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Abstract The objective of this paper is to introduce a novel
paradigm to reduce the computational effort in waterflood-
ing global optimization problems while realizing smooth
well control trajectories amenable for practical deploy-
ments in the field. In order to overcome the problems
of slow convergence and non-smooth impractical control
strategies, often associated with gradient-free optimization
(GFO) methods, we introduce a generalized approach which
represent the controls by smooth polynomial approxima-
tions either by a polynomial function or by a piecewise
polynomial interpolation, which we denote as function con-
trol method (FCM) and interpolation control method (ICM),
respectively. Using these approaches, we aim to optimize
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the coefficients of the selected functions or the interpolation
points in order to represent the well-control trajectories
along a time horizon. Our results demonstrate significant
computational savings, due to a substantial reduction in the
number of control parameters, as we seek the optimal poly-
nomial coefficients or the interpolation points to describe
the control trajectories as opposed to directly searching for
the optimal control values (bottom hole pressure) at each
time interval. We demonstrate the efficiency of the method
on two and three-dimensional models, where we found the
optimal variables using a parallel dynamic-neighborhood
particle swarm optimization (PSO). We compared our
FCM-PSO and ICM-PSO to the traditional formulation
solved by both gradient-free and gradient-based methods.
In all comparisons, both FCM and ICM show very good to
superior performances.

Keywords Optimization dimensionality reduction ·
Polynomial control method · Control set cardinality
reduction · Parametrization · Waterflooding optimization ·
Production optimization · Adjoint method · Particle swarm
optimization · Smooth well-control

1 Introduction

The evolution of smart downhole flow-control valves as part
of an intelligent completion of a well bore has encouraged
engineers in the last decades to optimize valves control set-
tings along the well bore and has opened the gate to optimal
control (see many examples in [1–6]). It has also lead to
greater optimization complexity, as the optimization entails
each valve setting in different time intervals as decision
(optimization) variables, which form a high-dimensional
search space. As the number of wells and the number
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of discretized time steps become increasingly large, the
optimization problem begins to suffer from the well-known
mathematical-algorithmic hurdle, the curse of dimension-
ality. That is, as the mathematical space grows, the task
of finding an optimal combination of all decision-variables
becomes progressively harder.

The solution of this class of well-control optimization
problems is directly tied with the optimization solver which
will be used. Traditionally, this optimal control problem
is solved by a gradient-based method, where the gradients
are acquired using the adjoint method [43]. Gradient-based
optimization (GBO) methods use derivative information of
the simulation to guide the search, and under certain conti-
nuity assumptions of the control profiles, as well as the pre-
requisite that derivatives can be calculated and are not noisy,
they are designed to have a globally convergent behavior
towards local stationary points, regardless of the initial-
ization of the algorithm. A review of globally convergent
gradient-based optimization methods for dynamic process
optimization using interior-point methods can be found in
[8]. Local gradient-based methods have the advantages of
robustness and providing smooth solutions; however, they
require an initial point which might affect the final local
solution obtained.

On the other hand, recently, there is a rising interest in
solving the well-control production optimization problem
in waterflooding scenario using gradient-free optimization
(GFO) methods, usually in conjunction with additional
problems such as well-placement. Gradient-free optimiza-
tion algorithms are either stochastic and based purely on
sampling [15, 20] or use surrogate approximating functions
[9, 10], due to the fact that calculation or approximation
of the true gradients is unreliable (noisy derivative infor-
mation) or not possible (due to proprietary codes or high
computational cost of the simulation). GFO methods can
be generically used for any simulation since they do not
depend on derivatives, however, they tend to lead to non-
smooth profiles for well-control optimization problems. The
interested reader is referred to a recent review article with
a comprehensive discussion on deterministic mixed inte-
ger nonlinear programming and constrained derivative-free
optimization methods, algorithms, and applications [11].

Although many of the GFO methods aim at obtaining
a global solution, they might converge to poor solutions
when the curse of dimensionality is present. In fact, in a
more pragmatic sense, it is often necessary to accept good
quality solutions rather than the sole (global) optimal solu-
tion. Therefore, one of the most appealing approaches to
obtain good quality solutions and to improve GFO per-
formances for any high-dimensional problem would be
to apply an optimization dimensionality reduction (ODR)
by some parametrization procedure. Here, ODR refers to
a reduction in the number of decision-variables within

a given global optimization problem. The aim of this
work is to implement efficient ODR methods which yield
good quality solutions within a feasible computational time
using gradient-free method. Comparison to gradient-based
method performances is also provided.

Note that we distinguish between model order reduction
(MOR) and ODR. While the first aims at improving the
efficiency by accelerating a single forward simulation using
model reduction techniques (see examples in [18, 23, 26–28,
41]), the second accelerates the optimization by a reduced
optimization representation. In other words, MOR methods
reduce the cardinality of the simulation variable set, while
ODR methods reduce the cardinality of the optimization
variables set. Work that combines the two approaches is
currently underway, though out of the scope of this work.

1.1 Production optimization using polynomial
approximation

In this paper, we address ODR for the production optimiza-
tion step of closed-loop reservoir management (CLRM) [32]
in a waterflooding campaign. We consider a fixed location
for all wells and we strive to find an optimal (or near-
optimal) controls trajectory of each well. We introduce a
general approach which uses smooth polynomial approx-
imations of the original decision variable space, which
leads to a significant reduction in the decision space. We
obtain the polynomial trajectories by two different dis-
tinct approaches: functional control method (FCM) and
interpolation control method (ICM).

In the FCM, we look for optimal function coefficients to
describe well-controls along a time horizon. In particular,
in this paper, we use a polynomial control strategy, named
polynomial control method (PCM), in which a well-control
cardinality set is reduced from the number of control time
steps to the number of polynomial coefficients.

In the second approach, the ICM, we look for an optimal
piecewise polynomial interpolant. The optimization vari-
ables in this case are the interpolation points (knots). To the
best of our knowledge, this is the first work which treats
the waterflooding production optimization problem with the
interpolation concept.

FCM for rate control optimization was first introduced
by Awontunde [2] where he considered both polynomial
and trigonometrical control functions to represent the rate
control trajectories. He observed that for relatively large
problems the cosine and linear approaches outperform the
constant rate and stepwise approaches (up to a speci-
fied number of iterations. That is, conclusions were drawn
before convergence). He also observed that low degree poly-
nomials perform better than higher ones (he tested linear,
cubic, and fifth degree polynomials), which is counterin-
tuitive as one might expect high degree polynomials to
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better capture the system dynamics. In this work, we present
that higher objective function values can be achieved using
higher degree polynomial functions, which also overcomes
the aforementioned conflict.

1.2 Production optimization solution is often
bang-singular

The work in [2] performed FCMwith wells flow rates as the
optimization (decision) variables. Here, on the other hand,
we use the bottom hole pressures (BHP) as the optimiza-
tion variables, which might require a different treatment.
For example, Brouwer and Jansen [12] observed that opti-
mal rates are smooth, but that the optimal valve settings
sometimes follow a bang-bang (on-off) behavior. Following
this work and the work by Sudaryanto and Yortsos [48, 49],
Zandvliet et al. [53] investigated why and under what con-
ditions reservoir flooding problems can be expected to have
bang-bang optimal solutions. They showed that these prob-
lems may have bang-bang optimal solutions in the cases
where upper and lower bounds are the sole constraints on
the control. They concluded that the optimal settings are
sometimes pure bang-bang (solutions values are only on
the boundaries) and sometimes bang-bang in combination
with so-called singular arcs (in which the control trajectory
proceeds smoothly).

This insight is highly relevant for the GFO polynomial
approach, as it is obligatory for any polynomial formula-
tion to be able to impose controls on the boundaries at
any given time interval along the simulation. Unfortunately,
the formulation shown in [2] only allows the controls to
be on the bounds only at initial or terminal time and thus
probably misses good quality solutions (see further dis-
cussion in Section 5.1). Interestingly, while GBO tend to
reach to smooth solutions, GFO methods indeed produce
bang-bang (or near bang-bang) type solutions, where the
controls repeatedly vary between low and high values. Some
examples can be found in the control solutions obtained
by different GFO methods in [14, 22, 55]. Though these
type of solutions might represent the true optimum, they
might be unfavorable from a production-engineering point
of view, as repeated large changes might cause damage to
equipment and formation. Also, from a reservoir simulation
point of view, drastic changes in the well schedule con-
trols might cause simulation convergence problems. Thus,
smooth polynomial curves might serve as a possible remedy
for these problems.

In certain cases, bang-bang control is desirable and
researchers have developed optimization methods to be
able to differential dynamic programming techniques to
solve such systems [31]. In other cases, it is desirable to
smooth out the bang-bang profiles in order to obtain prac-
tically implementable control strategies. There are many

previous attempts within the optimal control community
to reduce the numerical issues by smoothing the bang-
bang type of solutions. As an example, we will note the
work of Silva and Trelat [47] in which the author imposed
regularization on the minimal time control problem for a
single-input control affine system. They introduced a penal-
ization parameter, ε, which smooths the control as its value
increases and, conversely, provides a bang-bang solution as
it tends to zero. They showed, however, that their method
fails when the control is singular. Following [53], which
showed that indeed reservoir flooding problems are linear
in the control but at the same time, they might result in
bang-singular solutions. This concludes that the proposed
regularization method is not appropriate for the reservoir
flooding problems. Other attempts to solve bang-bang con-
trol problems involve a variety of smoothing techniques,
such as quadratic penalty functions and logarithmic barrier
function [7], which again allow the smoothing of the control
profile as a small parameter ε is tuned. A very recent article
provides detailed convergence analysis of regularization of
control problems with bang-bang solutions [44].

This paper proceeds as follows. In Section 2, we review
the previous attempts to perform ODR for well-control
production optimization problem. Then, in Section 3, we
outline the traditional well-control production optimization
formulation. In Section 4, we present a motivating example,
solved by the traditional formulation, which demonstrates
the importance of proposing polynomial formulations for
the problem. In Sections 5.1 and 5.2, we present our polyno-
mial FCM formulation and the piecewise polynomial ICM,
respectively. Furthermore, in Section 6, we demonstrate the
efficiency of our proposed method by providing computa-
tional results using two- and three-dimensional models. We
conclude in Section 7 with final remarks and suggestions for
future work.

2 ODR in well-control production optimization

In this section, we briefly review previous attempts, differ-
ent than polynomial function discussed in [2], to reduce the
size of the well-control production optimization problem.
Lien et al. [36] proposed two multi-scale procedures named
ordinary multi-scale and refinement indicators, where they
performedmultiple optimization cycles starting fromacoarse
problem representation. The ordinary multi-scale method
simply splits each coarse variable into two new refined vari-
ables during eachoptimization cycle. In the second approach,
the authors refine on some of the variables, rather than all
of them, by using refinement indicators equal to the gradient
magnitude of the objective function with respect to the vari-
ables. The two approaches parameterized the problem in
both time and space. That is, a coarse decision variable could
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represent either several different time steps (parameteriza-
tion in time) or a group of control valves (parameterization
in space), which all share the same control settings. A
similar approach can also be found in [46].

Oliveira and Reynolds [42] further developed the multi-
scale approach, by adaptive parametrization that enables a
merging procedure, in addition to the splitting procedure.
Thus, unlike the previous method, their approach can start
with a refined parametrization as they enable both refin-
ing and coarsening of the problem representation. In their
methodology, three criteria need to hold in order to merge
a variable with its previous control step variable. If the
three criteria do not hold, this variable is split into a pre-
defined number of new variables (they tested two cases of
splitting by factors of two and four). The three criteria are
the control-variation, gradient-variation, and gradient mag-
nitude. In a scenario when the gradient cannot be acquired
(e.g., when the adjoint model is not available), the proce-
dure considers only the first criteria. Their code accelerates
the convergence of the first optimization cycles by impos-
ing loose convergence conditions, which gradually become
tighter in subsequent optimization cycles. They also treated
bang-bang control solution by smoothing it with a covari-
ance function.

We note here that there has been a growing interest
in the literature of jointly optimizing well-placement and
well-control. This approach can be carried by two different
algorithms in a nested framework, one for well-placement
and the other for well-control optimization (for example,
see [6]). However, more recently, there has been extensive
research on solving the entire field development problem
with a single algorithm. With this approach, well-placement
variables, well-control variables, and, in some cases, other
categorical variables, all reside in the same vector [3, 22, 29,
30, 40, 45]. Though we did not apply well-placement opti-
mization in this paper, we state that applying ODR to the
control variable sets would decrease the size of the overall
optimization vector and improve generalized field develop-
ment strategies solved by a single algorithm (as done in
[2]).

In the following sections, we describe the traditional
well-control optimization formulation. Then, we show how
results from the traditional approach motivates formulating
polynomial ODR approach.

3 Traditional box-constrained well-control
optimization formulation

In this section, we describe the traditional box-constrained
well-control optimization problem formulation. As men-
tioned in the introduction, such problems have been pre-
dominantly solved insofar by two optimization approaches:

stochastic global search algorithms and local search algo-
rithms. The local search can be either gradient-based [19,
32, 36, 43, 51, 52], approximated-gradient-based [13, 21,
55], or gradient-free [6, 14]. Hybrid methods of global and
local search have been suggested as well [30].

In this work, we used particle swarm optimization (PSO)
as the global optimizer. We also conduct a comparison to
the rate of the objective function growth achieved by GBO
local search algorithms while acquiring the gradients with
the adjoint method as implemented in [34]. Further discus-
sion regarding the algorithm specifications used in this work
are found in Sections 4.1 and 6.2 and Appendix.

3.1 Optimization problem

The traditional box-constrained well-control optimization
problem, called here P1, is defined as follows:

P1 : max
u

NPV(u) subject to

{
g(u) = 0
u ∈ U

(1)

Where the equality constraints g(u) = 0 are the dis-
cretized partial differential equations (PDE) in a reservoir
simulation. In this work, we used the sequential solver in
Matlab Reservoir Simulation Toolbox (MRST) for two-
phase incompressible flow of a wetting and non-wetting
fluids [35]. By neglecting gravity effects, the PDE can be
described as follows:

∇ · v = q, v = −K(λ∇ p) (2)

φ
∂sw
∂t

+ ∇ · ( fw(sw)v) = qw, (3)

where v denotes the Darcy velocity, q total liquid flux, p
pressure, sw water saturation, K permeability tensor, λ the
(total) mobility, fw(sw) the water fractional flow as a func-
tion of saturation, φ porosity, and t time. First, pressure and
fluxes are provided by fixing the saturation values and solv-
ing Eq. 2. Subsequently, fluxes are used in Eq. 3 to solve for
the saturation in the next simulation time step. For further
details the reader is referred to [34, 35].

The NPV objective function, shown in Eq. 4, accounts
for revenue associated with produced oil and for the cost of
handling produced and injected water (which incurred as a
result of pumping and separation requirements),

NPV =
Ntsim∑
k=1

�tk · (1+r)
− tk

tre f

×
⎛
⎝ Np∑

j=1

roq
j,k
o (u)−

Np∑
j=1

cwpq
j,k
wp (u)−

Ni∑
j=1

cwi q
j,k
wi (u)

⎞
⎠ , (4)

where q j,k
o , q j,k

wp , q j,k
wi are the flow rates of the oil, water pro-

duced and water injected for well j at the simulation time
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interval k, respectively. The revenue from a unit of oil pro-
duced, the cost of a unit of water produced and a unit of
water injected are represented by ro, cwp, and cwi , respec-
tively. r is a discount rate with respect to a time reference
tre f , and �tk represents the length of each of the Ntsim time
steps in the simulation. Ni and NP are the total number of
injection and production wells, respectively.

3.2 The solution space

In the traditional optimization framework, the controls over
time for each well are represented by a piecewise constant
function with Nt time intervals. That is, the well-controls
are held constant during an interval and updated for the
next interval. Note that Nt is the number of control (well-
schedule) time steps, while Ntsim is the number of simu-
lation time steps (as used in Eq. 4). If needed, a surjective
function maps one or several simulation time steps to a
unique control step index, and thus, Nt ≤ Ntsim [16]. For
the sake of simplicity, we used explicit sequential solver,
where the number of control time steps in the well-schedule
is equal to the number of simulation time steps, and thus
Nt = Ntsim .

Let Nw = (Ni + Np) be the total number of injec-
tion and production wells, j = 1, 2 . . . Nw denote the well
number, and k = 1, 2 . . . Nt denote a time interval. Each
well-control variable u j,k can be described either by flow
rates or by BHPs with the corresponding upper and lower
bounds. Let us define the vector of well-control variables
as u = (u1,1, u1,2, . . . , u1,Nt , . . . , uNw,Nt ). Then, all the
possible u vectors forms the solution space U:

U = {u ∈ R
Nw ·Nt : ulb ≤ u ≤ uub}, (5)

where the box-constraints vectors inequality follows to
definition below,

Definition 1 (Vector Relation) For two vectors v =
(v0, . . . , vm),w = (w0, . . . , wm) ∈ R

m we write v ≤ w if
for every 0 ≤ i ≤ m, vi ≤ wi .

We note that an efficient log transformation can elimi-
nate the hard bounds shown in Eqs. 1 and 5, transforming
the constrained optimization problem to an unconstrained
problem (see [24, 52]). However, this implementation was
not considered in this current work.

The measure for the size of a vector space is its dimen-
sion, which is defined as the cardinality of its basis vectors
set. Since all ui, j s are linearly independent, the dimension
of U can be defined as follows:

dim(U) = Nw · Nt . (6)

In Section 4, we present an example solved by the tra-
ditional methods, namely global search and local search,
which in turn motivates obtaining a new formulation for the
well-control optimization problem. Then, in Section 5, we
propose alternative formulations for the problem.

4 Motivating example

This section introduces a synthetic, two-dimensional and
channelized reservoir, which serve as a motivating example
for the proposed methods.

The model includes 51 by 51 grids consisting of four pro-
ducing wells and one injector arranged in a five spot pattern.
The grid cell dimensions are 20 ft × 20 ft × 20 ft. Figure 1a
shows the permeability distribution as well as the five wells.
There are three permeability sub-regions in three distinct
geological facies: the original low-permeability geologi-
cal environment (facies 1), east-west moderate permeability
channels formed by ancient rivers (facies 2), and newer
high-permeability channels whose flow eroded the environ-
ment from north to south (facies 3). Figure 1b provides a
table with the minimum, maximum, and average permeabil-
ity values for each sub-region as well as the homogeneous
assigned porosity. The initial water saturation is 0.2 (equal
to residual water saturation).

As mentioned, we used MRST flow transport two phase
incompressible solvers as our forward model simulator
[33, 34]. Throughout this work, we controlled all wells by

Fig. 1 a Permeability field and
wells for the motivating
example. b Permeability and
porosity ranges for each facies

(a) (b)

Min
Perm
(mD)

Max
Perm
(mD)

Ave.
Perm
(mD)

Porosity

Facies
1

Facies
2

Facies
3

100 100 100

102.3 2000 1366.7 0.2

100.2 1000 679.2
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adjusting the BHP, so that we determine the optimal BHP
for each well at all the different time intervals. We simu-
lated a one year production and adjusted the control every
10 days, leading to 185 optimization variables. Throughout
this paper, we considered an oil price of $100 per bar-
rel, produced and injected water treatment costs of $10 per
barrel, and a discount rate of 10%.

4.1 Global search versus local search

We performed the optimization for this example using two
approaches: global search with a parallelized dynamic-
neighborhood particle swarm optimization (PSO) algo-
rithm, as detailed in Appendix, and local search with the
adjoint aggressive-line search method MRST implementa-
tion [35]. In the local search GBO, the iterations continued
until the norm of the projected gradient and the relative
objective function change were below a threshold (10−4 and
10−6, respectively). In the PSO, the optimization continued
until a predefined number (here, 20) consecutive iterations
stalled below a relative objective function change (10−6,
similar to the local search GBO method).

Due to parallelization, each PSO iteration duration is
approximately equivalent to one simulation run. On the
other hand, gradient-based iterations have to be performed
sequentially, as each simulation run (forward or adjoint) is
dependent on the previous iteration. Therefore, even though
gradient-based methods, in general, require far fewer sim-
ulation runs up to convergence, the choice of algorithm,
in terms of execution time, depends on the computing
capabilities at hand.

Figure 2 shows the best solution found by the two algo-
rithms. We can see that the global optimizer found a solution
with a slightly better NPV with more even water distri-
bution throughout the reservoir. Though the convergence
mechanism and convergence criteria differ between the two
methods, our main goal in this section is to compare the
shape of the control trajectory solutions found by each
method, rather than the obtained objective function values.

We can see from Fig. 2 that while the gradient-based
method exhibits a smooth solution, the stochastic nature
of the global optimizer provides an erratic and impractical
control strategy. This control strategy might not be accept-
able since such dramatic repeated changes in the pressure
will quickly cause a fatigue to production instruments and
will damage the equipment. Therefore, in developing a new
optimization method, it is better to achieve a smooth and
practical solution for the control trajectories, while main-
taining the ability to obtain better NPV values. Next, we
discuss how the adjoint smooth solution, shown in Fig. 2,
inspired us to develop a new method.

4.2 Smooth gradient-based solution as a motivator
for polynomial approximation

Our notion of controlling a well with a polynomial approxi-
mation started from observing the smooth solution obtained
by the adjoint gradient-based solution. Figure 3 shows the
results of fitting these smooth trajectories to different polyno-
mial functions (with degrees ranging from one to four). Of
course, a better fit is observed for higher degrees, as higher
order polynomials can capture multimodal trajectories (for

Fig. 2 Best solution found by (left) local (gradient-based) search and (right) global (stochastic) search
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Fig. 3 Polynomials functions
(red curves) fitted to adjoint
gradient-based solution (blue
dots)

(a) (b)

(c) (d)

example, see Producer 2 trajectory). However, it has been
repeatedly argued [32, 51, 55] that the objective function
hypersurface is believed to have a high plateau where there
might be an infinite number of control realizations that give
similar field life-cycle NPV. Hence, it might be possible (but
there is no guarantee) to find smaller degree control poly-
nomials amongst the infinite options lies in the objective
function’s high plateau.

The ICM, on the other hand, is an alternative to obtain
a polynomial curve approximation by performing piece-
wise polynomial interpolation between selected points in
the original solution space (U). This might be an attractive
option, as the bounds on the variables are well defined, as
opposed to the FCM where the boundary should be chosen
heuristically.

In the next two sections, we present the new optimization
formulation for the FCM, followed by the formulation for
the ICM.

5 Polynomial approximation

5.1 Function control method

In order to achieve dimensionality reduction, while gen-
erating smooth and achievable control, let us assign a

polynomial function to describe the control for each well.
Equation 7 shows a general form of a polynomial well-
control function:

ũ(a0 · · · an, t̃) = a0 + a1 · t̃ + a2 · t̃2 + · · · + an · t̃ n, (7)

t̃ = 2 · t − t0
t f inal − t0

− 1 (8)

ũ = 2 · u − ulb
uub − ulb

− 1 (9)

where, u again describes the control values (in units of
either flow rate or pressure) at each time interval, a0 through
an represent the polynomial coefficients, t represents the
time passed from production initiation, and ũ and t̃ are the
normalized (and shifted) control and time, respectively.

As mentioned before, polynomial function control
method for production optimization was proposed in [2]. In
this contribution, the author defined the fractional time as
the ratio of the length of time counted from the beginning
of operating the well to the total life of the field. Thus, the
independent variable scaled from zero to one. As shown in
Eqs. 8 and 9, here, we took a different approach by nor-
malizing both the operation time and the control values and
shifting their scale between −1 and 1. This shifting enables
to better capture multi-modality polynomial behaviors from
both sides of the vertical and horizontal axes.
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In addition, the work in [2] bounded the variable to
[−1/n, 1/n] where n is the polynomial degree, in order to
restrict the polynomial to stay within the original control
bounds. This restriction allowed the control to be on the
boundary at only one point in time (at the start or at the end
of the simulation).

However, following the already mentioned works by
Sudaryanto and Yortsos [48, 49] and Zandvliet et al. [53],
which show bang-bang or bang-singular solutions, the opti-
mal control trajectory can be found on the boundary in
several intervals. Therefore, we allow the polynomial to take
values out of the [−1, 1]x[−1, 1] normalized-time-controls
box, by setting the hard bounds on the polynomial coeffi-
cients to be also [−1, 1]. In the case where the polynomial is
indeed above (or below) the hard bounds, we set the control
in the simulation schedule to be on the nearest boundary.

Similarly to the discussion in Section 3.2, let j =
1, 2 . . . Nw denote the well number, and p = 1, 2 . . . n +
1 denote the polynomial coefficient index. Let us now
define a new well-control variables vector as ā =(
a1,1, a1,2, . . . , a1,n+1, . . . , aNw,n+1

)
, where according to

Eq. 7, n = polynomial degree. In this formulation, the poly-
nomial coefficients, a j,p, are now the optimization decision
variables.

Note that we distinguish between vectors that reside in
the original space U and those which reside in the reduced
space P (the polynomial space). Thus, for the sake of nota-
tional clarity, we write x̄ for elements in the space R(n+1)Nw

and x for elements in RNt Nw .
By inserting Eq. 7 as additional constraints into Eq. 1 and

adding hard bounds constraints for the polynomial coeffi-
cients, we arrived at the new problem formulation, denoted
here as P2, as shown in Eq. 10.

P2 : max
ā

NPV (u(ā, t)) subject to

⎧⎨
⎩

g(u) = 0
u(ā, t) ∈ U

ā ∈ P

, (10)

where P = {ā ∈ R
(n+1)Nw : ālb ≤ ā ≤ āub}. With

this formulation, the number of decision variables is inde-
pendent of both optimization horizon time and the number
of control intervals. More precisely, we reduce the solution
space dimension by a factor of Nt/(n + 1) as infered from
Eq. 11.

dim(P) = Nw · (n + 1), (11)

5.1.1 Smoothness constraints

Although only hard bounds constraints were considered in
this work, we mention here how one can impose smoothness
constraints by adding additional constraints to P2 (Eq. 10).
Taking the derivative of the polynomial, as shown in Eq. 12,
will enable determining the maximum allowable change in a

control in every control interval. This facilitates controlling
the smoothness of the obtained solution.

du(ā, t)

dt
=

n∑
i=1

i · ai · t i−1. (12)

Note that for a linear case, the polynomial slope is not
time-dependent. Thus, by formulating FCM as a linear con-
trol, we might limit the maximum allowable control change
by only setting a hard bound on the coefficient a1 for each
well. On contrary, for FCMwith higher polynomial degrees,
the constraints are time-dependent and should be intro-
duced as additional inequality constraints in problem P2.
A quadratic control requires imposing linear constraints,
and cubic and higher degree PCMs require non-linear con-
straints. However, in this work, we imposed only hard
bound constraints, as we want to test the smoothness of
the obtained control trajectories without adding linear and
non-linear constraints (if using Eq. 12).

5.2 Interpolation control method

The keen reader might notice that the hard bounds for the
functions coefficients in FCM are determined heuristically.
Thus, one can avoid the hurdle of debating which hard
bounds to impose on the coefficients by using piecewise
polynomial interpolation. In this approach, which we call
the interpolation control method (ICM), the decision vari-
ables are control values at selected equidistant points in
time. Those variables have the same bounds as the origi-
nal optimization variables. Then, the control is determined
based on a piecewise polynomial interpolation between
these points.

Among different piecewise polynomial interpolation
methods, we chose cubic spline interpolation, which
requires continuity up to the second derivatives at the inter-
polation points (also called knots) and thus yields highly
smooth curves. We used “not-a-knot” cubic spline, which
also requires third derivative continuity at the first and one
before the last points [5, 17].

For n selected equidistant points per each well j , we
shall denote each selected point as z j,p, where again p =
1, 2 . . . n. Let z̄ = (z j,1, z j,2, . . . , z j,n+1), and define P3 as

P3 : max
z̄

NPV (u(z̄, t)) subject to

⎧⎨
⎩

g(u) = 0
u(z̄, t) ∈ U

z̄ ∈ Z

, (13)

where Z = {z̄ ∈ R
(n+1)Nw : z̄lb ≤ z̄ ≤ z̄ub}.

At this point, it should be mentioned that using either
FCM or ICM, the size of the optimization problem remains
the same even if the simulation control time-step is
decreased. This might enable obtaining a more detailed
control scheme. However, decreasing the simulation con-
trol time-step might increase the computational time of a
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Table 1 Variables hard bounds
in both example 1 and example
2

Control method Control Units Injectors lower Injectors upper Producers lower Producers upper

variables bound bound bound bound

FCM ci, j [−] −1 1 −1 1

ICM zj psia 2,200 3,000 500 2,100

Free control ai, j psia 2,200 3,000 500 2,100

single forward model. Unlike several well-control parame-
terization approaches presented in the literature, the number
of FCM and ICM parameters stay constant throughout the
optimization process, which facilitates a simpler implemen-
tation. Next, we show two application examples.

6 Computational results

We tested our proposed method on two cases with increas-
ing complexity. First, we solved the same two-dimensional
problem as in the motivating example. In the second exam-
ple, we solved the realistic UNISIM benchmark [25] based
on the Namorado reservoir from the Campos Basin offshore
Brazil [4], where we incorporated a total of 25 wells as
implemented in the work shown in [41].

In order to test our method, we performed an opti-
mization procedure for different polynomial degrees and

for different number of interpolation points. We compared
the FCM and ICM results with traditional optimization
methods, employing both gradient-based and gradient-free
approaches.

6.1 Example 1: FCM and ICM for two-dimensional
reservoir model

In the first example, we used the same two-dimensional
problem settings as for the earlier motivating example (see
Fig. 1). We formulated the optimization problems as shown
in Eqs. 10 and 13. We ran the optimization for differ-
ent polynomial controls with degrees ranging from one
to four (linear, quadratic, cubic, and quartic polynomials)
and equivalently, for two, three, four, and five interpola-
tion points. We compared the performances of different
approaches along with a comparison with the traditional
control formulation. We call this traditional formulation as

Fig. 4 Example 1: FCM and free controls–results of the RUN WITH THE best objective function found among all 10 runs
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Fig. 5 ICM and free controls–results of the RUN WITH THE best objective function found among all 10 runs

“Free” control, since the control trajectory is free to have
any irregular shape, without being confined to follow any
polynomial trajectory. In Table 2, we present the control
set cardinality for each method, as followed from Eqs. 6
and 11, and dimensionality reduction as a ratio between the
free method and the ICMs and FCMs. We can see that the
problem becomes smaller as the polynomial degree or the
number of interpolation points decrease. We show in Table 1
the box constraints used in this work, which are applied for
both example 1 and next in example 2. For all cases, we used
PSO as the global search algorithm. Since PSO is a stochas-
tic optimizer, we ran the simulation multiple times in order

to obtain statistically meaningful interpretations regarding
the robustness of the compared methods. Each case was run
10 times, each with a different seed random generator. Note
that the obtained solution of the gradient-based method is
already provided in Fig. 2. For all gradient-free methods,
Figs. 4 and 5 show the controls of the best solution found
among the 10 runs. We provide the results in a “side” view
such that the polynomial shape can be observed. We also
provide a “top” view for the reader who is more comfort-
able to this sort of visualization. In both plots, in addition to
the FCM and ICM, we show also the free control for a com-
parison. Note to the bang-bang solution of the free method

Fig. 6 Example 1: FCM and
free controls—first 100
iterations of the best, worst, and
closest to mean runs out of the
10 runs
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Fig. 7 Example 1: ICM and free
controls—first 100 iterations of
the best, worst, and closest to
mean runs out of the 10 runs

(though not pure bang-bang, as some values are not exactly
on the boundaries). On the other hand, in the FCM and ICM
solutions, we observe smooth polynomial behavior between
the bounds. Whenever the polynomials went out of bounds,
the actual control was set to the bound value. We can see
that even without imposing Eq. 12 as a constraint, the solu-
tions are very smooth and amendable for deployment in the
field. It seems that due to high water cut all solutions drive
the controls to gradually minimize the draw-down as can be
inferred from the decreasing distance between the injector
and producers curves. Figures 6 and 7 show the optimization
progress along the first 100 iterations for the best, worst, and
closest to the mean of all 10 runs. Note to the rapid objective
function (NPV) improvement in the FCM and ICM com-
paring to the free method. This fast improvement is due to
efficient search in a small dimension space, which will have
a major impact for larger optimization problems, as we will
see in the next example (Table 2).

Table 3 shows the average (mean), best, worst, and stan-
dard deviations results of all 10 runs for each method. The
results are given in terms of the obtained NPV, the number

Table 2 Control set cardinality and solution space dimensionality
reduction for example 1

Control method Control set Dimensionality

cardinality reduction ratio

Linear

Two points 10 18.50

Quadratic

Three points 15 12.33

Cubic

Four points 20 9.25

Quartic

Five points 25 7.40

Free 185 1.00

of simulations and the number of equivalent simulation runs
(equal to one parallelized PSO iteration). We can see that
in addition to dimensionality reduction, the flexibility and
multi-modality of the function is also essential, as inferred
from the results shown in Table 3. Note that in all cate-
gories (mean, best, and worst) among the ICMs and FCMs,
a higher polynomial degree (or number of interpolation
points) corresponds to a superior NPV at convergence, along
with larger number of iterations and simulation runs. Thus,
we observe a trade-off between the rate of improvement and
the quality of the solution.

6.2 Example 2: three-dimensional UNISIM benchmark
reservoir model

Under the curse of dimensionality paradigm, the idea is that
the larger the problem, the computational cost should be
exponentially increased, and thus, the effects of a dimen-
sionality reduction should be more evident. Thus, we test
ICM and FCM on a much larger system, namely the
UNISIM-I benchmark.

The original high resolution reference benchmark (with
approximately 3.5 million active grid blocks) is based (with
some modifications) on the structural, petrophysical, and
facies model of the Namorado oil field, located in Campos
Basin, Brazil [25]. Avansi and Schiozer [1] upscaled the ref-
erence model into a medium-scale reservoir in order to make
the model applicable to reservoir management optimization
procedures that require many simulation calls. In our work,
we used this upscaled version of UNSIM-I-D, which con-
sists of 20 layers, a 100 × 100 × 8 m grid cell resolution,
and about 37,000 active grid blocks (see [50] for further
model specifications).

Figure 8a shows the permeability distribution, in a log10
scale, of the UNISM-I-D model. In addition to the four ver-
tical producing wells provided as part of the benchmark,
we incorporated additional 10 horizontal producing wells
and 11 horizontal injection wells, as it was done in [41].
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Table 3 Example 1: Results of 10 optimization runs, (function tolerance: 10−6 for 20 consecutive stall iterations)

Best Mean Worst Standard deviation

Control NPV Total sim. (equiv. NPV Total sim. (equiv. NPV Total sim. (equiv. NPV Total sim. (equiv.

method $ millions sim.) runs $ millions sim.) runs $ millions sim.) runs $ thousands sim.) runs

Linear 17.37 3720 (124) 17.36 3894 (129.8) 17.35 2550 (85) 6.64 1086.5 (36.22)

Quadratic 17.42 12,120 (404) 17.40 11,190 (373.0) 17.34 10,128 (337.60) 3.57 798.77 (26.63)

Cubic 17.47 12,480 (416) 17.45 13,800 (460.0) 17.43 7560 (252) 14.20 4529.40 (150.98)

Quartic 17.51 42,150 (1,405) 17.51 29,244 (974) 17.50 28,020 (934) 7.07 6632.96 (221.10)

Two points 17.22 3270 (109) 17.21 3513 (171.1) 17.19 3360 (112) 9.48 1127.07 (37.57)

Three points 17.39 9720 (324) 17.39 7785 (259.5) 17.39 7440 (248) 0.62 1226.48 (40.88)

Four points 17.49 12,420 (414) 17.48 15,399 (513.3) 17.4 9720 (324) 27.11 5705.12 (190.17)

Five points 17.53 14,160 (472) 17.52 13,404 (446.8) 17.51 12,180 (406) 10.41 2429.56 (80.99)

Free 17.74 59,040 (1,968) 17.67 38,295 (1,276.5) 17.62 33,660 (1,222) 38.69 9264 (308.79)

That is, we considered in total 25 wells for the production
optimization procedure (see Fig. 8b).

We set the simulation horizon time to be 5 years and
adjusted the controls each month. Hence, the control set per
each well included 60 decision (design) variables, and the
total cardinality for all 25 wells amounted to 1500 variables
for problem P1 as dictated by Eq. 6.

As in example 1, we solved the problemwith both P1, P2,
and P3 formulations (Eqs. 1, 10, and 13, respectively). Due
to relatively long simulation time of this reservoir model, we
limit the number of methods tested. We chose quadratic and
cubic polynomials, and their dimension-equivalent meth-
ods, the three and four points interpolation. Following the
results of example 1, these methods yield a combination of
fast convergence and good quality solutions.

Following again from the results of the first example,
which show excessive number of simulation runs without
significant improvement, we loosen the convergence crite-
ria for all methods solved by PSO algorithm from 20 stalled
iterations below a relative objective function change of 10−6

in example 1, to 12 stalled iterations with a 10−4 thresh-
old (see Appendix for more details). In Table 4, we present
the obtained control set cardinality for each method, as fol-
lowed from Eqs. 6 and 11, and the dimensionality reduction
ratio.

Due to the large computational cost, we conducted the
optimization for each one of the PSO implementation only
three times, each with a different seed random generator.
These mere three optimization repetitions were sufficient to
demonstrate the increasing effectiveness (comparing to free

Fig. 8 UNISIM Benchmark: a
Permeability distribution. b
Completed wells intervals of the
four vertical and 10 horizontal
producing wells (in red) and 11
horizontal injection wells (in
blue) used for production
optimization (following the
work in [41])
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Table 4 Control set cardinality and solution space dimensionality
reduction for example 2

Control method Control set Dimensionality

cardinality reduction ratio

Quadratic

Three points 75 20

Cubic

Four points 100 15

Free 1500 1

PSO) of the ICM and FCM when solving a bigger problem.
Table 5 shows the average (mean), best, worst, and standard
deviations results of the three runs of each tested method.
As predicted, the improvement in computation effort is con-
siderably more profound in a larger scale problem. While
the Free method used an excessive number of simulation
runs and did not converge within the optimization time lim-
itation (36 h), the FCMs and ICMs quickly converged to a
considerable higher value.

Although gradient-based methods might converge to a
local optimum, they have the obvious advantage of faster
convergence and the ability to cope with considerable large
number of decision variables, if implemented wisely. We
obtained the gradients using MRST adjoint implementation,
and compared different optimization methods provided by
the built-in Matlab fmincon function [38]. Based on prelim-
inary tests, we performed to the different algorithms imple-
mented in fmincon, we found three that perform better than
the others. These three constrained optimization algorithms
are active-set, interior point with the BFGS inverse Hessian
quasi-Newton approximation (IP-BFGS), and interior point
with limited memory BFGS inverse Hessian quasi-Newton
approximation (IP-LBFGS).

6.3 Example 2: optimization process comparison
and discussion

Figure 9 shows three comparison of the processes along the
optimization iterations. First, Fig. 9a compares the best runs
of the gradient-free methods, where we can see how a rel-
atively high dimensional problem (comparing to example
1) impacts the optimization process. Note that the objective
functions of ICMs and FCMs increase and converge much
faster than the Free PSO. All ICMs and FCMs converged
within less than 12 h, while the free PSO did not converge
and terminated after 36 h with an objective function values
almost 10% lower than the ICMs and FCMs results.

Figure 9b compares the gradient-based methods. We ran
all three methods once from a single starting point, with
a maximum of 1000 iterations. Note that IP-LBFGS per-
formed far better than the other gradient-based methods
(converging faster to a significant higher NPV). These supe-
rior performances of the L-BFGS algorithm is consistent
with previous results for large-scale optimization problems
(see [39, 54]).

Note also from Fig. 9b that IP-BFGS did not converge
and the optimization ended when reached to the maxi-
mum allowable number of iterations. On the other hand, the
active-set method had more than 1000 simulation runs, as
each iteration might consist of several simulation runs when
a quadratic sub-problem is solved. Active-set converged
after 736 iterations (with 1570 simulation runs), when the
magnitude of directional derivative in search direction was
less than 2 × 10−6 and maximum constraint violation was
less than 10−6. Contrarily, IP-LBFGS converged after only
644 iterations (with 716 simulation runs). Similar to the
active-set method, the IP-LBFGS had more simulation runs
than iterations. The reason here is that the interior point
algorithm might not accept a particular step, for example
when an attempted step does not decrease the merit func-
tion (see [38]). Thus, the algorithm attempts a new step and

Table 5 Example 2: Results of 10 optimization runs, (function tolerance: 10−4 for 12 consecutive stall iterations)

Best Mean Worst Standard deviation

Control NPV Total sim. (equiv. NPV Total sim. (equiv. NPV Total sim. (equiv. NPV Total sim. (equiv.

method $ millions sim.) runs $ millions sim.) runs $ millions sim.) runs $ thousands sim.) runs

Quadratic 17.57 5220 (174) 17.47 4190 (139.67) 17.33 4410 (147) 122.16 1155.8 (38.53)

Cubic 17.67 4410 (147) 17.60 5140 (171.33) 17.48 2940 (98) 100.94 725.8 (24.19)

Three points 17.58 3510 (117) 17.53 3660 (122.00) 17.48 3750 (125) 50.04 130.77 (4.36)

Four points 17.68 4680 (156) 17.65 4830 (161.00) 17.62 4980 (166) 42.96 212.1 (7.1)

Free 15.94a 18,915 (630.5) 16.09a 18,960 (632) 15.80a 18,870 (629) 145.0 45.00b (1.5)b

aOptimization ended due to maximum allowable execution time: 36 h. All other values in the table were obtained within less than 12 h.
bFollowing a, all optimization had approximately same number of iterations and thus low standard deviation.
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Fig. 9 Example 2: a
Gradient-free methods best runs
comparison. b Gradient-based
methods comparison with final
solutions. c Zoomed-in to the
first 200 iterations of the ICMs,
PCMs, and the IP-LBFGS
methods

perform additional simulation. Comparing Fig. 9a, b, the
FCMs and ICMs performed much better than the active-set
and the IP-BFGS.

Figure 9c is a zoom-in to the first 200 iterations of
the best methods performed: ICMs, PCMs, and the IP-
LBFGS. Note that while the PSO-ICMs and PSO-FCMs
grow faster than the IP-LBFGS initially, the IP-LBFGS
gradually exceeds all other methods. Figure 10 shows this
process as an instantaneous difference between each ICM
or FCM method to the IP-LBFGS method.

Following the obtained results, some additional remarks
are in order:

• If the objective function has indeed a flat plateau, we
shall assume in this discussion that the optimal solution
can be described by the IP-LBFGS solution. Its value as
shown in Fig. 9b is $17.81 billions.

• Interestingly, each best run of the dimension-equivalent
ICM and FCM converged to a similar objective function
value, and thus to a similar distance from the optimal
solution.

• As can be seen from Fig. 10, the difference from the
optimal solution is rather small: 1.35 and 0.8% for the
cases of three and four variables per well, respectively.

• Similar to the results of example 1, a higher degree
polynomial or a higher number of interpolation points,
leads to better objective function values as well as an
increased number of iterations up to convergence (see
mean results in Table 5).

• The FCMs and ICMs objective function values can
improve and reach the optimal solution by adding more
variables per well. This can be done iteratively by refin-
ing the controls with adding more interpolation points
or polynomial coefficients.

• Tightening the PSO convergence criteria will improve
the obtained results.

6.4 Example 2: control solutions comparison
and discussion

Figures 11 and 12 show the best control results obtained by
the FCMs, ICMs, free PSO, and the gradient-based meth-
ods. Again, we can see the erratic control behavior obtained
by the free PSO (refer to Figs. 11e and 12e). Interest-
ingly, the FCMs and ICMs exhibit smoother results than all
gradient-based methods, even without imposing smoothness
with Eq. 12. From Fig. 9, we can see that the two FCMs, two

Fig. 10 Example 2: Percentage
difference between the best
solutions of FCMs and ICMs to
IP-LBFGS. Left: Three variables
per well. Right: Four variables
per well.Markers and lines are
differences before and after
convergence, respectively. Final
differences after IP-LBFGS
convergence are shown
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Fig. 11 Top view: control results obtained by the ICMs, FCMs , free PSO, and the gradient-based methods

ICMs and the IP-LBFGS obtained the best objective func-
tion values. From Fig. 11a–d, h, we observe that these five
also share similar control patterns, where most wells were
controlled by the maximum (injectors) or minimum (pro-
ducers) allowable BHP. In all five, there are three producers

wells (numbered 17, 19, and 21) in which their pressure is
increase from minimum to maximum allowable BHP during
the simulated 5 years. This is consistent with the problem
of delaying the water breakthrough and minimizing water
cut (as can be seen in Fig. 13). Note to the pure bang-bang

Fig. 12 Side view: control results obtained by the ICMs, FCMs , free PSO, and the gradient-based methods
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Fig. 13 Best run of four points interpolation for example 2—water cut, producers’ oil and water rates, injector water rates, and economics
measures

solution of well 21, and to the short singular arc of wells
17 and 19 in the solution obtained by IP-LBFGS. Also from
Fig. 13, we observed that the project has not yet reached
the economic limit. This proves the need for setting the
terminal time as an additional optimization parameter as
previously suggested in [53]. Also, note that with ICM or
FCM parametrizations, adding a terminal time as another
decision variable would only increase the dimensionality
of the problem by one. This might, however, require some
adjustments to the parallel computing work-flow, as the
simulation durations might vary significantly.

6.5 Example 2: average simulation duration comparison

As previously done by others [30, 45], we use the term
“equivalent simulation runs” as a performance compari-
son measure. We note here that this comparison criterion
is not “one to one” computational time convertible. That

Table 6 Average simulation duration for each method

Method Average sim. duration (min.)

Act. Set 3.19

Four points PSO 3.37

Free PSO 3.42

Three points PSO 3.49

Cubic PSO 3.61

Quad PSO 3.83

IP-BFGS 3.91

IP-LBFGS 4.01

is, one equivalent simulation run may not have the same
duration amongst all methods. Since each PSO simulation
(Free, ICM, or FCM) was executed in parallel on a sepa-
rate node, we observed some increase in average simulation
time, due to communication between nodes. On the other
hand, in the gradient-based methods, which were ran on
a single node sequentially, most of the equivalent simula-
tion runs include one adjoint simulation run in addition to
the forward simulation run. Due to the high control resolu-
tion, each adjoint simulation run consumed a considerable
amount of time, about 80% of one forward simulation run
time. Thus, the average simulation duration of the gradient-
based and gradient-free methods are rather similar, as can
be observed from Table 6.

7 Conclusions and final remarks

In this paper, we provide two parametrization procedures
for waterflooding production optimization problems by pro-
jecting the original infinite dimensional controls space into
a polynomial subspace. The goal of these parametriza-
tion procedures is twofold: acceleration of a gradient-
free optimization process and leading the controls to gain
smooth solutions, which might be required from a produc-
tion engineering point of view. We named our polynomial
approximation approaches as Functional Control Method
(FCM) and Interpolation Control Method (ICM). In the first
method, the FCM, the (normalized) controls of each well
are represented by a polynomial function with a normal-
ized time as its variable. In the second method, the ICM,
piecewise cubic polynomials are obtained by a “not-a-knot”
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smooth spline interpolation between equidistant points in
time. The optimization variables are either the polynomial
coefficients, or the values sampled from the original space
(BHP in this paper) at the selected points for interpolation.

We stressed the importance that any polynomial
parametrization should be able to produce bang-singular
solutions. Following this discussion, we showed how we
improved previous FCM formulation shown in the litera-
ture by allowing the polynomial to take values out of the
actual bounds, where in these cases the control values are
set to the bound. We also show different normalization pro-
cedure, which better capture the polynomial multi-modality
behavior.

We tested our proposed methods on two examples
with increasing complexity: a two-dimensional synthetic
channelized reservoir and the realistic three-dimensional
UNISIM benchmark. In the first example, we considered
a five spot pattern where we have extensively tested four
different FCMs (and ICMs): linear (two points), quadratic
(three points), cubic (four points), and quartic (five points).
Furthermore, in a second three-dimensional example, we
imposed horizontal and vertical wells (25 in total) where
we compared two FCMs (and two ICMs): quadratic (three
points) and cubic (four points). We used particle swarm
optimization as the gradient-free optimizer in a high perfor-
mance computing environment.

In both examples, we showed that ICM outperforms
FCM. We attributed this behavior to the well-defined
bounds on the decision variables in the ICMwhen compared
to the FCM. We also observed that the higher the polyno-
mial degree or the number of interpolation points, the higher
the obtained objective function value, along with increas-
ing number of iterations up to convergence. We showed that
as the problem scale increases, the contribution of FCM
or ICM is greater. In the larger problem, the traditional
formulation solved by PSO did not converge within maxi-
mum allowed CPU time, while our approach did converge
to a considerably higher NPV within significantly fewer
iterations. When comparing to gradient-based method, the
FCMs and ICMs performed better than the active-set and the
IP-BFGS. While the ICMs and FCMs grow initially faster
than the IP-LBFGS, the IP-LBFGS gradually exceeded all
other methods. The final difference from the best solution
found by IP-LBFGS was in the range of 0.8–1.35%. We fur-
ther discussed that testing ICM or FCM with higher number
of variables per well and tightening the convergence crite-
ria might close this gap, which can also open some scope
for future work. As we stated, the future work might include
also the terminal time as the only additional optimization
variable.

Another avenue for future work is whether the solu-
tion space has a unique global solution or is the objective
function has a high plateau with many solutions. This

can be done for example with multi-start local optimiza-
tion approaches. Moreover, other optimization methods
to find the optimal function coefficients or interpolation
points should be considered. Specifically, deterministic
global optimization methods will be considered, which are
expected to be more consistent in finding the globally
optimal function coefficients.

Though ICM outperforms FCM in the experiments
shown in this paper, this might not always be the case. Other
functions than natural polynomials might be used and lead
to better performances. Specifically, our group currently
works with orthogonal polynomial basis functions, which
seems to be a promising future research avenue.

We conclude that our method might serve as a handy tool
for “black-box” and gradient-free optimization researchers
who aim to optimize general field development (which
entail more decision variables such as well-placement).
When solving solely the optimal control problem, our meth-
ods can be useful in the absence of an adjoint model. If the
adjoint model is available, our model can serve as a global
search phase before switching into efficient local opti-
mizer (such as IP-LBFGS used in this work) to refine the
solution.
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Appendix: Global search using PSO

Since we used particle swarm optimization (PSO) as our
main optimizer to find the polynomial coefficients, here,
we describe the PSO algorithm and its inputs in details.
We used a PSO version with a variable neighborhood size
and variable inertia magnitude. We followed, in general, the
documentation showed in [37]. PSO is an optimization tech-
nique developed by Dr. Eberhart and Dr. Kennedy in 1995
[20]. This is a population based stochastic method, inspired
by the social behavior of fish schooling or bird flocking.

In each iteration, each particle has a location (defined
by its vector values) and a velocity. The velocity updating
equation is the core of the PSO algorithm. The equation
updates the new velocity, which carries each particle from
one location (a feasible solution) to a neighboring loca-
tion (a neighbor feasible solution). Figure 14 shows a PSO
pseudo-code used in our work, for a maximization problem.
Table 7 shows the specific inputs used in the two problems
presented in this paper.

As can be seen in the pseudo-code, the algorithm com-
bines meta-heuristic features with local search approach.
A particle is “attracted” to the best solution found by him
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Fig. 14 Pseudo-code for PSO maximization with a dynamic neighborhood (adopted from Matlab documentation)
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Table 7 Parameter values used in both examples for the particle
swarm optimization algorithm

Example 1 Example 2

Function tolerance 10−6 10−4

stallIterLimit 20 12
K 30
nFrac 0.25
inertiaRange (0.1, 1.1)
c1, c2 1.49

and to the best solution found by his current dynamic-
neighborhood, M . Thus, the local search here can be viewed
as “attraction” to the good quality solutions.

However, at the same time, the algorithm introduces few
variables that add stochastic search which might explore
meta-heuristically the new areas. These variables are rand1
and rand2 that add random effect to each source of attrac-
tion.

Additional global exploration is achieved by adaptively
changing the inertia parameter, I , and the dynamic neigh-
borhood M , according to the optimization process. For
example, once a better solution is found, the neighborhood
is set to its minimum size. Thus, a particle can be attracted
to a direction, which might be very different than a direction
achieved, if the total swarm was considered as the neigh-
borhood. This dynamical neighborhood approach was not
presented in several previous works that utilized PSO to
solve the problem under consideration.
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