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Abstract We present a two-step stochastic inversion
approach for monitoring the distribution of CO2 injected
into deep saline aquifers for the typical scenario of one sin-
gle injection well and a database comprising a common
suite of well logs as well as time-lapse vertical seismic
profiling (VSP) data. In the first step, we compute sev-
eral sets of stochastic models of the elastic properties using
conventional sequential Gaussian co-simulations (SGCS)
representing the considered reservoir before CO2 injection.
All realizations within a set of models are then iteratively
combined using a modified gradual deformation algorithm
aiming at reducing the mismatch between the observed and
simulated VSP data. In the second step, these optimal static
models then serve as input for a history matching approach
using the same modified gradual deformation algorithm for
minimizing the mismatch between the observed and simu-
lated VSP data following the injection of CO2. At each grad-
ual deformation step, the injection and migration of CO2

is simulated and the corresponding seismic traces are com-
puted and compared with the observed ones. The proposed
stochastic inversion approach has been tested for a real-
istic, and arguably particularly challenging, synthetic case
study mimicking the geological environment of a potential
CO2 injection site in the Cambrian-Ordivician sedimentary
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sequence of the St. Lawrence platform in Southern Québec.
The results demonstrate that the proposed two-step reservoir
characterization approach is capable of adequately resolv-
ing and monitoring the distribution of the injected CO2.
This finds its expression in optimized models of P - and
S-wave velocities, density, and porosity, which, compared
to conventional stochastic reservoir models, exhibit a sig-
nificantly improved structural similarity with regard to the
corresponding reference models. The proposed approach is
therefore expected to allow for an optimal injection fore-
cast by using a quantitative assimilation of all available data
from the appraisal stage of a CO2 injection site.

Keywords CO2 sequestration · Stochastic inversion ·
Gradual deformation · VSP

1 Introduction

One of the major challenges associated with the large-scale
deployment of carbon capture and storage (CCS) operations
is the evaluation of the reservoir properties and the forecast-
ing of the spatial distribution of the injected CO2 plume over
time. Adequate knowledge of the rock physical properties at
the storage site is crucial for determining the optimal rate of
CO2 injection, which in turn influences the rate of capture as
well as the associated monitoring operations. Indeed, most
jurisdictions involved in CCS projects require more or less
elaborate monitoring, verification, and accounting (MVA)
programs (e.g., EU [19]). In this context, arguably the most
important and most challenging task is the temporal mon-
itoring of the spatial distribution of the injected CO2. To
date, the characteristics of CO2 plumes estimated through
such monitoring efforts are often inconsistent with corre-
sponding multi-phase fluid flow simulations (e.g., Ramirez
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et al. [55]). This is mainly due to the lack or sparseness of
direct measurements of the reservoir properties and the low
spatial resolution and coverage of geophysical surveys as
well as the uncertainties associated with the modeling and
inversion of such data (e.g., Doyen [17]). To evaluate the
performance of a reservoir in terms of its capacity for CO2

storage, corresponding models also need to be constrained
by data measured during and/or after the injection opera-
tions and must match the observed dynamic behavior of the
reservoir within a given tolerance interval.

The process of optimizing a reservoir model to fit
dynamic data, such as pressure and water-cut, is commonly
known as history matching (e.g., Le Ravalec [37]). History
matching is extensively used in the oil and gas industry and
is generally based on data from at least one injection and one
production well (e.g., Roggero and Hu [57]). History match-
ing requires adequate knowledge of the static reservoir
properties in general and of the porosity and permeability
in particular. Due to the complexity of the spatial distribu-
tion of the rock physical properties and the scarcity of direct
observations at the well sites, probabilistic approaches tend
to be most suitable (e.g., Doyen [17]). In most CCS projects,
only one single injection well is available and hence only
indirect constraints, generally based on vertical seismic pro-
filing (VSP) and/or seismic reflection surveys, can be used
to improve the characterization of the dynamic behavior of
the CO2 plume (e.g., Lumley et al. [41]).

While it is widely accepted that seismic measurements
are well-suited for reservoir characterization and monitor-
ing due to their spatially extensive coverage and sensitivity
to density and porosity (e.g., Doyen [17]), the estimation of
rock physical properties from such data is a complex and ill-
conditioned nonlinear inverse problem. This is notably due
to the limited bandwidth and aperture of typical surfaced-
based seismic measurements as well as to the presence of
noise in conjunction with the inherent simplifications asso-
ciated with the underlying forward modeling algorithms
(e.g., Tarantola [58]).

Seismic inverse problems for reservoir characterization
may be addressed following either deterministic or prob-
abilistic approaches and are generally divided into two
main categories: (1) multi-step inversion methods and (2)
stochastic inversion methods (e.g., Grana et al. [26]). In
multi-step inversion methods, the problem of estimating
reservoir properties from seismic data is split into two or
more sub-problems. Generally, elastic properties are first
derived from seismic data, which are then used to infer
reservoir properties through stochastic techniques, such as
Bayesian classification (e.g., Avseth et al. [1]; Mukerji et al.
[48]; Buland and Omre [7]). Iterative stochastic inversion
methodologies solve the seismic inverse problem using
deterministic or stochastic optimization techniques. First, a
set of equivalent models are simulated using a stochastic

algorithm based on prior information, usually from well log
data as well as from assumptions and/or constraints regard-
ing spatial continuity (e.g., Bosch et al. [5]). Then, rock
physics transforms are applied to estimate the elastic proper-
ties. Finally, synthetic seismic data are iteratively computed
and compared to the corresponding observed data. Several
optimization methods exist to infer the elastic properties
from seismic measurements. A number of studies have used
the Markov chain Monte Carlo approach for the stochas-
tic exploration of the model space (e.g., Eidsvik et al. [18];
Larsen et al. [36]; Gunning and Glinsky [28]; Rimstad and
Omre [56]; Ulvmoen and Omre [60]; Hansen et al. [30]).
González et al. [25] performed a trace-by-trace determinis-
tic optimization, while Bosch et al. [5] proposed an itera-
tive optimization based on Newton’s method. Grana et al.
[26] illustrated the efficiency of the probability perturba-
tion method [8] to estimate fine-scale reservoir models.
A multi-dimensional scaling technique was successfully
applied by Azevedo et al. [2] to assess how the parame-
ter model space is explored by a global elastic inversion
algorithm.

In this paper, we propose a stochastic inversion workflow
using a gradual-deformation-based optimization technique
[57] to assimilate a conceptual geological model, geophysi-
cal well logs, VSP data, and flow simulations for monitoring
the injection and propagation of CO2 in a deep saline
aquifer. In the following, we first outline the proposed inver-
sion approach and then apply it to a realistic synthetic case
study based on data from a potential CCS site in the St.
Lawrence Lowlands, Québec, Canada.

2 Methodology

The stochastic inversion procedure we propose is schemat-
ically illustrated in Fig. 1. The global workflow comprises
two distinct steps. In the first step, which corresponds to
the static optimization, that is, before the injection of CO2,
many sets of initial realizations of the reservoir model are
simulated from available well log data as well as from
geological and geophysical a priori information using a
geostatistical co-simulation algorithm. It is important to
note that the geological a priori information could consist
of multiple scenarios. An optimization procedure is then
applied to each of these sets of initial models realizations
in order to obtain static models of the reservoir properties
that minimize the mismatch between the observed and sim-
ulated raw seismic traces before the injection of CO2. In
the second step, which corresponds to the dynamic opti-
mization, the resulting optimized static reservoir models
are combined through an iterative history matching proce-
dure where, at each iteration, we simulate the injection and
transport of CO2, compute the rock physical properties of
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Fig. 1 Schematic illustration of
the workflow of the proposed
two-step stochastic inversion
methodology: 1a multiple sets
of initial reservoir models are
generated using sequential
Gaussian co-simulation (SGCS);
1b all sets of previously
generated stochastic realizations
are iteratively combined using a
gradual conditioning (GC)
approach; 1c this procedure is
repeated until all initial
realizations have been combined
together; 1d we thus ultimately
obtain a reservoir model
consisting of Vp , Vs , ρ, and φ

fields that minimize the
mismatch between the synthetic
and the observed seismic data. 2
We used the same GC approach
for the dynamic optimization in
order to obtain the spatial
distributions of Vp , Vs , ρ, and φ

that best honor the static and
dynamic data
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the corresponding reservoir model, and run a seismic for-
ward model to evaluate the mismatch between simulated
and observed seismic traces. In the following, we provide
a detailed description of the different parts of the proposed
stochastic inversion approach.

2.1 Initial reservoir models

The spatial distributions of the P - and S-wave velocities
Vp and Vs , the porosity φ, and the density ρ for multiple
sets of initial reservoir models are generated using sequen-
tial Gaussian co-simulation (SGCS) (e.g., Deutsch and
Journel [16]; Doyen [17]). Starting from corresponding
static information available from well logs and the con-
ceptual geological model, which, in the considered case,
consists of a succession of sub-horizontal sedimentary units,
the algorithm visits each node of the gridded model space
along a random path co-simulating a value for each vari-
able. These co-simulations are conditioned to the measured
well log data such that, in addition to being consistent with
the second-order statistical characteristics of the observed
data, they reproduce the corresponding observations at the
well locations. For each set, multiple simulations are gen-
erated by using different random seeds in order to obtain
independent sets of realizations. This is illustrated in step 1a
of Fig. 1.

2.2 Static optimization

All sets of previously generated stochastic realizations are
then iteratively combined using a modified gradual defor-
mation (GD) approach in order to minimize the mismatch
between the observed seismic data and the corresponding
simulations prior to the injection of CO2 [32]. The GD
method was first developed for history matching purposes
[57] and involves the linear combination of Gaussian ran-
dom fields with weights that are adjusted to minimize the
mismatch between simulated and observed data while pre-
serving the second-order statistical characteristics of the
original models (e.g., Roggero and Hu [57]; Hu [32, 33]; Hu
et al. [34]; Le Ravalec et al. [39]; Le Ravalec and Mouche
[38]). The key idea behind GD is that the sum of two Gaus-
sian random fields Y1 and Y2 is also a Gaussian random field

Y (r) = Y1 cos(r) + Y2 sin(r), (1)

where r ∈ [−π, π ] is the deformation parameter. It can
be shown that Y (r) has the same mean and covariance as
Y1 and Y2 regardless of the value of r , because Y1 and Y2
are independent and the sum of the squared combination
of the cos- and sin-terms is one. In its classical form, GD
involves the combination of independent stochastic realiza-
tions only, which implies that the resulting realizations are

unconditional. To combine conditional stochastic realiza-
tions, a variant of GD, known as gradual conditioning (GC),
was developed by Ying and Gomez-Hernandez [63] and
Hu [33]. Hu [33] proposes the following weights satisfying
these constraints
⎧
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such that

Y = α1Y1 + α2Y2 + α3Y3, (3)

provides a framework for parameterizing directly condi-
tional stochastic realizations as illustrated by step 1b in
Fig. 1. The thus resulting stochastic realization Y is then
conditioned to the observed data and consistent with the
second-order statistics of the underlying realizations Y1, Y2,
and Y3.

The GC method is incorporated into the proposed opti-
mization procedure by adjusting the deformation parameter
r in order to reduce mismatch between observed and sim-
ulated seismic data. For each combination of models, that
is, for each value of r , we thus obtain a new set of Vp,
Vs , ρ, and φ fields, for which the full-waveform synthetic
seismic response dsynth is evaluated and compared to the
observed seismic data dobs . For this purpose, we use an elas-
tic finite-difference time-domain approach [4] and consider
an objective function defined as the root mean square (rms)
error between dobs and dsynth (e.g. Grana et al. [26])

J (r) =
√
√
√
√

1

N

∑

i=1,N

(
dsynth(r) − dobs

)2
, (4)

where N is the number of the samples per trace and i the
sample index. Our choice of the so-called L2-norm for the
objective function (4) is primarily motivated by the fact
that most related studies also use this norm (e.g., Grana
et al. [26]). Indeed, the L2-norm corresponds to the maxi-
mum likelihood estimate for normally distributed data and
errors (e.g., Menke [46]). The latter is a reasonably assump-
tion for synthetic seismic data that are backscattered from
stochastic reservoir models. It is, however, important to note
that there are a number of potentially viable metric alterna-
tives, such as the local dissimilarity map (e.g., Tillier et al.
[59]) or the structural similarity index (e.g., Wang et al.
[61]). While the choice of the norm is unlikely to have a
significant influence on the final results for the considered
synthetic test case, it may indeed be become decisive for
the inversion of observed data, where the distribution of the
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data and their errors may not be Gaussian and/or contain
important outliers. In this context, it is important to note
that the proposed stochastic inversion approach is particu-
larly amenable to a flexible choice and parameterization of
the objective function.

The GC model for which r minimizes the mismatch
between synthetic and observed seismic data is then com-
bined with two other initial SGCS realizations. This pro-
cedure is repeated until all initial realizations have been
combined together. For each set of initial realizations, we
thus ultimately obtain a reservoir model consisting of Vp,
Vs , ρ, and φ fields that minimize the mismatch between the
synthetic and the observed seismic data. This is illustrated
by steps 1c and 1d in Fig. 1.

2.3 Dynamic optimization

The optimized models inferred so far honor the static data
at the well locations as well as their second-order statistics
throughout the model space. In the following, we seek to
make these models consistent with the dynamic data docu-
menting the injection and propagation of CO2. To this end,
we use a history matching procedure in which each iteration
consists of the following steps:

1. run a fluid flow simulation on a combination of three
models (Eq. 3);

2. apply suitable rock physics transforms to generate mod-
els of the elastic properties accounting for the injection
and propagation of CO2;

3. compute the seismic response;
4. calculate the mismatch between simulated and observed

seismic data;
5. perturb the weights of the models to reduce the mis-

match using GC.

The above procedure is repeated until the mismatch between
the observed and synthetic seismic is minimal. A concep-
tually similar history matching approach, which is also
based on L2-norm, minimizing differences of compres-
sional impedances between the base seismic survey and
subsequent monitoring surveys to characterize the CO2 dis-
tribution in the Utsira formation of the Sleipner field has
recently been proposed by Fornel and Estublier [21].

2.3.1 Flow simulation

Modeling the time-lapse seismic response to CO2 injec-
tion requires adequate fluid flow simulations to predict the
migration of the CO2 plume within the reservoir. Classic
approaches rely on three-dimensional numerical solutions,
which are accurate and versatile but for many purposes also
prohibitive in terms of their computational cost. In recent
years, approaches employing semi-analytical methods have

been developed [52, 53]. One promising technique for the
fast and accurate modeling of CO2 injection and migration
is based on the so-called vertical equilibrium (VE) assump-
tion. VE models have a long tradition for describing fluid
flow in porous media. In hydrology, this approach is known
as the Dupuit approximation for unconfined aquifers (e.g.,
Møll Nilsen et al. [47]). In the oil and gas industry, corre-
sponding models have been traditionally used to simulate
multi-phase segregated flow (e.g., Martin [43]; Coats et al.
[15]; Martin [44]). In recent years, VE methods have been
employed to simulate large-scale CO2 injection and migra-
tion in deep saline aquifers, where the inherent assumption
of a sharp interface in conjunction with vertical equilib-
rium may be reasonable due to the large density difference
between supercritical CO2 and brine [13, 51, 52]. For the
purpose of this work, we use the VE solver included in the
Matlab Reservoir Simulation Toolbox (MRST) [40, 49] to
simulate the injection and migration of CO2 in a deep saline
aquifer. We consider a two-phase model for the pore fluid
(brine and CO2), in which the distribution of the CO2 plume
is simply governed by the heterogeneity of the hydraulic
properties.

2.3.2 Elastic properties

Elastic reservoir properties are usually computed through
rock physics models, which transform previously inferred
properties such as porosity, saturation, and mineralogy into
P - and S-wave velocities and density. Here, we first esti-
mate the elastic properties of the solid phase, that is, the bulk
and shear moduli Ks and Gs , based on the arithmetic aver-
age of the upper and lower Hashin-Shtrikman bounds [31].
Then, we compute the elastic properties of the fluid phase,
that is, the bulk modulus Kf and the density ρf , using mix-
ing laws [6, 62]. The bulk modulus of the saturated rock
Ksat is then estimated using Gassmann’s relation [22] pro-
viding an estimate of the relaxed velocity at zero frequency,
which is a lower bound of the fluid-saturation effect (e.g.
Han and Batzle [29]). Inspite of significant inherent uncer-
tainties, Gassmann’s relation is widely used to predict and
assess pore-fluid effects on sonic log and seismic velocity
data (e.g. Njiekak et al. [50])

Ksat = Kdry +

(

1 − Kdry

Ks

)2

φ
Kf l

+ (1 − φ)

Ks

− Kdry

K2
s

. (5)

The bulk and the shear moduli of the dry frame Kdry and
Gdry are obtained from ultrasonic measurements on dry
samples of the considered reservoir rocks [54]. The shear
modulus of the saturated rock is assumed to correspond to
its dry equivalent Gsat=Gdry [3]. The density ρsat is com-
puted as a linear combination of the solid density ρs and
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the fluid density ρf weighted by their respective volume
fractions
ρsat = φ ρf + (1 − φ)ρs. (6)

The P - and S-wave velocities of the saturated rock are then
given by

Vp =
√

(
Ksat + 4

3Gsat

ρsat

)

, (7)

and

Vs =
√

Gsat

ρsat

. (8)

The full-waveform seismic response dsynth of this elastic
model is computed using an elastic finite-difference time-
domain approach [4] and the mismatch with regard to the

corresponding observed data dobs is evaluated using Eq. 4.
The optimization procedure is basically the same as that
used for the static reservoir data in step 1. At the end of the
stochastic inversion process, we therefore obtain the spatial
distributions of Vp, Vs , ρ, and φ that best honor the static
and dynamic data, as schematically illustrated by step 2 in
Fig. 1.

3 Application to a synthetic example based
on a potential CO2 injection site

In the following, we apply the workflow outlined above to
a realistic synthetic test case based on a potential CCS pilot
site in Southern Quebec, Canada. The Cambrian-Ordovician

Fig. 2 a Geological setting and
b stratigraphic sequence of the
St. Lawrence Platform.
Modified from Malo and Bédard
[42] and Claprood et al. [14]

(a)

(b)
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sedimentary basin of the St. Lawrence Platform (Fig. 2a)
has been identified as the most prospective basin for CO2

storage in the province of Quebec [42].
The prevailing stratigraphic sequence is shown in Fig. 2b.

The Potsdam Group at the base of the sedimentary col-
umn lies unconformably upon the metamorphic Precam-
brian Grenville basement. It is comprised of the Cambrian
sandstones and conglomerates of the Covey Hill formation
(the target reservoir) and the lower Ordovician quartz sand-
stones of the Cairnside formation. The remainder of the
sedimentary column is all of Ordovician age. The Beek-
mantown Group includes the dolomitic sandstones of the
Theresa formation and the dolostones of the Beauharnois
formation. The lower Chazy unit is composed of limestones,
dolostones, and sandstones. The Trenton, Black River, and
upper Chazy groups comprise essentially limestones. The
Trenton Group is overlain by the Utica Shale and several
hundred meters of interbedded shales, siltstones, and sand-
stones of the Lorraine Group. The lower Utica Shale com-
prises limestone beds and is more calcareous than the upper

Utica Shale. Deep saline aquifers are found in the Tren-
ton, Beekmantown, and Potsdam groups. Figure 3 shows
synthetic well logs of Vp, ρ, and φ for the complete sed-
imentary sequence of the St. Lawrence Platform (Fig. 2b),
which were compiled from a wide variety of log data avail-
able throughout the basin. S-wave velocities are computed
using the Greenberg-Castagna relation [27] that is a simple
average of the arithmetic and harmonic means of the com-
pressional velocities of the mineralogical constituents. The
sedimentary sequence is divided into seven units: Lorraine,
Utica, Trenton, Beekmantown, Cairnside, Covey Hill, and
Basement. For each unit, we estimated the mean values and
the standard deviations of Vp, Vs , ρ, and φ based on the
available log data throughout the basin (Table 1). Together
with the corresponding cross-covariance characteristics of
the logs, these statistical properties are used to generate both
the synthetic well logs (Fig. 3) and the stochastic reference
model of Vp, Vs , ρ, and φ through SGCS with the objec-
tive of respecting the observed transitions between the units
(Fig. 4). It is important to note that the distribution of each
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Fig. 3 Synthetic well logs of Vp , Vs , ρ, and φ that are considered
to be representative of the sedimentary sequence of the St. Lawrence
Platform. Also shown along the vertical axis are the histograms for
these properties in the various sedimentary units, which together with

the mean values and standard deviations shown in Fig. 1, clearly
point to the quasi-Gaussian distribution of the considered parameters
within the individual units as well as to the multi-modal nature of the
corresponding global distributions
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Table 1 Mean values and standard deviations of Vp , Vs , ρ, and φ within the various sedimentary units as inferred from a variety of well log data
throughout the St. Lawrence Platform

Rock physical properties

Unit Vp Vs ρ φ

(m/s) (m/s) (kg/m3) (–)

Lorraine 3714 (98) 2003 (75) 2629 (7) 0.14 (0.01)

Utica 4671 (21) 2750 (8) 2688 (5) 0.07 (0.01)

Trenton 5538 (191) 2958 (83) 2700 (10) 0.06 (0.01)

Beekmantown 5766 (147) 3348 (85) 2635 (49) 0.11 (0.02)

Cairnside 4503 (172) 2739 (135) 2537 (49) 0.11 (0.01)

Covey Hill 4664 (171) 2849 (130) 2539 (26) 0.07 (0.01)

Basement 6002 (30) 3302 (72) 2746 (24) 0.01 (0.01)

property within each unit is approximately Gaussian, which
is largely consistent with the corresponding evidence from
the available well logs. Each parameter within a given for-
mation is therefore adequately characterized by its mean and
covariance. In the case of strongly non-Gaussian distribu-
tions, a normal score transform would have to be performed
on each variable before the co-simulation.

The SGCS algorithm is built such that, for each pixel to
simulate, it takes only the Gaussian distribution of the geo-
logical formation associated with the cell. Please note that

Fig. 4 Reference model for Vp , Vs , ρ, and φ

the functional characteristic of the covariance as well as the
vertical correlation length are inferred from the available
log data, whereas the horizontal correlation length is based
on the conceptual model of the St. Lawrence Platform by
Claprood et al. [14]. The dimension of the reference model
is 1000 × 1500 m with a cell size of 1 × 1 m. The pro-
cedure followed for evaluating the seismic response of this
reference model is based on Carcione et al. [11] who present
an application of poro-viscoelastic modeling for monitoring
CO2 storage. This approach arguably represents the most
accurate and rigorous way of accounting for the effects
of the saturating pore fluids in the observed seismic data,
because the effects of wave-induced fluid flow are naturally
comprised in the governing equations. A full-waveform
VSP for near, intermediate, and far offsets is modeled using
the poro-viscoelastic algorithm of Giroux [23]. The elastic
coefficients characterizing the porous media introduced by
Biot and Willis [3] and reported in Carcione [10] are the
P -wave modulus of the matrix

E = Kdry + 4

3
G, (9)

the coupling modulus between the solid and the fluid

M = K2
s

D − Kdry

, (10)

where the diffusion function D is defined as

D = Ks

[
1 + φ(KsK

−1
f − 1)

]
, (11)

and the poroelastic coefficient of effective stress

α = 1 − Kdry

Ks

. (12)

Kdry , Ks , and Kf denote the bulk moduli of the drained
matrix, the solid, and the fluid respectively; φ is porosity,
and G the shear modulus of the matrix. Carcione [10] pre-
sented an approach to introduce viscoelasticity into Biot’s
poroelastic equations in which matrix-fluid mechanisms are
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Fig. 5 Spatial distribution of
permeability in the reservoir

modeled by generalizing the coupling modulus M to a
time-dependent relaxation function, while the other elastic
coefficients are independent of frequency. Detailed infor-
mation on the implementation of the governing equations
of motion can be found in Carcione [10] and Carcione and
Helle [9].

As the ultimate aim of our inversion workflow is to obtain
an elastic model of the reservoir which is consistent with
the migration of the injected CO2 over time. Considering a
comprehensive range of offsets is essential to account for
amplitude-versus-offset variations in the seismic response
due changes in the saturating pore fluids. Based on the well
logs and the complementary a priori information, we co-
simulated five sets of 100 realizations each using SGCS.
The choice of 100 realization per set is based on the fact

Fig. 6 Spatial distributions of Vp , Vs , ρ, and φ as inferred from the
proposed two-step stochastic inversion procedure

that as the variance of all the realizations then reaches a
plateau. These realizations of Vp, Vs , φ, and ρ are then lin-
early combined through GC to find the linear weights of the
models that minimize the mismatch between the observed
poro-viscoelastic seismic data generated for the reference
model and synthetic seismic traces obtained for the opti-
mzed model. At each step, synthetic full-waveform VSP
data for near, intermediate, and far offsets are computed
using an elastic finite-difference time-domain approach [4].
At the end of this iterative process, we obtain the global min-
ima of the objective function (4), which is associated with
the best static models for Vp, Vs , ρ, and φ.

As the time-lapse differences in the seismic response
related to the injection and migration of CO2 can be rel-
atively weak and/or spatially localized, it is important to
perform full-waveform forward modeling to capture the key
aspects of the underlying physics in the synthetic seismic
data. However, this step tends to be computationally very
demanding. In this work, we therefore used a graphical pro-
cessing unit (GPU) accelerated version of the viscoelastic
finite-difference time-domain forward modeling algorithm

Fig. 7 Q-Q plots of observed versus simulated data for Vp , Vs , ρ,
and φ
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[4] developed by Fabien-Ouellet et al. [20]. This allows
for reducing the run-time by more than two orders-of-
magnitude compared to the original parallel version running
on a 4-core CPU. The five realizations that best match the
observed seismic data are again combined and optimized via

GC parametrization with a CO2 flow simulation being run
at each iteration.

CO2 is injected during 200 days into the Covey Hill for-
mation, which consists of a low-porosity sandstone with a
mean grain diameter of 5 × 10−6 m. The permeability

Fig. 8 Structural similarity
index SSIM a between the
reference model and one random
SGCS realization and b between
the reference model and the
results of the proposed two-step
stochastic inversion procedure
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distribution for the reservoir sandstones is based on the
Kozeny-Carman equation [12, 35, 45]

k = 1

72

φ3

(1 − φ)2τ 2
d2, (13)

where d denotes the grain diameter and τ denotes tortuosity.
The tortuosity is estimated following the approach proposed
in Glover [24]. Figure 5 shows the spatial distribution of
permeability within the reservoir for one of the five realiza-
tions. At each iteration, the elastic properties of the model
in response to increasing CO2 saturation are evaluated using
Eqs. 10 to 14, and the mismatch of the corresponding syn-
thetic seismic response with regard to the observed data is
assessed. The final step of the inversion workflow provides
distributions of Vp, Vs , ρ, and φ that best honor the static
data as well as the effects of the injection and migration of
CO2 within the reservoir (Fig. 6). In this context, it is impor-
tant to note that the considered reservoir model corresponds
to a particularly challenging scenario due to its low porosity
and permeability.

3.1 Model assessment and validation

A key objective of stochastic simulations is to obtain a
result that honors the probability density function of the
observed data. The quantile-quantile or Q-Q plot is best
suited to assess the similarity between two distributions.
Figure 7 shows the Q-Q plot for the reference model and the
inversion results. Almost all points lie on the 45◦-reference
line, which confirms that, despite the multi-modal nature of
the global distribution evidenced in Fig. 3, the probability
density function of the inversion results honors the one of
the reference model.

Another key metric is the structural similarity index
(SSIM), which compares local patterns between two images
and is based on the computation of three terms: the lumi-
nance term l, the contrast term c, and the structural term s.
The overall index is a multiplicative combination of the
three terms [61]

SSIM(x, y) = [
l(x, y)

]α[
c(x, y)

]β[
s(x, y)

]γ (14)

with

l(x, y) = 2μxμy + C1

μ2
x + μ2

y + C1
,

c(x, y) = 2σxσy + C2

σ 2
x + σ 2

y + C2
,

s(x, y) = σxy + C3

σx + σy + C3
,

(15)

where μx , μy , σx , σy , and σxy are the local means, standard
deviations, and the cross-covariance of the images x and y,
and C1, C2, and C3 are constants. The exponents α, β, and
γ are parameters used to adjust the relative importance of
the three components. SSIM assumes values between 0 and
1, where the limiting case of a SSIM of 1 corresponds to
two identical data sets. Figure 8 shows the SSIM between
the reference model and one random SGCS and between
the reference model and the inversion result for P - and S-
wave velocities, density, and porosity. The inversion result
has a SSIM of approximately 0.6 for Vp, Vs , and ρ, which is
significantly higher than the SGCS realization. Conversely,
φ shows a SSIM index close to 1 for both the SGCS real-
ization and the inversion results, which is primarily due to
its low variance (Table 1). In this context, it is important to
note that we observe the clearest improvement of the simi-
larity for the inversion results (SSIM = 0.89) compared that
of the SGCS (SSIM = 0.82) at the reservoir level, that is, at

Fig. 9 Structural similarity
index SSIM a between the
reference model of the porosity
and one random SGCS
realization and b between the
reference model of the porosity
and the corresponding inversion
result

(a)

(b)
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Fig. 10 CO2 distribution after
300 days of injection for a the
reference model and b the
inverted model. The vertical
black lines denotes the injection
well

(a)

(b)

depths of 1050 to 1300 m (Fig. 9). This is the direct conse-
quence of the additional information and constraints added
by the dynamic data, which in turn illustrates the suitabil-
ity of the proposed two-step stochastic inversion approach
for the considered task. Figure 10 shows the spatial distri-
bution of CO2 after 300 days from the start of the injection
for both the reference model (Fig. 10a) and the inverted
model (Fig. 10b). The similarity between the two images is
confirmed by a SSIM of 0.94.

4 Conclusion

The objective of this study was to develop an inversion
workflow to infer reservoir properties such as Vp, Vs , ρ,
and φ that are sufficiently detailed and accurate to allow
for reliable monitoring of the spatial distribution of CO2. To
this end, we developed a two-step optimization procedure
based on GC for both static and dynamic reservoir charac-
terization. The choice of a two-step approach is motivated
by three factors: (1) the optimization of the static parameters
before injection permits to decrease the number of models
before the injection. Consequently, it allows to reduce the
number of computationally expensive CO2 transport sim-
ulations; (2) in actual CO2 injection projects, the required
data are always available before injection; (3) SGCS are
maximizing the entropy, which implies that the range of the
variance is maximal between different models as well as
within a given model. Optimizing for the static parameters
before injection reduces the starting ensemble to a set of
models that have already been calibrated to seismic data and
hence show a smaller uncertainty than the starting ensemble.
It is then more probable that the global spatial heterogene-
ity of the parameters is close to the true one. The use of
dynamic data will then mostly refine the distribution of the
extreme values of the hydraulic parameters.

Numerical experiments based on a realistic model of a
heterogeneous saline aquifer indicate that the methodology
allows for accurately inferring the spatial distribution of the
static reservoir properties. The method then uses this static
model to simulate the injection and migration of CO2 as
well as its effects on the seismic response. Applying the pro-
posed inversion approach to time-lapse VSP data permits to
reliably characterize the migration of the CO2 plume. The
proposed workflow is extremely versatile and not limited to
seismic data, but can be applied to any kind of geophysical
measurements that are sensitive to changes in CO2 concen-
tration. Future work will need to explore the application of
this methodology to field data as well as its extension to
three-dimensional scenarios.
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25. González, E.F., Mukerji, T., Mavko, G.: Seismic inversion com-
bining rock physics and multiple-point geostatistics. Geophysics
73, R11–R21 (2008)

26. Grana, D., Mukerji, T., Dvorkin, J., Mavko, G.: Stochastic inver-
sion of facies from seismic data based on sequential simulations
and probability perturbation method. Geophysics 77, M53—M72
(2012)

27. Greenberg, M.L., Castagna, J.P.: Shear-wave velocity estimation
in porous rocks: theoretical formulation, preliminary verification
and applications. Geophys. Prospect 40, 195–209 (1992)

28. Gunning, J., Glinsky, M.E.: Detection of reservoir quality using
Bayesian seismic inversion. Geophysics 72, R37–R49 (2007)

29. Han, D.h., Batzle, M.L.: Gassmann’s equation and fluid-saturation
effects on seismic velocities. Geophysics 69, 398–405 (2004)

30. Hansen, T.M., Cordua, K.S., Mosegaard, K.: Inverse problems
with non-trivial priors: efficient solution through sequential Gibbs
sampling. Comput. Geosci. 16, 593–611 (2012)

31. Hashin, Z., Shtrikman, S.: A variational approach to the theory
of the elastic behaviour of multiphase materials. J. Mech. Phys.
Solids 11, 127–140 (1963)

32. Hu, L.Y.: Gradual deformation and iterative calibration of
Gaussian-related stochastic models. Math. Geol. 32, 87–108
(2000)

33. Hu, L.Y.: Combination of dependent realizations within the grad-
ual deformation method. Math. Geol. 34, 953–963 (2002)

34. Hu, L.Y., Blanc, G., Noetinger, B.: Gradual deformation and iter-
ative calibration of sequential stochastic simulations. Math. Geol.
33, 475–489 (2001)
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