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Abstract In this paper, we present a semi-implicit method
for the incompressible three-phase flow equations in
two dimensions. In particular, a high-order discontinuous
Galerkin spatial discretization is coupled with a back-
ward Euler discretization in time. We consider a pressure-
saturation formulation, decouple the pressure and saturation
equations, and solve them sequentially while still keeping
each equation implicit in its respective unknown.We present
several numerical examples on both homogeneous and het-
erogeneous media, with varying permeability and porosity.
Our results demonstrate the robustness of the scheme. In
particular, no slope limiters are required and a relatively
large time step may be taken.

Keywords Semi-implicit · Discontinuous Galerkin · High
order · Heterogeneous permeability and porosity

1 Introduction

Many flow systems in porous media can be categorized as
a three-phase flow, such as light oil, heavy oil, and water.
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Predicting the evolution of the phases in space and time
is essential in the decision-making process for the oil and
gas industry. The mathematical models are based on mass
conservation laws for each phase. Two-phase flow models
have been heavily studied in the literature, and there exist
many approximations of capillary pressure and relative per-
meabilities that are validated by core-flooding experiments
[8]. On one hand, three-phase flow models can be viewed
as an extension of the two-phase flow models. On the other
hand, there is less consensus on the appropriate choice of
the capillary pressure and relative permeability curves and
existing models from two-phase data may not agree with
experimental results [3].

Our paper applies a discontinuous Galerkin (DG) method
that uses piecewise polynomials of degree from one to
four to solve the incompressible three-phase flow problem.
DG methods have been successfully applied to single-phase
flow [5, 14] and to two-phase flow [13, 15, 16]. In particular,
robustness of the methods for single-phase and two-phase
flow in heterogeneous media was shown in [4, 17]. The
lack of continuity between the mesh elements makes the
DG method very suitable for flow and transport in porous
media. Local mass conservation is an inherent property of
the DG method. In addition, the method allows for discon-
tinuous input data if discontinuity lines agree with the mesh
skeleton. Any promising discretization of the three-phase
flow problem should handle the strong heterogeneities of
the medium. In this paper, we use realistic values for the
permeability and porosity fields. We note that the perme-
ability values usually vary across six orders of magnitude.
These variations yield highly varying phase velocities via
the generalized Darcy’s law. Popular methods used by the
oil and gas industry are the finite difference methods and the
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cell-centered finite volume methods. Both methods are only
of first order and exhibit numerical diffusion, particularly in
the case of heterogeneities [2, 18]. Other methods for solv-
ing the three-phase problem include mixed finite elements
and streamline front tracking [1, 7, 9].

In a three-phase model, the unknowns, which are the
saturation and pressure for each phase, are related through
relations like capillary pressures. This results in three inde-
pendent unknowns. In our work, we solve for the heavy oil
pressure and the water and light oil saturations. We show
convergence of the method for discontinuous input data,
such as permeability and porosity fields. We vary the poly-
nomial degree between one and four. This paper is related
to a previous work for modeling three-phase flow in homo-
geneous one-dimensional domains [12]. In a recent paper,
the DG method was applied to solve the black-oil prob-
lem in one-dimensional domains, which is a compressible
three-phase flow. In addition, the gas phase is assumed to
be miscible in the oil phase [20]. In [19], the finite volume
method is combined with a DG method and slope limiters
to solve the two-phase and three-phase flow problems in the
absence of capillary pressure.

An outline of the paper follows. In the next section, we
introduce the saturation and pressure equations and the input
data. The numerical scheme is described in Section 4. Sim-
ulations on homogeneous and heterogeneous porous media
are shown in Section 5. Conclusions follow.

2 The model problem

For a porous medium � ⊆ R
2, the incompressible three-

phase flow formulation consists of a coupled system of
three nonlinear partial differential equations. We denote the
phases by liquid (heavy oil), aqueous (water), and vapor
(light oil) and derive a pressure-saturation formulation using
the pressure of the liquid phase. The pressure of the liquid
phase is denoted by po and the saturations of the aqueous
and vapor phases are denoted by sw and sg, respectively. We
have:

∂(φsw)

∂t
+ ∇ · λw

λt

(
u + Kλgp

′
cgo∇sw

)

− ∇ ·
(

K
λw(λo + λg)

λt
p′
cwo∇sw

)

= 0 (1)

∂(φsg)

∂t
+ ∇ · λg

λt

(
u + Kλwp′

cwo∇sg
)

− ∇ ·
(

K
λg(λo + λw)

λt
p′
cgo∇sg

)

= 0 (2)

and

∇ · u = 0 (3)

u = −Kλt∇po − Kλwp′
cwo∇sw

−Kλgp
′
cgo∇sg (4)

Here, u denotes the total velocity of the system. The
porosity and permeability of the medium are denoted by φ

and K , respectively. The phase mobilities are denoted by λα

for α ∈ {w, o, g} with the notion that the total mobility λt is
given by λt = λw + λo + λg. The aqueous and vapor phase
mobilities are functions of their respective saturations and
viscosities, while the liquid phase mobility is a function of
both the aqueous and vapor saturations and viscosities. In
this paper, the order of wettability is water, heavy oil, and
light oil and we take the following phase mobilities [22]:

λw(sw) = s2w
μw

, λg(sg) = s2g
μg

λo(sw, sg) = (1−sw−sg)(1−sw)(1−sg)

μo
(5)

The difference between the phase pressures are the cap-
illary pressures and they are denoted by pcwp and pcgo:
pcwo = po − pw and pcgo = pg − po. Using the notion that
these capillary pressures are positive and decreasing, we see
that p′

cwo < 0 and p′
cgo < 0. We consider the following

model of capillary pressures [6, 10]:

pcwo = 913.6890

ln

(
0.01

1 − swr

) ln

(
sw − swr + 0.01

1 − swr

)
(6)

pcgo = 565.617

ln

(
0.01

1 − swr − sor

)

× ln

(
1.01 − sg − swr − sor

1 − swr − sor

)
(7)

Here, the residual saturations are denoted by sαr . For the
boundary conditions, we partition ∂� into several disjoint
sets, namely ∂� = �p1∪�p2 = �s1∪�s2 . On the boundaries
�p1 and �s1 , we have Dirichlet boundary conditions and on
�p2 and �s2 , we have no-flow (zero Neumann) boundary
conditions. For the pressure equation, we have:

po = po,D, on �p1 (8)

Kλt∇po · ne = 0, on �p2 (9)

For the saturation equations, we have:

sw = sw,D, on �s1 (10)

K
λw(λo+λg)

λt
p′
cwo∇sw · ne = 0, on �s2 (11)

and

sg = sg,D, on �s1 (12)

K
λg(λo+λw)

λt
p′
cgo∇sg · ne = 0, on �s2 (13)
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Fig. 1 A comparison of the
saturation profiles for
p ∈ {1, 2, 3, 4} after 100 days

3 Variational formulation

We consider a partitioningMh of the computational domain
� into triangular elements. Furthermore, we indicate the set
of interior edges of Mh by �i

h. We define the subspace of
discontinuous polynomial basis functions as

V = {
v : v|T ∈ Pp(T ), p � 1, T ∈ Mh

}

Here, Pp(T ) is the space of all polynomials of degree p

defined on the triangular element T .
For a given edge e ∈ �i

h, we denote its element neighbors
by T1 and T2 using the convention that T1 is the element
with the lower global number. Furthermore, we define ne

to be the unit normal vector that points from T1 to T2. If
e ∈ ∂�, then we use the convention that ne points outward.
For the DG variational formulation, we define the jump [·]

Fig. 2 The refined mesh for the second example of an inhomogeneous
medium with �K = [250 m, 750 m]2

and average 〈·〉 of a function v along an edge e:

[v] = v|T1 − v|T2
〈v〉 = 1

2

(
v|T1 + v|T2

)

3.1 The heavy oil pressure equation

We first define the auxiliary variables ζ = Kλwp′
cwo∇sw

and ξ = Kλgp
′
cgo∇sg. Then, we can rewrite Eqs. 3 and 4 as

follows:

−∇ · (Kλt∇po) = −∇ · ζ − ∇ · ξ (14)

We multiply by a test function v ∈ V and integrate by
parts. Summing over all of the elements in Mh and edges
in �i

h ∪ ∂�, we obtain:

∑
T ∈Mh

∫

T

Kλt∇po · ∇v

−
∑

e∈�i
h∪�p1

∫

e

〈Kλt∇po · ne〉[v]

+ε
∑

e∈�i
h∪�p1

∫

e

〈Kλt∇v · ne〉[po]

+
∑

e∈�i
h∪�p1

σ

|e|
∫

e

[po][v]

=
∑

T ∈Mh

∫

T

∇v · ζ −
∑

e∈�i
h∪∂�

∫

e

ζ ∗ · ne[v]

+
∑

T ∈Mh

∫

T

∇v · ξ −
∑

e∈�i
h∪∂�

∫

e

ξ∗ · ne[v]

+
∑

e∈�p1

∫

e

(
εKλt∇v · ne + σ

|e|v
)

po,D (15)

Here, (·)∗ denotes the numerical upwind flux, defined on
a given edge e∈ �i

h by:

ζ ∗ =
{

ζ |T1 , 〈ζ · ne〉 � 0
ζ |T2 , 〈ζ · ne〉 < 0 ξ∗ =

{
ξ |T1 , 〈ξ · ne〉 � 0
ξ |T2 , 〈ξ · ne〉 < 0
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Fig. 3 The two-dimensional pressure contours at 113 (left) and 226 (right) days for the example on an inhomogeneous medium using NIPG with
σ = 1.0 and p = 2

Fig. 4 The two-dimensional saturation contours at 113 (left) and 226 (right) days for the example on an inhomogeneous medium using NIPG
with σ = 1.0 and p = 2
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Additionally, ε and σ are parameters that differentiate
between the variants of the DG method. The penalty term is
essential to any DG formulation as it helps enforce continu-
ity between the mesh elements in a weak sense. For ε = −1
and σ > 0, the matrix arising from the discretization of the
elliptic operator −∇ · K∇p0 is symmetric and we obtain
the symmetric interior penalty Galerkin (SIPG) method. For
ε = 1 and σ � 0, the matrix is non-symmetric and we refer
to this choice of parameters as the non-symmetric interior
penalty Galerkin (NIPG) method.

For SIPG, the penalty parameter has to be large enough
in order to have stability of the method [21]. For the NIPG
method, there is no stability restriction on the value of the
penalty parameter and it is chosen equal to one. If the poly-
nomial degree of the approximation is greater than or equal
to 2, then the penalty term for the NIPG method is not
needed for stability. We will allow these penalty parameters
to vary in our numerical simulations.

3.2 The water saturation equation

We define the auxiliary variables χ and α:

χ(po, sw, sg) = u(po, sw, sg) + Kλgp
′
cgo∇sg

α(sw, sg) = λw(λo + λg)

λt
p′
cwo

Fig. 5 The pressure profile along y = 500 at 113 days for the example
on an inhomogeneous medium using NIPG with σ = 1.0 and p = 2

and rewrite (1) as follows:

∂(φsw)

∂t
+ ∇ · λw

λt
χ(po, sw, sg)

− ∇ · (
Kα(sw, sg)∇sw

) = 0 (16)

We again multiply by a test function w ∈ V , integrate by
parts, and sum over the elements and edges to obtain:

∑
T ∈Mh

∫

T

∂(φsw)

∂t
w +

∑
T ∈Mh

∫

T

Kα(sw, sg)∇sw · ∇w

−
∑

e∈�i
h∪�s1

∫

e

〈
Kα(sw, sg)∇sw · ne

〉 [w]

+ε
∑

e∈�i
h∪�p1

∫

e

〈
Kα(sw, sg)∇w · ne

〉 [sw]

+
∑

e∈�i
h∪�s1

σ

|e|
∫

e

[sw][w]

−
∑

T ∈Mh

∫

T

∇w · λw

λt
χ(po, sw, sg)

+
∑

e∈�i
h∪∂�

∫

e

(
λw

λt

)∗
χ(po, sw, sg) · ne[w]

=
∑

e∈�s1

∫

e

(
εKα(sw, sg)∇w · ne + σ

|e|w
)

sw,D (17)

Here, (λw/λt)
∗ denotes the numerical upwind flux again.

3.3 The light oil saturation equation

We define the auxiliary variables 
 and β:

�(po, sw, sg) = u(po, sw, sg)

+Kλwp′
cwo∇sw

β(sw, sg) = λg(λo + λw)

λt
p′
cgo

and rewrite (2) as follows:

∂(φsg)

∂t
+ ∇ · λg

λt

(po, sw, sg)

− ∇ · (
Kβ(sw, sg)∇sg

) = 0 (18)
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Fig. 6 The saturation profiles
along y = 500 at 113 days for
the example on an
inhomogeneous medium using
NIPG with σ = 1.0 and p = 2

We again multiply by a test function z ∈ V and integrate
by parts and sum over the elements and edges to obtain:

∑
T ∈Mh

∫

T

∂(φsg)

∂t
z +

∑
T ∈Mh

∫

T

Kβ(sw, sg)∇sg · ∇z

−
∑

e∈�i
h∪�s1

∫

e

〈
Kβ(sw, sg)∇sg · ne

〉 [z]

+ε
∑

e∈�i
h∪�p1

∫

e

〈
Kβ(sw, sg)∇z · ne

〉 [sg]

+
∑

e∈�i
h∪�s1

σ

|e|
∫

e

[sg][z]

−
∑

T ∈Mh

∫

T

∇w · λg

λt

(po, sw, sg)

+
∑

e∈�i
h∪∂�

∫

e

(
λg

λt

)∗

(po, sw, sg) · ne[z]

=
∑

e∈�s1

∫

e

(
εKβ(sw, sg)∇z · ne + σ

|e| z
)

sg,D (19)

Here, (λg/λt)∗ denotes the numerical upwind flux again.

4 Fully discrete scheme

For the saturation equations, we discretize the transient term
using the backward Euler method. We denote the solutions
at the kth time step by (pk

o, s
k
w, sk

g ). The solutions at time t =
0 are denoted by s0w, s

0
g and computed using L2 projections

on the initial conditions.
For the oil pressure equation, we time lag the satura-

tions, effectively linearizing the source terms and diffusion
coefficients. For the water saturation equation, we time lag
the coefficients using the values of the heavy oil pressure
and light oil saturations, but the equation is kept nonlinear
with respect to the water saturation unknown. Similarly, the
light oil saturation is kept nonlinear with respect to the light
oil saturation unknown, while using the computed values
for the oil pressure and water saturation from the previous
steps. At each time step, we resolve the nonlinearity using

Fig. 7 A comparison of the
saturation profiles along
y = 500 m for p ∈ {1, 2, 3}
after 110 days
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Fig. 8 A comparison of the
saturation profiles along
y = 1000 m for p ∈ {1, 2, 3}
after 110 days

Newton’s method. The resulting algorithm is called semi-
implicit because the system is decoupled but each equation
requires the construction of a Jacobian. Given (pk

o, s
k
w, sk

g ) ∈
V × V × V , we seek (pk+1

o , sk+1
w , sk+1

g ) ∈ V × V × V such
that for all (v, w, z) ∈ V × V × V , we have:

∑
T ∈Mh

∫

T

Kλt(s
k
w, sk

g )∇pk+1
o · ∇v

−
∑

e∈�i
h∪�p1

∫

e

〈Kλt(s
k
w, sk

g )∇pk+1
o · ne〉[v]

+ ε
∑

e∈�i
h∪�p1

∫

e

〈Kλt(s
k
w, sk

g )∇v · ne〉[pk+1
o ]

+
∑

e∈�i
h∪�p1

σ

|e|
∫

e

[pk+1
o ][v] =

∑
T ∈Mh

∫

T

∇v · ζ k

−
∑

e∈�i
h∪∂�

∫

e

(
ζ k

)∗ · ne[v] −
∑

T ∈Mh

∫

T

∇v · ξk

−
∑

e∈�i
h∪∂�

∫

e

(
ξk

)∗ · ne[v]

+
∑

e∈�p1

∫

e

(
εKλt(s

k
w, sk

g )∇v · ne + σ

|e| v
)

po,D (20)

and
∑

T ∈Mh

1

�t

∫

T

φsk+1
w w

+
∑

T ∈Mh

∫

T

Kα(sk+1
w , sk

g )∇sk+1
w · ∇w

+
∑

e∈�i
h∪�s1

∫

e

〈
Kα(sk+1

w , sk
g )∇sk+1

w · ne

〉
[w]

+ ε
∑

e∈�i
h∪�s1

∫

e

〈
Kα(sk+1

w , sk
g )∇w · ne

〉
[sk+1
w ]

+
∑

e∈�i
h∪�s1

σ

|e|
∫

e

[sk+1
w ][w]

−
∑

T ∈Mh

∫

T

∇w · λw(sk+1
w )

λt(s
k+1
w , sk

g )

×χ(pk+1
o , sk

w, sk
g )

+
∑

e∈�i
h∪∂�

∫

e

(
λw(sk+1

w )

λt(s
k+1
w , sk

g )

)∗

×〈χ(pk+1
o , sk

w, sk
g ) · ne〉[w]

=
∑

T ∈Mh

1

�t

∫

T

φsk
ww

+
∑

e∈�s1

∫

e

(
εKα(sk+1

w , sk
g )∇w · ne + σ

|e| v
)

sw,D (21)

Fig. 9 The permeability field
corresponding toM1 for the
h-convergence study
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Fig. 10 The two-dimensional pressure contours at 65 days for the convergence study example on M1 (top), M2 (middle), and M3 (bottom)
using NIPG with σ = 1.0 and p = 2

and

∑
T ∈Mh

1

�t

∫

T

φsk+1
g z +

∑
T ∈Mh

∫

T

Kβ(sk+1
w , sk+1

g )∇sk+1
g · ∇z

+
∑

e∈�i
h∪�s1

∫

e

〈
Kβ(sk+1

w , sk+1
g )∇sk+1

g · ne

〉
[z]

+
∑

e∈�i
h∪�s1

∫

e

〈
Kβ(sk+1

w , sk+1
g )∇z · ne

〉
[sk+1
g ]

+
∑

e∈�i
h∪�s1

σ

|e|
∫

e

[sk+1
g ][z]

−
∑

T ∈Mh

∫

T

∇z · λg(s
k+1
g )

λt(s
k+1
w , sk+1

g )

×�(pk+1
o , sk+1

w , sk
g )

+
∑

e∈�i
h∪∂�

∫

e

(
λg(s

k+1
g )

λt(s
k+1
w , sk

g )

)∗

×〈
(pk+1
o , sk+1

w , sk
g ) · ne〉[z]

=
∑

T ∈Mh

1

�t

∫

T

φsk
gz

+
∑

e∈�s1

∫

e

(
εKβ(sk+1

w , sk+1
g )∇z · ne + σ

|e| v
)

sg,D (22)

Equation 20 is the pressure equation; it is first solved, and
the resulting pressure is used as input in the water satura-
tion equation (21). The light oil saturation equation (22) is
solved last, with the heavy oil pressure and water saturation

at the current time step as input parameters. To recover the
heavy oil saturation, we use the closure relation:

sk+1
o = 1.0 − sk+1

w − sk+1
g

5 Numerical results

5.1 Homogeneous medium

For the first numerical simulation, we consider a square
kilometer computational domain � = [0 m, 1000 m]2. We
take the residual saturations swr = 0 and sor = 0. We take
the following viscosities:

μw = 0.0001
kg

m · s μo = 0.0005
kg

m · s μg = 0.00001
kg

m · s

We consider a uniform mesh of 2048 triangular elements
with K = 10−10 m2 and φ = 0.2 for all (x, y) ∈ �.
We define the left and right boundaries to be the Dirichlet
boundaries as follows:

po(x = 0 m) = 19.0 MPa po(x = 1000 m) = 15.0 MPa

sw(x = 0 m) = 0.82 sw(x = 1000 m) = 0.30

sg(x = 0 m) = 0.11 sg(x = 1000 m) = 0.54

We first use the NIPG method with σ = 1.0. We take
p ∈ {1, 2, 3, 4} and a time step of �t = 0.1 days. The
saturation profiles after 100 days are given in Fig. 1.
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Fig. 11 The two-dimensional water saturation contours at 65 days for the convergence study example on M1 (top), M2 (middle), and M3
(bottom) using NIPG with σ = 1.0 and p = 2

We see that quadratic basis functions offer a significant
increase in accuracy over linear basis functions. Cubic and
quartic basis functions offer a further, but less noticeable,
increase in accuracy.

5.2 Inhomogeneous medium

For the second numerical simulation, we use the same
parameters as in the first simulation but imbed a large

Fig. 12 The two-dimensional light oil saturation contours at 65 days for the convergence study example on M1 (top), M2 (middle), and M3
(bottom) using NIPG with σ = 1.0 and p = 2
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Fig. 13 The one-dimensional
saturation contours at 65 days
for the convergence study
example onM1 (solid line),
M2 (dashed line), andM3
(dotted line) using NIPG with
σ = 1.0 and p = 2

impermeable region �K ⊆ � where K = 10−13 m2. We
take �K = [250 m, 750 m]2.

We consider a mesh of 9800 triangular elements that is
refined greatly in a small region around ∂�K as shown in
Fig. 2. We use the NIPG method with σ = 1.0. We take a
time step of �t = 0.1 days. The two-dimensional pressure
and saturation contours at 113 and 226 days are given in
Figs. 3 and 4 for the piecewise quadratic approximations
(p = 2). The pressure and saturation profiles along the line
y = 500 m are given in Figs. 5 and 6.

We see that the scheme is able to accurately cap-
ture the impermeable regions. Furthermore, the solution at
the boundary of �K remains sharp and well-pronounced;
there is very little overshoot and undershoot and no slope

limiters are required. Unlike explicit schemes that require
a constraint on the time step for stability, the semi-implicit
scheme allows us to take a relatively large time step and still
obtain a stable solution. Newton’s method always converges
within 2 to 3 iterations using a tolerance of 10−11 for this
example.

Next, we consider varying the degree of the polynomial
basis functions. We take σ = 1.0, �t = 1.0 days, and
p ∈ {1, 2, 3}. The saturation profiles along the midline y =
500 m after 110 days are given in Fig. 7. The saturation
profiles along the upper edge of the domain after 110 days
are given in Fig. 8. We see that although each basis is able
to effectively capture the behavior of the region of lower
permeability in the center of the domain, the behavior in

Fig. 14 The two-dimensional pressure contours at 65 days for the convergence study example on M2 using NIPG with p = 1 (top), p = 2
(middle), and p = 3 (bottom) and σ = 1.0
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Fig. 15 The two-dimensional water saturation contours at 65 days for the convergence study example on M2 using NIPG with p = 1 (top),
p = 2 (middle), and p = 3 (bottom) and σ = 1.0

the vicinity of ∂� varies considerably. For p = 1, spurious
oscillations and significant overshoot and undershoot can be
seen. As we increase the order of the basis to p = 2, 3, we
see a much smoother solution.

5.3 Convergence study

Since there is no theoretical proof of convergence for
the scheme (20)–(22), we numerically test the numerical

Fig. 16 The two-dimensional light oil saturation contours at 65 days for the convergence study example on M2 using NIPG with p = 1 (top),
p = 2 (middle), and p = 3 (bottom) and σ = 1.0
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Fig. 17 The one-dimensional
saturation contours at 65 days
for the convergence study
example onM2 using NIPG
with p = 1 (solid line), p = 2
(dashed line), and p = 3 (dotted
line) and σ = 1.0

Fig. 18 The one-dimensional
saturation contours at 65 days
for the convergence study
example onM2 using NIPG
(solid line) and SIPG (dashed
line) with p = 2 and σ = 1.0

Fig. 19 The mass loss for the
heavy oil, water, and light oil
saturations for the SPE 10
benchmark problem using
p ∈ {1, 2} and �t = 1.0 day



Comput Geosci (2016) 20:1169–1184 1181

Table 1 The maximum mass loss over all time steps and mesh ele-
ments for the phase saturations after 65 days using NIPG with p ∈
{1, 2} and σ = 1.0

p = 1 p = 2

maxk maxT Ek
so,T

4.4698 × 10−7 9.4353 × 10−7

maxk maxT Ek
sw,T 5.2374 × 10−5 6.2000 × 10−5

maxk maxT Ek
sg,T

8.9670 × 10−5 7.2000 × 10−5

convergence of the scheme by (i) varying the mesh size
(also called h-refinement) and (ii) varying the degree of the
polynomial basis functions (also called p-refinement). We
choose small time steps so that the dominant error is from
the spatial discretization. We expect that as we refine the
mesh uniformly successively, the numerical error decreases
toward zero. This means that the numerical solutions con-
verge to the exact solution. For an exact manufactured
solution, we can recover the optimal rates of convergence. In
the examples in this section, the exact solution is not known
as the input coefficients (such as permeability) vary greatly
in space.

We consider a 120 × 54 cell cut of the 30th vertical
layer of the permeability field from the data in [11]. We
fix the porosity to be 0.20 throughout the domain. We
first consider the effect of h-refinement on the solution.
We consider three partitions of the computational domain
� = [0 m, 1000 m] × [0 m, 500 m]: M1, M2, and M3

consisting of 4096, 16,384, and 65,536 uniform triangular
elements, respectively. The permeability field is upscaled to
adhere to the coarsest mesh, M1, as shown in Fig. 9. The
permeability varies over six orders of magnitude.

The two-dimensional pressure and saturation contours
after 65 days are given in Figs. 10, 11, and 12. The one-
dimensional saturation profiles along y = 100 m are given
in Fig. 13. We see that there is relatively little variance
among the solutions on each mesh.

Next, we consider the effect of p-refinement on the solu-
tion. Namely, we fix the mesh to contain 16,384 uniform
triangular elements as in M2 and take p ∈ {1, 2, 3}. We
expect the numerical errors to decrease as we increase the
polynomial degree.

The two-dimensional pressure and saturation contours
after 65 days are given in Figs. 14, 15, and 16. The one-
dimensional saturation profiles along y = 100 m are given
in Fig. 17. We see again that there is relatively little vari-
ance among the solutions. However, it should be noted that
the solution for p = 1 varies more than between p = 2 and
p = 3.

Lastly, we consider the same problem on M2 with p =
2. We compare the solutions using NIPG and SIPG with
σ = 1.0 after 65 days. The saturation profiles are given in
Fig. 18. We see that there is little difference between the
solutions regardless of the variant of the DG method that is
used.

5.4 Local mass conservation

We now consider the local mass balance in our numeri-
cal scheme. The system (1)–(4) is derived from the mass
balance equations for each phase:

∂(φsi)

∂t
+ ∇ · ui = 0, ui = −Kλi∇pi, i = g, o, w.

where the phase velocities are denoted by ui . At the discrete
level, the mass loss for the phases on element T at the kth

time step are given by:

Ek
so,T

= 1
�t

∫
T

φ
(
sk
o − sk−1

o

) + ∫
∂T

〈uk
o · nT 〉 (23)

Ek
sw,T = 1

�t

∫
T

φ
(
sk
w − sk−1

w

) + ∫
∂T

〈uk
w · nT 〉 (24)

Ek
sg,T

= 1
�t

∫
T

φ
(
sk
g − sk−1

g

)
+ ∫

∂T
〈uk

g · nT 〉 (25)

Fig. 20 The permeability field and porosity field for the first SPE 10 benchmark example
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Fig. 21 The two-dimensional pressure and saturation contours at 102 days for the first SPE 10 example using piecewise cubic approximations

where the individual phase velocities are computed from the
primary unknowns by:

uk
o = −Kλo(s

k
w, sk

g )∇pk
o (26)

uk
w = −Kλw(sk

w)

×
(
∇pk

o − p′
cwo(s

k
w)∇sk

w

)
(27)

uk
g = −Kλg(s

k
g )

×
(
∇pk

o − p′
cgo(s

k
g )∇sk

g

)
(28)

We remark that because our scheme is based on the
DG discretization of a different system of PDEs (1)–(4),
our numerical solutions satisfy a different system of dis-
crete mass balance equations. For instance, choosing a test

function w to be equal to one on the mesh element T and
zero elsewhere in (21) yields:

1

�t

∫

T

φ
(
sk
w − sk−1

w

)
+

∫

∂T

〈Kα(sk+1
w , sk

g)∇sk+1
w · nT 〉

+
∑
e∈∂T

σ

|e|
∫

e

(sk
w|T − sk

w|Te )

+
∫

∂T

(
λw

λt

)∗〈χ · nT 〉 = 0

The notation Te is for the mesh element that shares the
face e with the element T , and the unit vector nT is the
outward normal to T . A similar equation for the light oil sat-
uration can be obtained from Eq. 22. We compute the mass
loss for the simulations given in Section 5.3 for the choice

Fig. 22 The permeability field and porosity field for the second SPE 10 benchmark example
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of�t = 1.0 day. The final time is ts = 65.0 days. The max-
imum mass loss at each time step, over all mesh elements,
is plotted in Fig. 19 for piecewise linear and quadratic solu-
tions. We do not expect the mass loss to be zero but we
observe that the values are very small. They are of the order
of 10−5 for the water and light oil saturations, and of the
order of 10−7 for the oil saturation. The maximum mass
loss for each phase over all mesh elements and time steps is
given in Table 1.

5.5 Heterogeneous porosity and permeability

Next, we test the scheme using input data from the SPE
10 benchmark problem [11]. Namely, we consider two-
dimensional slices of the provided three-dimensional per-
meability and porosity fields. There are regions in the
domain for which the porosity degenerates.

For the first test, we take a 120 × 54 cell cut of the 30th
vertical layer of the permeability field and porosity field. A
visualization of the permeability and porosity fields is given
in Fig. 20. The upper portion of this field represents a Tar-
bert formation while the lower portion represents a fluvial
Upper Ness region. The Tarbert formation has more dis-
continuous geological features than the Upper Ness. The
porosity field is also piecewise discontinuous and varies
from 0 to 46.7 %. We consider the computational domain
� = [0 m, 1000 m] × [0 m, 500 m] and partition the
domain into a uniform mesh of 16,384 triangular elements.

We point out that the porosity is zero for 208 triangles. We
use the NIPG method with σ = 1.0 and p = 3. A time step
of �t = 0.1 days is used.

The two-dimensional pressure and saturation contours
after 102 days are given in Fig. 21. We see that the scheme
is able to accurately capture a highly varying permeability
field across six orders of magnitude. The saturation contours
clearly show the phase displacement is more homogeneous
in the bottom region than in the Tarbet formation. Newton’s
method converges in 3 to 5 iterations with a tolerance of
10−11. We find that using a sequential semi-implicit solu-
tion method allows us to take relatively large time steps
while still maintaining stability.

For the second test, we take a 220 × 60 cell cut of
the 45th horizontal layer of the permeability and porosity
fields. That layer exhibits different geological features than
the one for the first test. The domain contains trends, i.e.,
regions with larger permeability and porosity values, which
can be associated to fracture-like features. Visualizations of
the permeability and porosity fields are given in Fig. 22.
The porosity field is also piecewise discontinuous and varies
from 0 to 40 %.

We again consider the computational domain � =
[0 m, 1000 m]×[0 m, 500 m] and partition the domain into
a uniform mesh of 16,384 triangular elements. For this test
case, 640 elements have zero porosity and they are grouped
together in the geological features. We use the NIPGmethod
with σ = 1.0 and p = 2. A time step of �t = 0.1 days

Fig. 23 The two-dimensional pressure and saturation contours at 150 days for the second SPE 10 example using piecewise quadratic
approximations
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is used. The number of Newton iterations for convergence
is initially equal to 6, and then it decreases to 3. The two-
dimensional pressure and saturation contours after 150 days
are given in Fig. 23.

These numerical results show robustness of the semi-
implicit scheme of second and third order, for highly
varying permeability and porosity fields. Because of the
discontinuous approximations, the numerical method easily
handles degenerate porosity fields.

6 Conclusions

In this work, we show the potential of using polynomial
approximation of degree up to four for solving an incom-
pressible three-phase flow problem in heterogeneous media.
We observe that (i) the numerical mass errors are negligi-
ble; (ii) the semi-implicit algorithm stabilizes the solution
enough that no slope limiters are required; and (iii) the
method converges as the polynomial degree increases even
for cases of highly varying discontinuous permeability and
porosity fields. In a future work, we would investigate the
black-oil problem, which is a three-phase flow with mass
transfer between the phases.
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