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Abstract Non-Newtonian fluids having Bingham or power-
law rheology are common in many applications within
drilling and reservoir engineering. Examples of such flu-
ids are drilling muds, foams, heavy oil, hydraulic-fracturing
and other stimulation fluids, and cement slurries. Despite
the importance of non-Newtonian rheology, it is rarely
used in reservoir simulators and fracture flow simulations.
We study two types of non-Newtonian rheology: the trun-
cated power-law (Ostwald-de Waele) fluid and the Bingham
fluid. For either of the two types of non-Newtonian rhe-
ology, we construct relationships between the superficial
fluid velocity and the pressure gradient in fractures and
porous media. The Bingham fluid is regularized by means
of Papanastasiou-type regularization for porous media and
by means of a simple hyperbolic function for fracture flow.
Approximation by Taylor expansion is used to evaluate the
fluid velocity for small pressure gradients to reduce round-
ing errors. We report simulations of flow in rough-walled
fractures for different rheologies and study the effect of
fluid parameters on the flow channelization in rough-walled
fractures. This effect is known from previous studies. We
demonstrate how rheologies on different domains can be
included in a fully-unstructured reservoir simulation that
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incorporates discrete fracture modeling (DFM). The above
formulation was implemented in the open-source MATLAB
Reservoir Simulation Toolbox (MRST), which uses fully
implicit discretization on general polyhedral grids, includ-
ing industry standard grids with DFM. This robust imple-
mentation is an important step towards hydro-mechanically
coupled simulation of hydraulic fracturing with realistic
non-Newtonian fluid rheology since most hydraulic fractur-
ing models implemented so far make use of oversimplified
rheological models (e.g., Newtonian or pure power-law).

Keywords Non-Newtonian fluid · Fracture · Porous
media · Truncated power-law · Bingham fluid · MRST

1 Introduction

Non-Newtonian fluids are commonly encountered in oil-
and-gas industry. Many fluids used in drilling, well cement-
ing, and enhanced oil recovery have non-Newtonian rhe-
ology, e.g., water-based and non-aqueous drilling fluids,
spacers, cement slurries, foams, hydraulic-fracturing flu-
ids (including proppant-laden slurries), heavy oil, etc. In
the simplest non-Newtonian model, the so-called general-
ized Newtonian model, the stress tensor is given by T =
−P I+2μappDwhere P is the fluid pressure, I is the identity
tensor,μapp is the apparent viscosity, and tensorD is the rate
of deformation. The apparent viscosity is a function of the
shear rate, |γ̇ | = √

2D : D, in such fluids, unlike the New-
tonian fluid where μapp is a constant known as the dynamic
viscosity, μ.

The difference between a Newtonian fluid and a non-
Newtonian fluid can be illustrated by considering the shear
stress vs. shear rate relationship in a simple shear flow [12].
This is the flow between two parallel walls being shifted
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relative to each other. The flow is along the x-axis; the y-axis
is normal to flow and normal to the walls. In such a flow, D

is given by D = γ̇
2

⎛
⎝
0 1 0
1 0 0
0 0 0

⎞
⎠, thus the shear rate is given

by |γ̇ | = √
2D : D = ∂u

∂y
, where u is the fluid velocity. For

a Newtonian fluid, such as water, the shear stress is directly
proportional to the shear rate, with the coefficient of pro-
portionality being the dynamic viscosity of the fluid (Fig. 1,
solid line). Any other type of relationship between the shear
stress and the shear rate indicates a non-Newtonian fluid. In
order to predict the flow of such fluids in porous media as
well as in natural or induced fractures, reservoir flow codes
should incorporate non-Newtonian rheological models and
closure laws.

Non-Newtonian fluids may have a zero or nonzero yield
stress. When a fluid has a nonzero yield stress, a finite,
nonzero shear stress must be applied in order for the fluid
to start flowing. The simplest rheological model describing
such a fluid is the Bingham model [34], in which the shear
stress is a linear function of the shear rate, as illustrated by
the dotted line in Fig. 1. The Bingham model is defined by
two parameters: the yield stress, τY, and the plastic viscos-
ity μpl. In a simple shear flow, the shear stress vs. shear rate
for such fluid is given by:

τ = τY + μpl|γ̇ | (1)

Newtonian fluid can be regarded as a special case of the
Bingham model, with τY = 0. Most fluids used for overbal-
anced drilling in oil-and-gas industry have yield stress. The
yield stress is usually built by adding bentonite (a type of
clay) or polymers to the drilling fluid. The purpose of having
a yield stress in this case is to improve suspending properties
of the drilling fluid: when the circulation is stopped (e.g.,

Fig. 1 Schematic plot of shear stress vs. shear rate for Newtonian
(solid line) and non-Newtonian fluids in a simple shear flow. Non-
Newtonian fluid with a yield stress is shown by the dotted line.
Shear-thinning fluid without yield stress is shown by the upper dashed
line. Shear-thickening fluid without yield stress is shown by the lower
dashed line

for tripping), the drilling fluid must be able to keep the drill
cuttings in suspension. In a fluid without yield stress, solids
would rapidly settle to the bottom-hole.

A closed-form solution exists for Bingham fluid flow
between parallel smooth walls (“a smooth-walled fracture”).
The relationship between the fluid velocity averaged across
the gap of the conduit, u, and the pressure gradient, ∇P , is
thereby given by [24, 25]:

u =
⎧⎨
⎩

0 if |∇P |≤ 2τY
w[

− w2

12μpl
+ w

4μpl

τY|∇P | − 1
3wμpl

(
τY|∇P |

)3]∇P if |∇P |> 2τY
w

,

(2)

where w is the width of the conduit. A finite pressure gra-
dient must therefore be applied in order to initiate the flow.
The reason for this is that the fluid behaves like a solid if
the shear stress is below the yield stress. Low shear stresses
occur in the middle of the conduit. At the center plane of
the smooth-walled conduit, the shear stress is zero. Thus,
a solid, non-yielded plug exists near the center plane. The
width of this plug is given by 2τY|∇P | . The width of the plug
increases as the pressure gradient decreases, up until the
plug occupies the entire width of the fracture when |∇P | =
2τY
w

. At this point, the flow stops. This introduces a discon-
tinuity in the constitutive law and creates problems during
numerical implementation of the Bingham rheology (or a
yield-stress rheology, in general) in reservoir simulation. We
will see later how this issue can be handled by introducing
a regularization into the Bingham model.

Unlike flow in a fracture, there is no unique closed-
form solution for Bingham fluid flow in porous media. A
network model was employed by Bahlhoff et al. [4] to
study flow of Bingham and other non-Newtonian fluids in
porous media. Several numerical techniques (percolation,
minimum threshold path, network and path of minimum
pressure) were compared by Sochi [31]. A percolation-type
model was used to analyze flow of a yield-stress fluid in
porous media by Rossen and Gauglitz [28]. An ad-hoc rela-
tionship between the pressure gradient and the flow rate has
been proposed in [35]. Scaling and simple relations could
be obtained by means of, e.g., the homogenization theory.
However, for real rocks, it seems more sensible to use exper-
imental data and to adjust the ad-hoc model accordingly,
as is done for permeabilities, relative permeabilities, and
capillary pressure in traditional reservoir simulation. In this
study, we will construct an ad-hoc functional relation for
Bingham fluid flow in porous media (Eqs. 9 to 20 below)
that captures the most essential features of such flow, in par-
ticular the existence of a threshold pressure gradient below
which there is no flow.
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For a Newtonian fluid (τY = 0), Eq. 2 turns into the text-
book equation for Darcy flow in a smooth-walled conduit:

u = − w2

12μ
∇P (3)

A non-Newtonian fluid without yield stress has a non-
linear shear stress vs. shear rate dependency. Such a fluid
can be shear-thinning (Fig. 1, upper dashed line) or shear-
thickening (Fig. 1, lower dashed line). For a shear-thinning
fluid, the slope of shear stress vs. shear rate curve decreases
with |γ̇ |. For a shear-thickening fluid, the slope increases
with |γ̇ |. Many fracturing fluids are made shear-thinning
by adding polymers. Shear-thinning rheology improves sus-
pending properties of fracturing fluids, facilitating trans-
port of proppant. The simplest rheological model used to
describe a non-Newtonian fluid without yield stress is the
power-law fluid defined by:

τ = C|γ̇ |n (4)

where C is the consistency index; n is the flow behavior
index. A shear-thinning fluid has n < 1; a shear-thickening
fluid has n > 1. Newtonian fluid is a special case, obtained
with n = 1. In the latter case, the consistency index is the
dynamic viscosity of the Newtonian fluid.

Closed-form solution for the flow of a power-law fluid
between two smooth parallel walls is given by:

u = − n

2n + 1

1

C
1
n

1

|∇P |2
(

w|∇P |
2

) n+1
n ∇P (5)

For a Newtonian fluid (n = 1, C = μ), Eq. 5 turns into
Eq. 3.

No unique closed-form solution is available for the flow
of a power-law fluid in porous media. Shah and Yortsos
[30] derived a closed-form solution using the homogeniza-
tion theory for a periodic medium. They also provided an

overview of other proposed expressions available by the
time.

Equation 4 suggests that, for n < 1, the derivative dτ
dγ̇

becomes infinite as γ̇ → 0 and lim
γ̇→∞

(
dτ
dγ̇

)
→ 0. This

is unphysical since the differential viscosity, | dτ
dγ̇

|, should
be positive and finite, on physical grounds. Likewise, for
n > 1, Eq. 4 yields zero differential viscosity at γ̇ = 0
and infinite differential viscosity as γ̇ → ∞. To remedi-
ate these issues, more advanced rheological models have
been introduced, e.g., the Carreau model [7, 8]. The main
disadvantage of these models is that they do not permit a
closed-form solution for laminar flow between two parallel
plates.

In order to remediate the issue of zero and infinite vis-
cosities pertaining to Eq. 4, a truncated power-law model
has been introduced [5]. This fluid behaves like a power-law
fluid within an intermediate range of shear rates, and like a
Newtonian fluid at very high and very low flow rates. The
differential viscosity is therefore always nonzero and finite.
The shear stress vs. shear rate relationship for a truncated
power-law model is given by:

τ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ0γ̇ for |γ̇ | ≤
(

C
μ0

) 1
n−1

C|γ̇ |n−1γ̇ for
(

C
μ0

) 1
n−1

< |γ̇ | ≤
(

C
μ∞

) 1
n−1

μ∞γ̇ for |γ̇ |>
(

C
μ∞

) 1
n−1

(6)

where C is the consistency index, n is the flow behav-
ior index, and μ0 and μ∞ are dynamic viscosities of the
(Newtonian) fluid at low and high shear stress, respectively.
The truncated power-law model has four free parameters,
similarly to the Carreau model. However, unlike the Car-
reau model, it enables a closed form solution for the flow
between two smooth parallel walls [19]:

u =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− w2

12μ0
∇P if |∇P | ≤ 2μ0

w

(
C
μ0

) 1
1−n

−
[
2
3 · 1−n

1+2n · C
3

1−n

μ

1+2n
1−n
0 |∇P |3w

+ 2n
1+2n · (w

2 )
1+2n

n

wC
1
n

|∇P | 1−n
n

]
∇P if 2μ0

w

(
C
μ0

) 1
1−n

< |∇P | ≤ 2μ∞
w

(
C

μ∞

) 1
1−n

−
[

w2

12μ∞ − 2
3 · 1−n

1+2n · C
3

1−n

|∇P |3w

(
1

μ

1+2n
1−n∞

− 1

μ

1+2n
1−n
0

)]
∇P if 2μ∞

w

(
C

μ∞

) 1
1−n

< |∇P |

(7)

where w is the aperture size. The truncated power-law
model can be used to represent the rheology of hydraulic
fracturing fluids (gels). There have been no attempts to
apply the truncated power-law rheology for flow in porous
media.

As with the Bingham fluid, there is no unique closed-
form “flow rate vs. pressure gradient” relationship for
the flow of a truncated power-law fluid in porous media.
Deriving such solution could be attempted by using, e.g.,
the homogenization theory. However, the result would not
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be unique, and the model still would need to be calibrated
via experiments. It seems therefore more sensible to con-
struct an ad-hoc model and then to use experimental data in
order to adjust the model. In this study, we will construct
an ad-hoc functional relation for truncated power-law fluid
flow in porous media (Eqs. 27 to 29 below) that captures the
most essential features of the flow. In particular, the flow
reduces to a Newtonian fluid flow at very high and very low
superficial fluid velocities.

Non-Newtonian rheology needs to be properly taken into
account when modeling flow in porous media and in frac-
tures. For instance, nonzero yield stress of drilling fluids
prevents them from entering pores and fractures before the
applied pressure gradient exceeds a certain threshold value.
Therefore, in order to construct reliable numerical models
of mud losses and extended leak-off test, the flow equations
must be closed with a rheological model that includes yield
stress [20]. Moreover, when a shear-thinning fluid or a yield
stress fluid flows in a rough-walled fracture, “dead zones”
can develop where there is no flow. This affects the effective
permeability of the fracture to such fluids [16]. It also affects
transport since the flow becomes more channelized [2, 3,
17, 18]. In hydraulic fracturing models, power-law rheology
has been routinely used to describe fracturing gels [27, 33].

A word of caution is due with regard to the use of
Eqs. 2, 3, 5, and 7 for flow in rock fractures. Unlike
smooth-walled conduits, for which these equations have
been derived, real fractures have rough walls. Asperities
protruding from the fracture faces make the flow paths tor-
tuous. It means that the same pressure difference is applied
to a longer pathline in the fracture plane. This effectively
reduces the fracture permeability as compared to that of a
smooth-walled fracture of the same average aperture. There-
fore, the average aperture of a rough-walled fracture, i.e., the
mean separation of the fracture faces, is a poor indicator of
the fracture flow resistance. Instead, the hydraulic aperture
should be used. The hydraulic aperture, wh, is the aperture
of a smooth-walled fracture that yields the same flow rate
at a given pressure differential as the rough-walled fracture
[6, 15, 36]. The Newtonian-fluid velocity in a rough-walled
fracture is then given by:

u = − w2
h

12μ
∇P (8)

Roughness cannot be modeled explicitly in a reservoir
simulator since its geometric scale is too small (to make
things even more complicated, there is a hierarchy of rough-
nesses and the fracture landscape is usually a fractal surface,
with the Hurst exponent of 0.7...0.8). This should be kept
in mind when applying Eqs. 2, 3, 5, and 7 in reservoir
simulation. The fracture aperture, w, is therefore always
understood as hydraulic rather than mechanical aperture in
this article.

2 Implementation of Bingham model
and truncated power-law model in reservoir
simulation

Our objective in this study is to construct relationships
between the flow rate (or, equivalently, the superficial fluid
velocity) and the pressure gradient for single-phase flow in
porous media and in fractures, to be used in hydraulic frac-
turing and reservoir flow simulations. Fractures can thereby
be represented as collections of elements (tetrahedra in
3D) with increased permeability. The fracture permeabil-
ity depends on the fracture opening. Representing a fracture
as a collection of failed elements (gridblocks) is a viable
approach and has been used, e.g., in fully-3D hydraulic
fracturing models [1, 21, 22].

In this artaicle, we focus on the implementation of the
Bingham model and the truncated power-law model in
the MATLAB Reservoir Simulation Toolbox (MRST) [23].
Discrete fracture model [13, 29] is employed to represent
the fractures and handle the flow between fractures and
porous media.

2.1 Bingham model for porous media flow

An ad-hoc analogue of Darcy’s law can be constructed for
Bingham fluid flow in porous media as follows. The essen-
tial feature of the Bingham fluid is the threshold value of
the pressure gradient below which there is no flow. The
threshold pressure gradient must be an increasing function
of the yield stress, τY. The simplest model that satisfies
these requirements is given by [35]:

u =
{
0 if |∇P | ≤ τY

d−M∇P if |∇P | > τY
d

, (9)

where ∇P is the pressure gradient between two gridblocks,
M is the fluid mobility between the gridblocks, and d is a
material parameter of the porous media, namely a charac-
teristic internal length. The value of d is on the order of
the pore throat diameter. It is well known that the threshold
pressure gradient required to initiate flow of a yield-stress
fluid in porous media depends on the details of the porous
structure (e.g., [31]). Therefore, it is, in general, not pos-
sible to cover all the complexity of yield-stress fluid flow
in porous media only with a single structural parameter, d.
Nevertheless, we use this oversimplified approach here as
a first-order approximation. For a detailed discussion of the
yield-stress issue in porous media the reader is referred to
[31]. The mobility can be represented e.g. as the harmonic
average of the mobility values in the two gridblocks:

M = 2M1M2

M1 + M2
(10)
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with the mobility of gridblock i defined as follows [35]:

Mi = ki

μpl

(
1 − τY

d|∇P |
)

(11)

where ki is the absolute permeability of the ith gridblock to
Newtonian fluid.

Implementation of the Bingham model according to
Eqs. 9 to 11 leads to instabilities and convergence problems
since it involves a discontinuity in the flow rate vs. pres-
sure gradient. A common remedy is regularization of the
Bingham model. Several types of regularization have been
proposed in computational rheology. The most popular one
is probably the Papanastasiou regularization [26]. A thor-
ough comparative study carried out by Frigaard and Nouar
[10] revealed that the Papanastasiou regularization performs
better than other types of regularization in computational
fluid dynamics of Bingham fluids. The Papanastasiou regu-
larization of Eq. 1 is given by:

τ = τY[1 − exp(−m|γ̇ |)] + μpl|γ̇ | (12)

where m is a regularization parameter. As evident from
Fig. 2, the regularization removes the singularity and makes
the shear rate nonzero everywhere.

Introducing the non-dimensional shear rate, the non-
dimensional shear stress, the non-dimensional apparent vis-
cosity, and the non-dimensional regularization parameter as
follows:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

| ˜̇γ | = |γ̇ |μpl
τY

τ̃ = τ
τY

μ̃app = μapp
μpl

m̃ = mτY
μpl

, (13)

the Bingham model becomes:

μ̃app = 1 + | ˜̇γ |−1
(14)

Fig. 2 An example of Papanastasiou regularization (red) of Bingham
model (blue)

while the regularized Bingham model becomes:

μ̃app = 1 + 1 − exp(−m̃| ˜̇γ |)
| ˜̇γ | (15)

It is evident from Eq. 15 that the regularized model
approaches the “true” Bingham model as m̃ → ∞.

The following relationship between the pressure gradi-
ent, |∇P |, and the superficial fluid velocity, u, in porous
media can then be constructed in order to regularize the
“true” Bingham model:

u = − ∇P

|∇P |u (16)

where u = |u| is the magnitude of the superficial fluid
velocity, to be obtained from the following nonlinear equa-
tion:

|∇P |d
τY

= 1 + μpld

kτY
u − exp

(
− m̃μpld

kτY
u

)
for all |∇P |

(17)

where k is the permeability of the porous media (harmonic
average of the absolute permeabilities of the two gridblocks,
k = 2k1k2

k1+k2
), d is the characteristic internal length scale of the

porous media as defined above, and m̃ is a non-dimensional
regularization parameter defined as follows:

m̃ = mτY

μpl
(18)

Introducing the dimensionless pressure gradient and the
dimensionless superficial fluid velocity as follows:

|∇P̃ | = |∇P | d

τY
(19)

ũ = u
μpld

kτY

leads to the following dimensionless from of Eq. 17:

|∇P̃ | = 1 + ũ − exp(−m̃ũ) (20)

Equation 20 is plotted in Fig. 3 for m̃ = 100. Increasing m̃

improves the approximation of the original “true” Bingham
model.

Fig. 3 Regularized Bingham model for flow in porous media, Eq. 20
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2.2 Bingham model for fracture flow

Consider now flow in a fracture. In the reservoir simu-
lator’s framework, this is the flow between two “failed”
(“fractured”) gridblocks. Without regularization, the fluid
velocity vs. pressure gradient dependency could be con-
structed, for example, by using Eq. 9 with the mobility
defined as follows:

M =
⎧⎨
⎩
0 if |∇P | ≤ 2τY

w

w2

12μpl
− w

4μpl

τY|∇P | + 1
3wμpl

(
τY|∇P |

)3
if |∇P | > 2τY

w

(21)

In Eq. 21, the average fracture aperture can be calcu-
lated as the harmonic average of the fracture apertures in
gridblocks 1 and 2:

w = 2w1w2

w1 + w2
(22)

Convergence problems experienced with the “true” Bing-
ham model [Eq. 21] motivates the use of a regularization
for fracture flow as well. Introducing the dimensionless
pressure gradient and the dimensionless superficial fluid
velocity as follows:

|∇P̃ | = |∇P | w
2τY

(23)

ũ = u
μpl
wτY

the “true” Bingham model would be given by (cf. Eqs. 9
and 21):

ũ =
{
0 if |∇P̃ | ≤ 1
1
6 |∇P̃ | − 1

4 + 1
12

1
|∇P̃ |2 if |∇P̃ | > 1 (24)

Equation 24 can be regularized as follows:

ũ =
[(

1

4

)n

+
(
1

6

)n

|∇P̃ |n
] 1

n

− 1

4
for all |∇P̃ | (25)

where n is a dimensionless regularization parameter.
At small pressure gradient values, Eq. 25 involves sub-

traction of two close values. This is not good for numerical
implementation and can be remedied by Taylor expansion
of the right-hand side of Eq. 25 for small |∇P̃ |. Equation 25
then becomes:

ũ ≈ 1

4n

(
4|∇P̃ |

6

)n

for small |∇P̃ | (26)

The values of n can be chosen within the range from 4 to 6
(Fig. 4).

The model of Bingham fluid flow in a fracture given by
Eq. 21 is the classical and the simplest one, and has been
used previously, e.g., in [11]. More elaborate models, tak-
ing into account the self-affinity of fracture landscape, have
become available recently [32] and can be considered for
implementation in future.

Fig. 4 Regularized Bingham model for fracture flow, with n = 4 (a)
and n = 6 (b). Blue curve: “true” Bingham model given by Eq. 24.
Red curve: regularized Bingham model given by Eq. 25

2.3 Bingham model for flow between a porous media
element and a fracture element (leak-off)

This is effectively flow (leak-off) through the fracture wall
or from the fracture tip into the porous media. The flow
is dominated by the intact gridblock in this case since the
flow in the fracture is mostly from failed gridblock to failed
gridblock. Equation 17 or its non-dimensional counterpart,
Eq. 20, are to be used in this case, with the permeability, k,
being the permeability of the intact gridblock.

2.4 Truncated power-law model for porous media flow

An ad-hoc analogue of Darcy’s law can be constructed for
the truncated power-law fluid flow in porous media as fol-
lows. An essential feature of the truncated power-law fluid
is that it approaches a Newtonian fluid at very high and very
low shear rates. The simplest porous media flow model that
has similar behavior is given by:

u = −M∇P for all |∇P | (27)
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with the mobility given by Eq. 10. The individual mobilities
of gridblocks entering Eq. 10 can be defined as follows, in
order to resemble the truncated power-law rheology:

Mi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ki
μ0

if |∇P | ≤ ε1(
l
1+n
n

i

C
1
n

)
|∇P | 1−n

n k̃i if ε1 < |∇P | ≤ ε2

ki
μ∞ if ε2 < |∇P |

(28)

where ε1 =
(

ki
k̃iμ0

)
C

1
1−n

l

1+n
1−n
i

, ε2 =
(

ki
k̃iμ∞

)
C

1
1−n

l

1+n
1−n
i

, where li

is the characteristic internal length of the porous media
in the ith gridblock and has the meaning of the “typical”
pore throat size; k̃i is a dimensionless parameter, speci-
fied for each gridblock. Parameters ki, li, and k̃i are not
independent. The relationship between the three parameters
becomes transparent if we consider a specific case of trun-
cated power-law model, namely the Newtonian fluid. In this

case, μ0 = μ∞ = C should represent the dynamic vis-
cosity, and Darcy’s law must hold at all values of |∇P |. In
particular, the second of Eqs. 28 should reduce to Darcy’s
law. This is only possible if the following relationship
between ki, li and k̃i holds:

ki = k̃il
2
i (29)

The truncated power-law model for flow in porous media
has thus six parameters (four for the fluid and two for each
gridblock, incl. the absolute permeability).

2.5 Truncated power-law model for fracture flow

The superficial fluid velocity vs. pressure gradient is given
by Eq. 27 in this case, with the mobility,M , given by Eq. 10.
Individual mobilities of gridblocks entering Eq. 10 can be
evaluated analytically from the closed-form fracture flow
equations available for this rheology and given by the above
Eq. 7 [19]:

Mi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w2
i

12μo
if |∇P | ≤ 2μo

wi

(
C
μo

) 1
1−n

2
3 · 1−n

1+2n · C
3

1−n

μ

1+2n
1−n
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(30)

Here, wi is the aperture size.

2.6 Truncated power-law model for flow between
a porous media element and a fracture element
(leak-off)

This is effectively flow (leak-off) through the fracture wall
or from the fracture tip into the porous media. The flow
is dominated by the intact gridblock in this case since the
flow in the fracture is mostly from failed gridblock to failed
gridblock. Equation 27 is to be used in this case, with the
mobility, M , referring to the intact gridblock and calculated
using Eq. 28, where parameters, ki, li, and k̃i, refer to the
intact gridblock.

3 Examples

To demonstrate the application of the models developed
above, we apply them to the flow of Bingham fluid and
truncated power-law fluid in a rough-walled rectangular
fracture. The distribution of the fracture aperture is shown
in Fig. 5. The in-plane dimensions of the fracture are

65 cm × 65 cm. Two fractures were constructed: with the
mean aperture equal to 1.7-mm and with the mean aperture
equal to 1.02 mm. The former one had nonzero aperture
everywhere; the latter had zero aperture (closed fracture) at
some locations. The 1.7-mm fracture (Fig. 5) was produced

Fig. 5 Distribution of the fracture aperture (mm) in the fracture
plane of the 1.7-mm fracture. The in-plane dimensions of the fracture:
65 cm × 65 cm
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Fig. 6 Distribution of the fluid pressure (a) and superficial fluid velocity (b) in the 1.7-mm fracture. The fracture has nonzero aperture everywhere

numerically by generating two rough surfaces with the
Hurst exponent equal to 0.7, placing the surfaces opposite
to each other, and subtracting them. The 1.02-mm fracture
was produced by subtracting 0.68 mm from the apertures of
the 1.7-mm fracture.

In the simulations, the pressure gradient was applied
along the x-axis, between two opposite sides of the fracture.
The flow rate was calculated. Simulations were run for a

wide range of pressure differentials. Based on the fluid
velocity field obtained in the simulation, the tortuosity of
the flow was calculated. Tortuosity was defined as follows
[9, 14]:

T = 〈|u|〉
〈u‖〉 , (31)

2 4 6 8
10 4

Fig. 7 Distribution of the fluid pressure (a) and superficial fluid velocity (b) in the partially-closed 1.02-mm fracture. White spots have zero
aperture (contact between the fracture faces)
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where the numerator is the average value of the absolute
magnitude of the superficial fluid velocity; the denomina-
tor is the average value of the superficial fluid velocity’s
component in the direction parallel to the applied pressure
differential. In our case, this is the direction of the x-axis.
For a less tortuous (i.e., more unidirectional) flow, the value
of T should be lower. For a perfectly unidirectional flow,
e.g., in a fracture with smooth parallel walls, T = 1. For
all other fractures, T > 1. The value of T depends on
the aperture distribution of the fracture. For non-Newtonian
fluids, it also depends on their rheological properties and
the applied pressure gradient. In particular, shear-thinning
fluids are known to produce less tortuous (more channel-
ized) flows in rough-walled fractures than their Newtonian
counterparts [17, 18].

3.1 Fracture flow of Bingham fluid

Simulations were performed with the following parameters
of the regularized Binghammodel: τY=10 Pa,μpl= 0.01 Pa ·
s, n = 6. Simulations were performed for pressure dif-
ferential values from 103 to 107 Pa. Example results for
the 1.7-mm and the partially-closed 1.02-mm fracture with
105 Pa pressure differential are shown in Figs. 6 and 7,
respectively.

Tortuosity of the flow is greater for the partially-closed
fracture than for the 1.7-mm fracture (Fig. 8). Tortuosity
increases with the pressure differential for both fractures.
The reason is that, at higher pressure differentials, the role
of yield stress diminishes, i.e., the fluid behaves more and
more like a Newtonian fluid. In the limit of an infinite
pressure differential, the Bingham fluid would simply be a
Newtonian fluid with the dynamic viscosity equal to μpl (cf.
Fig. 1, |γ̇ | → ∞).

On the contrary, as the pressure differential decreases, the
shear-thinning behavior of the Bingham fluid plays more
and more important role. As a result, the flow becomes more
channelized [17]. Hence, the tortuosity decreases.

Fig. 8 Tortuosity as a function of pressure differential for regularized
Bingham fluid

Fig. 9 Tortuosity as a function of pressure differential for shear-
thinning truncated power-law fluid (n = 0.6)

3.2 Fracture flow of truncated power-law fluid

Simulations were performed for two truncated power-law
fluids: a shear-thinning fluid and a shear-thickening fluid.
The shear-thinning fluid had the following parameters: n=
0.6, C = 0.005 Pa · sn, μ0 = 0.5 Pa ·s, μ∞ = 0.001 Pa · s.
The shear-thickening fluid had the following parameters:
n=1.4,C=0.005 Pa · sn,μ0=0.001 Pa · s,μ∞ = 0.01 Pa · s.
Simulations were performed for pressure differential values
from 10−5 to 105 Pa.

The results for the shear thinning fluid are presented
in Fig. 9. The tortuosity is lower at intermediate pressure
differential values, and increases at very high or very low
pressure differential values. This is due to the fluid becom-
ing more like a Newtonian fluids at very high and very low
shear rates, which was the very motivation for introduc-
ing this type of rheology. A shear-thinning fluids leads to
more channelized flow than a Newtonian fluid, therefore,
the tortuosity is lower at intermediate pressure differentials.

The opposite results are obtained with the shear-
thickening truncated power-law fluid (Fig. 10). In this
case, the flow is more tortuous at intermediate pressure

Fig. 10 Tortuosity as a function of pressure differential for shear-
thickening truncated power-law fluid (n = 1.4)
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Fig. 11 Distribution of the fluid pressure in the simulations of fluid flow in the porous media with homogeneous permeability (a), a vertical
fracture (b), and a horizontal fracture (c)

differential values. At very high and very low pressure
differentials, the fluid is thinner as compared to the interme-
diate range. Therefore, the flow becomes more channelized
(less tortuous) at very high and very low pressure differential
values, where the fluid behaves close to a Newtonian fluid.

3.3 Truncated power-law fluid in porous media
with a fracture

Simulations were performed for a shear-thinning trun-
cated power-law fluid in porous media. Two models were
assembled: one with homogeneous permeability (Fig. 11)
and the other one with randomly generated heterogeneous
permeability (Fig. 12). The fluid properties were as fol-
lows: n = 0.6, C = 0.005 Pa · sn, μ0 = 0.5 Pa · s,
μ∞ = 0.001 Pa · s. The dimensions of the computational

domain were 20 m × 20 m × 5 m. The pressure differential
applied between the left-hand boundary and the right-hand
boundary was 6 · 105 Pa. A fracture was embedded in
the domain. The objective of the simulations was to study
how the existence and the orientation of the fracture would
influence the flow in the porous media. The length of the
fracture was 14 m; the aperture of the fracture was 1 mm.
The fracture had the same aperture at all locations and
thus was a smooth-walled fracture. For the homogeneous
example (Fig. 11), the permeability of the porous media
was set equal to 3 Darcy. For the heterogeneous example
(Fig. 12), the permeability of the porous media was between
3 · 10−2 mD and 3 Darcy, the average permeability being
equal to 0.2613 Darcy.

As shown in Figs. 11 and 12, when the direction of the
fracture was normal to the flow direction, the existence

Fig. 12 Distribution of the fluid pressure in the simulations of fluid flow in the porous media with randomly generated heterogeneous permeability
(a), a vertical fracture (b), and a horizontal fracture (c)
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of the fracture virtually did not influence the flow, while
when the direction of the fracture was along the flow
direction, it affected the flow significantly. This was also
reflected in the change of the flow rates. For the homo-
geneous example (Fig. 11), the flow rate without fracture
was 8.4228 · 10−3 m3/s, the flow rate with a vertical frac-
ture was the same (8.4228 · 10−3 m3/s), while the flow
rate with a horizontal fracture was 1.1708 · 10−2 m3/s.
For the heterogeneous model (Fig. 12), the flow rates
were 2.0005 · 10−6 m3/s, 2.1051 · 10−6 m3/s, and
4.9524 · 10−6 m3/s, respectively.

4 Conclusions and further work

Models for flow of Bingham fluid and truncated power-law
fluid in porous media have been constructed. Closed-form
solutions for flow between parallel plates were used for frac-
ture flow. Ad-hoc equations were used for flow in porous
media. The Bingham model was regularized by means of
Papanastasiou-type regularization for flow in porous media,
and by means of hyperbolic regularization for fracture flow.
Taylor expansion of flow rate vs. pressure gradient was used
to improve convergence at small pressure gradient values.

The models were tested on fracture flow in opened
and partially-closed fractures. For a shear-thinning trun-
cated power-law fluid, the flow becomes less tortuous (i.e.,
more channelized) at intermediate pressure gradient values.
This is consistent with the well-known trend of shear-
thinning fluids to result in channelization in rough-walled
fractures. A shear-thickening truncated power-law fluid pro-
duces more tortuous flow at intermediate pressure gradient
values. It produces more channelized flow at very high
and very low pressure gradient values, where the truncated
power-law fluid approached Newtonian rheology.

Regularized Bingham fluid produces more tortuous flow
with increasing pressure differential. This is due to the
diminishing role of yield stress at higher shear rates and,
thus, at higher pressure differential values.

Simulations with porous media for truncated power-law
fluid are also presented. The effect of the orientation of
the fracture embedded in the porous media is investigated.
An extension to the current fracture model will be required
in order to handle more general and complicated fracture
networks within porous media.

The truncated power-law and Bingham fluid rheologies
used in this study only describe the correct relationship
between the pressure drop and the flow rate in straight uni-
form conduits. These models are somewhat inadequate to
describe the behavior of a non-Newtonian fluid in a porous
medium, where the elastic nature of the fluid could be
important (if the Deborah number is larger than 1). There-
fore, Eqs. 27 and 28 can be valid for porous media, strictly

speaking, only in a limiting case of low Deborah number.
Implementation of visco-elastic fluid models for porous
media and fractures in MRST should be the subject of
further work.

More advanced rheological models might be required
also to describe flow of polymer solutions/dispersions in
porous media and small-aperture fractures. Pore throat
clogging, polymer adsorption, and shear-induced polymer
degradation are examples of phenomena that affect poly-
mer flow in fractured and porous media. These phenomena
should be accounted for in the model. The truncated power-
law model used in this article can only serve as a first-order
approximation for such fluids.

Only single-phase flow has been considered in this arti-
cle. In multiphase flow, additional assumptions and/or clo-
sures would be required in the models. For instance, the
threshold value of the pressure gradient in Eq. 9 for each
phase must depend on the saturation since each phase only
has a fraction of the pore (or fracture) volume at its disposal
locally. Experiments may provide further important insights
into multiphase flow of non-Newtonian fluids in fractured
and porous media.
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