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Abstract Ensemble-based data assimilation methods have
recently become popular for solving reservoir history
matching problems, but because of the practical limitation
on ensemble size, using localization is necessary to reduce
the effect of sampling error and to increase the degrees of
freedom for incorporating large amounts of data. Local anal-
ysis in the ensemble Kalman filter has been used extensively
for very large models in numerical weather prediction. It
scales well with the model size and the number of data and is
easily parallelized. In the petroleum literature, however, iter-
ative ensemble smoothers with localization of the Kalman
gain matrix have become the state-of-the-art approach for
ensemble-based history matching. By forming the Kalman
gain matrix row-by-row, the analysis step can also be par-
allelized. Localization regularizes updates to model param-
eters and state variables using information on the distance
between the these variables and the observations. The trun-
cation of small singular values in truncated singular value
decomposition (TSVD) at the analysis step provides another
type of regularization by projecting updates to dominant
directions spanned by the simulated data ensemble. Typi-
cally, the combined use of localization and TSVD is neces-
sary for problems with large amounts of data. In this paper,
we compare the performance of Kalman gain localization
to two forms of local analysis for parameter estimation
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problems with nonlocal data. The effect of TSVD with dif-
ferent localization methods and with the use of iteration is
also analyzed. With several examples, we show that good
results can be obtained for all localization methods if the
localization range is chosen appropriately, but the optimal
localization range differs for the various methods. In gen-
eral, for local analysis with observation taper, the optimal
range is somewhat shorter than the optimal range for other
localization methods. Although all methods gave equivalent
results when used in an iterative ensemble smoother, the
local analysis methods generally converged more quickly
than Kalman gain localization when the amount of data is
large compared to ensemble size.

Keywords Iterative ensemble smoother - Localization -
Local analysis - Ensemble Kalman filter - Regularization -
History matching

1 Introduction

When ensemble Kalman filter-like data assimilation meth-
ods are applied to large reservoir simulation models with
many observations, it is necessary to apply some type of
localization to reduce the effect of spurious correlations and
to increase the number of degrees of freedom. Some of
the standard approaches to localization work quite well on
small- and medium-size problems, but the methods that are
commonly used for subsurface parameter estimation prob-
lems are generally not efficient when the number of data and
the number of model variables become large. This limits the
ability to apply these methods to problems of assimilation of
4D seismic data and to methods in which all data are assim-
ilated simultaneously. Since iterative ensemble smoothers
have become fairly standard methods for history matching
large reservoir models, we investigate the performance of
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four localization approaches to data assimilation using an
iterative ensemble Kalman smoother: (1) localization of the
model covariance matrix, (2) localization of the Kalman
gain matrix (computed one row at a time), (3) local analysis
with observation taper, and (4) local analysis with Kalman
gain taper.

Localization methods for ensemble-based data assimila-
tion methods were developed for atmospheric and oceanog-
raphy applications where, although the dynamics can be
strongly nonlinear, data are often local and linear, i.e., obser-
vations are often of model states at spatially distributed loca-
tions. Using N4 to denote the dimension of the data space
and Ny, to denote the dimension of the model space, the
observation operator H of size N4 x N, for this type of local
and linear data has only one nonzero element (equal to one)
per row. If H is the observation operator, it is easy to directly
apply tapering to the covariance of state variables (p o Cy),
in which Cy is the covariance of the state vector, p is the
tapering matrix of same size, and o denotes element-wise
multiplication (Schur product). After the tapering, matrices
that involve Cy in typical ensemble-based methods become

H(poCy)HT = (HpHT> o (HC\HT) (1)

(poCy)HT = (,oHT) o (CMHT) . @)

Through the use of these identities, computation of the
Schur product between matrices of size Ny X Ny is
avoided, and the Schur product is only applied to matrices
of size Nq x N4 (right-hand side of Eq. 1) and Ny, X Ng
(right-hand side of Eq. 2). The matrix HpHT o HCyHT,
however, appears in a term that needs to be inverted at
the analysis step. When the number of data is large, it
is not possible to invert a matrix of size Ng X Ng, so
applications that apply localization to the covariance matrix
Cwm typically assimilate data sequentially at the analysis
step, for example Hamill et al. [17] assimilate data one
by one and Houtekamer and Mitchell [18] assimilate data
in batches. This sequential update takes place at a single
analysis step, and should not be confused with sequential
updating using data at different times. Assimilating data
sequentially is only feasible when the observation operator
H is inexpensive to evaluate, because simulated data need to
be computed for each sequential update.

Elements of the taper matrix p are typically formed by
evaluating a predefined correlation function p with appro-
priate distance as input. Some correlation functions are
completely defined by a single parameter that controls the
critical range, e.g., Gaspari and Cohn [15]. When the obser-
vation operator is local, this critical range depends primarily
on the correlation scale of model variables (which is also the
expected range of Cy). The optimal range of the tapering
function is a function of ensemble size, with larger ensemble
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requires less localizaiton. The tapering function p in Furrer
and Bengtsson [14] is optimized to minimize the difference
between the tapered ensemble estimate p o Cy and the true
covariance, and it directly incorporates ensemble size as an
input parameter.

When ensemble-based data assimilation methods are
applied to history matching problems, it has become com-
mon to use iterative ensemble smoothers [6, 10] instead of
ensemble Kalman filters. In this case, only model parame-
ters (e.g., gridblock permeability and porosity, etc.) are esti-
mated, and the observation operator for typical production
and seismic data is neither local or linear. We use g to denote
a general observation operator and G to denote its linearized
approximation (referred to data sensitivity), to clearly dif-
ferentiate it from the special type of observation operate H
mentioned earlier. The sensitivity G of production data like
water cut and gas-oil-ratio to model parameters like per-
meability and porosity is typically not available, although
their general behavior is often well understood [25]. Unfor-
tunately, Eqgs. 1 and 2 which allow efficient localization do
not hold if H is replaced by the general observation opera-
tor G, so the tapering matrices pqqg and ppg for correlation
between different simulated data GCMGT and correlation
between model parameters and data CmGT cannot be eas-
ily derived from a tapering function that is appropriate for
Cwm. Because of the nonlocal nature of data sensitivity G,
the choice of the critical range for tapering matrices pqq and
pPmd cannot be based on correlation scale of model variables
alone as is the case for local data.

Chen and Oliver [3] studied the behavior of data sensi-
tivity for different data types and suggested the choice of
localization range should be a joint consideration of cor-
relation scale of model parameters, data sensitivity, and
ensemble size. They suggested that the range of the tapering
function should be large enough to include the next line of
wells outside a pattern for pattern flooding cases, and large
enough to include important parameters in the direction of
pressure support (e.g., aquifers). Since distances need to be
computed between data and model parameters for tapering,
a physical location needs to be assigned to each nonlocal
observation. For data measured at well locations, the center
location of open completions can often be used as the loca-
tion for data; however, for certain types of data, e.g., water
production rate, the location for data could be assigned at
an intermediate location between the producer and the water
source (i.e., injector or aquifers) as suggested in Chen and
Oliver [2]. Seismic data that are used for history matching,
typically are seismic attributes on either the seismic or the
reservoir grid, and the location of the cell is a natural choice
as the data location.

Emerick and Reynolds [7] suggested setting the critical
range for localization to be the sum of the length scale of
the prior covariance of model parameters and the length
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scale of the well drainage area (from streamline simula-
tion) and used Gaspari-Cohn function to compute elements
of pma and pqq, with distance between model parameters
and data and between different data. Chen and Oliver [3]
used one correlation function from Furrer and Bengtsson
[14] to compute elements of pq then used an empirical for-
mula to compute pgq from ppq. Similar to the nonlocal data
in history matching problems, satellite radiances in atmo-
spheric data assimilation applications also reflect spatially
weighted average (mostly vertically) of state variables. The
critical distance for localization of this type of nonlocal data
is generally increased to reflect the length scale of vertical
averaging [13].

When it is difficult to localize the product GCMGT, or
when it is infeasible to invert an Ng4 X N4 matrix, then
an alternative is to ignore the localization of GCyMGT and
instead only apply localization to the entire Kalman gain
matrix [2, 6, 10]. Localizing the Kalman gain matrix does
not directly solve the problem of limited degrees of free-
dom, but it does alter the subspace in which updates are
found and it does reduce spurious updates to model param-
eters. When iterative ensemble methods are used, the prob-
lem of insufficient degrees of freedom is reduced because a
different subspace is used to construct updates at each iter-
ation. Although the dimension of the model Ny, is typically
large, the Kalman gain matrix can be formed in segments
and in parallel [8], so the Kalman gain localization is com-
putationally feasible for large-scale problems. No difference
in terms of the choice of tapering function for localizing
covariance and Kalman gain has been mentioned in the liter-
ature, and typically the same criteria for ppg have been used
for tapering of the Kalman gain matrix. Chen and Oliver [3]
observed artifacts in the updated model parameters in a 5-
spot water flooding example when the Kalman gain matrix
was localized with a localization region smaller than a sin-
gle well pattern or only slightly bigger then a single pattern,
but the artifacts disappeared when the localization region
was made large enough (see examples in [2, 6, 10]).

Local analysis (also referred to as observation local-
ization) is another commonly used localization method to
reduce the impact of spurious correlations and to increase
the degrees of freedom in updating. It is commonly used for
data assimilation in atmospheric and oceanographic applica-
tions [1, 19, 26], but although several authors in petroleum
engineering have used “regional analysis” [12, 30] and one
paper has used local analysis with an observation cutoff
[32], it appears that local analysis with tapering has not been
used in petroleum applications. The main concept of local
analysis is to decompose the entire model into local regions.
Model variables within each local region are updated using
only data that are within a critical distance to the local
region. This local region can be a single grid point as shown
by the gray cell in Fig. 1, or more commonly a single ver-
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Fig. 1 Local analysis for updating of parameters in a single cell (gray
cell). Only observations within critical radius (indicated by the black
circle) are used to compute the update. The weights on the selected
observations (red dots) are typically based on distance from the cell to
be updated (gray cell)

tical column of a 3D model [19, 26]. Because of the data
selection for update at each local region, the contribution
from distant data that are likely to be dominated by noise is
removed. In addition to data selection, the selected data for
each update can be given weights by altering the elements
of data noise covariance Cp to gradually reduce the contri-
bution from data as their distance to the current local region
increases [13, 20]. Data selection and weighting of the data
can be done consistently, for example, Hunt et al. [20] used
the Gaspari-Cohn function with a chosen range to compute
the weights (multiply to Cp~!) and data with zero weight
are not used for the local update.

Several authors [16, 22, 23] have noted that the use of
the same distance taper in local analysis results in less local-
ization than in covariance localization. Nerger et al. [23]
showed that this difference in the effective localization
range is especially large when the variance of the data noise
is much smaller than the variance of the corresponding sim-
ulated data from the ensemble, and proposed a method to
modify the weights in local analysis so that its behavior
is more consistent with covariance localization. Sakov and
Bertino [29] compared the behavior between covariance
localization and local analysis for linear local observations
with non-correlated errors using a simple toy problem. By
analyzing the ensemble transform matrix, the results sug-
gested that for strong data assimilation problem (accurate
data), covariance localization might be better than local
analysis. The same localization range, however, was used
for covariance localization and local analysis in Sakov and
Bertino [29].
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This paper studies the performance of local analysis for
regularizing updates from nonlocal data with comparison to
the commonly used Kalman gain localization. Two types
of tapering are tested for local analysis: one is tapering of
Cp~! as in Hunt et al. [20], the other is tapering of the
local Kalman gain. The paper also aims at understanding the
appropriate choice of localization range in local analysis for
typical production data if it should be much different from
what has been used for Kalman gain localization. The iter-
ative ensemble smoother, Levenberg-Marquardt ensemble
randomized maximum likelihood method (LM-EnRML) in
Chen and Oliver [5], is used for history matching; however,
findings in this paper are applicable to other similar iterative
ensemble smoothers. Localization for iterative ensemble
smoothers is simpler than localization for the ensemble
Kalman filter since it is often more difficult to localize
dynamic states (e.g., saturation and pressure) than model
parameters [3]. The convergence behavior of LM-EnRML
resulting from the combined use of truncated singular value
decomposition (TSVD) and localization is also studied.

In the remainder of this paper, we first briefly review the
methodology for LM-EnRML, the use of TSVD to reduce
the number of effective data, then present different local-
ization methods. The performance of various localization
methods is compared using two simple toy problems with
local and nonlocal data and a synthetic history matching
example with production data from a large number of wells.
We limit discussion to data with uncorrelated data noise
(diagonal Cp) in this paper. The results could be easily
extended to non-diagonal Cp whose square root is easy to
compute.

2 The iterative ensemble smoother

Here, we briefly describe an iterative ensemble smoother so
that the implementation of local analysis can be understood.
First, we define a few scalar variables: N, is the ensem-
ble size, Ny, is the number of model parameters, N4 is the
number of data, and ¢ and j are indices for iteration and
model realization, respectively. We denote the normalized
simulated data deviation ensemble as

1

ADf = ———
Ne—1

1
Cp 12Dt <1Ne - N—1N61£e> NG
€

where DY is a matrix of size Ng x N. with each column
being simulated data g(mﬁ) from one model realization m’.
Here, and elsewhere in the paper, g(-) represents the func-
tion that maps model parameters to predicted data. The
matrix Iy, is an identity matrix of size N, and 1y, is a
vector of length N, with all elements equal to one. Data
noise is assumed to follow a multivariate Gaussian distribu-

tion (0, Cp), where Cp is a diagonal matrix of size Ng.
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Similarly, the deviation ensemble of model parameters is

1 1
AMK = ?Me <INe - N_lNelTe> s (4‘)
\Y e €

where M¢ is a matrix of size Ny, x N with each column
being one realization of model parameters m¢.

The updating formula at the ¢th iteration of the approxi-
mate form of LM-EnRML (Levenberg-Marquardt ensemble
randomized maximum likelihood method, Chen and Oliver

[5]) can be written as
-1
sm' = AMZAD@T<(1 + a0y, + ADZADZT>
o2 (dops,j — gm)) . 5)

InEq. 5, (Smf of length Ny, is the change to the jth realiza-
tion of model parameters at iteration £. The vector dops, j of
length N is the perturbed data realization

dobs.j = dobs + Cp'/?z; (©6)

where dops is the vector of observed data, and z; of length
N4 is white noise sampled from standard Gaussian distri-
bution. The scalar A in Eq. 5 is the Levenberg-Marquardt
tuning parameter for iterations. The tuning of the A in
LM-EnRML follows the typical choice for Levenberg-
Marquardt type regularization for optimization. The value
of A at the first iteration is typically large (similar order
of magnitude as the data mismatch, for example 105). The
value of A is reduced by a factor (for example 10) with each
successful iteration. The typical stopping criteria used for
terminating iteration for the LM-EnRML include reaching
maximum number of allowed iterations, reaching minimum
reduction of data mismatch and reaching minimum changes
to model parameters. Note that the approximate form of
LM-EnRML (LM-EnRML approx) in Eq. 5 is very similar
to ES-MDA (ensemble smoother with multiple data assim-
ilation, Emerick and Reynolds [9]), except for the choice
of the tuning parameter and the generation of the perturbed
observations.

3 Truncated SVD for regularization

Typically, inversion of the matrix (1 + A¢) Iy, + AD!ADT
in Eq. 5 is carried out in the ensemble space [11]. To sim-
plify notation, the iteration index ¢ and the term 1 + A
are suppressed in this section. We use K to represent the
coefficient of the data misfit in Eq. 5, that is

K = AMADT(Iy, + ADADT)"!. (7

Note that K in Eq. 7 is very similar to the standard Kalman
gain matrix in the ensemble Kalman filter except for a factor
of CD’I/ 2 and we will refer to K as Kalman gain in the
following sections.
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To provide regularization of the updates, we write the
truncated singular value decomposition (TSVD) of AD as

T

AD =U,W,V,, ®)
where p is the number of singular values retained in TSVD
and the dimension of matrices U,, W), and V, are Ng X p,
p x p,and N¢ x p, respectively. Using Eq. 8, the K matrix
becomes
K~ AMUTAD)T (@, + W2)~'UT

= AMV, W, 1, + W2)~1UT ©)

= KeUT,
where K¢fr is Kalman gain for the effective data (data
projected to the space spanned by columns of U;).

Utilizing the coefficient matrix in Eq. 9, the updating step
of the iterative ensemble smoother Eq. 5 becomes

ADysr effective innovation (px 1)

T T
sm; = AMUTAD) T (1, + W2)~' U] CD*1/2<dobs,j - g(mf.)) .

Ketf (NmX p)
(10)
The need to form a matrix of dimension Ny, x N4 is avoided
in Eq. 10 by working in the effective data space. The prod-
uct of AMADegr can be thought of as the cross covariance
between the model parameters and the effective data.

The use of TSVD regularizes ensemble updates by pro-
jecting updates to dominant directions spanned by AD.
Chen and Oliver [4] showed the benefit of truncating small
singular values using the Brugge benchmark case [27]. The
changes made to the model were much smaller and the final
data match was better when small singular values were trun-
cated. Examples (not in the context of reservoir fluid flow)
showing similar effects can also be found in Figs. 14.1 and
14.2 of Evensen [11]. The truncation level in the TSVD
is usually based on percentage of energy retained. Values
between 90 to 99.9 % are typically used in history matching
problems. Setrom et al. [28] discussed the use of cross-
validation to select the optimal truncation level. Note that
the TSVD (8) is computed at each iteration so that the
subspace in which updates are computed changes at each

1 1

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

iteration. This effectively increases the degrees of freedom;
however, the updates are still restricted to ensemble space
unless localization is used, so TSVD is typically not suf-
ficient to allow assimilation of large amounts of data. In
addition, the use of iteration compensates for strong trunca-
tion in TSVD, thus the truncation level is not as important in
iterative methods as it is for non-iterative methods (shown
with the example in Section 5.1).

4 Localization methods

If localization is not used as in Eq. 10, updates at one iter-
ation are a linear combination of columns of the covariance
between model parameters and effective data. The degrees
of freedom for model update are then limited by the num-
ber of singular values p retained in the decomposition,
with p < N.. When the ensemble size is small, localiza-
tion is necessary so that different linear combinations can
be used for updating different model parameters in order
to assimilate large amounts of independent data. In addi-
tion, the ensemble size is typically much smaller than the
effective model dimension, in this case using localization is
also essential for reducing the effect of spurious correlation.
Note that the effective dimension of the model space is usu-
ally less than the number of model parameters N, because
model parameters are usually spatially correlated.

4.1 Taper functions

The localization function that is used for tapering is typi-
cally a correlation function with compact support. A com-
mon choice is the Gaspari-Cohn function [15], whose
only parameter is range R (critical length) of the func-
tion. Figure 2a show the Gaspari-Cohn function with range
equal to 10. The function value reduces to 0.2 at distance
equal to R and is zero for distances greater than 2R. Fur-
rer and Bengtsson [14] introduced a localization function
that depends on covariance type, range R of the covariance
function, and ensemble size. Figure 2b, c shows the Furrer-
Bengtsson function for spherical and Gaussian covariance
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Fig. 2 a GC taper function [15], b and ¢ taper function in Furrer and Bengtsson [14] with Spherical and Gaussian covariance function with
ensemble size of 20 (black dashed), 100 (blue solid), and 1000 (red dash-dotted)
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with range equal to 10 for different ensemble sizes. Un-
normalized taper functions are shown in Fig. 2b, c. The
normalized taper function is scaled so that the maximum
value of the function is equal to one. In the remainder of the
paper, we use p to denote the localization function with any
optional parameters fixed so that p is only a function of dis-
tance p(r). The bold p denotes a matrix or a vector with its
elements evaluated at the appropriate distance using p.

4.2 Covariance localization and Kalman gain
localization

For covariance localization, the covariance between model
parameters and simulated data AM‘AD‘T and the covari-
ance of simulated data AD? AD?T must both be localized, in
which case the update at the analysis step becomes

sm' = [pmd o (AM@AD‘T)] ((1 + 20y,

+ [pdd o (AD‘AD”)])_IM‘Z (11)
where
8d" = Cp~"/2 (Ao, — gmh)) . (12)

In the remainder of this section, we omit the index for
iteration ¢ and for realization j and the term 1 + A for
simplification of notation.

In analogy to Egs. 1 and 2, pgg and pyg in Eq. 11 are usu-
ally chosen to be similar in effect to GpmmGT and pmmGT.
The selection of the localization function p for computing
elements of ppq is typically a joint consideration of the cor-
relation length of the covariance matrix for my,, the data
sensitivity G, and the ensemble size N [3, 7]. Because each
row of G corresponds to an observation and each column
of G corresponds to a model parameter, different p can be
used for forming different parts of ppg if the data sensitivity
or the prior correlation length is very different for different
types of data and different types of model parameters. Ele-
ments of pgg can be computed using the same localization
function p as that for pmg [7] or can be computed directly
from pmq [3].

In Eq. 11, because localization is applied to matrix
ADADT, the Kalman gain matrix cannot be written in terms
of effective data as in Eq. 9 and it is necessary to invert
the matrix of size Ng x Ng4, which can be computationally
prohibitive for problems with large amounts of data. On the
other hand, although Ny, can be very large, it is possible to

compute pyg © (AMADT> in segments.

In Kalman gain localization, tapering is directly applied
to the K matrix in Eq. 9

sm = [ pma o (AMULAD)T @, +W2)~'UT) |sd. (13)

Kloc
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Because the effective data do not have physical locations
associated to them, in order to apply localization, the actual
K of size N, x Ng is needed instead of the gain matrix Kegr
of size Ny x p in Eq. 9. Similar to tapering of AMADT
in Eq. 11, tapering of Kalman gain in Eq. 13 can also be
formed in segments, for example row by row, and in parallel,
so using Kalman gain localization is feasible even for large-
scale problems.

4.3 Local analysis/observation localization

In local analysis, the entire model is decomposed into many
local domains (i.e., domain decomposition). For earth sci-
ence problems, it is typical to decompose a 3D model into
vertical columns [19, 26]. A local update is carried out
for model parameters within each local domain using only
data that are within a critical distance to the local region
(i.e., data selection). In addition, the selected data for each
local update can be given weights based on their distance to
the current local region (i.e., tapering).

Although the number of model parameters updated at
one local analysis step will generally be more than one, we
describe the procedure assuming one local update is per-
formed for each model parameter without losing generality.
Similar to the Kalman gain matrix K in Eq. 7 for the global
analysis, the Kalman gain matrix at the ith local update is

Ko = AM(,’)AD’(I;) (INdl» + AD([)AD’(II-‘))il , 14)

where (i) indicate the local update for the ith model parame-
ter. AM(;) represents the ith row of AM, and AD;) consists
of the rows of AD that correspond to the subset of data
used for the ith local update. The data used for updating
the ith model parameter m;y are those whose distance r to
m;) results in p(r) greater than a threshold (10_3 is used in
this study). The number of data assimilated at the ith local
update is Ng; .

Similar to Eq. 8, the truncated singular value decomposi-
tion (TSVD) of ADy;) is

AD) =U, W, V] . (15)

The columns of U, and the diagonal elements of W, are
the p; leading left singular vectors and singular values of
ADg;y. Using Eqgs. 12, 14, and 15 and applying tapering to
the local Kalman gain matrix, the ith model parameter m;)
is updated using

dm) = [pmd () © (AM(L')(U’;, AD(,'))T(IPI. +W§,I,)71U};>:|8d(i) s

K(i)loc
(16)

where dd;) and ppg ;) indicate taking the corresponding
elements of 6d and p,,4 for the ith local update.
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Table 1 Summary of different

localization methods Method

Main characteristics

investigated
Kalman gain localization (13)

LA Kalman gain taper (16)
LA observation taper (19)

Global analysis with tapering on Kalman gain
Local analysis with tapering on local Kalman gain

Local analysis with tapering on observation noise

The updating equation for local analysis with tapering on
the local Kalman gain, Eq. 16, is similar to Eq. 13 except
that the TSVD is performed with a subset of data ADy;)
at each local update (while in Eq. 13 the TSVD is only
performed once with the entire data set). The number of
data at each local update of local analysis is generally small
compared to the total number of data. The TSVD of ADy;)
in Eq. 15 can retain much more information compared to
TSVD of AD in Eq. 8. This results in faster convergence
rate of local analysis methods compared to localization
of the Kalman gain when used with the iterative ensem-
ble smoother (as shown later with the examples). To avoid
repeated calculation of TSVD in Eq. 15 for the same data
set, it is sensible to group model parameters that have the
same data set into one local update, for example, different
properties at the same model cell or different properties at
an entire column of the 3D model, etc. The local updates
in local analysis are independent of each other and can be
carried out in parallel.

In atmospheric and oceanography literature, a more com-
mon way to localize at each local update is to scale the data
noise, so that noise of data that are far from my;) is increased
to reduce the effect of distant data on the update. As shown
in Sakov and Bertino [29], scaling the data noise is equiv-
alent to scaling the ensemble anomalies. In the following,
local analysis with observation taper is written in terms of
scaling the ensemble anomalies. Let p ;) be a column vec-
tor of length Ny, with its elements computed based on the
distance between each datum and the model parameter my;).

where 1y, is a column vector of length N with all elements
equal to one.

Using the scaled data ADZ.) in place of AD(;) in Eq. 14,
the updating for model parameter m(;) becomes

—1

T T 12
dm) = AM(,‘)ADZ) (INdi—I-ADZ)ADﬁ.) ) [p(i) o Sd(,‘)] .
(18)

Because Cp!/? appears in the definition of 8d (12), 8d ;)

also needs to be scaled in Eq. 18. Applying TSVD to the
scaled data ADZ) similar to Eq. 15, Eq. 18 becomes
T 2=l T [ 172
sm;) ZAM(,')AD'Z») Ull.;i (I,,l.+W§l_ ) U’Zi [p(i/) o 5(1(,')] ,
19)

where the columns of Ugi and the diagonal elements of W* ;
are the p; leading left singular vectors and singular values
of AD(,.

To show the similarity between tapering data noise or
ensemble anomalies (18) and localizing covariances at each
local update, we write covariance localization (analogy to
Eq. 11) at each local update as

T
Sm) = [pmd(i) ° (AM(i)AD(i))]

x (INdi n [pdd(i)o (AD(,-)ADE))])_IM(,-). (20)

Defining

. ! Pd iy = P12 @1
The scaled anomalies of the simulated data ensemble are md () @
represented using and
o _ /24T ) 172 T2
ADy;) = (/’(i) 1Nc> o ADg) D paa) = P(,-/) Py (22)
5.0
43¢ % Covariance localization
__40f " . no localization
= = LA Kalman gain taper
S 3.5¢ . % Kalman gain localization
bS; 3.0F
2 55k % % %
e B TT T

15 L L L L L

iteration

Fig. 3 Reduction of logjo transformed total objective function Oy ;
with iteration for three cases with localization and one case without
localization. For all cases, the truncation level of TSVD is 100%. Each

box shows distribution of 20 realizations. The horizontal dashed line
shows the mean of log|o(O) from 20 posterior realizations computed
using theoretical model covariance and true data sensitivity
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(©)
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Fig.4 The final ensemble for cases: a Kalman gain localization, b local analysis Kalman gain taper, and ¢ no localization. The black curves show

the ensemble of 20 realizations and the red dots are observed data dgps

we see that Eq. 20 is identical to Eq. 18 except for the scal-
ing of éd(;) with p(li/)z. Similar observations has been made
by Sakov and Bertino [29]. The final updating equation for
local analysis with observation taper (19) is, however, dif-
ferent from Eq. 20 because of the truncated singular value
decomposition in Eq. 19.

5 Illustrative examples

Three data assimilation examples are used in this section to
illustrate the behavior of the various localization methods on
problems with different features. The first problem exam-
ines behavior of iterative assimilation of large amounts of
linear local observations and the effect of truncation level of
the TSVD. The second problem investigates the effect of the
range of the taper function for various localization methods
for assimilation of linear nonlocal observations. The third
problem is a history matching problem with production data
from 25 repeated 5-spot patterns from Chen and Oliver [3].
Because it is not computationally feasible to use covari-
ance localization for history matching problems with large
amounts of data, only the three localization methods shown
in Table 1 are tested for most of the examples.

The performance of each method is evaluated based on
the magnitude of the data mismatch, magnitude of the total
objective function, and error in the posterior variance. The

squared data mismatch O4 for each model realization j is
defined as

Od.j = (dobs,j — 8mM) Cp~ (dobs,j — gm;) . (23)

This is the most common measure that is used in his-
tory matching problems. The changes from the initial/prior
model realization my, ; (squared model mismatch) is
defined as

Omj = (mpr,j —mj)" Cor ™" (mypr; —my) 24

where Cy is the covariance of the prior model parameters.
The total objective function O measures the quality of each
model realization in terms of both data mismatch and model
mismatch:

Oj=0q,j + On,j. (25)

This total objective function is the cost function that LM-
EnRML aims at minimizing [5]. Loosely, it requires that the
updated model should stay as close as possible to the initial
model unless changes are required to match data. The total
objective function is only computed for the toy problems for
which the theoretical Cy, is used. For large-scale problems,
computing an approximation of Cp; ™! is not easy unless Cyy
takes certain special forms (e.g., [24, 31]). In most cases,
however, when inverting Cy is necessary a pseudo inverse
of the low rank ensemble approximation of Cy is used,

Fig. 5 Reduction of logjo 5.0 5.0
transformed total objective
. RS 48f 100% TSVD 4sfea | 100% TSVD
function O, ; with iteration for .-
two cases: a no localization. b ~46F | T 50% TSVD P 50% TSVD
local analysis Kalman gain taper S S ask T
Q 44 - o gL
= oo T Z 30f -
o 420 =iz .:i:: T b T B
= L e e e ol B X1 LT R
40 + S N o = st == P T
. - = = 20b S
381
0 1 2 3 4 5 6 0o 1 2 3 4 5 6 7
iteration iteration

(a)
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Fig. 6 Localized and unlocalized Kalman gain from an ensemble of size 20 (top row) and of size 100 (bottom row) for a 1D problem with one
linear nonlocal data (27). The true Kalman gain is shown in solid red. Only model section from gridblock 70 to 130 is shown

despite the limitations of that approach. Symbols Og4, O,
and O¢ denote the ensemble mean of Oq,j, On,;j, and Oy ;
respectively.

In addition, we use a separate measure O, to quantify the
goodness of the final variance after conditioning

Oc = (St —Se)T (St — S, (26)

where S; is a vector containing the true standard deviation
of the model parameters after conditioning to data and the
S, is the vector of standard deviations of the final ensem-
ble. It is only possible to compute the analytical posterior
covariance of model parameters for the toy examples. For
the flow example, the final variability of the ensemble is
benchmarked against a run with a large ensemble.

The termination criteria used in the examples for the
approximate form of LM-EnRML are (1) maximum number
of iterations equal to 20, (2) maximum number of inner iter-
ations (tuning of A) equal to 3, (3) minimum reduction of the

ensemble mean of data mismatch (O4) equal to 5%, and (4)
minimum ensemble mean of data mismatch (Oq) equal to
the number of data N 4. An iteration is accepted if the magni-
tude of Oy is reduced from the previous iteration. Although
for the toy examples it would be possible to base the conver-
gence criteria on the mean of the total objective function Oy,
the acceptance criterion is based on Oy since that is what
can be used in typical history matching problems.

Chen and Oliver [5] showed the behavior of Oy and O,
with iteration for a 1D multiphase flow problem. The model
mismatch Oy, is zero for the initial ensemble and increases
with iteration. The data mismatch is typically large in mag-
nitude for the initial ensemble, and decreases with iteration.
When the approximate form of LM-EnRML is used and the
reduction in data mismatch is used to terminate the iteration,
there is a danger of over-fitting data. In this case, at later iter-
ations, the data mismatch O4 may continue to reduce while
the total objective function O increases. In the iteration

Fig. 7 Total objective function 500, , 45 35
O¢ (a), data mismatch Og4 (b) as0le 5‘ K ? | -©- Kalman gain localization ! »
and error in standard deviation L 4011 | LA observation taper 3 ‘
O (¢) of the final ensemble 400/t R (25 LA Kalman gain taper ,el ! -
with different ranges used for A S 350 % Plet s
) 3501 & s oa | ' s
the Gaspari-Cohn taper_ v RS N 2l o
function. Oy, Oy, and O are 3000 Y R 30f&, : A ¢
PR oA e NG : ¢
averages of Oy, Oq, and O, over 250 Lo o A \:; a 1500y K
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Table 2 Localization range that gives the lowest Oy and O, for cases
shown in Fig. 7

Optimal range O
Kalman gain localization 12 195 +£28
LA observation taper 8 189 + 30
LA Kalman gain taper 14 210 £31

The mean and standard deviation of O for each localization range are
shown before and after the £ sign. As a comparison, the theoretical
mean and standard deviation of Oy is 66 and 9. (32 linear nonlocal data
problem with N, = 20)

termination criteria listed above, the minimum reduction of
Oy is set relatively loosely and an additional termination
criterion based on Oy less than the number of data Ny is
added to reduce the danger of over-fitting.

5.1 Linear local data

The model parameters are spatially correlated Gaussian
random variables at 200 discrete gridblocks. The prior dis-
tribution of the model parameters is multivariate Gaussian
with zero mean and exponential covariance. The exponent,
variance, and range for the covariance are equal to 1.9,
1, and 10 gridblocks, respectively. As a test for assimilat-
ing linear and local data, model parameters are observed at
40 evenly spaced locations with standard deviation of data
noise being 0.05. The ensemble size is 20, which is less than
the number of data (equal to 40). The Furrer-Bengtsson (FB)
function with the model covariance and the ensemble size
as input was used for tapering for all the localization meth-
ods. This choice of taper function is optimal for covariance
localization with linear local data. The normalized FB func-
tion, for which the value of the function is equal to one at
distance equal to zero, is used as suggested in Furrer and
Bengtsson [14].

Figure 3 shows reduction of logjo transformed Oy ; with
iteration for different localization methods and for a case

without using localization. The truncation level of TSVD is
100 % for all cases (meaning that all nonzero singular val-
ues are kept in SVD of Eqgs. 8, 15, and 17). The horizontal
dashed line in Fig. 3 shows the mean of logo(Oy, ;) from 20
posterior realizations computed using the randomized max-
imum likelihood (RML) method [25] with the theoretical
model covariance and true data sensitivity. The prior real-
izations and the observed data realizations are the same as
those used for the ensemble method. For this linear problem,
LM-EnRML approx with covariance localization converges
in one iteration. Note that TSVD is not used with covariance
localization (see Eq. 11). With Kalman gain localization,
TSVD is applied to the data deviation ensemble consisting
of all 40 data (AD of size 40 x 20). Although all 19 nonzero
singular values are kept, there are not enough degrees of
freedom to match all 40 data at 1 iteration, and additional
iterations are needed to obtain similar level of data match
as covariance localization. For local analysis, an ensemble
size of 20 provides enough degrees of freedom at each local
update to match data, as a result the case with LA Kalman
gain taper converges in a couple of iterations. The results
with LA observation taper are very similar to those with
LA Kalman gain taper and are not shown here. The final
ensemble for the case with Kalman gain localization and
LA Kalman gain taper are shown in Fig. 4a, b, in which
data are matched well and the spatial continuity of the initial
realizations are maintained.

When localization is not used, the ensemble variability
collapsed quickly and the data mismatch stayed high at the
final iteration (see Fig. 3). It is possible to reduce the rate of
ensemble collapse by truncating small singular values, for
example Fig. 5a compares the reduction of Oy ; with itera-
tion using 100 and 50% truncation for the TSVD for the case
without localization. When the truncation level in TSVD is
50% and localization is not used, the quality of data match
is poor and the ensemble variability is too small (Fig. 4c).
When the number of independent data is large, regulariza-
tion through TSVD alone is not sufficient to improve the
quality of data match and localization is necessary.

Fig. 8 The change of O4 and 105
O with iteration for 1 of the 40
runs for the case with 32 linear

—@— no localization
- ©- Kalman gain localization

nonlocal data with N, = 20. 10°F \ ﬁ tﬁ Kslman tgainttaper
The localization range that gave "g“\\ observation taper 10%
the best Oy in Table 2 for each E

.

localization method are chosen, T 10} ‘3{\‘,‘ Q\ 3

i.e., 12 gridblocks for Kalman ‘}’“ \\9 i}

gain localization (red circle); 8 102 0';,:/‘/ Teell -

gridblocks for LA observation ol N Tteeee..

taper (black diamond); 14 Truug Tte :
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Fig. 9 The average of the

e . 08- @ no localization
standard deviation of the final O Kalman gain localization 0.3r o
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The Levenberg-Marquardt tuning parameter A is set to
be zero at all iterations for results shown above. The effect
of using nonzero A to regularize the iterations is similar to
the effect of truncating small singular values in the TSVD.
Although not important for this simple linear problem, regu-
larization through both A and TSVD is necessary for inverse
problems that are highly nonlinear. Li et al. [21] showed
that at early iterations of typical history matching problems
when data mismatch is large, it is beneficial to use a large
value of A to reduce erroneously large updates to the model
and to improve the final data match. Evensen [11] Chen and
Oliver [4] both showed benefit from using TSVD for non-
linear data assimilation problems. If 50 % TSVD is used
with local analysis Kalman gain taper, a similar level of data
match is achieved as the case with 100 % TSVD but with
many more iterations as shown in Fig. 5b. This suggests that
for typical history matching problems when regularization
is important in addition to localization, even if a conserva-
tive truncation level is used for TSVD, satisfactory results
can be achieved with additional iterations.

5.2 Linear nonlocal data
The model setup in this subsection is the same as in

Section 5.1 except that the data are nonlocal. The behavior
of the localized Kalman gain for nonlocal observations is

(b)

first investigated using a case with only one nonlocal data
measuring the average of model parameters from gridblock
95 to 105

105

g(m)=%zmi,

i=95

27)

where m; denotes the ith element of model parameters m.
The standard deviation of data noise is 0.05. The center of
the region of nonzero sensitivity (at m o) is used as the data
location for localization. Gaspari-Cohn (GC) is used as the
taper function for all localization methods.

The iteration tuning parameter X is set to be zero at all
iterations and all nonzero singular values are kept (there
is only one nonzero singular value for this one-data case).
The unlocalized Kalman gain (black dashed), the localized
Kalman gain from LA Kalman gain taper (blue triangle),
and LA observation taper (black diamond) at the first iter-
ation are compared with the theoretical Kalman gain (red
solid) in Fig. 6. Each column of Fig. 6 shows results from
using a different range for the GC function. The top row
shows results from an ensemble of size 20, and the bottom
row shows results from an ensemble size of 100.

The definition of the localized Kalman gain for Kalman
gain localization and LA Kalman taper is defined in Egs. 13

Table 3 Results for the cases shown in Figs. 8 and 9 in terms of the total number of iterations used, and the value of Oy, Oy, and O at the final

iteration

# of iteration Oy (oR O.
No localization 2+0 1455 £ 723 2212 £ 820 104 £0.28
Kalman gain localization 5+£0.8 27+3 195 +£28 0.6 £0.15
LA observation taper 3+£0.7 264 189 £+ 30 0.6 £0.13
LA Kalman gain taper 3+£0.6 23+5 210+ 31 0.5£0.13

The numbers shown before and after the £ sign are the mean and the standard deviation from the 40 runs, respectively. (32 nonlocal linear data

with N = 20)
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and 16, respectively. The localized Kalman gain for LA
observation taper is defined as
T _ . 1/2
K = AM) AD{, TUS (1, + W52 =10 Tdiag(p()))
(28)

where diag(x) represents a diagonal matrix with vector x
on the diagonal. For problems with a single observation,
Kalman gain localization and LA Kalman taper are equiv-
alent. The localized Kalman gain shown in Fig. 6 for local
analysis is a composite from all local updates. The local-
ized Kalman gain from LA Kalman taper and Kalman gain
localization is consistently narrower than that from LA
observation taper with the same localization range, meaning
that with the same localization range LA observation taper
results in less localization. This is consistent with what has
been observed with local data [16, 22].

The sensitivity of the quality of the updated ensemble,
quantified by total objective function, data mismatch, and
posterior variance (defined in Egs. 25, 23, and 26), with
respect to the range of the taper function is tested through a
problem of assimilating 32 linear nonlocal data. Each data
is an average of model parameters over 11 gridblock as in
Eq. 27. The centers of the averaging are from gridblocks
7, 13, to 193, which gives 32 nonlocal data with overlap-
ping sensitivity regions. This is designed to mimic some
aspects of the behavior of data in typical history matching
problems. Figure 7 plots total objective function Oy (first

(b)

column), data mismatch Og4 (second column), and error in
standard deviation O, (third column) of the final ensem-
ble with different ranges used for the Gaspari-Cohn taper
function. A wide range of choices for the localization range
(from 4 gridblocks to 40 gridblocks) is tested in Fig. 7. The
values O, Og4, and O, in Fig. 7 are averages of Oy, O4, and
O, from 40 independent runs with ensemble size of 20. Oy,
Og, and O are computed at the last iteration of each run.
Both the initial ensemble and the synthetic truth are gener-
ated independently among the 40 runs, but they are the same
for all the cases evaluated (different localization methods
and no localization).

Since the total objective function O measures the quality
of sampling of the posterior pdf using the LM-EnRML, it is
a comprehensive measure for the quality of the final ensem-
ble. The magnitude of data mismatch Oq4 and error in final
variance O. provide information on two specific aspects of
the final ensemble. If a total objective function less than 250
is considered acceptable, we see that there is a relatively
wide range of choices for the range of the GC taper for
all three localization methods (Fig. 7a). Table 2 shows the
range that results in the lowest average of O; in Fig. 7 for
each localization method, and the mean and standard devi-
ation (before and after the plus/minus sign) of O from the
40 runs with the optimal range used for localization. Note
that Oy is the mean of 20 realizations from each run.

For nonlocal observations, the range of localization is
generally chosen based on the region of sensitivity and

Table 4 Description of five cases that are used to evaluate performance of various localization methods

Case Ne loc. method Range of GC TSVD # of iter
1 100 None - 95 % 7

2 100 Kalman localization 35 95 % 19

3 100 LA observation taper 20 95 % 11

4 100 LA Kalman gain taper 30 95 % 13

5 2000 None - 99 % 9
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on the range of the prior covariance [3]. In this example,
the range of the prior covariance is 10 gridblocks and the
distance to the edge of the region of averaging from the
observation point is five gridblocks, so the cross covariance
has a range of approximately 15 gridblocks, which would be
the suggested localization range for Kalman gain localiza-
tion [7]. Based on the optimal ranges shown in Table 2, the
guidelines work well for Kalman gain localization and for
local analysis with Kalman gain taper. It appears, however,
that a somewhat shorter range should be used for local anal-
ysis with observation taper (consistent with what is shown
in Fig. 6).

Just to benchmark the values of O shown in Table 2, we
computed posterior realizations using the theoretical model
covariance Cy and the true data sensitivity for 40 groups
of 20 realizations. The synthetic truth is generated indepen-
dently among the 40 groups, and simulated data from the
true model is then perturbed to create 20 realizations of the
observed data for conditioning the prior realizations (this is
to mimic what is done in the ensemble based method). The
resulting mean and standard deviation of O from the 40
groups are 66 and 9, respectively. Although the results with
N = 20 with localization are still quite high compared to
the theoretical values, the updated model realizations (not
shown here) all appear quite satisfactory. If the truth is ran-
domized in creating each of the posterior realization, the

(b)

in Egs. 15 and 17) removes less information than truncation
of the singular values of the global data ensemble (AD in
Eq. 8) in Kalman gain localization.

Figure 9 shows the average of the standard deviation of
the final ensemble (Se in Eq. 26) over the 40 runs for the
same 4 cases as shown in Fig. 8. The theoretical standard
deviation (S; in Eq. 26) is shown in Fig. 9 in solid blue
line for comparison. Two representative model sections are
shown, from gridblock 1 to 20 in (a) and from gridblock 81
to 100 in (b). The variability of the final ensemble without
using localization (black dots) is clearly too low, while the
variability of the final ensemble from the three localization
methods are comparable to the theoretical values.

Table 3 summarizes results for the cases shown in Figs. 8
and 9 in terms of the total number of iterations used, and the
value of O4, Oy, and O¢ at the final iteration. The numbers
shown before and after the plus/minus sign are the mean
and the standard deviation from the 40 runs, respectively.
The rate of convergence is on average two iterations slower
for Kalman gain localization compared to the two local
analysis methods. All localization methods show acceptable
results in terms of the three measures, while the case without
localization clearly fail to obtain reasonable results.

resulting O, ; from the posterior realizations follows a x> —@— no localization
distribution with mean equal to 2N [25]. 107F '_Z' Kalman gain localization
Figure 8 shows the change of O4 and O; with iteration '=0x LA Kalman gain taper
o o =<0 LA observation taper
for 1 of the 40 runs. Three cases with different localization 6
. A o 10 —@— large ensemble
methods and one case without using localization are com-
pared. The localization range that gave the best O in Table 2 Oﬁ
for each localization method are chosen, i.e., 12 gridblocks 10°
for Kalman gain localization (red circle); 8 gridblocks for ‘e
LA observation taper (black diamond); 14 gridblocks for 10k ‘&7&1&7 .
LA Kalman gain taper (blue triangle). Because of the fast ’ ~§7§7§.X‘x-g. 0 0-0-¢
. . g1 . .- A ‘ “®-6-0
reduction in ensemble variability and inability to further ,
reduce Oy, the case without localization terminated after 1075, 5 10 15
two iterations. Both local analysis methods converged faster iteration

than Kalman gain localization because TSVD of the local
data ensemble in local analysis methods (AD(;) and ADZ.)

Fig. 12 The change of ensemble mean of the data mismatch O4 with
iteration for the five cases shown in Table 4
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Fig. 13 Mean and standard
deviation of the
log-permeability ensemble at the
final iteration (iteration 7) when
no localization was used with
Ne = 100 (case 1). The initial
mean and std of log-permeability
are 2.5 and 1.2, respectively

5.3 Flow example with 25 well patterns

The same synthetic 2D water flooding example used in
Chen and Oliver [3] is used here to test the various local-
ization methods. The simulation model has 167 x 167
gridblocks. The natural log transformed permeability (log-
permeability) is assumed to follow a multivariate Gaussian
distribution with mean 2.5 and standard deviation 1.2. The
covariance function is exponential with exponent equal to 1
and range equal to 26 gridblocks. The true log-permeability
field, which is used to generate synthetic data, is shown in
Fig. 10a. There are 25 injectors (locations shown as trian-
gles) and 36 producers (shown as circles). The injectors are
controlled by constant water injection rate and the produc-
ers are controlled by constant bottom-hole pressure (BHP).
Historical data consist of water and oil production rates and
water injection rate and BHP at nine different times. In total,
the number of data points is 1098 (Ngq = 1098). The stan-
dard deviation of data noise is 8 bbl/day for both oil and
water production rate, 5 bbl/day for water injection rate, and
10 psi for BHP. For this case, the only uncertain parame-
ters are permeability at each model cell, meaning that the

Fig. 14 Mean and standard 167
deviation of the log-permeability
ensemble at the final iteration

(iteration 9) with N. = 2000.

No localization is used

@ Springer
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ensemble of reservoir models are identical to the true model
except for the permeability map.

The Gaspari-Cohn (GC) taper function was used for
localization. The data location for localization of all data
types is the well location of the measurement, and the same
localization range is used for all data. Figure 10b shows the
GC taper function with range equal to 30 gridblocks evalu-
ated with distance computed to the location of producer 28.
It might be beneficial to use different tapering matrix for
data obtained at different times at the same location (same
well) since data sensitivity changes with time. It is, however,
generally sufficient to disregard this time dependency if the
localization region is chosen large enough for the largest
region of data sensitivity (i.e., after water breakthrough).

Table 4 gives the description of the five cases that were
run for comparison. The initial permeability ensemble is the
same for cases 1 to 4. Case 5 with a large ensemble size
without any localization is used as a benchmark. The local-
ization range was chosen based on a joint consideration of
the range of the prior covariance and the well pattern, but
a few trials were also made to check the sensitivity and
the limiting effect if the range is chosen to be too small
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realization 1 standard deviation mean

realization 2

Case 2 Case 3 Case 4
Kalman gain localization = LA observation taper LA Kalman gain taper
localization range 35 localization range 20 localization range 30

Fig. 15 Mean (first row) and standard deviation (second row) of the final log-permeability ensemble and two final realizations (last two rows).
The same scale as in Fig. 14a is used for mean and realizations. The same scale as in Fig. 14b is used for standard deviation.

or too large. Figure 11 shows the data mismatch Oy and  obtain so that the final standard deviation from case 5 (large
error in final variance O. for various localization ranges.  ensemble size) is used as S; in Eq. 26 to compute O..
In this example, the theoretical variance is not possible to ~ For all localization methods, if the range for localization
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Fig. 16 The initial
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(a) realization 1

is chosen to be too small, the ensemble of updated prop-
erty fields will often have artificially large variability and
the data match will often be poor. If the range for localiza-
tion is chosen to be too large, the ensemble may collapse
and again the data match may be poor. The range of tapers
for which results are acceptable in this example, i.e., 25 to
35 gridblocks for Kalman gain localization and local anal-
ysis Kalman gain taper, and 20 to 25 gridblocks for local
analysis observation taper, is a substantial fraction of the
interwell spacing (approximately 20 gridblocks). Similar to
what was observed in Section 5.2, a considerably smaller
range is needed for LA observation taper compared to the
other two localization methods in order to obtain a similar
level of final ensemble variance. Based on the empirical for-
mula shown in Chen and Oliver [5], the initial value of the
Levenberg-Marquardt parameter A is 10,000 for all cases.
The iteration termination criteria are the same as stated in
the beginning of Section 5.

Figure 12 shows the ensemble mean of the data mismatch
04 with iteration for the five cases. When no localization
is used with a typical ensemble size of 100, the itera-
tive ensemble smoother failed to reduce data mismatch to
an acceptable level. The mean and standard deviation of
the final ensemble at iteration 7 for case 1 without using

(b) realization 2

localization are shown in Fig. 13. Typical signs of sampling
errors and insufficient degrees of freedom such as strong
updates to model parameters and large reduction in ensem-
ble variability can be observed for the final ensemble of case
1. The mean and standard deviation of the final ensemble
for the case with a large ensemble size (case 5) are shown
in Fig. 14, in which the mean is smooth and the reduction
of standard deviation is mainly at locations of high data
sensitivity.

As shown in Fig. 12, the data match at the final itera-
tion from an ensemble of size 100 with different localization
methods (cases 2, 3, and 4) are much better than the case
without localization (case 1) and are not far from the case
with a large ensemble size (case 5). The mean and standard
deviation of the final ensemble for cases 2, 3, and 4 (shown
in Fig. 15) are also comparable to the case with a large
ensemble (case 5). Two final realizations from each of the
localization methods are also shown in the bottom two rows
of Fig. 15 with their corresponding initial realizations shown
in Fig. 16 for comparison. The final history matched real-
izations show similar spatial continuity as the initial ones.
Similar to what have been observed with the toy examples,
local analysis methods (cases 3 and 4) converged faster than
the case with Kalman gain localization (case 2).

5000 3000 8000
4000 2500 7000 \
2000 6000
3000 5000
1500
1000 3000
1000 500 / 2000
0 0 1000
0 1 2 3 0 1 2 3 0 1 2 3

years

OPR of P17

Fig. 17 Simulated data at three wells from the initial ensemble and
the final ensemble for the case using LA Kalman gain taper (Case 4).
Simulated data from the initial models are shown in gray, and simu-
lated data from the final models (at iteration 13) are shown in blue.
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WPR of P13

years

BHP of 125

Observed data are shown as red dots with the error bar indicating one
standard deviation of the data noise. The unit for rates is bbl/day, and
the unit for pressure is psi
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Figure 17 shows simulated data at three wells from the
initial ensemble (gray) and the final ensemble (blue) at iter-
ation 13 for the case using LA Kalman gain taper (case
4). The data match from other localization cases are very
similar and are not shown here. As an aside, much bet-
ter data matches were achieved at the final iteration with
all the localization methods using the iterative ensemble
smoother than those obtained using the ensemble Kalman
filter (EnKF) with covariance localization shown in Chen
and Oliver [3]. Although the taper function is slightly differ-
ent in the two studies, the main reason for the improved data
match with the iterative ensemble smoother is that EnKF
without iteration did not handle nonlinearity correctly.

6 Conclusions

The ensemble-based methods with a small ensemble size
require regularization and localization in order to obtain
satisfactory results for problems with large amounts of
model parameters and large amounts of independent data.
The state-of-the-art approach in ensemble-based history
matching typically uses truncated singular value decompo-
sition (TSVD) for regularization and uses localization of
the Kalman gain matrix to alter the subspace for updating
different model parameters and to reduce spurious updates.

In this paper, we investigated the use of local analysis
with the iterative ensemble smoother for history matching
problems and compared its performance with Kalman gain
localization. Two local analysis methods were investigated:
one with tapering of the simulated data ensemble (or equiv-
alently the observation noise) as typically used in numerical
weather prediction community, and the other with tapering
of the local Kalman gain matrix. The conclusions are the
following:

1. Truncation of the SVD before inversion provides useful
regularization, but TSVD alone is typically not suffi-
cient to allow enough degrees of freedom to assimilate
large amounts of data even if iteration is used.

2. When Kalman gain localization is used without local
analysis, the subspace spanned by the singular vec-
tors of TSVD may be too small to represent the data,
but good assimilation results can be obtained when an
iterative ensemble smoother is used.

3. The use of iteration compensates for strong truncation
of the singular values in TSVD, thus the truncation level
is not as important in iterative methods as it is for non-
iterative methods

4. Good results can be obtained for all localization meth-
ods, if the localization range is chosen well. In gen-
eral, Kalman gain localization and local analysis with
Kalman gain taper have similar optimal localization

ranges, while the optimal range is somewhat shorter for
local analysis with observation taper. In most examples
that we investigated, the range of appropriate values is
relatively large so selection of a range to use is not
always difficult.

5. Although all localization methods can give equivalent
results if used iteratively, the local analysis methods
generally converge more quickly than Kalman gain
localization when the amount of data is large compared
to ensemble size.
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