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Abstract In reservoir management, production optimiza-
tion is performed using gradient-based algorithms that com-
monly rely on an adjoint formulation to efficiently compute
control gradients. Often, however, economic constraints
are implicitly embedded within the optimization procedure
through well performance limits enforced at each reser-
voir simulation time-step. These limits effectively restrict
the operational capabilities of the wells, e.g., they stop or
shut down production depending on a predetermined prof-
itability threshold for the well. Various studies indicate that
the accuracy of the gradient and, by consequence, the per-
formance of the optimization algorithm suffer from this
type of heuristic constraint enforcement. In this paper, an
analytical framework is developed to study the effects of
enforcing simulator-based economic constraints when per-
forming gradient-based production optimization that relies
on derivatives obtained through an adjoint formulation. The
framework attributes the loss in control gradient sensitivity
to non-differentiable unscheduled changes in the well model
equations. The discontinuous nature of these changes leads
to inconsistencies within the adjoint gradient formulation.
These inconsistencies, in turn, reduce gradient quality and
subsequently decrease algorithmic performance. Based on
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the developed framework, we devise an efficient simulator-
based mode of constraint enforcement that yields gradients
with fewer consistency errors. In this implementation, the
well model equations that violate constraints are removed
from the governing system right after the violation occurs
and are not reinserted until the next well status update. The
constraint enforcement modes are further coupled with a
strategy that improves the selection of initial controls for
subsequent iterations of the optimization procedure. After
a given simulation, the resulting combination of open and
shut-in periods generates a status update schedule, or shut-
in history. The shut-in history of the current optimal solution
is saved and used in subsequent optimization iterations to
make the status update a part of the optimal solution. The
novel simulation-based constraint implementation, with and
without shut-in history, is applied to two production opti-
mization cases where, for a large set of initial guesses, and
different model realizations, it retains and improves the per-
formance of the search procedure compared to when using
common modes of economic constraint enforcement during
production optimization.

Keywords Simulation-based economic constraints ·
Reservoir simulation · Production optimization · Adjoint
gradients · Reservoir management

1 Introduction

Optimization procedures based on mathematical program-
ming techniques serve as important decision-support tools
to select optimal petroleum field development concepts and
reservoir management strategies. In reservoir management,
decision-making workflows rely on gradient-based produc-
tion optimization procedures to find improved production
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strategies, e.g., optimal well control configurations that
increase recovery from waterflooding. Commonly, these
procedures depend on reservoir simulations to measure cost
function performance, and on an adjoint formulation to effi-
ciently compute cost function derivatives with respect to
well controls.

However, the production optimization procedure is often
additionally loaded with sets of heuristic constraints used to
represent the project’s economic interface [9]. These rules
are imposed to meet necessary field development profitabil-
ity criteria and are commonly enforced during reservoir
simulation. Often, these rules are implemented as well and
field production thresholds based on economic parameters
enforced at each simulation time-step. Thus, since reservoir
simulations are an integral part of gradient-based produc-
tion optimization, and this type of economic constraints is
commonly embedded within these simulations, there is a
need for an analytical framework that studies the effects of
enforcing these constraints on the overall optimization pro-
cedure in general, and on the computation of adjoint-based
gradients, in particular. Furthermore, such a framework
will help develop specialized strategies to maintain adjoint-
gradient accuracy in spite of the heuristic enforcement of
simulation-based constraints, and thus, to mitigate likely
decreases in algorithmic performance.

From an operational point of view, the enforcement of
economic constraints during reservoir simulation serves as
an additional control tool to stimulate production and mimic
real field changes to production settings. These constraints
are commonly enforced within the time-step domain of the
reservoir simulator, independent of the production optimiza-
tion procedure, where well control types, e.g., bottom hole
pressure (BHP) and/or phase rates, are frequently used as
variables defined over significantly larger control periods.
The main function of economic constraint enforcement is
to react to uneconomic production scenarios by performing
real-time, i.e., in time-step scale, adjustments to the wells.
For example, in the case of waterflooding, operating condi-
tions at which production is unprofitable can be determined,
and accordingly, a lower limit for the oil production rate or
an upper limit on the water cut (fraction of water in the total
liquid production) can be enforced based on these settings.
For either limit, a standard type of enforcement is to shut
the well reactively once the profitability setting is violated
during forward simulation.

Similarly, commingled production is often managed by
an analog set of rules that operates on either groups of
wells, on the entire field, or both. These field and group
constraints come in addition to the constraints operating
individually on each well. This work, however, only deals
with simulator-based constraints that operate on individual
wells and enforce restrictions based on economic perfor-
mance, though the analysis may be extended to include field

constraints and other types of performance measures, in
future work.

1.1 Economic constraints in adjoint-based production
optimization

Adjoint-based gradients have become an indispensable tool
for closed-loop reservoir management [19], integrated field
development problems [1], multiobjective analysis [13],
robust production optimization [4], and for many other
multi-phase flow optimization problems (see review in
[10]). Adjoint gradients provide fast, inexpensive, yet accu-
rate linear approximations of the objective function and
non-linear constraints. These linear approximations are used
by non-linear programming algorithms such as sequential
quadratic programming (SQP) [8] or methods of moving
asymptotes (MMA) [20] to build non-linear approximations
that ensure a fast convergence to a local optimal solution. In
the context of production optimization, the SQP and MMA
algorithms were first applied in [19] and [2], respectively.

In reference to gradient-based methods, few studies have
addressed the impact that simulator-based constraints have
on the optimization process. In [4], robust long-term opti-
mization results obtained using reactive control were com-
pared to results obtained using constraints handled within
a dedicated gradient-projection trust-region method. The
reactive control strategy in that work entails the enforce-
ment of simulator-based constraints. However, the strategy
presented is performed in a stand-alone manner, i.e., not
within, nor coupled to, an optimization procedure. In [4],
the authors demonstrated that a gradient-based production
optimization procedure outperformed the reactive control
strategy. Furthermore, the work in [12] presented results
supporting the claim that production optimization using
BHP controls with rate constraints implemented at the sim-
ulator level yields higher final solution values, than a formal
production optimization setup where rate constraints are
handled by an SQP algorithm.

The applicability of simulator-based constraints when
performing gradient-based production optimization has
been assessed at depth in [5] and [14]. These papers
underline the difficulties that arise during gradient-based
optimization when a particular well is shut-in, or when
it changes its control type, in the middle of a control
period due to the violation of a constraint. They report a
decrease in performance and attribute it to a loss in sen-
sitivity. The authors claim that sensitivity is lost when the
gradient term corresponding to a particular time-step van-
ishes due to the effects of the constraint violation. The
sensitivity loss, in turn, limits the capacity of the optimiza-
tion algorithm to change the corresponding control variable.
The authors propose a couple of strategies for imple-
menting simulator-based constraints to remedy the loss in
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sensitivity. In [5], the production optimization uses rate
control targets. This allows the authors to implement a pro-
cedure that avoids shutting-in the wells completely, but
rather keeps them running at an insignificantly small rate to
avoid losing sensitivity. In [14], a proactive gradient-based
method is proposed which treats the constrained quantities
as controllable parameters. In this approach, the optimiza-
tion procedure involves progressively activating constraints,
with each new constraint resulting in a significant improve-
ment in the objective.

In this paper, we argue that the missing gradient terms
and subsequent loss of sensitivity are fundamentally related
to non-differentiable changes in the simulator’s flow equa-
tions. Thus, the subsequent decrease in performance is
mainly attributed to the non-differentiable unscheduled
changes in the well model equations that occur when
simulator-based constraints are enforced. These disconti-
nuities introduce inconsistencies in the adjoint formulation
which in turn yields inaccurate gradients that reduce the per-
formance of the optimization algorithm. In this work, we
develop an analytical framework to assess both the valid-
ity and performance of the adjoint gradient formulation
when used for gradient-based production optimization with
economic constraints. The framework is used to describe
typical ways of enforcing these types of constraint and to
derive an additional, more efficient mode of enforcement.
Two cases are used to compare typical and the novel mode
of constraint enforcement during production optimization.
Results from this comparison study demonstrate a significant
improvement in the convergence of the optimization procedure
for a large set of initial guesses and geological realizations.

This paper is organized as follows. Section 2 lays the the-
oretical background for this work by presenting the general
production optimization problem as well as the adjoint-
based gradient formulation. In Section 3, we conduct a
rigorous analysis of the adjoint-based gradient formula-
tion in which we take into account the non-differentiable
changes in the well model equations. Section 4 discusses the
conventional ways economic constraints are implemented
within reservoir simulation, while Section 5 presents a novel
way of dealing with this type of constraints when per-
forming production optimization. Finally, we substantiate
the conclusions derived in the theoretical part by conduct-
ing numerical experiments on two production optimization
cases presented in Section 6. The results of the opti-
mizations are presented and discussed in Section 7, while
Section 8 presents some conclusions and recommendations.

2 Background

This section introduces the general production optimization
problem and lays the theoretical background for the analysis

of the adjoint-based gradient formulation to be performed
in the following section. It discusses the importance of con-
tinuous differentiability of the objective function when per-
forming gradient-based optimization, and presents the steps
involved in the derivation of the adjoint system and gradient.
In this and the following sections, we refer to the com-
mon presentation of the adjoint formulation in the petroleum
literature [3, 19] as the standard adjoint formulation.

2.1 General production optimization problem

The production optimization problem is given as

find maximum of J (x, u), (1a)

subject to greserv(x, u) = 0, (1b)

gwells(x, u) = 0, (1c)

x0 given, (1d)

u ∈ D. (1e)

Here, x are the variables determining the state of the sys-
tem discretized both in space and time, while x0 defines the
part of the vector x which corresponds to the initial state
x0

def= x|t=0. The vector u designates the model parame-
ters used as optimization variables, while D is a feasibility
region of those variables. greserv(x, u) and gwells(x, u) are,
respectively, the discretized in space and time reservoir and
well governing equations for the unknown state variables x.
To be precise, in Eq. 1c, we only include equations that are
implicit with respect to the well unknowns. Thus, any well
equation that can be written in explicit form is satisfied by
simple elimination. For example, in the case of a well BHP
control, we have

greserv(x, pBHP) = 0

gwells
def= pBHP − p

target
BHP = 0

︸ ︷︷ ︸

⇓
greserv(x, p

target
BHP ) = 0.

(2)

The objective function J (x, u) is the net present value
(NPV) given as

J (x, u)
def=

N
∑

n=1

⎛

⎝

nw
∑

i=1

np
∑

p=1

Cp,i(tn) qp,i(x, u)

⎞

⎠ �tn, (3)

where tn is discretized time steps with time step sizes �tn =
tn − tn−1. Cp,i and qp,i denote, respectively, the discounted
price and the production/injection phase flow rate of phase
p in the i-th well. nw refers to the total number of wells
while np is the total number of phases present in the system.
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In the form (1a), the objective function depends on both
the state variables x and the optimization variables u. Fur-
thermore, the optimization problem in Eq. 1 includes the
various equality constraints given in Eq. 1b and c. The num-
ber of equality constraints is the same as the number of state
variables.

Typically, due to a large total number of variables, it is not
practical to have the optimization algorithm solve a problem
that includes both state and control variables. A significant
advantage of the adjoint method is that it uses the equal-
ity constraints in Eq. 1b to calculate the variation of the
objective function solely with respect to the well controls
u. Thus, the adjoint formulation acts in the capacity of the
dependence x = x(u).

2.2 Objective function differentiability and adjoint
gradient formulation

Continuous differentiability of the objective function is
essential for the performance of the operating non-linear
programming algorithm. This statement is illustrated with
the following simplified argument. The mathematical theory
of gradients relies heavily on the Riesz representation theo-
rem [18]. This theorem implies that if an objective function
J (u) is Fréchet-differentiable with respect to the optimiza-
tion parameters u, and then, there exists a unique vector ∇J ,
called the gradient of J , so that

lim
ε→0

J (u + ε u′) − J (u)

ε
= 〈∇J,u′〉 (4)

is valid for all admissible perturbations u′. If J is not
continuously differentiable, then ∇J may not exist or is
non-unique. In both cases, the objective function approx-
imations based on ∇J are inexact, which in turn reduces
the performance of the operating non-linear programming
method.

In the derivation of the adjoint gradients, we fol-
low the standard procedure of formulating an augmented
Lagrangian functional L and then deriving the first opti-
mality conditions based on this functional [15]. For the
optimization problem (1), the Lagrangian L has the form

L
def= J + λT greserv(x, u) + μT gwells(x, u). (5)

Here, λ and μ are the vectors of Lagrange multipliers with
size equal to the number of state equations. By construc-
tion, L has the same critical points as J . Therefore, the local
optima of J are the same as the local optima of L, located
either at a critical point, or on the boundary of the feasi-
bility region D. By definition, the critical point is a vector

containing the elements {λ,μ, x, u} for which the partial
derivatives of L with respect to λ, μ, x, and u are zero, i.e.,

∂L

∂λ
= 0 ⇒ (1b), (6a)

∂L

∂μ
= 0 ⇒ (1c), (6b)

∂L

∂x
= 0 ⇒ ∂

∂x

(
N

∑

n=1

nw
∑

i=1

np
∑

p=1

Cp,i(tn) qp,i�tn

+λT greserv + μT gwells

)

= 0, (6c)

∂L

∂u
= 0 ⇒ ∂

∂u

(
N

∑

n=1

nw
∑

i=1

np
∑

p=1

Cp,i(tn) qp,i�tn

+λT greserv + μT gwells

)

= 0. (6d)

As indicated here, Eq. 6a and b are the governing equa-
tions satisfied with a state variable solution x and prescribed
u. We next consider Eq. 6c and d to derive the standard
formulation of the adjoint system.

2.3 Standard adjoint formulation

Suppose that qp,i , greserv, and gwells are continuously differ-
entiable with respect to x and u. The Eq. 6c and d can be
reformulated in the following simplified form:

N
∑

n=1

nw
∑

i=1

np
∑

p=1

Cp,i(tn)
∂qp,i

∂x
�tn

+λT ∂greserv

∂x
+ μT ∂gwells

∂x
= 0, (7a)

N
∑

n=1

nw
∑

i=1

np
∑

p=1

Cp,i(tn)
∂qp,i

∂u
�tn

+λT ∂greserv

∂u
+ μT ∂gwells

∂u
= 0. (7b)

The equations in Eq. 7a constitute a system that can be
solved to obtain the unknown multipliers λ and μ. The solu-
tion of this system yields what are called adjoint variables.
The equations in Eq. 7b are not solved directly since these
equations define a critical point with no guarantee of opti-
mality. Instead, we derive the adjoint-based gradient for the
Eq. 4 by using the left-hand-side of Eq. 7b as follows:

∇J
def=

N
∑

n=1

nw
∑

i=1

np
∑

p=1

Cp,i(tn)
∂qp,i

∂u
�tn

+λT ∂greserv

∂u
+ μT ∂gwells

∂u
. (8)
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Further details regarding the derivation of the adjoint-based
gradient can be found in [19].

The next section carries out a rigorous mathematical
treatment of the discontinuities imposed on the adjoint sys-
tem when enforcing simulation-based economic constraints.
The aim of this analysis is to investigate the mechanism
and conditions under which non-differentiable changes,
both within production outputs qp,i and/or model equations
greserv and gwells in Eq. 8, can render the derived adjoint-
based gradient inconsistent with respect to the underlying
optimization problem.

3 Theoretical analysis of simulator-based
constraint enforcement

We first consider the general case in which the expressions
qp,i , greserv, and gwells undergo discontinuous changes in
time. Because the partial derivatives in Eqs. 7 and 8 are
applied to a system already discretized in time, the pertur-
bations of x and u, which trigger qp,i , greserv, and gwells to
change form, are not taken into account in either of these
expressions. This is a major reason for why the standard
adjoint formulation is inconsistent whenever discontinuous
changes occur in the model equations

To study the effects of these inconsistencies, we consider
a continuous-in-time (non-discretized) adjoint formulation
[3]. This approach, commonly referred to as optimize-
then-discretize, is less frequently used for gradient-based
production optimization since the discretize-then-optimize
approach is often much simpler to implement within a reser-
voir simulator. A detailed comparison of continuous-in-time
and discrete-in-time adjoint formulations is performed in
[12]. In that paper, the authors demonstrate that the adjoint
equations resulting from the discretization of a continuous-
in-time formulation coincide with those of the discrete-in-
time formulation for all time-steps except the last one. This
result enables us to apply the continuous-in-time form in the
following analysis, though, in accordance with the result,
we restrain the formulation to the time interval 0 � t � T ,
where T

def= tN−1. The continuous-in-time form is preferred
because it allows us to use differential calculus to study the
effects of enforcing the economic constraints on the adjoint
system.

3.1 Derivation of continuous-in-time adjoint
formulation

To be clear, here and in the next section, we employ the
convention that greserv, gwells, λ, μ, and x are all discrete-in-
space functions, which means they are defined for all t such

that 0 � t � T . The continuous-in-time form of Eqs. 6c and
6d is as follows:

∂

∂x

(
∫ T

0

nw
∑

i=1

np
∑

p=1

Cp,i(t) qp,i

+λT greserv + μT gwells dt
)

= 0, (9a)

∂

∂u

(
∫ T

0

nw
∑

i=1

np
∑

p=1

Cp,i(t) qp,i

+λT greserv + μT gwells dt
)

= 0. (9b)

In [3, 12], the authors apply the Leibniz integral rule to
move the partial derivative operator inside the integral sign.
However, since the integrand terms in Eq. 9a and b are not
necessarily continuous and continuously differentiable for
all t , x, and u, we cannot rely on this rule for our general
problem. Instead, to perform the interchange between the
differentiation and integration operators, in this work, we
rely on a set of theorems that offer less restrictive conditions
than those imposed by the Leibniz integral rule.

Two particular theorems are relevant for the treatment
of Eq. 9a and b. The first theorem [17] provides a sufficient
(though not necessary) condition for the operator interchange
while using a relaxed requirement of continuity for all t :

Theorem 1 Let f (x, t) be a real-valued function
defined on X × R, where X is an open interval in R,
and assume that for each fixed x ∈ X,

(i) t 
→ f (x, t) is integrable,
(ii) ∂f/∂x exists for almost all t ,

(iii) there exists an integrable function g, indepen-
dent of x, such that

∣

∣

∣

∣

∂

∂x
f (x, t)

∣

∣

∣

∣
� g(t) for almost all t and for all x ∈ X.

Then,

∂

∂x

∫

R

f (x, t) dt =
∫

R

∂

∂x
f (x, t) dt.

The second theorem (proved in [21]) provides necessary
and sufficient conditions that do not require the continu-
ity of f for all x and u. The theorem uses the generalized
absolutely continuous function in the restricted sense (ACG)
definition for f . This definition is applicable to the functions
with piecewise continuous integrands in Eq. 9a and b.
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Theorem 2 Let f (x, t) : X × R 
→ R. Suppose that
f (x, t) is ACG on X for almost all t in R. Then,

∂

∂x

∫

R

f (x, t) dt =
∫

R

∂

∂x
f (x, t) dt

for almost all t in R, if and only if

x2∫

x1

∫

R

∂

∂x
f (x, t) dt dx =

∫

R

x2∫

x1

∂

∂x
f (x, t) dx dt

(10)

for all [x1, x2] ∈ X.

In the following section, we use Theorems 1 and 2 to
properly take into account the discontinuities within the
adjoint derivation.

3.2 Adjoint formulation subject to discontinuity

In this work, we argue that changes in time fundamentally
alter the modeling equations as well as the production pro-
files in the adjoint gradient expression. These changes man-
ifest themselves as discontinuities in the integrand terms
λT greserv, μT gwells, or qp,i , respectively. Discontinuities
within the integrand terms appear when the forward sim-
ulation reaches either a particular constant point in time
t = τ or when a prescribed condition c(x, u) < 0 is vio-
lated. In the following, we analyze the occurrence of these
discontinuities within the derivation of the adjoint gradient.

To simplify the analysis, we represent either of these
integrand terms using the generic symbol f . We start by
describing the simple type of discontinuity that occurs when
the simulation reaches a point t = τ (e.g., the start of a new
control period). The expression of f resulting from this type
of discontinuity is written as follows:

f (x, u)
def=

{

f1(x, u) t < τ,

f2(x, u) t � τ,
(11)

where f1 and f2 are continuously differentiable functions
of x and u. It can easily be verified that the conditions of
Theorem 1 are satisfied for this type of discontinuity. Thus,
the standard adjoint formulation can be applied to this case.
Furthermore, by extension, the standard formulation can be
applied when having a countable number of discontinuities
of this type (each defined using a different time constant τ ),
which is the result of the piecewise linear parametrization
commonly used for production optimization problems.

We now consider the case when a discontinuity in f is
triggered by the violation of a condition of type c(x, u) < 0.
In this case, we use Theorem 2 to derive the necessary
and sufficient conditions to perform the required operator

interchange in Eq. 9a and b. Theorem 2 offers less strin-
gent requirements than those imposed by Theorem 1, which
allows us to treat the expressions and their derivatives as
generalized functions. We define the time at which a con-
straint violation occurs using the Dirac delta function δ(·) as

τ(x, u) =
∫ T

0
δ
(

c(x, u)
)

t dt. (12)

The f that results once a violation c(x, u) < 0 occurs is
given as

f (x, u)
def=

{

f1(x, u) t < τ(x, u),

f2(x, u) t � τ(x, u),
(13)

where again f1 and f2 are continuously differentiable with
respect to x and u. For the sake of compactness, we rewrite
Eq. 13 using the Heaviside step function H(·). Finally, we
take the derivative with respect to x to obtain

∂f

∂x
= ∂

∂x

(

f1 + H
(

t − τ
) (

f2 − f1
)
)

. (14)

Substituting Eq. 14 into the right-hand side of Eq. 10 (The-
orem 2) and applying the fundamental theorem of calculus
yields

T
∫

0

x2∫

x1

∂f

∂x
dx dt =

T
∫

0

[

f1 + H
(

t − τ
)(

f2 − f1
)
]x2

x1
dt, (15)

while substituting Eq. 14 into the left-hand side of Eq. 10
and applying the chain rule gives

x2∫

x1

T
∫

0

∂f

∂x
dt dx =

x2∫

x1

T
∫

0

∂f1

∂x
+ H

(

t − τ
) ∂(f2 − f1)

∂x

−δ
(

t − τ
) ∂τ(x, u)

∂x

(

f2 − f1
)

dt dx. (16)

Since f1 and f2 are differentiable, the first two expres-
sions in the right-hand side of Eq. 16 can be simplified
by interchanging the integrals with respect to t and x as
follows:

x2∫

x1

T
∫

0

∂f1

∂x
+ H

(

t − τ
) ∂(f2 − f1)

∂x
dt dx =

x2∫

x1

τ(x,u)
∫

0

∂f1

∂x
dt dx +

x2∫

x1

T
∫

τ(x,u)

∂f2

∂x
dt dx =

T
∫

0

χ(t,u)
∫

x1

∂f1

∂x
dx dt +

T
∫

0

x2∫

χ(t,u)

∂f2

∂x
dx dt =

T
∫

0

[

f1 + H
(

t − τ
) (

f2 − f1
)
]x2

x1
dt, (17)
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where χ(t,u) is the inverse function of τ(x, u) with respect
to x, i.e., τ(χ(t,u), u) ≡ t . Whereas the third term on the
right-hand side of Eq. 16 is reduced to

x2∫

x1

T
∫

0

δ
(

t − τ
) ∂τ(x, u)

∂x

(

f2 − f1
)

dt dx =

x2∫

x1

(

∂τ(x, u)

∂x

(

f2 − f1
)

)∣

∣

∣

∣

t=τ(x,u)

dx. (18)

After comparing Eqs. 15 and 17, we conclude that
Eqs. 15 and 16 can be equal to each other only if Eq. 18 van-
ishes. Therefore, a crucial claim is that the necessary and
sufficient condition (10) from Theorem 2 holds when either

∂τ

∂x
= 0 or f2 = f1. (19)

This statement remains valid in the presence of a countable
number of discontinuities of the same type. Moreover, the
same analysis holds for the derivatives with respect to u.

3.3 Application of theorems to discrete-in-time reservoir
system

Hereafter, without loss of generality, we consider greserv,
gwells, λ, μ, and x to be discrete-in-space and discrete-in-
time functions. If the first option of Eq. 19 is satisfied, i.e., if
τ is independent of both x and u, then the situation is equal
to case analyzed earlier using Theorem 1. On the other hand,
if c depends on either or both x and u, then one can find an
interval [x1, x2] and a perturbation x′ such that

∂τ(x, u)

∂x
def= lim

ε→0

τ(x + ε x′, u) − τ(x, u)

ε
(20)

is non-zero for x ∈ [x1, x2].
We now consider the second option of Eq. 19. At this

point, a brief comment is necessary regarding the nature
of the integrand terms qp,i , λT greserv, and μT gwells: the
reservoir-governing equations greserv are based on conser-
vation principles, and are, both by construction and in a
physical sense, continuous with respect to x and u. Wells,
on the other hand, may undergo changes in time which can
fundamentally modify both their modeling equations gwells
and their production profiles qp,i . The result is that Eqs. 15
and 16 can always be set equal to each other, and thus, the
necessary condition (10) can be met for λT greserv, but not
for qp,i or μT gwells.

Thus, focusing on the qp,i and μT gwells terms, below, we
list two conclusions for the validity of the standard adjoint
formulation when discontinuities are imposed during gra-
dient computation. These conclusions vary depending on
whether the discontinuities are predetermined, as is the
case for the common constant piecewise-linear well control

parametrization, or whether the discontinuities stem from
economic constraint enforcement. (This is a non-exhaustive
list since discontinuities stemming from other sources, e.g.,
other types of constraints, may also influence the adjoint
system, but this type of situation is beyond the scope of this
analysis.)

Conclusion 1 If the well equations gwells are modified by
a discontinuous change at a predetermined time, then The-
orem 1 allows us to interchange the differentiation and
integration operators in Eq. 9a and b. In this case, the
standard adjoint formulation is valid when computing the
gradient.

Conclusion 2 If the discontinuity in the well equations
gwells is precipitated by the violation of the well perfor-
mance constraint c(x, u) < 0, then, according to Theorem 2,
the operator interchange cannot be applied. In this case, the
standard adjoint formulation is inconsistent due to errors
occurring when taking the partial derivatives of both qp,i

and gwells.
Having an analytic framework with sufficient generality to
both support Conclusion 1 and 2 is an important contribu-
tion from this work. This allows us to describe both the
type of control changes that occur within the default con-
trol configuration for production optimization, consisting
of predetermined control changes, as well as the additional
changes that occur whenever simulator-based constraints
are violated. As mentioned, it is often the case that this latter
type of economic well performance limits is implemented
within simulators during production optimization. Finally,
using this framework, we can assess the validity and per-
formance of the adjoint gradient formulation under these
various control and constraint scenarios.

In the next section, the analytical framework is used to
describe common modes of economic constraint enforce-
ment and their consequences. Thereafter, the framework is
used to derive an additional mode of enforcement with the
goal of maintaining adjoint gradient accuracy in spite of the
discontinuities created by well performance limits.

4 Conventional modes of economic constraint
enforcement

First, we provide several definitions necessary to describe
changes in well model equations during simulation. We then
categorize the various types of control changes as being
either scheduled or unscheduled changes. These distinc-
tions will be useful to describe both traditional and new
constraint-handling approaches, as well as to present opti-
mization cases and analyze results, in subsequent sections.
The description of traditional modes of economic constraint
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enforcement is provided at the end of this section, while the
new constraint-handling approach is described in the next
section.

4.1 Definitions to describe well control changes
and patterns

We continue to use the terminology developed previously,
e.g., the terms gwells,1 and gwells,2, to describe several exam-
ples of well model changes that often occur during a typical
reservoir simulation whenever these constraints are active.
We divide the domain of possible changes into two cate-
gories: scheduled and unscheduled changes.

Scheduled changes This category consists of changes con-
ditioned only to time, e.g., control updates predetermined
by a production schedule. In reservoir simulation, scheduled
updates cause the well equation to change in four possible
combinations:

1. in the case of rate type of control before and after the
control update, the well equation changes from

gwells,1
def= q·,i −q

target,1
·,i to gwells,2

def= q·,i −q
target,2
·,i ;

2. in the case of rate type of control before and BHP type
of control after the control update, the well equation
changes from

gwells,1
def= q·,i − q

target,1
·,i

to non-existing well equation gwells,2;

3. in the case of BHP type of control changing to rate type
of control, the well equation before the change, gwells,1,
is non-existing, and after the update becomes

gwells,2
def= q·,i − q

target,2
·,i ;

4. finally, for completeness, in the case of a BHP con-
trolled well remaining in BHP type of control mode
after the update, the change is between two non-existing
well equations gwells,1 and gwells,2.

For any of these scheduled changes, the time τ is constant,
and the standard adjoint formulation is valid according to
Conclusion 1.

Unscheduled changes This category consists of changes
triggered when the setting of the default, i.e., the currently
active, well control type violates a specified constraint. The
triggering of unscheduled changes may stem from various
types of constraint enforcement. One such type, for exam-
ple, is the enforcement of an upper or lower bound that
limits the value of an associated control type, e.g., (target)-
rate bounds when the well is controlled by BHP setting,

and vice versa. Other triggers of such changes may be an
economic limit on production, or even the condition that a
producer (injector) must have positive (negative) well rates
during simulation.

Well control vs. well status updates Finally, we distin-
guish between two categories of well model updates: a
well control update and a well status update. Well control
updates occur at predetermined intervals called control steps
or periods, i.e., they are scheduled events during simulation.
The well settings prescribed at these updates correspond
to the well control optimization variables u. Well status
updates, on the other hand, occur both at each control step
and in addition, may occur at any time step during sim-
ulation. For example, an unscheduled well status update
occurs (and is stored) at the time-step an economic limit is
enforced.

Thus, defined, well control and well status updates are
two categories that are non-exclusive, in that well control
updates are a subset of well status updates. These categories
will be useful to explain the results from the new economic
constraint enforcement algorithm introduced below. Also,
they will later be useful to describe additional strategies
that use shut-in history to improve the performance of the
optimization procedure. Next, we describe two conventional
approaches for how to enforce unscheduled changes.

4.2 Traditional modes of economic constraint
enforcement

In production optimization, economic constraints may be
implemented as non-linear constraints within the optimiza-
tion algorithm itself (indirect enforcement), or as simple
checks at each simulation time-step that test whether the
constraints are honored or not (direct enforcement). These
two ways of enforcing constraints are discussed below.

Indirect enforcement In this type of enforcement, the
simulation itself is performed without economic limits.
However, the defined economic limits are imposed as non-
linear constraints within the optimization algorithm which
requires the constraints to be honored for all well control
values. Details regarding this particular type of enforcement
and the procedure of its implementation can be found in
[23].

Direct enforcement In this type of enforcement, the sim-
ulation includes an automatic shut-in algorithm mimicking
the workover action of the reactive control. Below, we
distinguish two modes of this algorithm implemented in
commercial reservoir simulators [6] referred by the com-
monly used nomenclature “SHUT” and “STOP”. It should
be noted that in this discussion, we only have BHP as the
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active well control, and that no associated (target) rate con-
straints are specified. Cases involving rate control as the
active control type will be treated in further work by the
authors.

STOP. In this mode, the well is connected to the reser-
voir throughout the entire simulation. While solving
Eq. 1b and c, the relevant well production profiles,
c(x, u), are verified for violation of the economic limits
at each time step.

In fact, this control mode corresponds to the reactive
control strategy, i.e., once a violation is detected on a
well, the governing equation for that well is replaced by
a shut-in well equation. The shut-in equation is imple-
mented, for example, by setting the total fluid volume
rate equal to zero (making gwells,2 non-trivial). Under
this mode of enforcement, the standard adjoint for-
mulation is non-valid due to errors when taking the
partial derivatives of both the qp,i and gwells terms (see
Conclusion 2).
SHUT. Similar to the previous mode, in this mode, the
well is checked at each time step and the well is shut-
in once a violation occurs. However, in this mode, the
shut-in procedure is accompanied by totally removing
the well equation from the reservoir system until the
simulation finishes. Thus, for the remaining of the sim-
ulation, after the control update is implemented, gwells,2
is non-existent, i.e., there is no governing equation for
the well. Moreover, gwells,1 is also non-existent since
the well is originally controlled by BHP (see the prob-
lem definition in Eq. 1 and the associated derivation
in Eq. 2). Obviously, non-existing gwells is not taken
into account in Eqs. 11–18. Thus, whenever gwells is
removed from the system, whether the standard adjoint
formulation is consistent or not depends only on the
partial derivatives of qp,i .

Based on this discussion, the SHUT mode, when com-
pared to the STOP mode, is shown to contain less errors that
lead to inconsistencies in the standard adjoint formulation.
However, the SHUT mode lacks the capacity of the reactive
control to reopen the well if the economic constraints are
satisfied at later simulation times. This observation leads us
to develop a novel mode of constraint enforcement which
combines the advantages of the two conventional modes.

5 HALT—a novel mode of constraint enforcement

The nomenclature “HALT” and its associated algorithm
refer to a new, direct mode of enforcement proposed in this
paper. This mode operates similarly to SHUT, except that
the isolation of the well from the reservoir does not last until
the simulation ends, but only for a small period of time. The

actual duration of the shut-in period depends on when the
next well model update occurs. Below, we describe the con-
cept of the shut-in pattern which determines all well model
updates during simulation. Furthermore, we use the concept
of the shut-in pattern to provide a detailed description of the
HALT algorithm.

5.1 Shut-in pattern

The number and timing of well model updates is defined
by the update schedule of the well. This schedule is deter-
mined before simulation, and it is either set from the default
well configuration, or from well status updates that have
been stored from a preceding simulation run. In this work,
we refer to the collection of all well status updates dur-
ing a simulation as the shut-in pattern for that simulation.
Mathematically, the shut-in pattern is defined with two
sets of values: {θ1, . . .}, which represent the timing of the
updates, and {π1, . . .}, which are the status of the wells
after the updates. With the definition of a shut-in pattern,
we can offer a concise description of the HALT mode of
enforcement: in the HALT mode, the shut-in period lasts
until the first subsequent point in the shut-in pattern. Algo-
rithm 1 describes the manner in which the shut-in pattern
is built and modified during simulation. It also shows in
exact terms how the HALT mode differs from the SHUT
mode.
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Here, we discuss two ways the HALT method serves
as an efficient approach to deal with wells when per-
forming production optimization subject to simulator-based
economic constraints. First, once economic constraints are
enforced, the well model equations are removed from the
system of equations, thus eliminating error terms in the
adjoint gradient calculation (as explained by Conclusion 2).
This helps preserve gradient accuracy even though wells
are shut-in at arbitrary points within control updates, and
maintaining gradient quality assures algorithm performance
is not diminished. Second, using the HALT approach in
combination with the active use of a current best shut-in
pattern (properly defined below), we can further mitigate
the effects of economic constraint violation by taking into
account solution history. Though well status updates orig-
inate from shut-ins caused by previous constraint enforce-
ment, these status update points are also used by HALT to
check whether a shut-in well may be reactivated. By having
HALT verify wells at any subsequent status update point,
we are, in effect, adding extra possible reactivation points in
time spans where wells are likely to have been shut-in. This
yields improved solutions by constantly reactivating wells
within critical time periods. In the following, we describe
how shut-in history can be used to improve the convergence
of the optimization algorithm.

5.2 Production optimization using shut-in history

In the following, we define two strategies for choosing
initial control schedules to enhance the optimization process
when using the HALT and SHUT constraint enforcement
modes.

During production optimization, multiple reservoir sim-
ulations are run sequentially while searching for optimal
well controls. In the sequence of simulations launched by
the optimization process, the resulting shut-in pattern from
one simulation can be used as the initial control schedule in
the next simulation. Algorithm 2 shows the common way of
performing production optimization with direct constraint
enforcement. In this configuration, the shut-in pattern is not
preserved from one iteration to another.

In this work, we propose an alternative algorithm
(Algorithm 3) that takes explicit advantage of the known
shut-in pattern history. This algorithm is hereby defined
as the shut-in history strategy. The goal of this strategy
is to use the current best shut-in pattern to improve the
performance of the next iteration of the optimization pro-
cedure. As previously mentioned, the default configuration
for well control optimization entails a set of piecewise
constant-in-time intervals defined over the production hori-
zon. When we use the shut-in history strategy, we add to
the default control updates that stored unscheduled well sta-
tus updates from the best shut-in pattern so far. This means
that when the shut-in history strategy is enabled, the status
of a well may be updated at any subinterval of the control
updates.

This superposition of control points lets the control vec-
tor operate within a solution space with additional degrees
of freedom (ultimately determined by the total number of
time steps). The thinking behind this strategy is that the
shut-in pattern contributes with a heuristic expansion of
the default control space based on previous “good” solu-
tions (i.e., solutions that satisfy the imposed constraints),
and that this will contribute positively to the overall search
performance of the optimization algorithm.

We thus define the two strategies for choosing initial
control schedules:

Without shut-in history. Each simulation in the opti-
mization sequence is performed using the default shut-
in pattern, i.e., the default control configuration consist-
ing of control updates only (see Algorithm 2).
With the shut-in history. Each simulation in the
sequence is performed with the shut-in pattern which
so far yields the best objective function value (see
Algorithm 3).

In the following section, the different control modes in
combination with these strategies are tested for two cases.
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6 Case studies

We perform experimental studies on two production cases.
The first case is a well-known waterflooding model with
synthetic geology and simplified physical properties. This
model was first introduced in [22] and has on several occa-
sions been used to benchmark optimization algorithms [11].
The second case is the Brugge benchmark field designed for
the SPE Applied Technology Workshop held in Brugge in
June 2008. The description of the field as well as complete
results of the workshop are summarized in [16].

Production optimization is performed on both cases
while enforcing two types of economic constraints. The first
constraint restricts production wells from above with respect
to their water cut using a limit of 95% (i.e., a workover is
activated if the water cut of a producer reaches this limit).
Similarly, injector wells are constrained from below with
respect to their rate with a limit of 6.28 × 10−3 bbl/day
in the first case and a more realistic limit of 62.8 bbl/day
in the second case. Choosing a small lower bound of the
injection rate in the first case allows us to concentrate on
the errors introduced by the economic limits of the produc-
ers. These constraints are summarized in Table 1. In both
studies, the NPV is computed using water production and
injection costs equal to $3/bbl, while the oil price is set to
$50/bbl. The discount rate is 10%. Reservoir model config-
urations for the two study cases, as well as simulation and
optimization parameters for the experimental runs, are given
below.

6.1 Case study 1

The reservoir for the first case has dimensions 60 × 60 × 7
and includes eight vertical water injection wells and four
vertical producers completed through all seven layers. This
model is supplied with hundred and one realizations of the
permeability of which one is designated as true. In this
study, we employ the “true” permeability which is shown in
Fig. 1 and the randomly selected realizations 18, 40, and 69.

The base case, which is also the default initial guess for
the optimization, uses BHP control for both producers and
injectors, without any constraints on the associated rates.
However, economic constraints do apply for both types of
wells (see above). All producers are set with an initial BHP

Table 1 Economic constraints for cases 1 and 2

Value Description

95% Water cut limit (cases 1 and 2)

6.28 × 10−3 bbl/day Injector rate limit (case 1)

62.8 bbl/day Injector rate limit (case 2)

permeability (mD)

82 1811 3540 5270 7000
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Fig. 1 Model permeability in x- and y-directions

of 259 bars, while all injectors start with a BHP of 261 bars.
The physical properties of both fluid and rock for this case
are summarized in Table 2. For the optimization of case
study 1, we apply a piecewise-linear constant production
setup consisting of ten control steps of 180 days each.

6.2 Case study 2

In the second test case, we use the original dead-oil model
and geometry of realization #73 of the stock of the Brugge
reservoir model. This realization includes the original cor-
ner point grid structure, distribution of active grid blocks,
depths, and volumes; NTG, porosity, and permeability dis-
tribution; as well as initial pressures and saturations. The
grid is shown in Fig. 2. Case study 2 applies the same 30
standard wells: 10 injectors and 20 producers, as the original
base case. Also for initial well controls, we use the origi-
nal base case values. Further details regarding the Brugge
model can be found in [16]. The production optimization
uses 21 piecewise-linear constant controls with steps of
180 days each.

Table 2 Parameter values for case model 1

Value Description

20% Porosity

10−5 1/bar Rock compressibility

10−5 1/bar Fluid compressibility

1000 kg/m3 Fluid density

1cP Fluid viscosity

0.1 Initial water saturation

0 Rel. perm. endpoints

2 Rel. perm. exponents
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x-permeability (mD)
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Fig. 2 Model permeability in x-directions

6.3 Simulation and optimization parameters

For simulation, we use the Automatic Differentiation Gen-
eral Purpose Research Simulator (AD-GPRS). This sim-
ulator is built on top of the Automatic Differentiation
Expression Templates Library in [24, 25]. Since ADG-
PRS uses adaptive time stepping, the optimization algorithm
may meet some inconsistencies if different time stepping
schemes are applied for the various runs performed during
optimization [23]. To mitigate this bias, the discrete-in-time
NPV is evaluated using the ten-point composite Gaussian
quadrature formula instead of the commonly used rectan-
gular rule. Further details of this procedure can be found in
[23].

We use a non-linear programming algorithm based on the
SQP method implemented by the Sparse Nonlinear OPTi-
mizer library (SNOPT) [7]. For both cases, the optimization
process is set to terminate once the Karush–Kuhn–Tucker
conditions are satisfied to a given tolerance [8]. The SNOPT
parameters and termination criteria used for this case are
given in Table 3.

Table 3 SNOPT configuration

Value Description

10−7 Major feasibility tolerance

10−4 Major optimality tolerance

10−7 Minor feasibility tolerance

200 Major iteration limit

20 Major step limit

20 Minor iterations limit

Notice that despite its strengths, the SQP algorithm is a
local search algorithm. Therefore, to avoid the bias of pos-
sibly getting caught in a poor local solution, in this paper,
we perform multiple production optimization runs that each
starts from different initial guesses. Details on how these
initial guesses are chosen are provided in Section 7.5.

In Sections 7.1–7.4, we use case study 1 with the “true”
permeability to test the performance of the suggested modes
of enforcement. Furthermore, in Section 7.5, we demon-
strate the robustness of the methodology by optimizing over
case study 2 and multiple realizations from case study 1.

7 Results

7.1 Results for case study 1

Figure 3 shows the optimal control updates (ten control
steps) using BHP as initial control and the HALT, SHUT,
STOP, and constrained optimization modes of constraint
handling. Notice the wells are primarily active during the
first five control steps (i.e., up to 900 days). After the fifth
control step, the majority of the wells reach their economic
limit which signals the end of the economic life of the reser-
voir. Before this, all solution profiles, except the SHUT
mode (Fig. 3b, e), show a significant departure from the ini-
tial guess, indicating a considerable exploration of the range
defined by the economic limits. On the other hand, as shown
in Fig. 3, when optimizing using the SHUT control mode,
the optimal solution remains close to the initial controls,
which for this case correspond to relatively low initial rates.
For this reason, a majority of the wells the optimal solu-
tion obtained from the SHUT control mode are not shut-in.
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Fig. 3 Optimal solutions of well BHP controls for the modes HALT (a, d), SHUT (b, e), STOP (c), constrained optimization (f), and strategies
with shut-in history (a, b) and without shut-in history (d, e)

The dissimilarities between the different solutions in terms
of well status (open, stopped, or shut) can be explored by
comparing the distribution of well statuses in Fig. 4.

Figure 4 presents the simulation time intervals when the
wells have status as either open (white), stopped (gray), or
shut (black). The distribution of statuses is consistent with
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Fig. 4 Status of the wells in the optimal solutions for four enforce-
ment modes: HALT (a, d), SHUT (b,e), STOP (c), constrained opti-
mization (f), and two shut-in strategies: with shut-in history (a, b) and

without shut-in history (d, e). The white, gray, and black designate
respectively the open, stopped, and shut well status
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the definition of modes. In the case of the HALT mode
(Fig. 4a, d), the shut-in (black) intervals are predominant.
Recall that in this mode, the wells are reactivated and ver-
ified for violation of the economic limits at every well
status update (included predetermined control updates),
which means verification is also guided by the currently
implemented shut-in pattern history. To reiterate, at the ver-
ification time step, if the production performance satisfies
the economic limit (e.g., the water cut), then the well is
reopened; otherwise, the well is shut for all subsequent
time steps until a new verification is performed at the next
well status update. In Fig. 4a, d, the verification time steps
appear as either gray or white stripes occurring at each sta-
tus update. The SHUT mode, on the other hand, lacks the
capacity to reopen the well. Therefore, the solutions from
the SHUT mode given in Fig. 4b, e show only wells that
go from open to shut, and that stay shut for the remaining
simulation time.

Though the resulting shut-in patterns with and without
shut-in history are somewhat similar within the same modes,
they yield significantly different objective function values,
as shown in Fig. 5. Figure 5 shows the convergence of the
NPV as a function of the number of objective function eval-
uations for the different modes of enforcement, with and
without shut-in history. The optimal NPV values for each of
these runs are given in Table 4.

To simplify further analysis, we define two NPV thresh-
old values based on the curves in Fig. 5. Each thresh-
old value corresponds to a major bifurcation between two
or more curves. The first threshold point, ˜NPVecon �
$162 MM, is the bifurcation point where the curves for
the SHUT mode with and without shut-in history, and the
curve for constrained optimization, each progress along
different paths. The second threshold point, ˜NPVstop �
$174 MM, corresponds to the bifurcation point where the
curves for the HALT mode with and without shut-in history,
and the curve corresponding to STOP, separate after having
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Fig. 5 Convergence of the NPV with respect to the number of objective
function evaluations

Table 4 Optimal results

NPV, $MM Description

185.269 HALT with shut-in history

181.578 HALT without shut-in history

177.047 STOP

175.299 Constrained optimization

166.208 SHUT with shut-in history

162.095 SHUT without shut-in history

progressed along similar paths for a certain number of
function evaluations.

The rate of convergence for all NPV curves before
˜NPVecon is similar for all modes of enforcement, except for

the STOP mode (blue curve in Fig. 5). Recall that, when in
STOP mode, the testing for whether the economic constraint
is satisfied or not occurs at each time-step while solving
Eq. 1b and c. Thus, the verification process in STOP is itself
part of the search for a viable solution of the non-linear
reservoir system. The difference with the other modes is that
in STOP, the limits are enforced at an earlier point in the
solution procedure, compared to, for example, the SHUT
and HALT modes, where the verification process occurs
only after the end of the verification time-steps. This obser-
vation is confirmed by comparing the results in Fig. 4a, c, d,
i.e., where we observe that, in general, the stopped statuses
of the wells occur earlier in Fig. 4c compared to when the
shut statuses occur in Fig. 4a, d.

For the solutions with NPV greater than ˜NPVecon, the
economic limit violations are already frequent enough to
affect the rate of convergence towards the optimal solution.
More specifically, it is clear that the search direction in the
optimization variable space is less affected by the economic
limits in the HALT and STOP modes than those in the other
modes. The worst effect of the economic limits is observed
in the case of the SHUT mode, which has a restrictive
policy of shutting-in the wells completely until simulation
finishes. The result of this constraint-handling technique on
the control space is directly related to the argument made
in Section 5.2 about how the introduction of additional con-
trol points serves as a heuristic way to refine the solution
space. In an opposite manner, by shutting-in wells indis-
criminately with respect to objective function topology, and
leaving them shut for the remainder of the simulation, the
SHUT mode is effectively reducing the solution space in a
way that, because it is not guided by derivative information
of any sort, it is likely to reduce convergence ability and pos-
sibly close-off optimal solution areas for the optimization
algorithm. These conclusions are supported by the results
depicted in Fig. 3b, e, where an apparent fettered search
leads to control values that do not depart significantly from
the values given in the initial guess.
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In the next four sections, we discuss different aspects and
implications regarding the optimization results presented so
far. First, we analyze how the open/stopped/shut status of
the well affects the convergence of the optimization pro-
cedure. Next, we discuss whether actively using the well
shut-in history is beneficial for the production optimization
process. We then compare the direct enforcement strategies
against the strategy of constrained optimization. Finally, we
study the sensitivity of the results with respect to different
initial guesses.

7.2 Comparison of direct modes of enforcement

For STOP and HALT modes, the convergence of the
optimization procedure is similar until the NPV reaches
˜NPVstop. However, after reaching the ˜NPVstop threshold,

the STOP mode ceases to improve. We claim that this is
related to the fact that the number of errors that lead to the
inconsistency of the standard adjoint formulation is higher
in the STOP mode than that in the HALT mode (see expla-
nation in Section 4.2), and not to the usage of the well
shut-in history. This claim is supported by examining the
results from the HALT and STOP modes that are indepen-
dent of the shut-in history. Recall that in both the HALT
without shut-in history, and the STOP modes, the history
of well shut-ins is not retained between separate function
evaluations. Examining the results from these two modes,
we see that, beyond the ˜NPVstop threshold, the HALT with-
out shut-in history maintains a high rate of convergence
compared to STOP, and that it finishes with a better opti-
mal solution (see Table 4). This points to the importance
of maintaining gradient accuracy to retain convergence
competence.

Finally, we mention that the overall optimization runtime
depends not only on the number of function evaluations but
also on the runtime of the simulations needed to perform
those function evaluations. Using as reference the runtime
of a simulation without direct enforcement, T , a simula-
tion using HALT has an average runtime equal to 0.85 T ,
while a simulation using SHUT takes on average 0.6 T , and
a simulation using STOP takes on average 1.2 T . The STOP
mode algorithm is, therefore, the most expensive in terms
of runtime. This result is supported by the fact that in the
STOP mode algorithm the simulator solves additional well
equations.

7.3 Role of the shut-in pattern during optimization

Recall that the typical SQP algorithm is set to terminate as
soon as one of two criteria is satisfied: either the norm of the
gradient falls below a given tolerance, or a maximum num-
ber of iterations is reached. Also, note that when computing
the gradient norm, we exclude the controls that have reached

the boundary of the feasibility region. Using the gradient-
based criterion assumes that the gradient is sufficiently
accurate which may not be the case here. For this reason,
in addition to the two criteria mentioned above, we also ter-
minate the SQP when the update step of the optimization
variables reaches the order of machine epsilon. Which of the
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Fig. 6 Convergence of the NPV with respect to the number of objec-
tive function evaluations for the best (solid) and worst (dash-dot) runs
from a set of 20 optimization runs launched with different (random)
initial guesses. Each optimization is run once with the HALT with
shut-in history (red) and then with the STOP (blue) enforcement mode.
Each plot corresponds to a different realization of permeability
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Fig. 7 NPV convergence curve with respect to the number of objec-
tive function evaluations for case study 2. The best (solid) and worst
(dash-dot) optimization runs from among ten random initial guesses
are shown. For each initial guess, an optimization run using the HALT
with shut-in history (red) and STOP (blue) enforcement modes has
been performed

criteria mentioned here that is activated depends in large part
on the type of constraint enforcement being implemented.
Next, we discuss the role of these criteria in the termination
of the different runs in case study 1.

When optimizing the controls of wells subject to possible
shut-ins, the gradient-based SQP algorithm may underper-
form when trying to meet the gradient-based convergence
criterion. Because the SQP algorithm acts on the well con-
trols only, it has no direct influence on the well statuses. A
consequence is that the algorithm can get caught up in an
extended sequence of sub-optimal solutions (resulting from
unplanned shut-ins) in which the gradient norm is above the
specified tolerance. This happens when all candidate con-
trol updates produce shut-in patterns that yield lower NPV

values than the current one. The occurrence of shut-ins may
thus hinder the algorithm from reaching the tolerance of the
gradient-based termination criterion and thus, end up gen-
erating unnecessary function evaluations. Such termination
can be observed in Fig. 5 in the convergence plots of the
HALT (dashed red) and SHUT (dashed green) modes. In
these plots, the monotonically increasing part ends with a
flat line indicating several minor iterations with sub-optimal
shut-in patterns. Thus, in terms of convergence properties,
taking into account the shut-in history seems to counter-
act premature convergence caused by discrepancies between
the algorithm update and the actual controls imposed dur-
ing simulation. As seen in Fig. 5, the strategies that save
the optimal shut-in pattern and reapply it in subsequent iter-
ations, i.e., SHUT and HALT, both with shut-in history,
continue to improve the optimal solution. Interestingly, this
result can be seen in light of the argument made at the end
of Section 5.2 that discusses how additional, reused, control
points can improve algorithmic performance.

7.4 Economic limits enforced by constrained
optimization

The comparison between the results obtained when using
constrained optimization (constraints enforced at algorithm
level) against the results obtained when using the STOP and
HALT modes of enforcement expands the conclusions pre-
sented in [12] regarding the constraints used as a control
type compared to constraints imposed by economic limits.
In addition, we want to mention that this indirect type of
enforcement is less accurate than the direct ones because the
non-linear constraints implemented at the algorithm level
are only an approximation of the economic limits. In fact,
the economic limits are approximated twice before being
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Fig. 8 Optimal solutions of well BHP controls for two enforcement modes: HALT with shut-in history (a) and STOP (b), obtained with the tenth
initial guess for case study 2
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Fig. 9 Status of the wells in the optimal solutions for two enforcement modes: HALT with shut-in history (a) and STOP (b), obtained with the
tenth initial guess for case study 2. The white, gray, and black designate, respectively, the open, stopped, and shut well status

supplied to the non-linear programming solver. They are
first approximated when we use the previously run simu-
lation to estimate the relevant performance profile of the
well. Then, a second approximation step occurs when we
supply SQP with only the first order derivatives of these
performance profiles with respect to the well controls. Uti-
lizing only linearized constraints is a limitation of the SQP
algorithm.

7.5 Sensitivity analysis

In this section, we study the robustness of these results with
respect to the initial guess and the geometrical complexity
of the model.

First, we optimize case study 1 with 20 random initial
guesses obtained by perturbing the base case with a 5%
Gaussian noise. In Fig. 6, we show three plots, each corre-
sponding to a different realization. Each plot shows the NPV
function evolution corresponding to the best (solid line) and
the worst (dash-dot line) optimization run from among the
20 initial guesses considered. For each pair of runs, we com-
pare the HALT with shut-in history (red) against the STOP
(blue) mode. The results confirm that the HALT-based algo-
rithm outperforms the STOP-based one over a wide range of
initial guesses. A large variation between the best and worst
solutions underlines the high multimodality of the produc-
tion optimization problem. Because the SQP algorithm is
of a local search type, it cannot address the multimodal-
ity as efficiently as a global-local hybrid algorithm can. In
the future extension of this study, the authors will investi-
gate the performance of hybrid algorithms for production
optimization problems with economic limits.

The second sensitivity result is obtained by performing
the above analysis to case study 2. Here, we run ten opti-
mization runs with various initial guesses. Nine of those
guesses are generated by perturbing the base case with a 5%
Gaussian noise, and the tenth guess is assigned with pro-
ducers/injectors set to the lower/upper bounds of the BHP
controls (a “full-blast” configuration).

Figure 7 illustrates the convergence of the best (solid
line) and the worst (dash-dot line) optimization runs. The
red and blue colors correspond to HALT with shut-in history
and STOP modes, respectively. The best function evolution
curve (solid line in Fig. 7) is obtained when using the tenth
initial guess, i.e., the full-blast configuration for produc-
ers/injectors. Although the optimal NPVs vary over a wide
range, the HALT mode clearly outperforms the STOP mode.
The difference between the two modes is evident when com-
paring the well BHP controls and well status as shown in
Figs. 8 and 9. In these figures, we notice that the injec-
tors remain open for a longer time in the HALT mode than
those in the STOP mode. This behavior is similar to the one
observed in case study 1 and commented in detail in Section
7.1.

8 Conclusions

The main inference in this work is that a non-valid stan-
dard adjoint formulation will yield inaccurate gradients, and
that this, in turn, will reduce the performance of a gradient-
based algorithm for production optimization. The standard
adjoint formulation is subject to inconsistencies when-
ever discontinuities are introduced within the simulator’s
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well model equations due to the enforcement of economic
constraints.

This type of constraints are commonly enforced within
the reservoir simulator when performing gradient-based
production optimization. For this reason, in this work, we
devise an improved implementation of the simulator-based
constraints for which the adjoint gradients have fewer con-
sistency errors. In this new implementation, the well model
equations that violate the constraints are removed from the
governing system right after the occurrence of the viola-
tion and not reinserted until the next well status update. The
shut-in periods for these wells last just long enough so as to
mitigate the resulting non-differentiability and loss in con-
sistency of the standard adjoint formulation, though without
inducing a major loss in the sensitivity of the gradient. Fur-
ther analysis requires a broad quantitative comparison of the
effects of lost sensitivity versus loss of consistency, and is
the subject of ongoing work.

Numerical experiments show that the implementation of
economic limit enforcement introduced in this paper out-
performs commonly used implementations. In this respect,
results from the test cases confirm that the proposed imple-
mentation speeds up convergence and improves the final
optimal solution. Finally, a supplementary strategy that
takes into account shut-in history is presented and tested. To
further improve convergence, this strategy stores the shut-
in pattern corresponding to the best simulation run so far,
and applies it as initial control configuration in subsequent
iterations of the optimization algorithm. Other possible
applications of the strategy are noticed, e.g., the determi-
nation of the economic life time of the reservoir, but are
deferred to future work by the authors.
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