Comput Geosci (2017) 21:1219-1244
DOI 10.1007/s10596-017-9624-5

@ CrossMark

ORIGINAL PAPER

Fully implicit simulation of polymer flooding with MRST

Kai Bao! - Knut-Andreas Lie! - Olav Mgyner! - Ming Liu?

Received: 30 September 2016 / Accepted: 1 February 2017 / Published online: 11 March 2017

© Springer International Publishing Switzerland 2017

Abstract The present work describes a fully implicit sim-
ulator for polymer injection implemented in the free, open-
source MATLAB Reservoir Simulation Toolbox (MRST).
Polymer injection is one of the widely used enhanced oil
recovery (EOR) techniques, and complicated physical pro-
cess is involved, which makes accurate simulation very
challenging. The proposed work is intended for provid-
ing a powerful and flexible tool to investigate the polymer
injection process in realistic reservoir scenarios. Within the
model, the polymer component is assumed to be only trans-
ported in the water phase and adsorbed in the rock. The
hydrocarbon phases are not influenced by the polymer, and
they are described with the standard, three-phase, black-
oil equations. The effects of the polymer are simulated
based on the Todd-Longstaff mixing model, accounting
for adsorption, inaccessible pore space, and permeability
reduction effects. Shear-thinning/thickening effects based
on shear rate are also included by the means of a separate

< Kai Bao
Kai.Bao@sintef.no

Knut-Andreas Lie
Knut- Andreas.Lie @sintef.no

Olav Mgyner
Olav.Moyner@sintef.no

Ming Liu
liuming 1035 @gmail.com

I Mathematics and Cybernetics, SINTEF Digital,
P.O. Box 124 Blindern, 0314 Oslo, Norway

2 Statoil ASA, 28™ Floor, West Tower, Twin Towers, B-12,
Jianwai Ave. Chaoyang District, 100022, Beijing,
People’s Republic of China

inner-Newton iteration process within the global nonlin-
ear iteration. The implementation is based on the automatic
differentiation framework in MRST (MRST-AD), and an
iterative linear solver with a constrained pressure residual
(CPR) preconditioner is used to solve the resulting lin-
ear systems efficiently. We discuss certain implementation
details to show how convenient it is to use the existing
functionality in MRST to develop an accurate and efficient
polymer flooding simulator for real fields. With its modular
design, vectorized implementation, support for stratigraphic
and general unstructured grids, and automatic differentia-
tion framework, MRST is a very powerful prototyping and
experimentation platform for development of new reservoir
simulators. To verify the simulator, we first compare it with
a commercial simulator and good agreement is achieved.
Then, we apply the new simulator to a few realistic reservoir
models to investigate the effect of adding polymer injection,
and computational efficiency is demonstrated. Finally, we
combine existing optimization functionality in MRST with
the new polymer simulator to optimize polymer flooding for
two different reservoir models. We argue that the presented
software framework can be used as an efficient prototyp-
ing tool to evaluate new models for polymer—water flooding
processes in real reservoir fields.

Keywords MRST - Open-source implementation -
Polymer flooding - Black-oil - Flow diagnostics

1 Introduction

Water-based methods for enhanced oil recovery (EOR) con-
sist of adding active chemical or biological substances that

modify the physical properties of the fluids and/or the
porous media at the interface between oil and water [7].

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-017-9624-5&domain=pdf
mailto:Kai.Bao@sintef.no
mailto:Knut-Andreas.Lie@sintef.no
mailto:Olav.Moyner@sintef.no
mailto:liuming1035@gmail.com

1220

Comput Geosci (2017) 21:1219-1244

Polymer flooding is one of the most widely applied water-
based EOR techniques [23]. In polymer flooding, polymer
molecules of relatively large size are added to the injected
water to reduce its mobility and hence improve the local
displacement and the volumetric sweep efficiency of the
water flood [7, 13, 24]. The most important mechanism
is that the dissolved polymer molecules increase the brine
viscosity, which increases the saturation behind the water
front, enables the water drive to push more oil through the
reservoir, and reduces its tendency of channeling through
high-flow zones. The presence of polymer may also reduce
the permeability of the reservoir rock. Onshore, polymer
flooding can be considered a mature technology, having
migrated from USA to China where the world’s largest
polymer-driven oil production is found in the Daqing Oil
field. Offshore applications are few and more challenging
because of high-salinity formation water, well placement
and large well spacing, stability under injection, produced
water and polymer treatment and other HSE (health, safety,
and environment) requirements, logistic difficulties, etc.

In its most basic form, polymer flooding is described by a
flow model that consists of two or three phases and three or
four fluid components. Compared with the standard black-
oil models, the presence of long-chain polymer molecules
in the water phase introduces a series of new flow effects.
Depending on the types of the polymer used, and also the
rock and brine properties, polymer can be adsorbed onto
the surface of the reservoir rock, and contribute to reducing
porosity and permeability. Polymer flooding is in reality a
miscible process, but is typically simulated on a field scale
using immiscible flow models which use empirical mixture
models to account for unresolved miscibility effects. More-
over, the diluted polymer solution is in most cases pseu-
doplastic or shear-thinning, and hence has lower viscosity
near injection wells and other high-flow zones where shear
rates are high. This non-Newtonian fluid rheology improves
injectivity and gradually introduces the desired mobility
control in terms of a stronger displacement front, but may
also reduce sweep efficiency since the polymer solution will
have a higher tendency of flowing through high-permeable
regions. Polymer solutions can also exhibit pseudodilatant
or shear-thickening behavior, which improves sweep effi-
ciency and reduces injectivity. Understanding and being
able to accurately simulate the rheological behavior of the
polymer—water mixture on a reservoir scale is therefore
important to design successful polymer injection projects.
In addition to the basic effects discussed so far, the viscosity
and mobility control of a polymer flood tend to be signif-
icantly affected by the fluid chemistry of the injected and
resident water. More advanced models of polymer flood-
ing therefore account for pH effects, salts, etc. Likewise, to
achieve better oil recovery, polymer is often combined with
other EOR processes, such as surfactant—polymer flooding,

@ Springer

alkali—surfactant—polymer (ASP) flooding, and polymer—
alternating-gas (PAG) [8] processes, within which polymer
plays an important role for mobility ratio control.

Herein, we will introduce a simulator framework that
has been developed on top of the open-source MATLAB
Reservoir Simulation Toolbox [16] as a versatile and flex-
ible test bench for rapid prototyping of new models of
polymer flooding. The simulator is—Ilike most commercial
simulators—based on a black-oil formulation with sim-
ple first-order, upstream weighting for spatial discretization
and fully implicit time stepping. This offers unconditional
stability for a wide range of physical flow regimes and reser-
voir heterogeneities. Moreover, combining the fully implicit
formulation with automatic differentiation ensures that it is
simple to extend the basic flow models with new constitu-
tive relationships, extra conservation equations, new func-
tional dependencies, etc. By using numerical routines and
vectorization from MATLAB combined with discrete differ-
ential and averaging operators from MRST, these equations
can be implemented in a very compact form that is close to
the mathematical formulation [6, 10]. Once you have imple-
mented the discrete equations, the software will generate the
discretizations and linearizations needed to obtain a work-
ing simulator that by default is designed to run on general
unstructured grids. To test the performance of your new
simulator, you can use one of the many grid factory rou-
tines and routines for generating petrophysical data to set
up simplified and idealized test cases with a large variety
of structured and unstructured grid formats in two and three
spatial dimensions. Alternatively, you can also use the func-
tionality for reading and parsing commercial input decks to
set up proper validation on test cases having the complexity
encountered in the daily work of reservoir engineers.

Using a scripting language like MATLAB will generally
introduce a computational overhead, which can be quite sig-
nificant for small systems. In our experience, however, the
lack of computational efficiency is by far out-weighted by a
more efficient development process, which is largely inde-
pendent on your choice of operating system. At any point,
you can stop the execution of the simulator to inspect your
data, modify their values or the data structure itself, execute
any number of statements and function calls, and go back
and reiterate parts of the program, possibly with modified or
additional data. For larger systems, the majority of the com-
putational time of a well-designed simulator should be spent
processing floating-point numbers. For this, MATLAB is
efficient and fully comparable with compiled languages.
Tests on two- and three-phase models with the order of ten
to hundred thousand cells show that MRST simulators based
on automatic differentiation are between two and ten times
slower than fully optimized commercial simulators.

In the following, we will review the basic flow equa-
tions of polymer flooding and discuss how to formulate an

Comput Geosci (2017) 21:1219-1244

1221

efficient strategy that uses a separate inner-Newton itera-
tion process within the global nonlinear solution process.
We then introduce key elements of the MRST software in
some more detail and outline how we have applied the flex-
ible grid structure, discrete differential operators, automatic
differentiation, and object-oriented framework, to develop a
new and efficient polymer simulator that is readily applica-
ble to simple conceptual models as well as models having
the full complexity of real assets. We end the paper by pre-
senting a series of numerical test cases for verifying and
validating the simulator. To make new simulator prototypes
capable of handling realistic flow models on large models,
the underlying framework offers CPR-type precondition-
ers in combination with multigrid linear solvers, automated
time-step selection, etc. In a recent paper, we also discussed
how to formulate sequential solution strategies and use these
to introduce a highly efficient multiscale pressure solver for
polymer flooding [3].

2 Model equations

In this section, we will state our physical assumptions and
outline the flow equations for polymer flooding, which are
built as an extension of a general black-oil model.

2.1 The black-oil model

The black-oil model is a special multicomponent, multi-
phase flow model with no diffusion among the fluid com-
ponents. The name “black-o0il” refers to the assumption that
various hydrocarbon species can be lumped together to form
two components at surface conditions—a heavy hydrocar-
bon component called ”oil” and a light component called
”gas.” At reservoir conditions, the two components can be
partially or completely dissolved in each other, depending
on the pressure, forming a liquid oleic phase and a gaseous
phase. In addition, there is an aqueous phase, which herein
is assumed to consist of only water. The corresponding
continuity equations read as follows:

0t (Ppbysyw) + V - (byVy) — byqyw =0, (1a)
0r[@ (boSo + berysg)] +V - (boVo + bgryVg)

—(boqo + bgrvgg) =0, (1b)
0[P (bgsg + borsso)]l + V - (bgVy + borsVy)

—(bgqg + borsqo) = 0. (1c)

Here, ¢ is the porosity of the rock while s, denotes sat-
uration, p, phase pressure, and g, the volumetric source of
phase «. The inverse formation-volume factors b,, which
measure the ratio between the bulk volumes of a fluid com-
ponent occupied at surface and reservoir conditions, and the

gas-oil ratio rg and oil-gas ratio r,, which measure the vol-
umes of gas dissolved in the oleic phase and oil vaporized in
the gaseous phase, respectively, are all user-specified func-
tions of phase pressures. The phase fluxes v, are given from
Darcy’s law:

Vo = =2 K(Vpy — pugV2), a=o,w,¢g. 2

Here, K is the absolute permeability of the reservoir rock,
while Ay = kyo//Le 18 the mobility of phase «, where k.
is the relative permeability and i, is the phase viscosity.
The model is closed by assuming that the fluids fill the
pore space completely, s, + sy + 5; = 1, and by supply-
ing saturation-dependent capillary functions that relate the
phase pressures. Altogether, the equation system will have
three primary unknowns. Since we are going to study water-
based EOR, we choose the first two to be water pressure
pw and water saturation sy. The third unknown will depend
on the phases present locally in each cell: if only the aque-
ous and liquid phases are present, we choose ry, whereas
ry is chosen when only the aqueous phase is present. If all
phases are present, r; and r, depend on pressure and we
hence choose s, as the last unknown.

To get a complete model, we also need to support ini-
tial and boundary conditions. Herein, we will only consider
problems with no-flow conditions on the outer boundaries
and assume that the initial condition is supplied entirely by
the user, e.g., as a hydrostatic pressure and fluid distribu-
tion. In addition, we need extra well equations to compute
the volumetric source terms ¢,. To this end, we use a
semi-analytical model [21]:

qo = 2 Wi(pw — P), 3)

where p is the reservoir pressure (inside a grid cell) and
Pw is the pressure inside the wellbore. The well index W;
accounts for rock properties and geometric factors affect-
ing the flow. The flow inside the wellbore is assumed to
be instantaneous, so that fluids injected at the surface will
enter the reservoir immediately. Likewise, the wellbore is
assumed to be in hydrostatic equilibrium, so that the pres-
sure at any point can be computed as a hydrostatic pressure
drop from a datum point called the bottom hole, i.e., p,, =
Ppoh + Api(z). Wells are typically controlled by surface rate
or the bottom-hole pressure. These controls are given as a
set of extra equations that impose target values for fluid
rates and bottom-hole pressures. And also, a certain logic
that determines what happens if the computed rates or pres-
sures violate operational constraints, in which case a well
may switch from rate control to pressure control, shut in
hydrocarbon rates become too low, etc.

@ Springer

1222

Comput Geosci (2017) 21:1219-1244

2.2 The polymer model

In the present model, we assume that polymer is trans-
ported in the aqueous phase and that polymer changes the
viscosity of this phase, but does not affect the liquid oleic
and gaseous phases. The corresponding continuity equation
reads as follows:

0 (¢(l - Sipv)bwswc) + 0 (prca(l - ¢))
+V - (byVpc) — byqye=0. (@)

Here, ¢ € [0, ¢*] is the polymer concentration given in units
of mass per volume of water and c¢* is the maximum pos-
sible concentration, ¢ = c¢%(c) is the polymer adsorption
concentration, p; is the density of the reservoir rock, and
Sipv 1s the inaccessible (or dead) pore volume. The reduced
mobility of the mixture of pure water and diluted polymer is
modeled by introducing effective mixture viscosities jiy eff
and p p eff that depend upon the polymer concentration. This
gives modified Darcy equations of the form:

Vo — —MK(V _ V2) 5)
YT et @Re(e) T e
v krw(sw) K(V v2) (6)
= < w — Pw Z).
g Mp.eft(c) Ri(c) Do Pus

Here, the non-decreasing function Ry (c) models the reduced
permeability experienced by the water—polymer mixture as
a result of adsorption of polymer onto the rock’s surface.

Inaccessible pore space Many polymer flooding experi-
ments show that polymer propagates faster through a porous
medium than an inert chemical tracer dissolved in the poly-
mer solution [13]. There are two reasons for this: first of
all, large-sized polymer molecules cannot enter narrow pore
throats and dead-end pore channels. And secondly, the free
tumbling of polymer molecules is only possible at the cen-
ter of the pore channels, away from the surface of the pore
walls. Hence, the polymer solution can only flow through
a fraction of the pore space. In Eq. 4, this effect is mod-
eled by the scalar rock parameter s;,,, which is defined as
the amount of the pore volume inaccessible to the polymer
solution for each specific rock type [22].

Adsorption Polymer may attach to the rock surface
through physical adsorption, which will reduce the polymer
concentration and introduce a resistance to flow that reduces
the effective permeability of water. This process is assumed
to be instantaneous and reversible and is modeled through
the accumulation term p,c?(1 — ¢) in Eq. 4.

Permeability reduction The rock’s effective permeability
to water can be reduced, primarily by polymer adsorp-
tion but also as a result of polymer molecules that become

@ Springer

lodged in narrow pore throats. The permeability reduction
Ry representing this effect is given as follows:

a
Ri(c, cmax) = 1+ (RRF — 1)w,

max
Cmax (X, 1) = maxc(x,s),)
s<t

where ¢ . is the maximum adsorbed concentration and the
hysteretic residual resistance factor RRF > 1 is defined as
the ratio between water permeability measured before and
after polymer flooding. Both these quantities depend on the

rock type.

Effective viscosities To compute the effective viscosities of
the water—polymer mixture, we will use the Todd—Longstaff
mixing model [25]. In this model, the degree of mixing of
polymer into water is represented by a mixing parameter
o € [0, 1], which generally depends on the displacement
scenario, the geological heterogeneity, etc. If ® = 1, water
and polymer are fully mixed, whereas the polymer solution
is completely segregated from pure water if @ = 0. Let
Ufm = Mim(c) denote the viscosity of a fully mixed polymer
solution, then the effective polymer viscosity is calculated
as follows:

Ip.eff = Mim () -y~ (8)

where pp = pm(c*). The standard way of defining pfm
is to write pfm = m,(c) 1w, where the viscosity multiplier
m, is a user-prescribed function. The partially mixed water
viscosity is calculated in a similar way as follows:

Hpm = fim(c)” - 7. ©

The effective water viscosity is then calculated by summing
the contributions from the polymer solution and the pure
water. Setting ¢ = ¢/c* results in the following alternative
expression:

1 _ 1—c¢ c
Ww eff Mpm Mp,eff’
mu(©)” w o 1—w
= . 10
Hw eff 1—c+ E/mﬂ (c™) (10)

2.3 Rheology of the polymer solution

The viscosity (or thickness) of a fluid is defined as the
ratio between the shear stress and the shear rate and mea-
sures the resistance of a fluid mass to change its form. The
aqueous, oleic, and gaseous phase in the black-oil model
all have Newtonian viscosity, which means that the vis-
cosity is independent of the experienced shear rate and
can be modeled as a constant or as a pressure- and/or
temperature-dependent quantity. Polymer solutions, on the
other hand, generally have shear-thinning viscosities. As
shear rates increase, polymer molecules are elongated and

Comput Geosci (2017) 21:1219-1244

1223

aligned with the flow direction. Once this shear effect
becomes sufficiently strong, the molecules will uncoil and
untangle, causing a decrease in the effective viscosity of
the water—polymer mixture. (Polymer solutions may also be
shear-thickening, but this is less common).

Herein, we will represent shear effects using the same
model as in a commercial simulator [22]. This model
assumes that shear rate of water is proportional to the water
velocity; as a result, the calculation of shear effect with this
model is based on water velocity u,. This assumption is not
valid in general, but is reasonable when applied to a single
rock type within reservoirs. A shear factor Z is introduced
to describe the shear effect, which is calculated as follows:

_ Mw,sh (Uw,sh) N I+ (my(c) — Dmgh(tw, sh)
Mw,eff my(c)
where the multiplier mg, € [0, 1] is a user-prescribed func-
tion of the unknown shear-modified water velocity uy h,
Mw.etf 1s the effective water viscosity (10) without consid-
ering the shear effect. With no shear effect (mg, = 1),
we recover the effective water viscosity, whereas the shear
viscosity equals piw efr/m,(c) in the case of maximum
shear-thinning (mg, = 0). To calculate the unknown veloc-
ity uw sh, we first introduce the effective water velocity uy o
computed from Eq. 6 with no shear effect, and then use the
relation as follows:
Mw,eff

Hw,sh(uw,sh)

combined with Eq. 11 to derive the following implicit
equation for uy sh:

Uw,sh [1 + (m,u(c) - 1)msh(uw,sh)] _mlt(c)”w,() =0. (12)

Here, uy, ¢ is the un-sheared water velocity.

Once Eq. 12 is solved for uy s, we can calculate shear
factor Z from Eq. 11 and calculate the shear-modified
Viscosity fiw, sh and pp sh as follows:

V4

. D

Uw,sh = Uw,0

Mw,sh = Mw,effZ Mp,sh = l/«p,effZ~

In practice, we compute the modified phase fluxes directly
as follows:
\ Vp

Vuw,sh = 7 Vp,sh = ?

to avoid repeated computation.

3 The three-phase black-oil simulator in MRST

In this section, we will discuss how to discretize and solve
the basic black-oil equations and how to implement these
discretizations and solvers using functionality for rapid pro-
totyping from the open-source MRST software to obtain a
simulator framework that is efficient and simple to extend
with new functionality. However, before we start discussing

the discretizations and solvers, we give a brief introduction
to [16]; more details can be found in [6, 11], and [10].

The essence of MRST is a relatively slim core mod-
ule mrst-core that contains a flexible grid structure and
a number of grid factory routines; routines for visualiz-
ing grids and data represented on cells and cell faces;
basic functionality for representing petrophysical proper-
ties, boundary conditions, source terms, and wells; compu-
tation of transmissibilities and data structures holding the
primary unknowns; basic functionality for automatic dif-
ferentiation (AD); and various low-level utility routines.
The second, and by far the largest part of the software,
is a set of add-on modules that implement discretizations
and solvers; more complex data structures, extended grid
formats, and visualization routines; more advanced AD
functionality for building simulators; reading and process-
ing of industry-standard input decks; and a wide variety of
simulators, graphical user interfaces, and workflow tools.
Many of these modules offer standalone functionality built
on top of mrst-core and standard MATLAB routines.
More advanced simulators and workflow tools, on the other
hand, typically rely on functionality from many of the other
MRST modules. The majority of the software that is pub-
licly available is quite mature and well documented in a
format similar to that used in standard MATLAB functions.
Most modules also offer examples and tutorials written in a
workbook format using cell-mode scripts. Herein, we focus
on the AD-OQO family of modules rapid prototyping of fully
implicit simulators (see Fig. 1).

3.1 Grids and discrete differentiation operators

When working with grids that are more complex than sim-
ple rectilinear boxes, one needs to introduce some kind of
data structure to represent the geometry and topology of the
grid. In MRST, we have chosen to use a quite rich format for
unstructured grids, in which general geometric and topolog-
ical information is always present and represented explicitly
regardless of whether a specific grid allows for simplifica-
tions. The reason for this is that we want to ensure inter-
operability among different grid types and computational
tools, and ensure maximal flexibility when developing new
methods. As a result, grid and petrophysical properties are
passed as input to almost all simulation and workflow tools
in MRST. For standard low-order, finite-volume discretiza-
tions, one does not need all this information, and in many
simulators, grid and petrophysical parameters are only seen
explicitly by the preprocessor, which constructs a connec-
tion graph with cell properties and pore volumes associ-
ated with vertices and inter-cell transmissibilities associated
with edges. To simplify the presentation, we will herein
only discuss this information and show how it can be
used to build abstract operators implementing powerful

@ Springer

1224

Comput Geosci (2017) 21:1219-1244

MRST core

mrst-gui

deckformat

Data structures: grid, petrophysics, wells, b.c., ...
1/0, grid processing, AD library, plotting, ...

Graphical interfaces for interactive visualization of
kreservoir states and petrophysical data

Input of ECLIPSE simulation decks: reading, con-
version to SI units, and construction of MRST

objects for grids, fluids, rock properties, and wells

ad-core

ad-blackoil

ad-props

General simulation framework: abstract model
classes, time-step/iteration control, linearizations,
linear solvers, hooks for I/O and plotting, ...

General 3-phase black-oil simulator with dissolu-
tion and vaporization, specialized 1- and 2-phase decks
models, CPR preconditioning

Initialization of fluid models from ECLIPSE input

core functionality

ad-eor

utility module

Fully implicit simulators for water-based EOR:
polymer and surfactant

AD-OO module

Fig. 1 Modules from MRST used to implement a fully implicit polymer simulator

averaging and discrete differential operators that later will
enable us to write the discrete flow equations in a very
compact form.

Figure 2 illustrates parts of the unstructured grid format,
in which grids are assumed to consist of a set of match-
ing polygonal (2D) or polyhedral (3D) cells with matching
faces. These grids are represented using three data objects—
cells, faces, and nodes—which contain the geometry and
topology of the grid. To form our discrete differential oper-
ators, we basically need two mappings. The first is the map
F(c), which for each cell gives the faces that bound the
cell. The second is a mapping that brings you from a given
cell face f to the two cells C1(f) and C,(f) that lie on
opposite sides of the face. In the following, we will use
boldfaced letters to represent arrays of discrete quantities
and use the notation q[c] and q[f] to denote the element
of an array q corresponding to grid cell ¢ and cell face f,
respectively.

We can now define discrete counterparts of the continu-
ous divergence and gradient operators. The div operator is
a linear mapping from faces to cells. If v[f] denotes a dis-
crete flux over face f with orientation from cell C{(f) to
cell C,(f), then the divergence of this flux restricted to cell
¢ is given as follows:

div(wlcl = Y sgn(fIVIf].
feF (o)
_ | Lt e=cih.
The grad operator maps from cell pairs to faces. If, for
instance, p denotes the array of discrete cell pressures, the
gradient of this cell pressure restricted to face f is defined
as follows:

grad(p)[f1=plC2(/)] = pIC1(,)] (14)
c Fo) C G
1 1 3 1
1 2 1 2
1 3 1 8
1 4 9 1
2 5 4 2
2 6 2 5
2 7 2 6
2 8 2 7
2 2 : :
3 1

Fig. 2 Illustration of grids in MRST. The upper plot shows the relation between cells and faces which can be used to define discrete differentiation
operators. The lower plots show various grids of increasing complexity, from a simple rectilinear grid to a model of the Gullfaks field from the

Norwegian North Sea

@ Springer

Comput Geosci (2017) 21:1219-1244

1225

If we assume no-flow conditions on the outer faces, the
discrete gradient operator is the adjoint of the divergence
operator as in the continuous case, i.e.,

Y divmlelplel +) grad@)[f1vlf]=0.
¢ f

Since div and grad are linear operators, they can be rep-
resented by a sparse matrix D so that grad(x) = Dx and
div(x) = —DTx. Figure 3 shows the sparsity structure of
D for three different 2D grids.

In addition, we need to define the transmissibilities that
describe the flow across a cell face f given a unit pressure
drop between the two neighboring cellsi = C1(f) and k =
Ca2(f). To this end, let A; x denote the area of the face, n; x
the normal to this face, and ¢; ; the vector from the centroid
of cell i to the centroid of the face. Then, the transmissibility
is defined as follows:

Cik Mk
lei k|2

-1
T(f1= [Ti,_k1 + kail] , Tik = AiiKi ,

as)

where K; is the permeability tensor in cell i with primal
axes aligned with the grid axes. To provide a complete dis-
cretization, we also need to supply averaging operators that
can map rock and fluid properties from cells to faces. For
this, we will mainly use arithmetic averaging, which in its
simplest form can be written as follows:

avg, (@Lf1= 3 @C1(N]+alC2(N)).
3.2 Discrete flow equations for black-oil

The discrete operators defined above can be used to dis-
cretize the flow equations in a very compact form. If we use
a first-order, implicit temporal discretization and a standard
two-point spatial discretization with upstream weighting,
the discrete conservation for the aqueous phase can be
written as follows:

A= (plclblel s — 2 (plc]blc]s[c])"

+div(bv)[c]"t! — (b[clqlc])" ! (16)

=0,

where we have omitted the subscript ”"w” for brevity. To
evaluate the product of the inverse formation-volume factor

1111
T

and the phase flux at the cell interfaces, we introduce the
operator for extracting the upstream value as follows:

_ hiCi(H)], if grad(e)[f] — g avga(p)[flgrad@)[f] > 0,
upw(h)[f] —{ h[C>(f)], otherwise.

an

Then, the discrete version of Darcy’s law multiplied by b,
reads as follows:

bVLf] = —upw(bA)[f1T[f] (grad(p)[f]
— gavgu(plflgrad@[f]) . (18)

If we now collect the discrete conservation equations for
the aqueous, oleic, and gaseous phases along with the well
equations—all written on residual form—we can write the
resulting system of nonlinear equation as follows:

R(x) = 0, (19)

where x is the vector of unknown state variables at the
next time step. The standard way to solve such a nonlin-
ear system is to use Newton’s method. That is, we write
x = x" 4+ Ax, and use a standard multidimensional Taylor
expansion to derive the iterative scheme as follows:

Jo) (x+! —x) = -R@x), (20)

where J = dR/dx is the Jacobian matrix of the residual
equations.

3.3 Automatic differentiation in MRST

Before continuing to describe our implementation of
the black-oil simulator, we give a quick introduction to
automatic differentiation (AD) for the benefit of read-
ers not familiar with this powerful technique. Automatic
differentiation—also known as algorithmic or computa-
tional differentiation—is a set of techniques for simultane-
ous numerical evaluation of a function and its derivatives
with respect to a set of predefined primary variables. The
key idea of AD is that every function evaluation will execute
a sequence of elementary arithmetic operations and func-
tions, for which analytical derivatives are known. To exem-
plify, let x be a scalar variable and f = f(x) an elementary
function. The AD representations are (x, 1) and (f, f),

S

[

[
[N
4

Fig. 3 The sparsity structure of the matrix D used to define discrete differential operators for three different 2D grids. The two Cartesian grids

consist of two blocks that each have a clear banded structure

@ Springer

1226

Comput Geosci (2017) 21:1219-1244

where 1 is the derivative dx/dx and f, is the numerical
value of the derivative f’(x). By applying the chain rule in
combination with standard rules for addition, subtraction,
multiplication, division, and so on, we can now automat-
ically compute derivatives to within machine precision,
e.g., addition: (f, fx) + (g, 8x) = (f + &, fx + gx)and
cosine: cos({f, fx)) = (cos(f), —sin(f)fy). The same
principle can easily be extended to higher-order deriva-
tives and partial derivatives of functions of multiple
variables.

In MATLAB, this functionality can be elegantly imple-
mented using classes and operator overloading. When
MATLAB encounters an expression a+b, the software
will choose one out of several different addition func-
tions depending on the data types of a and b. All we
now have to do is introduce new addition functions for
the various classes of data types that a and b may belong
to. You can read more about how this is done in [17].
MRST implements automatic differentiation as part of
mrst-core. A new AD variable is instantiated by the call
x=initVariablesAD (x0), where x0 is a scalar or an
array containing values to be used for subsequent function
evaluations. Any new variable £ computed based on x will
now automatically become an AD variable, whose value
and derivatives are accessed as £.val and f.jac, respec-
tively. The AD class in mrst-core differs from most other
libraries in the sense that instead of representing the Jaco-
bian with respect to multiple variables as a single matrix,
we have chosen to let jac be a list of sparse matrices
that each represents the derivatives with respect to a sin-
gle primary variable. In solution algorithms, one may want
to separate pressure, compositions, and variables associated
to wells, and by keeping the sub-Jacobians separate and
not assembling directly into one large sparse matrix, we
avoid manipulating subsets of large sparse matrices, which
has low performance in MATLAB. Moreover, this approach
makes it simpler for users who wish to manipulate matrix
blocks that represent specific sub-equations in the Jacobian
of a full equation system.

3.4 Making a black-oil simulator: procedural approach

Having introduced you to automatic differentiation, we will
now show how this idea can be used to implement a fully
implicit solver for the discrete black-oil equations on resid-
ual form Eq. 16. To keep track of all the different entities
that are part of the simulation model, MRST introduces a
number of data objects:

— a state object, which basically is a MATLAB structure
holding arrays with the unknown pressures, satura-
tions, concentrations, and inter-cell fluxes, as well as
unknowns associated with the wells;

@ Springer

— a grid structure G, which in particular implements the
mappings F, C1, and C, introduced in Section 3.1;

— a structure rock representing the petrophysical data,
primarily porosity and permeabiliy, but also net-to-
gross, multipliers that limit (or increase) the flow
between neighoring cells, etc;

— a structure £luid representing the fluid model, which
is implemented as a collection of function handles that
can be queried to give fluid densities and viscosities,
that evaluates relative permeabilities, formation volume
factors, etc;

— additional structures that contain the global drive mech-
anisms, including wells and boundary conditions.

By convention, we collect G, rock, and £1uidinanadd-
itional data structure called model, which also implements
utility functions to access model behavior. Given a state obj-
ect, we can for instance query values for physical variables:

[pO, sW, sG, rs, rv, wellSol] = ...
model.getProps(state, 'pressure', 'water', 'gas', ...
'rs', 'rv', 'wellSol');
bhp = vertcat(wellSol.bhp);
gWs = vertcat(wellSol.qgWs);

% and similarly for qOs and qGs

Here, the array pO holds one oil pressure value per cell,
and sW holds one water saturation value. The last output,
wellSol, contains a list of data structures, one for each
well, that contain the unknowns associated with the perfo-
rations of each well. The call to vertcat collects these
quantities into standard arrays. Which among sg, ry, and
ry one should choose as primary reservoir variable will
vary from one cell to the other depending the fluid phases
present. For brevity, we assume that all the three phases are
always present, so that ry and r, are functions of pressure.
Thus, we henceforth use sG as our third unknown. Having
extracted all the primary variables needed, we set them to
be AD objects:

[p0, sW, sG, qWs, q0s, qGs, bhp] = ...
initVariablesADI(pO, sW, sG, qWs, qO0s, qGs, bhp);

When these AD objects are used to evaluate fluid and
rock-fluid properties in the cells, we will also get derivatives
with respect to the primary variables evaluated at their
current value:

[krW, kr0, krG] = model.evaluateRelPerm({sW, 1—sW—sG, sG});
bW = model.fluid.bW(p);

rhoW = bw .* model.fluid.rhoWS;

mobW = krW ./ model.fluid.muW(p);

To evaluate Darcy’s law across each face, we need to
use the averaging operator, the gradient, and the trans-
missibility introduced in Section 3.1. In MRST, the cor-
responding mappings are computed during the preprocess-
ing phase based on G and rock and stored in terms

Comput Geosci (2017) 21:1219-1244

1227

of function handles in structure operators inside the
model objects. For brevity, we henceforth refer to this
as ops. We first use the averaging operator and the gra-
dient operator to pick the upstream directions for each
interface:

rhoWf = ops.faceAvg(rhoW); % density at cell faces

gdz = model.getGravityGradient(); % g+nabla(z)

pwW = p0 — model.fluid.pcOW(sW); % water pressure

dpW = ops.Grad(p) — rhoWf.xgdz; % derivatives in Darcy's law
upcw = (double(dpW) <= 0); % upwind directions

Then, we use the upstream operator (17), which is also
contained in ops, to compute the correct water fluxes for
all interior interfaces:

‘ bWvW = ops.faceUpstr(upcw, bW.*mobW).s*ops.T.xdpW; ‘
L

The last thing we need to do is to handle the pressure
dependence of the accumulation term. In MRST, this is
represented as a static pore volume, evaluated at a reference
pressure, and a pressure-dependent multiplier function:

[pvMult,pvMult0] = getMultipliers(model.fluid, p0, p00);

Having computed all the necessary values in cells and on
faces, we can evaluate the residual from the homogeneous
part of the aqueous conservation equation over a time step
dt:

water = ops.Div(bWvW) + ...
(ops.pv/dt).*(pvMult.*bW.*sW — pvMultO.xbWO0.*sWO);

The homogeneous residual equations for the oleic and
gaseous phases are computed in the same way, and then we
collect the three phase equations in a cell array holding all
reservoir equations:

eqs = {water, oil, gas};

To form a complete model, we also need to add residual
equations for wells and incorporate the effects of driv-
ing forces into the continuity equations. Computing the
contributions from wells, volumetric source terms, and
boundary conditions is a bit more involved and skipped
for brevity. However, once the resulting fluxes or source
terms have been computed, all we need to do is sub-
tract them from the continuity equations in the affected
cells. Looking at the overall implementation, it is clear
that there is an almost one-to-one correspondence between
continuous and discrete variables. In particular, the code
implementing the conservation equations is almost on the
same form as Eq. 16, except that compressibility has been
included through a pressure-dependent multiplier instead
of evaluating a function ¢ (p) directly. Likewise, you may
notice the absence of indices and that there are no loops
running over cells and faces. Using discrete averaging

and differential operators derived from a general unstruc-
tured grid format means that the discrete equations can
be implemented once and for all without knowing the
specifics of the grid or the petrophysical parameters. This is
a major advantage that will greatly simplify the process of
moving from simple Cartesian cases to realistic geological
models.

With the code above, we have collected the whole model
into a cell array that contains seven different residual equa-
tions (three continuity equations, three equations for well
rates, and one equation providing well control) as well as
their Jacobian matrices with respect to the primary vari-
ables (po, Sw, Sg, Pbi, and g3). The last thing we need to do
to compute one Newton iteration is to assemble the global
Jacobian matrix and compute the Newton update Eq. 20.

eq = cat(eqs{:}); % assemble Jacobian
J = eq.jac{l}; % extract Jacobian
upd = — (J \ eq.val); % Newton update for all variables

This shows the strength of using automatic differentia-
tion. There is no need to compute linearizations explicitly;
these are computed implicitly by operator overloading when
we evaluate each residual equation. Likewise, we do not
need to explicitly assemble the overall Jacobian matrix;
this is done by MATLAB and MRST when we concate-
nate the cell array of AD variables. All that remains to get
a first prototype solver is to specify two loops, an outer
loop that advances the time steps, and an inner loop that
keeps computing Newton updates until the residual is suf-
ficiently small, as shown to the left in Fig. 4. The result is
a framework that is very simple to extend with new func-
tionality [6, 10]: you can implement new fluid behavior
or add extra conservation equations, and the AD func-
tionality will automatically generate the correct linearized
equations. However, to get a simulator capable of running
industry-grade simulations, we will need to introduce more
sophisticated numerical methods.

3.5 Object-oriented implementation in MRST

The actual code lines presented above are excerpts
of equationsBlackOil from the ad-blackoil
module, and have been slightly modified for pedagogical
purposes. Industry-standard reservoir models contain many
details that are seldom discussed in scientific papers. For
brevity, we skipped a lot of details like conversions and con-
sistency checks, and did not include various multipliers used
to manipulate the flow between neighboring cells. Likewise,
we did not discuss construction of reverse flow equations
that can be used to compute adjoints [4]. However, since
MRST is open-source, the interested reader can consult the
code for full details.

In all their generality, black-oil models can be very com-
putationally challenging for a number of reasons: the flow

@ Springer

1228

Comput Geosci (2017) 21:1219-1244

Classic Newton : Main loop A solveMinistep
[xit, t] = initializeSolution(deck) ; [x, t] = initializeSolution(deck) I [res, J, ...] = getEqs(t + 7, ...)
while t < T ' while t < T S xit = x
t=t+dt 1 [AT, ctrl]=getControl(t) /| while res > tol & it < itmax
x = xit ' T=0 ; Isys = assembleLinSys(res, J, ...)
do 1 while 7 < AT ! Isol = setupLinSolver(xit, lsys, ...)
[R,J] = computeResiduals(xit,x) -+ do ! upd = solveLinSys(xit, lsys, lsol, ...)
upd = J7'R) [At, ...] = getTimeStep(...) upd = stabilizeStep(xit, upd, lsys, ...
xit = xit 4+ upd [ok, 7, ...] = solveMinistep(t + 7, At, ...)’ xit = updatelterate(upd, ...)
while norm(R)>tol while ok=false | cleanupLinSolver(lsol)
end ; end \ [res, J] = getEqs(t+, ...)
' end \\ end
1 Volif it < itmax
] \ k = true
X Context: ! o o .
: — physical model and reservoir state 0 [, %, ...] = updateSolution(xit)
' . . \| else
— nonlinear solver and time loop \ .
. o . . ok = false
— linearization of discrete equations
end

linear solver

Fig. 4 Comparison of a simple time loop with a standard Newton
solver and the more sophisticated approach used in the ad-core
framework, in which the time loop has been organized into specific
numerical contexts to separate the implementation of physical models,

equations have a mixed elliptic-hyperbolic character; there
are order-of-magnitude variations in parameters and spatial
and temporal constants; primary variables can be strongly
coupled through various (delicate) force balances that shift
throughout the simulation; fluid properties can have discon-
tinuous derivatives and discontinuous spatial dependence;
and grids representing real geology will have cells with
rough geometries, large aspect ratios, unstructured connec-
tions through small face areas, etc. As a result, the simple
Newton strategy discussed above will unfortunately not
work very well in practice. Linearized flow problems typ-
ically have very large condition numbers, and while we
can rely on the direct solvers in MATLAB being effi-
cient for small systems, iterative solvers are needed for
larger systems. These will not converge efficiently unless
we also use efficient preconditioners that account for strong
media contrasts and the mixed elliptic-hyperbolic charac-
ter of the flow equations. To ensure that saturations stay
within their physical bounds, each Newton update needs
to be accompanied by a stabilization method that either
crops, dampens, or performs a line search along the update
directions. Likewise, additional logic is needed to map the
updated primary variables back to a consistent reservoir
state, switch primary variables as phases appear or disap-
pear, trace changes in fluid components to model hysteretic
behavior, etc. To get a robust simulator, we also need to
introduce sophisticated time-step control that monitors the
iteration and cuts the time step if this is deemed necessary
to improve convergence. And finally, we need procedures
for updating the well controls in response to changes in
the reservoir state and the injection and production of
fluids.

@ Springer

discrete equations and linearizations, nonlinear solvers and time-step
control, and linear solvers. Here, solveMinistep subdivides well
control intervals into smaller time steps, specified by user or error
control

Introducing all this functionality in a procedural code is
possible, but can easily give unwieldy code. A lot of this
functionality is also to a large degree generic and can be
reused from one model/simulator to another. One way to
design a transparent and well-organized code is to divide
the simulation loop into different numerical contexts, e.g.,
as outlined in Fig. 4, and only expose the details that are
needed within each of these contexts. This motivated us
to develop the ad-core module (see [6]), which offers
an object-oriented AD framework that enables the user to
separate physical models and reservoir states, nonlinear
solvers and time loops, discrete flow equations and lin-
earizations, and linear solvers. The framework has been
tailor-made to support rapid prototyping of new reservoir
simulators based on fully implicit or sequentially implicit
formulations and contains a lot of functionality that is
specific for reservoir simulators. Figure 5 outlines how var-
ious classes, structures, and functions can be organized
to formulate an efficient black-oil simulator. In particular,
the time-step selectors implement simple heuristic algo-
rithms like the Appleyard and modified Appleyard chop
as used in commercial simulators. There are linear solver
classes that implement a state-of-the-art, constrained pres-
sure residual (CPR) preconditioner [2], which can be com-
bined with efficient algebraic multigrid solvers like the
aggregation-based method of [19]. Notice also that assem-
bly of the linearized system is relegated to a special class
that stores meta-information about the residual equations
(i.e., whether they are reservoir, well, or control equation)
and the primary variables. This information is useful when
setting up preconditioning strategies that utilize structures in
the problem.

Comput Geosci (2017) 21:1219-1244

1229

Initial state Physical model Schedule
Simulator |

Type color legend

Solves simulation schedule Steps |

comprised of time steps and

Time step and control numbers
drive mechanisms (wells/bc)

(AT, C), oo (AT, G}

Conires]
Different wells and be
{(W1, BC), ... (Win, BCn)}

simulateScheduleAD

Initial ministep:

Function(s)

State(T;), AT;, Controls(C;) Nonlinear solver Time step selector — Tnput
Solves nonlinear problems sub- Determines optimal time steps X X
— — divided into one or more mini —— Contains object
State(T; + AT;) steps using Newton’s method Adjusted: SimpleTimeStepSelector,
AP IterationCountSelector, - --> Optional output
‘ StateChangeTimeStepSelector, ...
Result handler Write to storage [State Physical model Linear solver
Stores and retrieves simulation «--------mo o ‘l Primary variables: p, sy, Sg,Re;Ry... M» Defines mathematical model: Residual 453‘\ Solves linearized problem
data from memory /disk in a p i equations, Jacobians, limits on and returns increments
transparent and efficient manner. i ” b o r it
L D o Update variables: poiatalonsencatleinition BackslashSolverAD, AGMGSolverAD,
= P& Pp+ops<stds, ... TwoPhaseDilWaterModel, CPRSolverAD, MultiscaleSolverAD, ...
W I ThreePhaseBlack0ilModel [Reg g
- o/
- 5 . 9 —
Visualization [« [‘Well solutions] 2o AssemblestAz=lh
Visualize well curves, l ‘Well data: qW, q0, qG, bhp, ... J = - -
reservoir properties, etc - ‘Well model Linearized problem
R D Well curves T Well equations, control switch, Jacobians, residual equations and
gl:twjlls:l:’ plotiootbar. wellbore pressure drop, ... meta-information about their types

Fig.5 Overview of how components in the object-oriented AD frame-
work are organized to implement a black-oil simulator. The different
components are colorized by the type of the corresponding construct

4 The polymer flooding simulator

In this section, we will discuss how we can utilize the
general framework presented above to implement a new
polymer simulator capable of simulating real EOR scenar-
ios. As in the previous section, we will focus on the main
steps in the implementation and leave out a number of
details that can easily be found by consulting the corre-
sponding code from the ad-eor module (first released in
MRST 2016a).

4.1 Defining the polymer model object

The first thing we need to do is to set up a physical model.
Obviously, the black-oil model already has most of the fea-
tures we need for our polymer simulator. To avoid duplicat-
ing code, this model has been implemented as the extension
of a general model skeleton that specifies typical entities and

(class, struct, or function). Notice, in particular, how the nonlinear
solver utilizes multiple components to solve each ministep on behalf
of the simulator function

features seen in reservoir models, and the skeleton model
is in turn a special case of a generic physical model (see
Fig. 6). We use inheritance to leverage all this existing
functionality:

classdef
ThreePhaseBlack0ilPolymerModel <ThreePhaseBlackOilModel
properties
polymer
usingShear
end
methods

The properties polymer and usingShear are boolean
variables that tell whether polymer and shear effects are
present or not. (For the moment, the first will be true and
the second false). The next thing we need to do is to add
two new variables: the concentration ¢, which will be a pri-
mary variable, and the secondary variable cpyax holding the

Fig. 6 The class hierarchy used s PhysicalModel

ReservoirModel

to define the three-phase,
black-oil, polymer model

Abstract base class for all MRST
models. Contains logic related
to linearization and updates.

Extends PhysicalModel with rock, fluid,
saturations, pressures, and tempera-
ture. Base class for all reservoir models.

Primary variables: None

Added primary variables: s,,p, T, qu, Pbh

ThreePhaseBlackOilPolymerModel

ThreePhaseBlackOilModel

Extends ThreePhaseBlackOilModel with
additional variables, mixing rules, viscosity
modification, and optional shear effects.

Extends ReservoirModel with optional
solution gas and vaporized oil. Base
class for two- and single-phase versions.

Added variables: c, Cpax

Added primary variables: rg,ry

@ Springer

1230

Comput Geosci (2017) 21:1219-1244

maximum observed polymer concentration, which will be
needed to model the hysteretic behavior of the permeability
reduction factor (7).

function [fn, index] = getVariableField(model, name)

switch(lower(name))
case {'polymer'}
index = 1; fn = '¢';
case {'polymermax'}
index = 1; fn = 'cmax';
otherwise
[fn,index] = ...
getVariableField@ThreePhaseBlack0OilModel(model, name);
end

Here, index tells the size of the variables in each cell,
and the second last line provides access to all variables
defined in the black-oil model. We also need to add one
extra variable giving the surface rate of polymer in and out
of wells. This is done in the constructor of the polymer
object. The general framework also offers two additional
member functions that provide useful hooks into the general
simulation loop. The first function is run after every itera-
tion update to enable us to check if the computed states are
consistent with the underlying physics. We set this function
to inherit all consistency checks from the black-oil model
and additionally enforce that ¢ € [0, ¢*].

function [state, report] = ...
updateState(model, state, problem, dx, drivingForces)

[state, report] = updateState@ThreePhaseBlack0ilModel(model,...
state, problem, dx, drivingForces);
if model.polymer
¢ = model.getProp(state, 'polymer');
¢ = min(c, model.fluid.cmax);
state = model.setProp(state, 'polymer', max(c, 0));
end

The second function is run after the nonlinear equation
has converged and can be used, e.g., to model hysteretic
behavior as in our Ry function.

function [state, report] = ...
updateAfterConvergence(model,state0,state,dt,drivingForces)

[state, report] = ...
updateAfterConvergence@ThreePhaseBlack0OilModel(model, ...
state0, state, dt, drivingForces);
if model.polymer
@ = model.getProp(state, 'polymer');
cmax = model.getProp(state, 'polymermax');
state = model.setProp(state, 'polymermax', max(cmax, c));
end

To form a complete model, we also need to incorpo-
rate functions and parameters describing the adsorption,
the Todd-Longstaff mixing, inaccessible pore space, etc.
Instead of implementing analytical formula (or hard-coded
tables), we have chosen to get all necessary data by parsing
industry-standard input decks. This parsing is automated in
MRST in the sense that if you want a keyword KWD to
be interpreted, you will have to implement a new function
called assignKWD in the ad-props module. This func-
tion should take three parameters: the fluid object to which

@ Springer

the property is appended, data values, and a structure con-
taining region identifiers, which could possibly be used to
incorporate spatial dependence in the parameters. For the six
keywords describing our polymer model [22], implementing
these functions amounted to approximately forty extra lines
of code to interpret each keyword and setup functions that
either extract constants or interpolate the tabulated data in
the input deck correctly.

4.2 Discretized equations without shear effects

The last thing we have to do is to implement the discretized
flow equations. That is, we need to implement the member
function getEquations which the AD-OO framework
will call whenever it needs to evaluate the residual of the
flow equations.

function [problem, state] = ...
getEquations(model, state0, state,
dt, drivingForces, varargin)

roblem, state| = equationsThreePhaseBlackOilPolymer(stateO, ...
P q Y

state, model, dt, drivingForces, varargin{:});
end

To this end, we start by copying and renaming the func-
tion equationsBlack0Oil, which was discussed above and
implements the discretized equations for the three-phase
black-oil model. The first change we need to introduce in
the copied function is in the extraction of physical variables.

[p0, sW, sG, rs, rv, c, cmax, wellSol] = ...
model.getProps(state, 'pressure', 'water', 'gas',
'rs', 'rv', 'polymer', 'polymermax', 'wellsol');

qWPoly = vertcat(wellSol.qWPoly);

Similar changes are also made when choosing and instan-
tiating the primary variables as AD objects. In the computa-
tion of fluid properties, we start with the polymer properties
since they will also affect the mobility of water.

ads = fluid.ads(max(c, cmax));

mixpar = fluid.mixPar;

cbar = c¢/fluid.cmax;

a = fluid.muWMult(fluid.cmax).” (1—mixpar);
b = 1./(1—cbar+cbar. /a);

muWeffMult = b.*fluid.muWMult(c). mixpar;

permRed = 1 + ((fluid.rrf—1)./fluid.adsMax).x*ads;
muWMult = muWeffMult.x*permRed;

The computation of the water properties is almost as
before, except for a minor change marked in red:

mobW = krW ./ (fluid.muW(p) .*muWMult);

Apart from this, the computation of the aqueous, oleic,
and gaseous residual remains unchanged. The residual equa-
tion for polymer is implemented as follows:

poro = ops.pv./G.cells.volumes;

polymer = (ops.pv.*(1—fluid.dps)/dt).*(pvMult.*bW.xsW.*c ...
— pvMultO.*fluid.bW(p0).*sWO.*c0) + (ops.pv/dt).* ...
(fluid.rhoR.*((1—poro). /poro).*(ads — ads0)) + ops.Div(bWvP)

Comput Geosci (2017) 21:1219-1244

1231

which again is almost the same as the corresponding expres-
sion for the continuous equations. Unfortunately, using this
residual equation without modifications may incur numeri-
cal unstabilities in the case when water is almost nonexis-
tent. To prevent this, we detect all cells in which the diagonal
element of the Jacobian falls below a certain lower toler-
ance and replace the residual in these cells by the polymer
concentration, i.e., if bad is a logical array indexing these
cells, we set polymer (bad)=c (bad). Assuming that
we make the necessary modifications to the well models,
we now have four continuity equations, four well equations,
and a control equation that can be linearized and assembled
as before by first building a cell array of residual equations,
which we then use to construct a LinearizedProblem
object.

4.3 Including shear effects

The simulator, as described above, computes fluxes across
cell faces and fluxes in and out of wells. However, to
compute shear effects, we need the un-sheared water veloc-
ities, which can be defined on each face f of the discrete
grid as follows:

ol f] = —ul/]

avga (DI fT1ALfT

Fig. 7 Shear factor calculation

where A[f] is the face area. The product ¢ A is then the
available area for the fluids to flow through each partic-
ular face. In addition, we need to evaluate the viscosity
multiplier m, (c) at each face. This is done by picking the
upstream value. Then, we can instantiate w,, g4, as an AD
variable, initialized by u,, o, and use a standard Newton iter-
ation to solve (12). This inner iteration is invoked every time
we need to evaluate the water or polymer residual.

The solution process for the shear factor calculation is
presented in Fig. 7. There are basically three parts involved.
At the beginning, we initialize the AD variable Vsh based
on the un-sheared velocity Vw, and set up the residual equa-
tion we are solving with function shFunc, which can be
easily related to Eq. 12. Then, a standard Newton iteration
process is used to solve the residual equation. Finally, we
calculate and return the shear factor z based on the cal-
culated sheared water velocity Vsh following Eq. 11. The
function solve for the shear factors of all the faces at the
same time for better efficiency.

Shear effects are most important near the wellbore, and
will to a large extent determine the injectivity of a poly-
mer solution. Unfortunately, it is challenging to compute a
representative shear rate. Grid cells are typically large com-
pared with the length scale of the near-well flow, and using
a simple average over the grid cell will tend to smear flow

A Shear Calculation

with MRST

Vsh = Vw;

eqs = shFunc(Vsh);

iter = 0;

maxit = 30; °

eqs = shFunc(Vsh);

iter = iter + 1;
end

end

end
end

function z = computeShearMult(fluid, Vw, muWMultf)

% give the initial guess for the Vsh

Vsh = initVariablesADI(Vsh); % initialize the AD variable
plyshearMult = fluid.plyshearMult; % get the shear function M

shFunc = @(x) x.%(1+(muWMultf—1.).*plyshearMult(x))—muWMultf.*Vw; % residual function

resnorm = norm(double(eqgs), 'inf'); % initial norm of residual

% maximum iteration number
abstol = 1.e—15; % tolerance for convergence

while (resnorm > abstol) && (iter <= maxit) % Newton iteration
J = egs.jac{l}; % Jacobian
dVsh = —(J \ egs.val); % Newton incremental update
Vsh.val = Vsh.val + dVsh; % update the solution

resnorm = norm(double(eqgs), 'inf'); % norm of the residual

if (iter >= maxit) && (resnorm > abstol) % not converged
error('Convergence failure within %d iterations\nFinal residual = %.8¢', maxit, resnorm);

if (resnorm <= abstol) % convergence achieved
M = plyshearMult(Vsh.val);
z = (1 + (muWMultf — 1.).% M) ./ muWMultf; % shear factor

@ Springer

1232

Comput Geosci (2017) 21:1219-1244

rates and hence underestimate the non-Newtonian effects.
One obvious remedy is to use local grid refinement (LGR)
around the wells (see [14]). Another alternative is to use
an analytical injectivity model in which the water veloc-
ity is computed at a representative radius from each well
perforation [9, 22]. The representative radius is defined as
fr = «/Tw'a, Where ry is the wellbore radius and r, is the
areal equivalent radius of the grid cell in which the well
is completed. The water velocity can then be computed as
follows:

_ G
Uw,0 = 7 7 >
27 rrhye ¢ by
where g;, is the surface water rate and hy,. is the height
(or length) of the perforation inside the completed grid cell.
Notice, however, that this model has only been derived
assuming Cartesian cell geometries.

4.4 Running the simulator from an input deck

MRST is primarily a tool for prototyping new computa-
tional methods and simulator tools. As such, the software
does not offer any simulator that can be called directly
from the command line in MATLAB. Instead, the idea is
that users should write the simulator scripts themselves,
using functionality from the toolbox. The tutorials and
module examples contain many such simulator scripts that

e N

Input deck

can be used as a starting point to write simulators that
are fit for purpose. For completeness, we will here go
through one example of such a script. To set up a simu-
lation, we need to construct three different data objects as
illustrated in Fig. 8: a class object describing the physi-
cal model, a structure containing variables describing the
reservoir state, and a structure containing the schedule that
specifies controls and settings on wells and boundary con-
ditions and how these vary with time. Here, we assume
that we have a reservoir model described in terms of an
industry-standard input file [22]. We can then use function-
ality from the deckformat module, to read, interpret, and
construct the necessary data objects from this input data
file. We start by reading all keywords and data from the
file.

deck = readEclipseDeck(file);
deck = convertDeckUnits(deck);

The data can be given in various types of units, which need
to be converted to the standard SI units used by MRST. We
then construct the three data structures that make up the
physical model:

G computeGeometry(initEclipseGrid(deck));
rock compressRock(initEclipseRock(deck), G.cells.indexMap);
fluid = initDeckADIFluid(deck);

By convention, all grid constructors in MRST only out-
put the information necessary to represent an unstructured

DENSITY e
6282 1000 .01 /
nb 721 is the reservoir density

this needs the equivalent
surface density which is 0282 (i.e. 721°1.5 (FVF)

25 1.0
30150 properties, region information, well
"

[Data)
Input parser] (Class)

Reads complete simulation decks:
grid and petrophysics, fluid and rock (Struct)
definitions, operating schedule, con- (Function)

vergence control, etc
.

—— Input

----- Contains

\ -
[Reservoir model

State

|

Schedule]

Description of geology and fluid behavior as
well as discrete averaging and spatial dis-
cretization operators

Physical variables inside
the reservoir
P, Sw; So,8g,C, Iy, Is

Time steps and controls and
settings for wells and boundary
conditions

[Grid

Well state

Physical variables inside
the wellbore

93,95, 95+ 95, Poh

J

‘

Fig. 8 By using the input parser that comes with the AD-OO (object-oriented) framework, one can instantiate the data structures necessary to run

a simulation from an industry-standard input deck

@ Springer

Comput Geosci (2017) 21:1219-1244

1233

grid and do not process this information to compute geo-
metric information such as cell volumes, face areas, and
face normals. However, as we have seen above, we need this
information to compute transmissibilities and pore volumes,
and hence, we also call a routine that computes this infor-
mation. Similarly, the input parser for petrophysical data
outputs values for all cells in the model and hence needs to
be passed on to a routine that eliminates data in cells set to
be inactive. Having obtained all the necessary data, we can
then call the constructor of the appropriate model object:

model = ThreePhaseBlackDilPolymerModel(G, rock, ...
fluid, 'inputdata', deck);

Next, we instantiate the state object and set the initial
conditions inside the reservoir. Here, we assume that the
reservoir is initially in hydrostatic equilibrium, so that sat-
urations/masses are defined to balance capillary pressure
forces. This is a standard black-oil routine that works with
three or fewer phases and is not aware of extra fluid compo-
nents. The initial polymer concentration therefore needs to
be specified manually.

state
state.c
state.cmax

initEclipseState(G, deck, initEclipseFluid(deck));
zeros(G.cells.num,1);
state.c;

To set up the schedule, we need to know informa-
tion about reservoir model, and hence, this data object is
constructed last.

I
‘ schedule = convertDeckScheduleToMRST(model, deck);

Having established the necessary input data, we select the
linear and nonlinear solvers.

nonlinearsolver = getNonLinearSolver(model, ...
'DynamicTimesteps', false, 'useCPR', false);
nonlinearsolver.useRelaxation = true;

Here, we have set the simulator to use a simple relaxation
procedure to stabilize the Newton iterations and MATLAB’s
standard mldivide as linear solver. By setting useCPR
to be true, function getNonLinearSolver will set up
a CPR preconditioner with either BackslashSolverAD
based on mldivide or AGMGSolverAD with the AGMG
multigrid solver [19]. (The main advantage of AGMG com-
pared with other multigrid solvers is that it has a simple
MATLAB interface and can be used directly as a drop-in
replacement for mldivide without any data conversion
or parameter tuning.) For small cases, mldivide can be
efficient enough or even faster, while CPR preconditioned
linear solver is typically more efficient or required for big-
ger cases. The option DynamicTimesteps being false
says that we do not make any attempt at optimizing the
time steps and only perform a standard Appleyard chop to
cut time steps if the nonlinear solver fails to converge. If

we turn on dynamic time stepping, the simulator will try to
dynamically adjust the time steps to stay close to a targeted
number of nonlinear iterations per time step.

We now have all that is necessary to run a simulation and
can do this by calling the following script:

[wsols, states] = simulateScheduleAD(state, ...
model, schedule, 'NonLinearSolver', nonlinearsolver);

To visualize the output of the simulation, we invoke two
graphical user interfaces from the mrst-gui module that
let us view the reservoir variables and the well responses at
all instances in time specified in the schedule.

plotToolbar(G, states); plotWell(G,schedule.control(1l).W);
view(3); axis tight

plotWellSols(wsols)

As an alternative to using these two GUIs, well curves
can be extracted to standard MATLAB arrays using either
getWellOutput or wellSolToVector.

5 Numerical examples

In this section, several examples are presented to demon-
strate the validity and performance of the developed model.
The first two examples verify the model and implemen-
tation against a leading commercial simulator [22]. Also,
the effects of polymer injection and the impact of non-
Newtonian fluid rheology on the water flooding process are
investigated. In the third example, we illustrate how the
simulator is readily applicable to fully unstructured grids,
whereas the fourth example uses the geological model of a
real field to set up a test case with a high degree of realism.
In the last example, we combine the existing optimization
functionality in MRST and the presented polymer simu-
lator to optimize the polymer flooding procedure for two
different reservoir models.

For simplicity, we use the same basic fluid model for the
Examples 1, 2, and 4, as summarized in Fig. 9. For polymer,
the dead pore space is set to 0.05, the residual reduction fac-
tor is 1.3, and the polymer is fully mixed into the aqueous
phase (i.e., ® = 1). For Example 3, we use a slightly dif-
ferent fluid model but the same polymer parameters. Link
to complete codes for these examples can be found in http://
www.sintef.no/mrst/ad-eor/.

5.1 Example 1: verification against commercial
simulator

A 2D example with heterogeneous porosity and permeabil-

ity (Fig. 10) is designed for the development and verification
of the present model. In this example, the dimensions

@ Springer

http://www.sintef.no/mrst/ad-eor/
http://www.sintef.no/mrst/ad-eor/

1234

Comput Geosci (2017) 21:1219-1244

0 0.2 0.4 0.6 0.8 1

(a) Relative permeabilities

Water

0 0.2 0.4 0.6 0.8 1

(b) Capillary pressure

Oil | Gas

Surface Density | 1033 kg/m® | 860 kg/m® | 0.853 kg/m?
(c) Fluid properties

60 5x10°

50 25

40 2

30 15

20 1

—e—Thinning
—e—Thickening

0.8
0.6

0 05 1 1.5 2 25 3 0 0.5 1
Polymer concentration

(d) Polymer viscosity multiplier
Fig. 9 Properties and functions entering the fluid models

of the grid is 20 x 1 x 5. The size of the domain is
4000 x 200 x 125 m. One injection well is located in
the bottom two layers, and one production well is located
in the top two layers. Hydrostatic equilibration is used for
initialization.

The polymer injection schedule follows a typical poly-
mer water flooding strategy. As shown in Fig. 10, the
flooding process begins with the primary water flooding
(1260 days). Then, a 1700-day polymer injection process
with concentration 1 kg/m? is performed. Water injection is
continued after the polymer injection. The injection well is
under rate control with target rate 1000 m3/day and upper
limit of 450 bar on the bottom-hole pressure (bhp), whereas
the production well is under pressure control with target
bottom-home pressure 260 bar.

For comparison, two groups of simulations are performed
with MRST and the commercial simulator. The first does
not include shear effects (brown lines in Fig. 10), and in
the other one, shear effect is taken into consideration (blue
lines in Fig. 10). The results from MRST are indicated with
solid lines and the results from the commercial simulator
with dashed lines. From the results, it can be observed that
the bottom-hole pressure for the injection well increases

@ Springer

Polymer concentration

(e) Polymer adsorption

15 2 25 3 10 10?2 10°
Water velocity

(f) Shear effects

drastically when the polymer injection starts. When the
bottom-hole pressure reaches the upper limit, the injection
well switches to bottom-hole pressure control and the water
injection rate drops rapidly. This can be explained in a natu-
ral way with the employed well model (3). The dissolution
of the polymer increases the viscosity of the injecting water,
and as a result, the mobility of the water phase is decreased.
According to Eq. 3, higher bottom-hole pressure is required
to maintain the target injection rate. When the bottom-hole
pressure reaches the limit, the water injection rate will drop
rapidly as a result of the decreased mobility.

As shown in Fig. 10, the results from MRST and the
commercial simulator agree well. Abrupt changes when the
polymer injection begins and ends are captured accurately.
Both simulators predict the same shear-thinning behavior,
which significantly improves injectivity and results in a
much higher water rate during polymer injection.

5.2 Example 2: sector model
In this example, we consider 3D synthetic sector model

generated with MRST. The model has a physical extent of
1000 x 675 x 212 m, contains four vertical faults that

Comput Geosci (2017) 21:1219-1244 1235

Polymer injection rate Injector bottom-hole pressure Water injection rate
1000 450 1000
] 950
o
shear: MRST 800 o 400
o |F 7 g o0
= = = shear: Commercial B 600 3 °
® o)
E a = 850
no shear: MRST S 400 S 350 5 800
© S 5
= = = no shear: Commercial »% 2 -“:l
= 200 8 = 750
S 300
3 . . ‘ ‘ ‘ 700
2000 4000 6000 8000 10000 = 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Time [days] Time [days] Time [days]

Oil production rate
600

500
400
: 300
200
2580 ‘ 100
- 1T [|
0

2500
2520
2540
2560
500 1000 1500 2000 2500 3000 3500 4000 2000 4000 6000 8000 10000
Time [days]

Production [m 3/day]

o E) 100 150 200 250 500 350 00

Fig. 10 Verification of the MRST solver against a commercial simulator for a 2D Cartesian example. Here, water is colored blue, oil is red, and
gas is green

intersect in the middle of the domain, and is represented on To investigate the effects of the polymer injection and dif-
a30 x 20 x 6 corner-point grid, in which 2778 cells are ~ ferent types of fluid rheology on the water flooding process,
active. There is one injection well located in the center of the ~ four different simulations are performed with both MRST
sector and is perforated in the bottom three layers, and two and the commercial simulator. The first simulations describe
production wells located to the east and west and perforated pure water flooding. The second simulations describe poly-
in the top layers (see Fig. 11). The injector is under rate con- ~ mer injection, but do not account for non-Newtonian fluid
trol with target rate 2500 m3/day and bottom-hole pressure rheology during the injection process. The third and the
limit 290 bar, whereas the producers are under bottom-hole ~ fourth simulation setups assume that the polymer exhibits
pressure control with target pressure 230 bar. shear-thinning and shear-thickening behaviors, respectively.

Well set-up Horizontal permeability Initial saturation
PROD02 [NjEO1

PRODO1

Sw

—— no polymer: MRST
Injector bottom-hole pressure injecti N
) Water injection rate Water cut = = = 1o polymer: Commercial
290 2500
0.7 m
— no shear: MRS'T
0.6
280 B = = = no shear: Commercial
= — & 2000 05
] o o
S, = 5
© 270 = 204
2 2 803
g 81500 ="
260 = 0.2 shear-thickening: MRST
01 - = = shear-thickening: Commercial
250 1000 =
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Time [days] Time [days] Time [days]

Fig. 11 Verification of the MRST polymer simulator against a commercial simulator with a 3D synthetic example with different types of polymer
injected

@ Springer

1236

Comput Geosci (2017) 21:1219-1244

Table 1 Fluid densities and viscosities used in Example 3

Water Oil Gas
Compressibility — 10~*/bar 103 /bar
Viscosity 1cP 5cP 0.2 cP
Density (at 250 bar) 1033 kg/m3 860 kg/m> 400 kg/m?>

Figure 11 reports water rate and bottom-hole pressure in the
injector and water cut in the two producers.

For pure water flooding, the bottom-hole pressure decays
fast to a level below 250 bar during the first 150 days
and then starts to gradually increase after approximately
400 days to maintain the specified injection rate until the end
of simulation. In the polymer flooding scenarios, the injec-
tivity decreases dramatically once the polymer injection
begins because of the increased viscosity of the polymer—
water mixture. If the diluted polymer behaves like a Newto-
nian fluid, the bottom-hole pressure will quickly reach the
upper limit and force the injector to switch from rate to pres-
sure control, which in turn causes an immediate drop in the
injection rate. As a result, the oil production declines during
the injection of the polymer slug, but increases significantly
during the tail production in both producers. Likewise, we
see delayed water production in both producers. In the case
of shear-thinning fluid rheology, the bottom-hole pressure
also increases rapidly, but manages to stay below the bhp

Fig. 12 The four grids
considered in Example 3, along
with the phase saturations
computed after the injection of
0.60 PVI

limit, which means that the targeted injection rate can be
maintained. As a result, we maintain the initial oil pro-
duction and achieve a better tail production as a result of
improved displacement efficiency and volumetric sweep.
When polymer with shear-thickening rheology is injected,
the injectivity is drastically reduced, and in this case, the
commercial simulator was not able to finish the simulation.
A few report steps after the polymer injection starts, the
simulator computes bottom-hole pressure values that are not
well behaved, which causes it to stop. MRST, on the other
hand, manages to finish the simulation despite the somewhat
unphysical setup.

5.3 Example 3: unstructured grids

The main purpose of the third example is to demonstrate that
the polymer simulator is capable of simulating grids with
general polyhedral geometries. To this end, we consider
a vertical cross-section of a reservoir with dimensions of
1000 x 100 m. There is an injector-producer pair included,
where the producer has a curved well trajectory spanning a
relatively large region of the reservoir. We consider a sce-
nario in which one pore volume of water is injected over
5 years, a polymer slug added to the initial 7.5 months,
and fluids are produced at a fixed bottom hole pressure of
250 bar. Table 1 lists fluid densities and viscosities.

@ Springer

Comput Geosci (2017) 21:1219-1244

1237

To represent the reservoir, we consider four different
grids: a fine Cartesian grid with 20,000 cells, a coarse
Cartesian grid with 231 cells, an unstructured perpendicu-
lar bisector (PEBI) grid with 1966 cells refined around the
wells, and a composite grid in which the coarse Cartesian
grid is refined locally around the wells by adding Voronoi
cells, giving in total 921 cells. The two latter grids were
constructed using a new module in MRST for generating
2D and 3D Voronoi grids with cell centers and/or cell faces

Fig. 13 Well curves for the

conforming to geological structures like well paths, faults,
fractures, etc. The grid factory routines handle intersec-
tion of multiple faults, intersections of wells and faults, and
faults intersecting at sharp angles (see [1, 5]). Figure 12
shows the four grids, along with snapshots of the phase
saturations partway into the simulation. (In our color con-
vention, water is blue, oil is red, and gas is green. The
convention also applies to other examples in the paper.) Well
responses are plotted in Fig. 13.

0.8

structured and unstructured 550 |
. 0.7
grids of Example 3
— 06
— 500 &
B S
k) a
o E 0.5
a f=4
g 450 £ 04
S
® E
] 203
e
400 =
£ &
5 02}
[s1]
350
0.1
200 400 600 800 1000 1200 1400 1600 1800 200 400 600 800 1000 1200 1400 1600 1800
Time [days] Time [days]
(a) Injector bottom-hole pressure (b) Oil production rate
x104
sl
9000 —
7T
i3 8000
ser =—7000 |
S E
S5t S 6000 |
2 s
5,1 g 5000
=2 a
T & 4000 +
>3t o
5 2
3 2 3000
2+ >
E 2000 |
1L (&)
1000 -
200 400 600 800 1000 1200 1400 1600 1800 200 400 600 800 1000 1200 1400 1600 1800
Time [days] Time [days]
(c) Cumulative oil production (d) Cumulative gas production
0.6 [
04
0.35 0.5 |
= 7
F 03 3
” 04|
2‘0.25 .5
2 Sosl
3 o2 e
9 o
3 2
] 0.15 % 0.2
0] B
0.1
0.1
0.05
0

800 1000
Time [days]

200 400 600

(e) Gas production rate

1200

800 1000 1200 1400 1600 1800

Time [days]

1400 1600 1800 200 400 600

(f) Water production rate

‘ == Coarse grid (231) cells ===== \Well refinement (921 cells)

Fine grid (20 000 cells) === Adaptive PEBI (1966 cells)|

@ Springer

1238

Comput Geosci (2017) 21:1219-1244

Comparing the results from all four grids, we see that
there are significant differences in the predicted injector
bottom-hole pressures. The injector is best approximated by
the PEBI grid, which uses 88 cells that align locally with the
curved well path. The fine Cartesian grid approximates the
well path in a stair-stepped manner using 74 cells, which on
average are twice as large as the perforated PEBI cells. The
composite grid also adapts to the well path, but here the 30
well cells are less regular and on average nine times larger
than in the PEBI grid. Interestingly, the resulting bottom-
hole curve is not significantly different from the coarse
Cartesian grid, which only has 8 perforated cells. One pos-
sible explanation is that the default well indices computed
by Peacemann’s formula are only strictly correct for hexa-
hedral cells. Likewise, since the initial fluid distribution is
computed by sampling at the cell centroids, the oil-water
contact is sharply resolved only on the fine Cartesian grid
and is non-flat on the two unstructured grids.

Looking at the oil production, we see that all three coarse
grids predict a too rapid initial decay and smooth the subse-
quent buildup and decay compared with the fine Cartesian
grid. The result is that all the three coarse grids slightly over-
predict the cumulative oil production. The coarse Cartesian
grid gives the largest deviations in gas production, whereas
the unstructured PEBI grid has the largest deviation in water
rate. Altogether, it seems like the composite grid gives the
closest match with the fine Cartesian grid.

5.4 Example 4: Norne

Norne is an oil field located in the Norwegian Sea. The
simulation model of this field has recently been made pub-
licly available as an open data set [20]. Here, we will
use a slightly simplified version of this simulation model,
in which we have removed one tiny disconnected region
and disabled some features related to flux regions, fault

PRODO03

INJE02
PRODO1
INJEO1

PROD02

—

multipliers, equilibration regions, and so on. Furthermore,
we replace the fairly complicated well-control schedule
representing the real field history with six wells operating
under simpler control schedules. To run this example, the
AGMG multigrid solver [19] is required.

The simulation model consists of 44,915 active cells and
has a total pore volume of 8.16 - 103 m>. The two injec-
tion wells (shown with red color in Fig. 14) are under rate
control with target rate 30,000 m>/day and a bottom-hole
pressure limit of 600 bar. Four production wells (shown with
blue color in Fig. 14) are under bottom-hole pressure control
with target pressure 200, 200, 190, and 180 bar, respec-
tively. The injection begins with primary water flooding
for 360 days. Then, polymer with concentration 1 kg/m? is
injected for 340 days. Water flooding continues for another
1460 days after the polymer injection stops. The total sim-
ulation time covers a period of 2260 days. Non-Newtonian
fluid rheology is not considered in this example.

The initial saturation is initialized with hydrostatic equi-
libration (Fig. 15a). The saturation distribution and polymer
concentration at different times are shown in Figs. 15
and 16, respectively. The evolution of water injection rate,
bottom-hole pressure in injection wells, oil production rate,
and water cut are reported in Fig. 17. For comparison, the
resulting well curves for a pure water flooding scenario are
plotted as dashed lines. The impact of polymer injection
on the injection process, like injectivity, injection rate, and
water cut, is clearly shown through the resulting well curves.
The main effect of polymer is that the reduced injectivity
leads to a shift in the oil rate, which diminishes the over-
all oil production. With a short time horizon of 2260 days,
the suggested polymer injection is not a good engineer-
ing solution. We emphasize that polymer injection is not
performed in reality on Norne, and the polymer scenario
studied herein is invented by the authors for illustration
purposes.

PROD04
1000

Fig. 14 Geological model and well setup for the Norne example. Colors show the horizontal permeability. To better distinguish zones of high
and low permeability, the color axis is set to be between 0 and 1000 md; the actual permeability values extend to 3500 md

@ Springer

Comput Geosci (2017) 21:1219-1244

1239

Fig. 15 Saturation distribution
at different times for the Norne
simulation

(a) Initial

Overall, our artificial polymer flooding scenario rep-
resents a computationally challenging problem, and not
surprisingly, the implicit solver struggles to converge for
some of the time steps. However, use of adaptive chopping
of time steps makes the simulator more robust and enables
it to run through the specified simulation schedule. MRST
offers both reactive and predictive time-step control, similar
to those seen in many commercial simulators. The reactive
part uses upper bounds on the number of iterations allowed.
If any of these bounds are exceeded, the simulator will halve
the time step and continue to do so until the iteration bounds
are not exceeded. If the time step is reduced below a given
minimum, the simulator will stop and report convergence
failure. Likewise, if the current step size has been success-
fully used a given number of times, the simulator will try
to increase it by a given factor, and this is repeated until
one reaches a given maximum time step. MRST can also
set upper bounds on the absolute or relative changes; one
or more of the physical variables (typically saturation) are
allowed to change during one iteration and use this to pre-
dict the time-step size. Another alternative is to set a target
for the number of nonlinear iterations and let the simula-
tor use the previous convergence history to guess the size of

Fig. 16 Polymer concentration
at different times for the Norne
simulation

i A

(b) After 770 days

—F A

(C) After 1170 days

(d) Final, after 2260 days

the time step that will ensure that the iteration target is met.
If desired, all parameters controlling these strategies can be
prescribed by the user. In addition, one can gradually ramp
up the initial time step so that it increases geometrically
towards a given target. Without these capabilities, manual
modifications of the time steps and multiple reruns would
likely have been necessary to get a simulation through. In
this particular simulation, we used an initial ramp up speci-
fied in the schedule combined with the reactive strategy with
an upper iteration bound of 15.

5.5 Example 5: polymer flooding optimization
with adjoint method

The main purpose of polymer injection is to increase the
economics of the recovery process. To measure this, we
consider the net present value, which accounts for the pro-
duction revenue of oil and gas, the cost related to the
injection and production process, and the discount of value
with time:

T

NPV(T) = / (VOCIo+rg‘Ig_(riwCIiw+rw4w+rip‘Iip))(1+d)_tdt~
0

t=

@n

(c) 1170 days

(d) Final time, 2260 days

@ Springer

1240

Comput Geosci (2017) 21:1219-1244

Table 2 Prices used in the calculation of NPV (21)

Prices (in US dollars)

Oil revenue 60 USD/stb

Gas revenue 2.8 USD/mmbtu
Polymer cost 5 USD/kg
Water injection cost 5 USD/stb
Water production processing cost 5 USD/stb
Yearly discount factor 0.05

Here, r, and ry are the oil and gas revenue prices and
qo and g are the oil and gas production rates, respectively.
As a result, rogo + rgqg represents the revenue due to pro-
duction of oil and gas. Moreover, riw, 'y, and rj, represent
water injection cost, water production processing cost, and
polymer cost, respectively, whereas d is the discount rate
and gjw, qw, and g;p are water injection rate, water produc-
tion rate, and polymer injection rate, respectively. Hence,
Fiwqiw + rwqw + ripqip represents related costs during the
polymer water flooding and production process. The val-
ues employed in this section are listed in Table 2 and are
invented by the authors for illustration purpose.

To maximize NPV, we will optimize polymer injec-
tion concentration. To this end, we will use a rigorous
gradient-based mathematical optimization method, in which

Fig. 17 Well curves for the 5 x10*

gradients of the NPV with respect to the current controls
are computed using an adjoint formulation. Adjoint formu-
lations is part of the AD-OO framework, and has previously
been discussed, e.g., in [12, 15]. Specifically, we will use
the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm
[18], which is a quasi-Newton method, in combination with
a line-search algorithm with termination criteria based on
the Wolfe conditions [26].

We investigate the optimization of two water flooding
cases. For both cases, we increase the oil viscosity to be
between 10 and 20 cp, while water viscosity remains
0.318 cp. No shear effect is considered during the simulation.

Case 1: We consider a synthetic 1200 x 1000 x 150 m
sector model with four vertical faults intersecting in the mid-
dle of the domain similar as in Section 5.2 (see Fig. 18). The
formation is represented on a 30 x 25 X 6 corner-point
grid with 3528 active cells. The injector is under rate control
with target rate 2500 m>/day and bottom-hole pressure limit
600 bar, whereas the producers are under bottom-hole pres-
sure control with target pressure 230 bar. The total flooding
process is 5000 days. To optimize, we split the schedule to
ten periods of 500 days and try to find the polymer injec-
tion concentration for each period that maximizes overall
NPV (21). The maximum available polymer concentration
is 2.5 kg/m>.

. ---- 600 [
Norne case. Dashed lines i
.]
represgnt a pure 'waFer flooding og | ' oo
scenario and solid lines a | T
.. . . > 1 m
olymer injection scenario] >
E —INJE02| | % 500
\
£o4t | s
= o
S ©450 ¢
g .1 :
8 2.2 £ Z
< B 400 -
ol 2 400 P ——INJEOT
s L257 ——INJEO2
|53 -7
D
18l S350
500 1000 1500 2000 500 1000 1500 2000
Time [days] Time [days]
(a) Water injection rate (b) Injector bottom-hole pressure
0.7 PRODOT
8000 | PRODO1 ——PRODO2
e e
L — 0.6 PROD04
7000 PROD04
56000 05t
RS
£ 5000 304l
L 9]
€ 4000 k]
< 203}
S 3000
é 02t
& 2000
0.1
1000 L—

1000
Time [days]

(C) Oil production rate

@ Springer

1500

1000 2000
Time [days]

(d) Water cut

2000 500 1500

Comput Geosci (2017) 21:1219-1244

1241

PROD02 INJEO1

PRODO1

Fig. 18 Initial saturations of for the polymer optimization example
Case 1

Results from three different flooding processes are shown
in Fig. 19. Green lines represent pure water flooding, whose
NPV curve starts to flatten around 3000 days and reaches

n
o

Fig. 19 The polymer injection

its peak net-present value after approximately 3600 days
(see Fig. 19b). After this time, the economic value decays,
mostly due to the high water cut (Fig. 19¢) and low oil pro-
duction rate (Fig. 19d). The blue lines represent a straight-
forward polymer injection strategy, in which 1 kg/m> poly-
mer is injected for the first half of the total flooding
procedure and pure water flooding for the second half flood-
ing process. This improves the NPV of the whole flooding
operation (Fig. 19b). From Fig. 19d, f, we see that polymer
not only improves the oil production rate but also reduces
water production. The flooding procedure will be the start-
ing point of the optimization process, and is referred to as
the base case.

Red lines in Fig. 19 represent the optimized flooding pro-
cess. Compared with the base case, more oil is produced,
and the water production rate is decreased further, which

schedule, NPV curves, and well
curves for Case 1

N

S

o

o
3

—no polymer 500
—polymer base case
—polymer optimized
400 - —no polymer
b —polymer base case
< —polymer optimized
S 300
=
=l
=200 -
£
g
=z 100

o

Polymer injection concentration [kg/ma]

Time [days]

(a) Polymer injection concentration

0 .
0 1000 2000 3000

4000 5000 0 1000 2000 3000 4000 5000
Time [days]

(b) Net present value

2600 1200
—no polymer
\[— —polymer base case
—~2400 __1000 — polymer optimized
= =
© ©
° 2
“E 2200 o 8007
L —no polymer E
[—polymer base case S 600
_5 2000 ¢ —polymer optimized 5
3 S 400
1800 - g
'§ s 200
© =
= 1600 o
! 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time [days] Time [days]
(C) Water injection rate (d) Field oil production rate
1r 2500
08 32000
kel
o
E
= 0.6 @ 1500
3 g
> —no polymer c
© — polymer base case 8 —no polymer
=04 — polymer optimized S 1000 —polymer base case
-3 —polymer optimized
<]
s
02 5 500
k<)
=
0 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time [days] Time [days]

(e) Field water cut

(f) Field water production rate

@ Springer

1242

Comput Geosci (2017) 21:1219-1244

1000

800 -

Value (in million dollars)

OIIPROD GasPROD

(a) Breakdown of NPV (Eq.21)

WatINJ

[l no polymer
Il polymer base case
[l polymer optimized

Increase of NPV and polymer cost

NPV

WatPROD PolymerINJ

olymer

Sources of NPV increase

water production
injection

oil production

(b) Difference from base to optimzed case

Fig. 20 Breakdown of NPV for the three different flooding processes, and changes in revenues and costs from base case to optimized flooding

for Case 1

means less cost related to water production. From Fig. 19a,
we see that the optimization program suggests a relatively
high polymer concentration at the beginning, lower polymer

injection concentration later, and no polymer injection for
the last period. When flooding with higher polymer con-
centration, it is not suggested to use the highest possible

Fig. 21 The polymer injection 25 350
— —no polymer —
schedule, NPV curves, and well 2 polymer base case 300 | _;glsy:ﬁ(ye;n:;se e
curves for for Case 2 _\g ol — polymer optimized 250 oyt ontimises
8 ?
= «©
g 151 = 200
g o
<3 .5 150
S =
cc) E£.100
S z
8 50
@ z
:§‘0.5 r
5 0
€
= 50 L
a 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Time [days] Time [days]
mer injection concentration resent valu
a) Polyme ection concentratio b) Net present value (NPV
1200
2500 \] — —no polymer
—polymer base case
— - 1000 - —polymer optimized
32000 - > ~
o o
o —no polymer o> 800
£ —polymer base case £
T 1500 ¢ — polymer optimized @
e S 600
s c
£ 1000 - 2
ko S 400
[= el
= o
Q L o
= 500 = 200
= (o]
0 . . . 0 . . .
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Time [days] Time [days]
(C) Water injection rate (d) Field oil production rate
1r 2500
08 - 52000 -
o
o
E
= 0.6 @ 1500
3 g
5 I =
© —no polymer = L —no polymer
S04 —polymer base case S 1000 —polymer base case
—polymer optimized '8 —polymer optimized
s
0.2 5 500
&
=
ol 0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Time [days] Time [days]

@ Springer

(e) Field water cut

(f) Field water production rate

Comput Geosci (2017) 21:1219-1244

1243

600

Il no polymer
Ml polymer base case
[l polymer optimized

Value (in million dollars)
n W S o
o o o o
o o o o

o
[S)

OilPROD GasPROD WatIiNJ WatPROD PolymerINJ

(a) Breakdown of NPV (Eq.21)

Increase of NPV and polymer cost Sources of NPV increase

roduction

olymer

injection

oil product

NPV

(b) Difference from base to optimzed case

Fig. 22 Breakdown of NPV for the three different flooding processes, and changes in revenues and costs from base case to optimized flooding

for Case 2

polymer concentration (2.5 kg/m?). Instead, it is suggested
to use the highest possible concentration that maintains the
water injection rate around the target rate (2500 m3/day),
which implies that maintaining the water injection rate in
this scenario is important for achieving optimal NPV from
polymer flooding operation. Notice also that the bottom-
hole pressure is kept around its upper limit when injecting
with higher polymer concentration.

Figure 20a shows a breakdown of NPV into the five
terms from Eq. 21, i.e., revenue from oil and gas production
and cost from water injection, water production, and use of
polymer. Likewise, Fig. 20b shows the breakdown of the rel-
ative increase in NPV and polymer cost from the base case
to the optimized case, and how this is balanced by increased
revenue from oil production and decreased costs for water
injection and production (difference in revenue from gas
production was negligible). From the breakdown, we can
see that the increase in oil production and reduction in
water production play the major role in achieving higher
NPV.

Case 2: We use the same grid as in Section 5.2 (Fig. 11)
with the same well controls as in Case 1. Due to smaller
size of the formation and less oil in place, we change the
flooding period to be 3000 days, which is split into ten
even periods. The results without polymer injection, the
base polymer injection procedure, and the optimized one are
shown in Fig. 21. The optimized polymer injection gives
higher NPV than the base case, which in turn is better
than pure water flooding. Optimization also suggests higher
polymer injection concentration in the beginning and lower
polymer injection concentration for later. However, different
from Case 1, maximum polymer concentration is used ini-
tially (Fig. 21a), which reduces both the water injection rate
(Fig. 21c) and NPV (Fig. 21b) during the first three periods
(900 days). Breakdown in the increase of NPV and poly-
mer costs from the base case to the optimized one is shown
in Fig. 22b. Compared with Case 1 (Fig. 20b), the relative
increase in oil production is smaller, while a larger fraction

of the NPV increase can be attributed to a decrease in water
injection.

6 Concluding remarks

In an earlier paper [11], we presented the free, open-source
MRST software, which has later become a community code
and is used by many researchers within the computational
geosciences.

Recently, the software has been modernized with sev-
eral new features such as discrete differential operators,
automatic differentiation, and an object-oriented program-
ming framework, which contribute to make MRST a perfect
platform for fast development and prototyping simulators
capable of running industry-grade simulations. Herein, we
have discussed in detail how this framework can be uti-
lized to develop a flexible simulator for polymer flooding,
whose main intent is to serve as a research tool for develop-
ing new models and computational methods for simulating
water-based EOR processes. To enable other researchers to
benefit from our work, we have described key components
of MRST in some detail and discussed the key steps nec-
essary to extend an existing black-oil simulator to polymer
flooding, including effects such as viscosity enhancement,
adsorption, inaccessible pore space, permeability reduction,
and non-Newtonian fluid rheology. The resulting simula-
tor is released as part of a new EOR module in MRST
(ad-eor), which also includes a few surfactant models.
Using the flexible platform design of MRST, we believe
that it is not very difficult to extend the capabilities of
the ad-eor module to models with similar flow physics,
including surfactant-polymer and alkali-surfactant-polymer.

To prove the validity of the polymer simulator, we
have benchmarked it against a leading commercial simu-
lator and shown that it produces virtually identical results
for two test cases in 2D and 3D, including three fluid
phases, water flooding or polymer flooding, with and

@ Springer

1244

Comput Geosci (2017) 21:1219-1244

without shear effects. Flexibility with respect to different
grids was demonstrated in a test case involving unstructured
grids with polyhedral cell geometries. We also showed that
the simulator is capable of handling industry-relevant sim-
ulations by posing a polymer flooding scenario on a model
with reservoir geometry and petrophysics of a real oil and
gas field. Finally, we utilized the optimization module from
MRST to optimize the polymer flooding process for two
synthetic sector models, and discussed and analyzed dif-
ferences in the resulting injection strategies. Evidence that
the simulator framework is a good platform for testing new
computational methods can also be found in [3]. Here, the
framework is used to develop a new and efficient multi-
scale method for polymer flooding relying on a sequentially
implicit formulation instead of the fully implicit formulation
described herein.

Acknowledgments The work has been funded in part by the
Research Council of Norway under grant no. 244361. The authors
want to thank Statoil (operator of the Norne field) and its license part-
ners ENI and Petoro for the release of the Norne data. Further, the
authors acknowledge the IO Center at NTNU for coordination of the
Norne cases and Statoil for releasing the simulation model under an
open data license as part of the Open Porous Media (OPM) initia-
tive. We also appreciate helpful discussions and suggestions from Stein
Krogstad (SINTEF) regarding the polymer optimization examples.

References

1. Berge, R.L.: Unstructured PEBI grids adapting to geological
features in subsurface reservoirs. Master’s thesis, Norwegian Uni-
versity of Science and Technology (2016)

2. Gries, S., Stiiben, K., Brown, G.L., Chen, D., Collins, D.A.: Pre-
conditioning for efficiently applying algebraic multigrid in fully
implicit reservoir simulations. SPE J. 19(04), 726-736 (2014).
doi:10.2118/163608-PA

3. Hilden, S.T., Mgyner, O., Lie, K.A., Bao, K.: Multiscale simula-
tion of polymer flooding with shear effects. Transp. Porous Media
113(1), 111-135 (2016). doi:10.1007/s11242-016-0682-2

4. Jansen, J.D.: Adjoint-based optimization of multi-phase flow
through porous media—a review. Comput. Fluids 46(1, SI), 40-51
(2011). doi:10.1016/j.compfluid.2010.09.039

5. Klemetsdal, @.S., Berge, R.L., Lie, K.A., Nilsen, H.M., Mgyner,
O.: Unstructured gridding and consistent discretizations for reser-
voirs with faults and complex wells. In: SPE Reservoir Simulation
Conference, Montgomery, Texas, USA, 20-22 February 2017
(2017). doi:10.2118/182679-MS

6. Krogstad, S., Lie, K.A., Mgyner, O., Nilsen, H.M., Raynaud,
X., Skaflestad, B.: MRST-AD—an open-source framework for
rapid prototyping and evaluation of reservoir simulation problems.

@ Springer

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

In: SPE reservoir simulation symposium. Society of Petroleum
Engineers (2015). doi:10.2118/173317-MS

. Lake, L.W.: Enhanced Oil Recovery. Prentice-Hall (1989)
. Li, W., Dong, Z., Sun, J., Schechter, D.S.: Polymer-alternating-

gas simulation: a case study. In: SPE EOR Conference at Oil
and Gas West Asia. Society of Petroleum Engineers (2014).
doi:10.2118/169734-MS

. Li, Z., Delshad, M.: Development of an analytical injectivity

model for non-Newtonian polymer solutions. In: SPE Reservoir
Simulation Symposium, 18-20 February, The Woodlands, Texas,
USA (2013). doi:10.2118/163672-MS. SPE-163672-MS

Lie, K.A.: An introduction to reservoir simulation using MAT-
LAB: user guide for the Matlab Reservoir Simulation Toolbox
(MRST). SINTEF ICT. http://www.sintef.no/Projectweb/MRST/
publications (2016)

Lie, K.A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen,
H.M., Skaflestad, B.: Open-source MATLAB implementation
of consistent discretisations on complex grids. Comput. Geosci.
16(2), 297-322 (2012). doi:10.1007/s10596-011-9244-4

Lie, K.A., Mgyner, O., Krogstad, S.: Application of flow diag-
nostics and multiscale methods for reservoir management. In:
SPE Reservoir Simulation Symposium. Society of Petroleum
Engineers (2015). doi:10.2118/173306-MS

Littmann, W.: Polymer flooding. Elsevier (1988)

Luo, H.S., Delshad, M., Li, Z.T., Shahmoradi, A.: Numerical sim-
ulation of the impact of polymer rheology on polymer injectivity
using a multilevel local grid refinement method. Petrol. Sci. pp.
1-16. doi:10.1007/s12182-015-0066-1 (2015)

Mgyner, O., Krogstad, S., Lie, K.A.: The application of flow diag-
nostics for reservoir management. SPE J. 20(02), 306-323 (2015).
doi:10.2118/171557-PA

MRST: The MATLAB Reservoir
www.sintef.no/MRST (2016b)
Neidinger, R.D.: Introduction to automatic differentiation and
MATLAB object-oriented programming. SIAM Rev. 52(3), 545-
563 (2010). doi:10.1137/080743627

Nocedal, J., Wright, S.: Numerical optimization. Springer Science
& Business Media (2006)

Notay, Y.: An aggregation-based algebraic multigrid method.
Electron. Trans. Numer. Anal. 37, 123-140 (2010)

Open Porous Media initiative: Open datasets (2015). www.
opm-project.org

Peaceman, D.W.: Interpretation of well-block pressures in numer-
ical reservoir simulation. Soc. Petrol. Eng. J. 18(3), 183—194
(1978). doi:10.2118/6893-PA

Schlumberger: Eclipse technical description. Version 2013, 2
(2013)

Sheng, J.J., Leonhardt, B., Azri, N.: Status of polymer-flooding
technology. J. Canadian Petrol. Tech. 54(02), 116-126 (2015).
doi:10.2118/174541-PA

Sorbie, K.S.: Polymer-improved oil recovery. Springer Science &
Business Media (1991)

Todd, M.R., Longstaff, W.J.: The development, testing, and
application of a numerical simulator for predicting miscible
flood performance. J. Petrol. Tech. 24(07), 874-882 (1972).
doi:10.2118/3484-PA

Wolfe, P.: Convergence conditions for ascent methods. SIAM Rev.
11(2), 226-235 (1969). doi:10.1137/1011036

Simulation Toolbox.

http://dx.doi.org/10.2118/163608-PA
http://dx.doi.org/10.1007/s11242-016-0682-2
http://dx.doi.org/10.1016/j.compfluid.2010.09.039
http://dx.doi.org/10.2118/182679-MS
http://dx.doi.org/10.2118/173317-MS
http://dx.doi.org/10.2118/169734-MS
http://dx.doi.org/10.2118/163672-MS
http://www.sintef.no/Projectweb/MRST/publications
http://www.sintef.no/Projectweb/MRST/publications
http://dx.doi.org/10.1007/s10596-011-9244-4
http://dx.doi.org/10.2118/173306-MS
http://dx.doi.org/10.1007/s12182-015-0066-1
http://dx.doi.org/10.2118/171557-PA
http://www.sintef.no/MRST/
http://dx.doi.org/10.1137/080743627
http://www.opm-project.org
http://www.opm-project.org
http://dx.doi.org/10.2118/6893-PA
http://dx.doi.org/10.2118/174541-PA
http://dx.doi.org/10.2118/3484-PA
http://dx.doi.org/10.1137/1011036

	Fully implicit simulation of polymer flooding with MRST
	Abstract
	Introduction
	Model equations
	The black-oil model
	The polymer model
	Inaccessible pore space
	Adsorption
	Permeability reduction
	Effective viscosities

	Rheology of the polymer solution

	The three-phase black-oil simulator in MRST
	Grids and discrete differentiation operators
	Discrete flow equations for black-oil
	Automatic differentiation in MRST
	Making a black-oil simulator: procedural approach*.5pt
	Object-oriented implementation in MRST

	The polymer flooding simulator
	Defining the polymer model object
	Discretized equations without shear effects
	Including shear effects
	Running the simulator from an input deck

	Numerical examples
	Example 1: verification against commercial simulator
	Example 2: sector model
	Example 3: unstructured grids
	Example 4: Norne
	Example 5: polymer flooding optimization with adjoint method

	Concluding remarks
	Acknowledgments
	References

