply
conjugate-gradient, subspace minimization [19] or Krylov-
based methods [58, 61].

As indicated by Eq. 4 through Eq. 7, for history match-
ing problems, a quadratic model can be constructed using
the GN formulation to approximate the objective function
defined in Eq. 2 or 3 by linear approximation of simulated
data responses. Similarly, the sensitivity matrix J (k) at x(k)

can be estimated. Coats et al. [14] proposed a method to
estimate the sensitivity matrix by fitting training data points
using a least squares method. The training data points were
randomly sampled within the lower and upper bounds for
each parameter. Gao et al. [26] applied a two-sided finite
difference equation to estimate the sensitivity matrix.

As benchmarked by Gao et al. [26], the GN trust region
search method together with a linear approximation of
responses using the approximated sensitivity matrix per-
forms much better than other quasi-Newton counterparts.
Zhou and Zhang [69] observed similar results, and their
benchmarking results also indicate that the GN method per-
forms the best, whereas the LM method performs the worst,
when applied to least squares problems. Even worse, line
search methods are not robust for problems with numer-
ical noise [26]. Because numerical noise is unavoidable
when reservoir responses are predicted from running reser-
voir simulations, we believe that the GN trust region search
method is the preferred choice for optimization methods in
the context of history matching.

Ensemble-based methods such as the ensemble Kalman
filter (EnKF), the ensemble smoother (ES), and some
of their variants (iterative EnKF or ES, localization, and
clustering) have been proved quite efficient for linear and
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near-linear history matching problems; see Gu and Oliver
[30], Evensen [20], Smith [60], Aanonsen et al. [1], Stordal
et al. [63], Chen and Oliver [9], Elsheikh et al. [18], and
Reynolds et al. [56], to mention only a few of them. As
pointed out by Reynolds [57], these ensemble-based meth-
ods can be regarded as a combination of local GN or LM
line search optimizer with a RML sampler, where the sen-
sitivity matrix required in the GN formulation of Eq. 7 is
estimated by averaging over all realizations obtained in the
current iteration. Reynolds [57] also showed that the degree
of freedom (DOF) of ensemble-based methods is reduced
to Ne − 1. Therefore, ensemble-based approaches can also
be regarded as model-based DFO methods combined with a
specifically designed built-in parameter reduction technique.

As addressed by different authors [18, 60], using the
globally averaged sensitivity matrix (GSM) is the major
cause that results in failure of convergence for ensemble-
based approaches. Different approaches, such as space
localizations [63] or clustering [18, 60], have been devel-
oped to improve the performance of ensemble-based meth-
ods, especially for problems with multiple modes. Smith
[60] proposed to “use cluster analysis to identify a GMM
describing the forecast ensemble” and integrated it with
EnKF. Elsheikh et al. [18] proposed a stochastic ensemble
method and augmented it with k-means clustering tech-
nique, where the model update equation “resembles the
update step of EnKF.”

In addition to the ensemble Kalman filter, particle fil-
ters, a genetic-type sampling approach, can also be applied
to generate a set of particles to represent the posterior
distribution [17, 59].

Generation of correct, unbiased samples of the posterior
PDF defined in Eq. 1 and quantifying uncertainty associated
with model parameters and production forecasts are very
important and very interesting topics, which are beyond the
scope of this paper. The focus of this paper will be devel-
oping a new, parallel DFO method to find multiple local
minima (or local MAP estimates) of the objective function
defined in Eq. 1.

1.4 New strategies

Computational cost (in terms of the number of function
evaluations, or equivalently, the number of simulation runs)
required for a traditional model-based DFO algorithm to
converge increases at least linearly with the number of
uncertain parameters. Therefore, DFO algorithms become
impractical when the number of parameters that have to be
optimized becomes very large. As will become clear below,
most of the required function evaluations (i.e., simula-
tions) can be performed concurrently; hence, the maximum
manageable number of parameters depends on the size of
the available compute cluster. When a large compute cluster

is available, the number of manageable parameters may be
O(1000). If the history matching problem requires tuning
some reservoir or other properties (e.g., permeability, poros-
ity, facies type) in each gridblock, some type of parameter
reduction techniques has to be applied upfront. For exam-
ple, the pluri-PCA method [7] can be applied to reduce the
number of uncertain parameters for a real history match-
ing problem. Even after reducing the number of parameters
to a few hundreds, the extremely high computational cost
makes it impractical to apply the traditional DFO meth-
ods to find multiple local minima of the objective function
defined in Eq. 2 or to generate multiple RML realizations
by minimizing the objective function defined in Eq. 3.

A major cause for high computational cost of traditional
model-based DFO algorithms is the lack of information
sharing among different optimization tasks starting from
different initial guesses. Most of the available model-based
DFO algorithms find multiple local optimum independently,
i.e., useful information (e.g., simulation results) from one
optimization task is not shared with others. In this paper, we
develop effective information sharing techniques applica-
ble for model-based DFO algorithms. If optimization tasks
that start from different initial guesses finally converge to
the same local optimum, then simulation results obtained
from one task are very useful for another one, especially,
when these points of model parameters used for simula-
tions get closer to each other. If results of different tasks
that will finally converge to the same local optimum can
be dynamically shared with each other during the process
of history matching, fewer number of function evaluations
(or equivalently, simulation jobs) should be used for con-
vergence when compared with the independently executed
history matching tasks in which no information is shared.

The idea of sharing or communicating information as
part of a Gauss-Newton optimization has been applied to
node localization in wireless sensor networks. Cheng et
al. [11] proposed distributed algorithms for sensor local-
ization based on computation of the Gauss-Newton step
for a local cost function and selection of a proper step
size with line search. Zhao and Nehorai [68] studied the
distributed implementation of the Gauss-Newton method
in the maximum likelihood estimation in wireless sensor
networks. Bejar et al. [4] presented a distributed consensus-
based Gauss-Newton method for localization in ad hoc
networks. Although the optimization method proposed in
this paper has the same name, “distributed Gauss-Newton,”
as proposed by Cheng et al. [11], the methodology and
the theoretical formulation presented in this paper are com-
pletely different from those presented in their papers and
other related papers [4, 11, 68].

We should note that the information sharing mecha-
nism of these distributed Gauss-Newton (DGN) approaches
applied to node localization in wireless sensor networks is
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similar to, but also substantially different from, the infor-
mation sharing mechanism among different realizations of
ensemble-based methods [1, 9, 20, 56]. The similarity is that
the same sensitivity matrix is estimated from and used for
different sensors or realizations. In ensemble-based meth-
ods, all realizations assume the same sensitivity matrix. In
contrast, in DGN approaches, only sensors that are close
enough to each other (but not all of them) use the same
sensitivity matrix.

Inspired by the ideas of information communication and
sharing among different nodes, a novel distributed, paral-
lelized Gauss-Newton (DGN) optimization method is devel-
oped in this paper to find the multiple local minima of an
objective function that can be written as a sum of squares.
A summary of the main idea for the proposed method is
as follows: Ne different initial starting points are randomly
generated and they are used as the Ne initial base-cases
and initial search points. Production data for the Ne search
points in each iteration are predicted by running reservoir
simulation jobs concurrently, e.g., by submitting them to
Ne nodes in high-performance computer (HPC) clusters.
The relevant simulation results for all successful simulation
jobs are recorded in a training data set. Based on simula-
tion results collected in the training data set, the sensitivity
matrix for each base-case is estimated by linear regression
of n nondegenerated points in the training data set that are
closest to the given base-case. A local quadratic model for
each base-case is then constructed using the Gauss-Newton
formulation of Eq. 5 through Eq. 7. A new searching point
for each base-case is generated by minimizing the local
quadratic model within a reasonably small trust region. If
the searching point improves the objective function, then it
is accepted as the new base-case and the trust region size
will be updated (it may be expanded). If not, the base-
case remains unchanged, but the trust region size will be
reduced. By updating the local quadratic models and the
base-cases iteratively, different local minima will be found
if the number of initial base-cases is chosen large enough.

The proposed DGN history matching approach also has
some similarity to iterative ensemble-based methods, espe-
cially when applied to generate multiple RML samples
using the objective function defined in Eq. 3. For example,
they both apply parameter reduction techniques to reduce
the degree of freedom and computational cost, share infor-
mation among different realizations to compute the sensitiv-
ity matrix, use the GN formulation in Eq. 5 through Eq. 7 to
build an approximate quadratic model of the actual objec-
tive function, and apply a local search optimization method
to find a local minimum of the objective function. However,
the parameter reduction methods, the information sharing
mechanisms, and the optimization algorithms implemented
in the DGN approach are quite different from those of
ensemble-based approaches. Further in-depth analysis and
detailed discussions about their similarity and difference
and a thorough performance comparison or benchmark-
ing study are beyond the scope of this paper and will be
presented elsewhere in the future.

The remainder of this paper is organized as follows: More
details about the proposed DGN methodology are described
in Section 2. The DGN method is validated with synthetic
toy problems in Section 3. In Section 4, the proposed DGN
method is applied to finding multiple MAP points in a real
history matching problem. Finally, some conclusions are
drawn in Section 5, based on our theoretical formulations
and numerical tests.

2 Methodology

2.1 Illustration of the basic ideas using a 2-D example

Assume that Ne initial starting points (or base-cases) are
generated, e.g., randomly, as shown by open circles in
Fig. 1a, where Ne = 10; alternatively, the initial points
could be distributed according to a space-filling design, for
a maximally even spread in parameter space. The sensitivity
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Fig. 1 Illustration of sharing information between different base-cases. a Starting locations of 10 base-cases. b A zoom-in around the three
starting points of P1, P2, and P3; the arrows indicate how these base-cases are updated
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matrix at one of the Ne base-cases, e.g., at P1 in Fig. 1a,
can be estimated by regression techniques. The simplest
approach is based on linear regression.

In the first iteration, there are Ne available points in
the training data set. Among all available points, the lin-
ear regression through the three points that are closest to
P1, as shown by P1, P2, and P3 in Fig. 1a, yields the
best estimate of the sensitivity matrix. Using the estimated
sensitivity matrix, an approximate quadratic model of the
objective function is constructed using the Gauss-Newton
formulation of Eq. 5 through Eq. 7. A trial searching point is
generated by minimizing the approximate quadratic model
within a given trust region; see the point Q1 in Fig. 1b as
an example. If Q1 improves the actual objective function,
then the corresponding base-case in the current iteration
(P1) is replaced by Q1. Otherwise, the corresponding base-
case remains unchanged, but the trust region size for the
same base-case will be reduced (e.g., cut by half) in the
next iteration.

In the second iteration, Ne additional points become
available (assuming simulation jobs for all trial searching
points are successfully completed), as shown by solid black
dots in Fig. 1b. If the objective function evaluated at Q1 is
smaller than P1, then Q1 becomes the new base-case. Tak-
ing Q1 as an example, the two points that are closest to Q1

in the second iteration are P2 and Q3; see Fig. 1b. Because
these three new points in the second iteration, Q1, P2, and
Q3, are closer to each other than the old three points in
the first iteration, P1, P2, and P3, it is expected that the
new sensitivity matrix estimated in the second iteration is
more accurate, and therefore, minimizing the corresponding
quadratic model will probably generate a better searching
point in the next iteration. The same procedure is repeated
until suitable convergence criteria are satisfied, and a local
minimum of the objective function is found. More detailed
discussions on how to update the training data set, how
to estimate the sensitivity matrix through linear regression,
how to construct an approximate quadratic model, and how
to generate a new searching point will be presented in the
following subsections.

2.2 Share available information through dynamically
updating the training data set

Before turning to the details of our DGN method, we
would like to contrast the information sharing mechanisms
sketched above and illustrated in Fig. 1 with the information
sharing employed in iterative ensemble-based approaches.
For iterative ensemble-based methods, a global sensitivity
matrix is estimated by averaging over all data points that
have been evaluated in the current iteration, and it is applied
to all realizations. For example, in the second iteration, it
is estimated by averaging over Q1, Q2, Q3, etc. Such a

globally estimated sensitivity matrix may become inaccu-
rate either because the underlying points are spread too far
away from each other or because they are located in dif-
ferent local basins. Obviously, using the same sensitivity
matrix for all realizations is not a good choice. Although
the clustered iterative ensemble-based method proposed by
Elsheikh et al. [18] uses the same sensitivity matrix for
realizations that are in the same cluster, the sensitivity is
estimated using some of those realizations obtained in the
current iteration, and simulation results evaluated in the pre-
vious iterations are not reused. Theoretically, a better choice
is to estimate the sensitivity matrix locally for each realiza-
tion using all available points that have been evaluated in the
current iteration and previous iterations, but not limited to
the current iteration only. For example, the sensitivity matrix
estimated by fitting the three points Q1, P2, and Q3 that are
closest to Q1 will definitely yield a more accurate estima-
tion of the sensitivity matrix for Q1. To reuse the point P2,
we have to record the simulation results of P2.

A training data set is designed to store all relevant
simulation results of all successfully completed simulation
jobs. In each iteration, the training data set is dynamically
updated by adding results of newly completed simulation
jobs. Before starting the iterations, the training data set is
empty because no simulation jobs have been successfully
completed yet. During subsequent iterations, any successful
simulation job is added to the training data set if it satisfies
the following requirement: the distance between the new
point and any point in the training data set must be greater
than a given minimum distance dmin to prevent from gen-
erating identical points in the training data set. When all
parameters are normalized by their standard deviations, we
recommend using 0.001 to 0.00001 for dmin. We use 0.0001
for the test problems in this paper. Additionally, the size of
the training data set is also limited by imposing a maximum
number of training data NT max to prevent out-of-memory
issues. For simplicity, we assume in this paper that NT max

is a very large number and that the number of training data
needed to reach convergence is always smaller than NT max.

We note in passing that a new training point may also be
a point that has been simulated successfully for other tasks,
e.g., in an experimental design or sensitivity analysis study,
or points generated by other kinds of history matching algo-
rithms or workflows. When relevant simulation results are
available, they can be used as additional points in the train-
ing data set for the first iteration. In this way, all relevant
simulation results can be (re)used to speed up the process of
finding multiple MAP points.

A point in the training data set (or equivalently, a success-
ful simulation job) has the following three attributes: a set
of values of each unknown parameter x = [x1, x2, ..., xn]T,
where n is the number of unknown parameters, a value of
the objective function f (x), and a set of values of each
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predicted datum y(x) = [y1(x), y2(x), ..., yNd
(x)]T, where

Nd is the number of observed data to be matched.
Let NT ≤ NT,max denote the number of points in the

training data set that have been run in the previous iterations.
If the training data set is not empty (NT > 0), it will be
updated using the following algorithm for given n, Nd , dmin

and a successful simulation job that used parameters x:

(1) Calculate the distance between the new point (x) and
all training points in the current training data set,

d(l) =
∥∥∥x − x

(l)
T

∥∥∥
2
for l = 1, 2, ..., NT ;

(2) If Min
{
d(l), l = 1, 2, ..., NT

}
> dmin, then update the

training data set by

a) Increase NT by 1;
b) Record the value of each unknown parameter,

x
(NT )
T ,j = xj for j = 1, 2, ..., n;

c) Record the value of the objective function,
f

(NT )
T = f (x);

d) Record the value of each predicted datum,
y

(NT )
T ,j = yj (x) for j = 1, 2, ..., Nd ;

e) Record the distances between the new point and
all other points in the training data set, d

(NT ,l)
T =

d(l) for l = 1, 2, ..., NT − 1.

Here, the subscript “T ” denotes “training,” the subscript
“j” denotes the j -th element of a vector, and the super-
script “(l)” indicates the l-th point in the training data set.
Throughout this paper, a 2-norm is used to determine the
distance between any two points or the norm of a vector.
To mitigate the effect of different scales or units for dif-
ferent parameters, all parameters are normalized by their
standard deviations.

If the training data set is empty (NT = 0), it can be
initialized by executing steps (a) through (e) in the algo-
rithm discussed above. The recorded distances d

(NT ,l)
T will

be used to select the n nondegenerated points that are used
to determine the local quadratic model for each base-case.

As illustrated in the training data set updating algo-
rithm, the values of nuncertain parameters, the value of
the objective function, the values of Nd predicted data,
and the NT − 1distances for each successfully completed
simulation case will be stored in the training data set.
After parameter reduction, n is generally much smaller than
the number of gridblocks of a reservoir simulation model.
Therefore, the memory used by the training data set is neg-
ligible when compared to the memory used by performing a
reservoir simulation.

2.3 Approximate the sensitivity matrix using a linear
regression approach

When analytical derivatives computed with the adjoint
method are unavailable, we have to estimate the sensitivity

matrix. A natural approach is to estimate the partial deriva-
tives that feed into the sensitivity matrix using linear regres-
sion. We assume that the Nd data Y = [y1, y2, ..., yNd

]T
have been evaluated at n sufficiently well separated points,
where n is the number of uncertain parameters. In this paper,
these n points are chosen as those nondegenerated points
that are closest to a given point x(∗). The Nd data evaluated
at the j -th point x(j) = [x(j)

1 , x
(j)

2 , ..., x
(j)
n ]T are given by

Y (j) = [y(j)

1 , y
(j)

2 , ..., y
(j)
Nd

]T . Then, the sensitivity matrix

evaluated at the given point x(∗) = [x(∗)
1 , x

(∗)
2 , ..., x

(∗)
n ]T can

be approximated by solving the following linear regression
equation:

⎡

⎢⎢⎢
⎣

Dx
(1)
1 , Dx

(1)
2 , ..., Dx

(1)
n

Dx
(2)
1 , Dx

(2)
2 , ..., Dx

(2)
n

.......................

Dx
(n)
1 , Dx

(n)
2 , ..., Dx

(n)
n

⎤

⎥⎥⎥
⎦

⎡

⎢⎢
⎣

J1,1, J2,1, ... , JNd,1

J1,2, J2,2, ... , JNd,2

...........................

J1,n, J2,n, ... , JNd,n

⎤

⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

Dy
(1)
1 , Dy

(1)
2 , ... , Dy

(1)
Nd

Dy
(2)
1 , Dy

(2)
2 , ... , Dy

(2)
Nd

..........................

Dy
(n)
1 , Dy

(n)
2 , ... , Dy

(n)
Nd

⎤

⎥⎥⎥
⎦

, (9)

where Dx(j) = [x(j)

1 − x
(∗)
1 , x

(j)

2 − x
(∗)
2 , ..., x

(j)
n − x

(∗)
n ]T

and Dy(j) = [y(j)

1 − y
(∗)
1 , y

(j)

2 − y
(∗)
2 , ..., y

(j)
Nd

− y
(∗)
Nd

]T .
Equation 9 can be rewritten in matrix format as DT

x J T =
DT

y .
If the regression matrix Dx has rank n and is not ill-

conditioned, Eq. 9 has a unique and robust solution. How-
ever, it is not straightforward to ensure that the n shift
vectors are linearly independent. In this paper, we shall
assume that for NT > n the space spanned by the NT train-
ing data points has a dimension of at least n, i.e., there are
at least n points in the training set that are linearly inde-
pendent, such that it is possible to find n independent shift
vectors from the NT training data points.

2.4 Update each realization through minimizing a local
quadratic model within a trust region

If we assume that the regression method has been successful
in determining the local sensitivity matrix J (i,k), where the
superscript “(i, k)” represents the i-th base-case in the k-th
iteration, then a local quadratic model can be built for the
i-th base-case [26]:

q(i,k)(s) = f (i,k) + sT ∇f (i,k) + 1

2
sT H(i,k)s. (10)

In Eq. 10, f (i,k), ∇f (i,k)
, and H(i,k) are the value, the

gradient, and the Hessian of the objective function f (x)

evaluated at x(i,k).
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In each iteration k > 1, a new search point, x(i,k) + s(i),
for the i-th base-case is generated by solving the trust region
subproblem [28, 44]:

min q(i,k)(s) =
{
1

2
sTH(i,k)s + sT ∇f (i,k) + f (i,k) s.t. ‖s‖2

≤ �(i,k)
}

. (11)

The i-th base-case in the following iteration is then updated
as x(i,k+1) = x(i,k) + s(i) if f (x(i,k) + s(i)) < f (x(i,k)).
If no improvement is found, the i-th base-case remains
unchanged, but the radius of the trust region �(i,k) shrinks,
and the trial step computation is repeated. To avoid jumping
from one basin to another basin, the trust region size �(i,k)

is also limited by a maximum allowable value. The ratio of
actual to predicted decrease is computed as

ρ(i,k) = f (i,k) − f (x(i,k) + s(i))

f (i,k) − q(i,k)(s(i))
. (12)

The basic trust region algorithm can be summarized as
follows:

Given k = 0, i, �(i,0) > 0, x(i,0), 0 < ηv < 1, 0 < ηs <

ηv < 1, γe > 1, and 0 < γd < 1, until convergence do:

(1) Build the local model q(i,k)(s) to approximate
f (x(i,k) + s);

(2) Solve the trust-region subproblem in Eq. 11 and com-
pute ρ(i,k) with Eq. 12;

(3) If ρ(i,k) ≥ ηv (very successful) and
∥∥s(i)

∥∥ > 0.5�(i,k),
set x(i,k+1) = x(i,k) + s(i) and �(i,k+1) = γe�

(i,k);
else if ρ(i,k) ≥ ηs (successful) or ρ(i,k) ≥ ηv but∥∥s(i)

∥∥ ≤ 0.5�(i,k), set x(i,k+1) = x(i,k) + s(i) and
�(i,k+1) = �(i,k); else (unsuccessful), set x(i,k+1) =
x(i,k) and �(i,k+1) = γd�(i,k).

(4) Increase k by 1.

As recommended by Gao et al. [26], the range for the
initial trust region size (�(i,0)) is 0.1 to 0.5, if all uncertain
parameters are normalized by their standard deviations.

2.5 The distributed Gauss-Newton optimization
algorithm

The distributed Gauss-Newton optimization algorithm can
now be summarized as:

Given k = 0, NT = 0, n, Nd , Ne, dmin; for i =
1, 2, ..., Ne, initialize �(i,0) > 0 and repeat the following
steps until convergence:

(1) Generate Ne different base-cases x(i,0) (for i =
1, 2, ..., Ne) when k = 0, by randomly sampling
them from either their prior probability distribution or
uniform distribution.

(2) Evaluate the value of the objective function f (x) and
the simulated data y(x) at the i-th base-case when

k = 0, or at the search point of the i-th base-case when
k > 0;

(3) Initialize (when NT = 0) or update (when NT > 0)
the training data set;

(4) Update the trust region size �(i,k) and the i-th base-
case when k > 0, using the basic trust region algorithm
discussed above;

(5) Evaluate the sensitivity matrix of y(x) at the i-th base-
case;

(6) Construct the quadratic model q(i,k)(s);
(7) Generate a search point by solving the trust-region

subproblem in Eq. 11 using the quadratic model
q(i,k)(s) with trust region size of �(i,k);

(8) Increase k by 1.

2.6 Convergence criteria

Some convergence criteria have to be applied to terminate
the distributed Gauss-Newton optimization algorithm. For
gradient-based optimization algorithms, the following two
convergence criteria are conventionally applied: (1) The
relative improvement of the objective function in two suc-
cessive iterations (denoted by ε1) should be smaller than a
user-specified threshold (ε1 ≤ εcr1), and (2) the normal-
ized norm of the gradient (denoted by ε2) is smaller than
a user-specified threshold (ε2 ≤ εcr2). Here, the normal-
ized norm of the gradient is the 2-norm of the gradient
divided by the absolute value of the objective function plus
a small positive number (e.g., 0.0001). Since the estimated
sensitivity matrix is based on linear regression, its accurate
evaluation may be hampered by numerical noise in simula-
tion results; hence, the second criterion may be difficult to
achieve. Instead, we shall use the requirement that the step
size (denoted by ε3 = ∥∥s(i,k+1)

∥∥) is sufficiently small, i.e.,
ε3 ≤ εcr3, as the third stopping criterion. Since we perform
multiple minimizations in parallel, these criteria have to be
applied per base-case. For example, a base-case is regarded
as converged and no new search point for this base-case
will be generated in the future iterations when the first and
the second (or third) convergence criteria are satisfied. The
distributed Gauss-Newton optimization process stops when
all base-cases are converged or when the iteration number
reaches the specified maximum iteration number.

3 Validation

3.1 Validate the proposed approach with a 2-D
nonlinear toy problem

The proposed distributed Gauss-Newton approach is first
validated with a 2-D nonlinear toy problem with two
unknown parameters. In this toy problem, the response



Comput Geosci (2017) 21:1325–1342 1333

Fig. 2 The surface map (a) and
the illustration of 16 local
minima (b) for the 2-D toy
nonlinear problem with Nd = 10

(a) (b)

of the system is a nonlinear function of two unknown
parameters given by

d(x, t) = 2 sin2(πx1) sin t + 6 cos2(πx2) cos t. (13)

In Eq. 13, x = [x1, x2]T represents the two unknown
parameters and t (in radians) represents time. Observa-
tions dobs,j = d(xTrue, tj ) are generated at tj = j for
j = 1, 2, ..., 10 with xTrue = (0.25, 0.195913)T . The
two unknowns are estimated by minimizing the following
objective function of data mismatches:

f (x) = 9
Nd∑

j=1

[
d(x, tj ) − dobs,j

]2
. (14)

The surface map of the objective function defined in Eq. 14
with Nd = 10 in the searching domain of [0, 2] × [0, 2]
is shown in Fig. 2a. There are 16 local minima in the
allowed parameter region, as illustrated in Fig. 2b. For the
purpose of validating the capability of the proposed DGN
approach to find multiple local minima and to identify val-
leys, the objective function defined in Eq. 14 does not have
the regularization term (or the model mismatch term).

Figure 3a illustrates how the 10 base-cases starting from
10 initial starting points, as shown by open circles in Fig.
3a, converge to 7 local minima after 11 iterations, as indi-
cated by solid purple triangles in Fig. 3a. Figure 3b shows
a zoom-in of Fig. 3a, and it illustrates how the three dif-
ferent base-cases starting from three different initial points,
denoted by P1, P2, and P3 in Fig. 3a, b, converge to the same
local optimum, denoted by the solid purple triangle (over-
lapped with one of the red circles and one of the black stars)
in Fig. 3b. In Fig. 3a, b, different symbols with different col-
ors represent the base-cases obtained in different iterations,
e.g., black stars with the legend “I=3” are the base-cases
obtained in the third iteration. When a base-case remains
the same, e.g., the black solid dot at Q2 that is identical to
a “*” point obtained in the third iteration, this indicates that
the new search point does not improve the objective func-
tion in the given iteration, so the corresponding base-case
is not updated, but the trust region size for that base-case is
reduced by half.

Obviously, increasing the number of base-cases (i.e.,
increasingNe)will help to find more local optima, as shown
in Fig. 4a–d, where the blue ellipses indicate the local

(a) (b) 
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Fig. 3 Illustration of the convergence process to different local min-
ima when the distributed Gauss-Newton approach is applied to the 2-D
nonlinear toy problem, starting from 10 different randomly generated

initial points. a Updating all 10 base-cases. b A zoom-in around the
three starting points P1, P2, and P3
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Fig. 4 Impact of number of base-cases on the performance of the distributed Gauss-Newton approach to find more local optima. a 10 base-cases.
b 20 base-cases. c 40 base-cases. d 60 base-cases

optima that are not found by the distributed Gauss-Newton
approach. When Ne = 10, only 7 among the 16 local min-
ima are found, as shown in Fig. 4a. As Ne increases to 20,
40, and 60, the distributed Gauss-Newton approach can find
9, 15, and all 16 local minima, respectively.

Throughout this paper, the normalized objective function
is defined as the objective function divided by the number
of observed data (Nd). Figure 5 illustrates how the values
of the normalized objective function for the 60 base-cases
decrease as the number of iterations increases. In Fig. 5, red
open circles represent the values of the normalized objec-
tive function evaluated at the 60 initial points, whereas solid
black dots are the values evaluated after 2 iterations in
Fig. 5a, 4 iteration in Fig. 5b, 8 iterations in Fig. 5c, and 11
iterations in Fig. 5d. After 11 iterations, the values of the
normalized objective function for 50 base-cases are reduced
to a value smaller than 0.00001. In fact, all 16 local min-
ima are found after 11 iterations, which required at most
NDGN

F = 60 × 11 = 660 function evaluations in total.
Figure 6a shows the plots of the three convergence crite-

ria vs. iteration. For this toy problem, the maximum values
of the three convergence criteria (ε1, ε2, and ε3) over all
base-cases are shown, denoted by ε1,max, ε2,max, and ε3,max

in Fig. 6a. In this example, we set εcr1 = εcr2 = εcr3 =
0.0001. After about 16 iterations, both the first and the sec-
ond convergence criteria are satisfied, and the distributed

Gauss-Newton optimization algorithm is terminated accord-
ingly. Figure 6b shows the plot of the number of running
base-cases vs. iteration. After 4 iterations, the number of
running base-cases decreases as the number of iterations
increases. After 16 iterations, no base-case is running, i.e.,
all base-cases converge. The plot shown in Fig. 6b also
tells us that 524 (summation of running base-cases over all
16 iterations) function evaluations in total are required to
find all 16 local minima. On average, it requires about 33
(=524/16) function evaluations to find 1 local minimum.

3.2 Compare with the traditional AHM approach using
the GN-DPS optimizer

Most available model-based DFO approaches are sequen-
tial optimizers, where only one or a few searching points
are generated in each iteration, e.g., the NEWUA developed
by Powell [55]. One of the well-parallelized optimizers is
the simultaneous perturbation and multivariate interpolation
(SPMI) developed by Gao et al. [25, 26], which includes the
hybrid Gauss-Newton or quasi-Newton (e.g., BFGS, SR1)
method with direct pattern search methods (DPS), denoted
by GN-DPS, BFGS-DPS, and SR1-DPS, respectively. Chen
et al. [6] applied the SPMI optimizer using the SR1-DPS
option to several history matching problems and compared
its performances with those of some other DFO methods,
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Fig. 5 Illustration of objective function reduction for all 60 base-cases after certain iterations. a 2nd iteration. b 4th iteration. c 8th iteration. d
11th iteration

including particle swarm (PSO), very fast simulated anneal-
ing (VFSA), and different quadratic interpolation models
(QIM) developed by Zhao et al. [67]. Their numerical com-
parison indicates that SR1-DPS converges faster (in terms of
the number of iterations required for convergence) to better
solutions (in terms of the objective function value evalu-
ated at the best solution found) when compared with others.
Gao et al. [25] compared the performance of SR1-DPS in
SPMI with that of other model-based DFO methods, using
data and results published by other researchers. Because
SPMI is well parallelized and is able to converge in 15 to 30

iterations for problems with different numbers of parame-
ters, the elapse time of an optimization is relatively modest.
In contrast, other DFOmethods suffer from very long elapse
times, since the others need hundreds to thousands (or even
more) of iterations. In terms of the number of function eval-
uations, SPMI is at least as good as other model-based DFO
methods on average. Recently, Gao et al. [26] developed
the new option of GN-DPS and compared it with SR1-DPS,
BFGS-DPS, the well-known LBFGS-B, and the stochastic
noise reaction method proposed by Okano and Koda [48].
Among them, GN-DPS is the best performer. In this paper,
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Fig. 6 Convergence criteria (a) and no. of running base-cases (b) vs. iteration for the 2-D toy problem
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Fig. 7 Results of traditional GN-DPS method when applied to the same 2-D nonlinear toy problem. a Convergence performance. b Initial guesses
and the optimal solutions that were found

we will not repeat the tedious work of comparing DGN with
different DFO methods. Instead, we will use GN-DPS as
a representative of traditional model-based DFO methods
and compare DGN with GN-DPS only. The major reason
is that other DFO methods are too computational expensive
when applied to history matching problems with hundreds
of uncertain parameters, e.g., the real field case discussed
below, because they are not well parallelized.

For the purpose of comparison, the GN-DPS is also
applied to the same 2-D nonlinear toy problem. Conver-
gence performances of the GN-DPS method for the first 15
base-cases are shown in Fig. 7a. Starting from 15 different
initial guesses, the final solutions converge to 9 different
local minima of the problem; see Fig. 7b.

As shown in Fig. 7a, it requires 14 iterations for the GN-
DPS method to converge on average. In each iteration, the
GN-DPS method requires to evaluate the objective function
at five different points, when the two-sided finite differ-
ence approximation is applied to estimate the gradient of the
objective function. In total, NGN

F = 15 × 14 × 5 = 1050

function evaluations are required to find 9 different local
minima. On average, it takes about 117 (=1050/9) function
evaluations for the traditional GN-DPS to find 1 local mini-
mum, which is 3.6 times the computational cost required by
the DGN method.

3.3 Identify valleys

In many history matching cases, in particular when the
model geology is parameterized in a realistic manner, the
number of available observed data may be less than the
number of unknown parameters. Even if the number of data
is larger than the number of parameters, it may be the case
that some parameters do not impact the data. Without any
regularization term (i.e., without a model mismatch term),
instead of having multiple local minima, the objective func-
tion will then have one or more null spaces. For example,
when using Nd = 1, the surface map of the objective func-
tion defined in Eq. 14 is shown in Fig. 8a. Interestingly,
the proposed distributed Gauss-Newton approach can also
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Fig. 8 Illustration of valleys (a) and feasibility of identifying valleys using the proposed DGN approach (b)
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be applied to identify valleys of the objective function, as
shown in Fig. 8b.

4 Application to a real history matching problem

In this example, the proposed distributed Gauss-Newton
approach is applied in the context of a history matching case
with synthetic data, but using a real field model, which is a
channelized reservoir with three facies: channel sand facies,
levee facies, and shale facies. The channels are populated
with an object-based modeling approach. The porosity and
permeability in each grid are then modeled with sequen-
tial Gaussian simulation. The reservoir simulation model
contains 77 × 78 × 30 = 180180 gridblocks and 106,680
active gridblocks, and there are seven producers and one gas
injector in the reservoir [7, 26].

Chen et al. [7] proposed a re-parameterization approach,
through the integration of truncated pluri-Gaussian simu-
lation technique with principal component analysis (PCA),
called pluri-PCA. This approach is applied to reduce the
number of uncertain parameters from 426,720 (facies indi-
cator, porosity, permeability, and net-to-gross ratio in each
gridblock) to 200 principal component coefficients. An
ensemble of 1410 unconditional realizations is generated
with the object-based modelling approach, and 1400 of
them are used as training realizations for pluri-PCA; see
Honorio et al. [33] for different realizations of facies mod-
els. One unconditional realization, which does not belong
to the 1400 training realizations, is used as the true model.
Figure 9a, b shows the areal view and cross-sectional view
of the facies distribution in the true model. In addition to
the 200 PCA coefficients that drive the facies and reservoir
property distribution, 18 parameters to define the rock-
type rule (RTR) and 17 global parameters such as aquifer
strength and fault transmissibility are also used as uncertain
parameters to be tuned for history matching.

In this synthetic history matching example, “true” mea-
surement data, including gas and water production rates in

all producers and bottom-hole pressures (BHP), are gener-
ated by running the true reservoir simulation model. During
the process of history matching, the liquid rate (oil rate plus
water rate) in each producer and the gas injection rates in
the gas injector obtained from the truth model are used as
constraints for reservoir simulation. The monthly water pro-
duction rate and gas rate in each producer and BHP in each
well are the simulation results that have to be matched with
the observed data. The observed data (dobs) to be used for
history matching are obtained from the simulation results
of the truth case model by adding independent Gaussian
measurement errors with zero mean and specified standard
deviations: 100 bbl/day for water rate, 500,000 SCF/day for
gas rate, and 100 psi for BHP, respectively. There are 1701
observed data in total for this example.

After re-parameterization with pluri-PCA and normaliza-
tion, all PCA coefficients and other normalized uncertain
parameters are independent Gaussian random variables with
zero mean and unit covariance matrix. The normalized
objective function can be written as

O(ξ) = 1

Nd

[
ξT ξ + (g∗(ξ) − dobs)

T C−1
D (g∗(ξ) − dobs)

]
,

(15)

where ξ is the vector with the reduced number of (pluri-PCA
coefficients and other) parameters and g∗ is the simulated
data expressed as a function of these reduced parameters.
To start the DGN optimization, Ne = 300 initial base-cases
are generated by randomly sampling from the Gaussian

prior distribution, P(ξ) ∝ e
− 1
2ξ

T ξ . Figure 10 illustrates
how the values of the objective function for the 300 base-
cases decrease as the number of iterations increases. In
Fig. 10, red open circles represent the values of the objec-
tive function evaluated at the 300 initial base-cases, whereas
solid black dots are those evaluated for the 300 base-cases
updated after 4 iterations in Fig. 10a, 8 iterations in Fig. 10b,
16 iterations in Fig. 10c, and 32 iterations in Fig. 10d.
Initially, the values of the normalized objective function
for most of the 300 unconditional realizations are larger

Fig. 9 Areal view (a) and cross-
sectional view (b) of the facies
distribution for the true model

(a) (b)
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Fig. 10 Illustration of objective function reduction for all 300 base-cases after certain iterations. a 2nd iteration. b 4th iteration. c 16th iteration.
d 32th iteration

than 50. After 32 iterations, values of the objective func-
tion for more than 200 base-cases are reduced to a value
smaller than 4.0 (represented by the red horizontal line in
Fig. 10c, d).

Figure 11a is similar to Fig. 6a, and it shows the plots
of the three convergence criteria vs. iteration. After about
32 iterations, the ε1,max (maximum change in objective

function) and ε3,max (maximum step size) convergence cri-
teria are satisfied, and the distributed Gauss-Newton algo-
rithm is terminated. For the real field model, numerical
noise may make it more difficult to converge; therefore,
a larger value of εcr1 = εcr2 = εcr3 = 0.01 is used
instead. As expected, because of numerical noise due to
reservoir simulation, the value of ε2,max (the maximum
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Fig. 11 Convergence criteria (a) and no. of running base-cases (b) vs. iteration for the real history matching problem



Comput Geosci (2017) 21:1325–1342 1339

(a) (b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Pr
od

1,
W

at
er

Ra
te

Time

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 0 20 40 60 80

Pr
od

1,
W

at
er

Ra
te

Time

Fig. 13 Comparison of normalized water production profiles for well Prod-1. a Generated from initial realizations. b Generated from realizations
after history matching

norm of the approximated gradient) cannot be reduced
to a very small value even after 32 iterations. Com-
parison between Fig. 10c and d indicates that further
reduction of the objective function value after 16 itera-
tions is not significant, and data matches are reasonably
good at iteration 16. Figure 11b shows the plot of the
number of running base-cases vs. iteration. After 7 iter-
ations, the number of running base-cases decreases as
the number of iterations increases. After 32 iterations, no
base-case is running, i.e., all base-cases converge. Summa-
tion of running base-cases over all 32 iterations gives the
total number of function evaluations, 5970, to find 200 local
minima with the converged objective function being smaller
than 4.0. On average, it requires about 30 (=5970/200)
function evaluations to find 1 local minimum.

As shown in Fig. 12, the traditional approach to find
local MAP points using, e.g., the GN-DPS method pro-
posed by Gao et al. [26], needs at least 10 iterations to
converge on average for this synthetic case. In each itera-
tion, the traditional approach requires 470 simulation jobs
to evaluate the numerical gradients, when two-sided finite
difference approximation is applied. Therefore, it requires
at least NGN−DPS

F = 10× 200× 470 = 940, 000 simulation
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Fig. 12 Normalized objective function vs. iteration profiles when
applying the hybrid GN-DPS method to minimize the objective func-
tion (copied from Gao et al. [26])

jobs when the GN-DPS method is applied to find 200 local
MAP estimates. In contrast, the total computational cost for
the distributed Gauss-Newton approach to find 200 local
MAP estimates within 32 iterations is equivalent to running
NDGN

F = 5970 simulation jobs. Roughly, the distributed
Gauss-Newton approach is able to reduce the computational
cost by a factor of 157 when applied to this real field exam-
ple. We should note that the computational cost reduction
factor for the 2-D toy problem is 3.6. Obviously, the benefit
of the proposed DGN approach will be problem depen-
dent, but these results suggest that DGN is able to achieve
a larger computational cost reduction factor for problems
with more parameters. We will continue to benchmark per-
formance of DGN (by integration with GMM) with iterative
ensemble-based methods in the future.

Although the proposed distributed Gauss-Newton
approach can significantly reduce the high-performance
computer (HPC) usage, we need to address some of its
disadvantages. As shown in Fig. 12, the GN-DPS method
can reduce the normalized objective function to a value
very close to 1, e.g., less than 1.5. In contrast, as shown in
Fig. 10c, d, the distributed Gauss-Newton algorithm can
only reduce the normalized objective function to a value
between 2 and 4. We believe that this difference is due to
the way both methods deal with the numerical noise intro-
duced by numerical simulation, which is the major cause
for not being able to reduce the normalized objective func-
tion to smaller values. Gao et al. [25, 26] discussed some
challenges for simulation-based history matching. When
gradually changing model parameters, small numerical
discontinuities in simulation results are unavoidable for any
numerical simulator. These small discontinuities lead to
an inaccurate estimation of the gradient, which may cause
failure of convergence for model-based search strategies.
Re-parameterization of discrete properties (e.g., facies indi-
cators in each gridblock for a reservoir model with multiple
facies types) makes the situation even worse, because the
objective function becomes even more discontinuous.
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Fig. 14 Comparison of normalized gas production profiles for well Prod-1. a Generated from initial realizations. b Generated from realizations
after history matching

When numerical noise is absent, the distributed Gauss-
Newton algorithm is able to reduce the normalized objective
function to a value as low as 10−18, very close to the actual
minimum value of zero; see results shown in Fig. 5c, d. The
auto-adaptive pattern size updating algorithm of the GN-
DPS method guarantees finding a proper pattern size such
that the effect of numerical noise can be effectively miti-
gated [26]. In the future, we need to investigate effective
methods to mitigate the negative effect of numerical noise
on the performance of the distributed Gauss-Newton algo-
rithm too, e.g., by implementing support-vector machine
learning to build a more accurate proxy model.

Normalized production profiles of water rate, gas rate,
and BHP in Prod-1 for the first 100 initial realizations of
the real field case model are shown in Figs. 13a, 14a, and
15a. For the purpose of comparison, normalized production
profiles of water rate, gas rate, and BHP in Prod-1 for the
first 100 history matched realizations obtained after 16 iter-
ations are illustrated in Figs. 13b, 14b, and 15b. In these
figures, we removed a few cases that do not match the pro-
duction data well, e.g., cases with values of the normalized
objective function being larger than 4.0. Results shown in

Figs. 13b, 14b, and 15b indicate that using 4.0 as the cri-
terion of selecting a matched model is satisfactory, i.e., the
history matched models with a normalized objective func-
tion smaller than 4.0 can generate production profiles that
match observed data reasonably well. Although we did not
show all plots, other wells show similar results.

Here, we should reemphasize that the multiple history
matched models obtained by the DGN approach are not con-
ditional realizations of the posterior PDF defined in Eq. 1.
To further quantify the uncertainty of model parameters and
production forecasts after conditioning to production data,
we need to integrate DGN either with the Gaussian mixture
model (GMM) as proposed by Gao et al. [27] or with the
RML methods with some modifications [50]. In the GMM
approach for uncertainty quantification, the DGN approach
proposed in this paper is applied to find multiple local MAP
estimates by minimizing the objective function defined in
Eq. 2. Then, the posterior PDF defined in Eq. 1 can be prop-
erly approximated by superposition of multiple Gaussian
models called GMM. More details about how to construct
an accurate enough GMM are discussed in the paper of Gao
et al. [27].
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Fig. 15 Comparison of normalized BHP profiles for well Prod-1. a Generated from initial realizations. b Generated from realizations after
history matching
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5 Conclusions

In the traditional local GN minimization method with line
search or trust region search methods, an approximate
quadratic model of the actual objective function is con-
structed by fitting some subset of the data points evaluated
in the current and previous iterations that are close enough
to the current best solution. However, in this traditional
approach, there is no sharing of information among dif-
ferent optimization tasks, and generally, it is required to
run a large number of simulations when the method is
applied to find multiple best matches. To improve the effi-
ciency of GN for this type of optimization problems, a DGN
approach is proposed in this paper. The DGN method is
validated with a nonlinear toy problem and applied to a
real history matching problem. According to our theoreti-
cal discussions and numerical validations, we can draw the
following conclusions:

1. DGN efficiently and effectively shares information
among different realizations, and therefore, it performs
more efficiently than traditional DFO methods (such as
GN-DPS). In addition to results obtained in the current
iteration, DGN can also reuse available results obtained
in previous iterations.

2. DGN only fits points that are locally clustered within
the same basin, which is similar to the traditional local
GN approaches. Therefore, it also inherits the robust-
ness of the traditional local GN approaches of being
able to converge to a local minimum.

3. DGN has the capability of finding multiple local best
matches (or MAP estimates) and may identify valleys
(or null spaces) of the objective function.

As shown by Gao et al. [27], when properly combined
with parameter reduction techniques and appropriately inte-
grated with the GMM approach, DGN has the potential to
generate unbiased, acceptable conditional realizations for
nonlinear problems. In the future, we will continue our
research, e.g., to further validate the applicability of DGN
for real history matching problems, especially uncertainty
quantification of model parameters and production forecast-
ing after conditioning to production data, and to benchmark
its performance (both in terms of robustness and efficiency)
against other methods, e.g., ensemble-based approaches.
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