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Abstract A new two-scale computational model is pro-
posed to construct the constitutive law of the swelling pres-
sure which appears in the modified form of the macroscopic
effective stress principle for expansive clays saturated by
an aqueous electrolyte solution containing multivalent ionic
species. The microscopic non-local nanoscale model is
constructed based on a coupled Poisson-Fredholm integral
equation arising from the thermodynamics of inhomoge-
neous fluids in nanopores (Density Functional Theory),
which governs the local electric double layer potential pro-
file coupled with the ion-particle correlation function in an
electrolytic solution of finite size ions. The local problem
is discretized by invoking the eigenvalue expansion of the
convolution kernel in conjunction with the Galerkin method
for the Gauss-Poisson equation. The discretization of the
Fredholm equation is accomplished by a collocation scheme
employing eigenfunction basis. Numerical simulations of
the local ionic profiles in rectangular cell geometries are
obtained showing considerable discrepancies with those
computed with Poisson-Boltzmann based models for point
charges, particularly for divalent ions in calcium montmo-
rillonite. The constitutive law for the disjoining pressure is
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reconstructed numerically by invoking the contact theorem
within a post-processing approach. The resultant compu-
tational model is capable of capturing ranges of particle
attraction characterized by negative values of the disjoin-
ing pressure overlooked by the classical electric double
layer theory. Such results provide further insight in the role
the swelling pressure plays in the modified macroscopic
effective stress principle for expansive porous media.
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1 Introduction

Swelling ionized porous media are ubiquitous in nature
and modern technologies and exhibit tremendous potential
for applications in a wide range of fields including geo-
environmental and materials sciences, geotechnical engi-
neering, colloid chemistry, medical and life sciences. His-
torically, research on the computational modeling of such
complex systems has focused on describing electro-chemo-
mechanical couplings at a particular length scale of interest
(ex. nanoscale in colloid science or macroscale in geotechni-
cal engineering). Only recently, bridging between couplings
at different scales in media composed of multiple levels of
porosity has been accomplished [25, 30].

Understanding and modeling accurately the coupling
between the chemistry of aqueous electrolyte solutions
and mechanics in electrically charged porous media hinges
on various relevant issues which demand strong multi-
disciplinary efforts. Applications involve many still open
problems in geosciences such as quality of groundwater
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polluted by ionic contaminants coupled with mechanical
stability of swelling active soils. More specifically in geo-
environmental applications, containment of pollutants is
an integral part of the protection strategy against contam-
ination where expansive clays have been widely used in
engineered barriers [38, 39]. Compacted bentonite consists
of a geological material primarily composed of montmo-
rillonite clay and has been used as a buffer in the design
of repositories for isolation of high-level radioactive waste
due to its ability to swell upon hydration and shrink upon
desiccation, consequently preventing the barrier from the
appearance of cracks with high permeability for contam-
inant migration which may degrade its performance. On
the other hand, swelling soils cause major stability prob-
lems for rail and highway tunnels causing surface uplift
and the heave of the tunnel floor. They may also cause
severe damages to shallow foundations and overlying struc-
tures particularly low-rise buildings and buried pipelines
[31]. Severe borehole-stability problems were caused by
drilling in swelling shales in water-based drilling muds [34].
The chemo-mechanical couplings induced by the drilling
fluid affect rock mechanical properties and stress around
the wellbore. In particular, water migration in shale due
to chemo-osmotic and electro-osmotic effects appears in a
wide variety of wellbore stability models [24].

The swelling and contractive behavior of natural porous
media such as clays and shales under chemical, electri-
cal, and mechanical stimulations reflects the ability of these
materials to transform electrical and chemical energy into
mechanical work. Their effective response to perturbations
in the geochemical environment, such as changes in tem-
perature, pH, fluid composition, electrical, and mechanical
loadings, need to be accurately modeled [35]. A charac-
teristic feature of these materials is their sensitivity to the
solutes present in the pore water, more precisely the nature
of the cations in their exchange sites and the magnitude
of the fixed surface charge which exert profound influ-
ence upon the mechanical properties. Thus, it is of primary
importance to assess how hydraulic properties and volume
changes respond to chemical perturbations in the pore fluid
for a wide range of saline concentrations and solute types.

Despite the utmost importance of constructing realistic
computational models for swelling clays, few works have
rigorously addressed the interaction between electrochem-
istry and deformation at multiple scales [18]. Historically,
the description of swelling phenomena has pursued purely
macroscopic approaches by adding a chemical expansive
component to the stress partitioning mechanisms ruled by
the effective stress principle [6, 14]. Such chemical expan-
sion stress aims at capturing macroscopically the mechani-
cal effects of the electrolyte solution in nanopores delimited
by macromolecules carrying fixed charges, whose behavior
is described by the classical electrical double layer (EDL)

theory [23, 44]. In order to capture in a precise manner
the response of the expansive clay in the presence of mono
and multivalent ionic species, the development of a proper
nanoscale model of electrolyte solutions in the vicinity of
electrically charged surfaces becomes essential along with
the construction of the proper up-scaling technique to obtain
the macroscopic response (see [15, 16]).

At the nanoscale, the negative fixed charges, located on
the faces of the clay units, arise from the isomorphous
substitutions of cations in the crystal lattice by solutes of
lower valence. In order to fulfill electroneutrality, the con-
centration of counter-ions in the electrolyte solution varies
rapidly in the nanopores achieving highest values in the
vicinity of the charged surfaces. The classical electrical dou-
ble layer theory describes the concentration of electrolytes
near flat hard charged surfaces carrying a constant surface
charge [17]. The well-established model developed by Gouy
and Chapman [44] treats the ions as point charges with
concentration obeying Boltzmann statistics and the electric
potential satisfying the Poisson-Boltzmann problem (PB)
[23]. Particularly, it has been shown that the Gouy-Chapman
(GC) theory leads to much higher ionic concentrations near
the wall as long-range Coulomb correlations predicted by
the Boltzmann statistics can approach infinity with increas-
ing electric potential [36]. In fact, real ions are not point-like
charges and the PB-based framework, commonly embedded
in the so-called mean-field theories, has shown severe lim-
itations producing discrepancies in the ionic concentration
profiles qualitatively unreliable compared to experiments
[12, 13]. More precisely, the PB theory completely over-
looks ionic correlations effects. In fact, ionic correlations
in the diffuse double layer, entirely neglected in the GC
approximation, are sometimes important and have moti-
vated the development of more refined theories designed to
incorporate short-range correlation effects. Since PB-based
models neglect strong positional short-range finite size ion-
ion correlations such theory always predicts electrostatic
overestimated repulsion between likely charged particles
[36]. A related phenomenon overlooked by the PB based
theories is the counter-intuitive attraction between like-
charged colloidal particles in the presence of higher valence
ions which has been reported in numerous experimental
observations [12, 13]. Theoretical approaches aiming at
explaining the phenomenon of particle like-charge attrac-
tion proceed beyond the standard mean-field or PB-based
theories by including the effects of fluctuations and corre-
lations. The flaw of the PB formulation has naturally led to
the development of more refined theories designed to incor-
porate short-range correlation effects. Among them, we give
particular emphasis on models seated on Statistical Mechan-
ics (SM) [10, 21] based on integral equation theories, more
specifically on Ornstein-Zernike (OZ) supplemented by
several closures such as Hypernetted Chain Approximation
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(HNC), Percus-Yevick (PY), and Mean-Spherical approxi-
mation (MSA) [19, 20]. Other approaches such as Density
Functional Theory (DFT) are based on Thermodynamics of
Inhomogeneous Fluids where the free energy is described
in terms of functional relations of ionic concentrations [9,
22, 41, 42]. Such non-local models incorporate the main
features of the electric double layer and turned possible the
computation of properties in an accurate fashion. In partic-
ular, the family of primitive models, where the solvent is
treated as a dielectric continuum assigned with a dielectric
constant and the ions treated as rigid spheres with charge
located in their center, has successfully explained particle-
like attractions for electrolyte solutions with higher valence
ions [12, 13, 15, 19].

Given the solution of the electrochemistry problem at the
nanoscale, the disjoining pressure introduced by Derjaguin
and co-workers [5], whose magnitude governs the swelling
of the medium, can be calculated within a post-processing
approach by invoking the equilibrium of the fluid phase
along with a constitutive relation for the stress tensor. Such
computation can be accomplished within the framework of
Irving and Kirkwood [3, 11, 15], who defined point-wise
continuum stress fields from particle mechanics under the
influence of pair potential interactions. The traction upon
the solid matrix exerted by the stress tensor of the electrolyte
solution can also be quantified by involving the contact
theorem which states that the force in the vicinity of the
wall is dominated by the osmotic kinetic (ideal gas) and
electrostatic (Maxwell) components (see [15] for details).

The bridging between nanoscale models of electrolyte
solutions containing multivalent ions, seated on SM-based
integral equation theories, and the modified effective stress
principle at the macroscale has only been accomplished
recently by the authors, who adopted the homogeniza-
tion technique of periodic structures to upscale a non-local
integro-differential equation of Poisson-Fredholm type,
build-up within the framework of the Density Functional
Theory (DFT) (see [15, 16] for details). In a sequence of
papers [25–30], the authors rigorously derived a modified
macroscopic form of the effective stress principle show-
ing, in addition to pore pressure and contact stress, the
appearance of a swelling stress component which incor-
porates the electro-chemo mechanical couplings and rules
the swelling/shrinking behavior of the medium. The com-
putation of this quantity hinges on a non-local nanoscale
problem which rules the local ionic profiles in the nanopores
[15, 16]. Owing to the high complexity of this non-
local nanoscale model, numerical solutions obtained so far
remain restricted to the stratified microstructures of parallel
particles of face to face contact, considering the 1D integral
form of the Gauss-Poisson equation [15]. The generalization
of the two-scale computational model for multidimensional
local cell problems remains an open issue. The aim of

this paper is to fill this gap. We propose herein a new
improved numerical procedure for computing ionic profiles
and the constitutive law for the disjoining pressure which
adopts a suitable staggered algorithm between the Fred-
holm and Gauss-Poisson problem with Neumann boundary
condition to avoid loss of uniqueness. The system of inte-
gral equations is discretized by a collocation scheme using
basis functions constructed from the eigenfunctions associ-
ated with the convolution kernels. The nonlinear algebraic
equation for the coefficients of the eigenvalue expansion
is solved adopting a Picard-type scheme in conjunction
with the Galerkin method coupled with Newton scheme for
the nonlinear Gauss-Poisson problem. Numerical experi-
ments illustrate the local ionic distribution for monovalent
(sodium) and divalent (calcium) ions along with the eigen-
pairs associated with the convolution kernels. By invoking
the contact theorem, we reconstruct numerically a general-
ized constitutive law for the swelling pressure, capable of
capturing the regions of particle attraction for divalent ions.
Numerical simulation illustrate the excellent accuracy of the
computational procedure proposed herein.

2 Nanoscale model

In what follows, we present the necessary developments
for constructing the nanoscale model governing the electro-
chemo-mechanical coupling between an electrolyte solution
containing finite size ions and electrically charged clay par-
ticles. We shall refer to as a particle a single solid phase
composed of a flat sheet of montmorillonite clay, typical of
the 2:1 arrangement, composed of one aluminum octahedral
sheet sandwiched by two tetrahedral sheets of silicates.

2.1 Density functional theory

Consider the electrolyte solution occupying a nanopore
domain subject to an exterior potential induced by both the
presence of charges in the solid phase and the hard plane /
hard spheres interaction φi(r) acting on ions of type i. Let
the temperature T and the chemical potential μi of ion i be
fixed. The procedure for computing the local density pro-
file is based on minimization of a thermodynamic potential
(grand canonical, free energy) of the inhomogeneous system
which is given in terms of a functional relation of the local
ionic density profile ρi(r). By decomposing the free energy
into its ideal F id [ρi] and excess Fex[ρi] components, the
minimization method furnishes the local distribution (see
[15] for details)

ρi(r)�3
i = exp

[
β

(
μi − δFex[ρi]

δρi(r)
− φi(r)

)]
(1)
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where �i denotes the de Broglie wavelength of the ion i,
β = 1/kBT with kB the Boltzmann constant. The square
brackets notation refers to functional dependence with δ the
functional derivative [9]:

δF = F[ρi + δρi] − F[ρi] =
∫

δF
δρi(r)

δρi(r)dr

which quantifies the change in F due to a perturbation in ρi

at a particular point r .
The complete characterization of ρi(r) requires a rep-

resentation for the excess intrinsic free energy component
Fex[ρi]. Such quantity plays the role of a generating func-
tional for a hierarchy of direct correlation functions c(n)(rn)

[9]:

c
(1)
i (r) = −β

δFex[ρi]
δρi(r)

, (2)

c
(2)
im (r, r ′)=cim(r, r ′) = δc(1)(r)

δρm(r ′)
=−β

δ2Fex[ρi]
δρi(r)δρm(r ′)

. (3)

Following [15], we proceed by representing the excess
free energy relative to the reference bulk state. Thus denote
the bulk state by the superscript b with excess free energy
(Fb)ex , ion density ρb

i , and direct correlation function
c2
im|b = cb

im. By proceeding within the framework of a
perturbation technique relative to the reference bulk state,
adopting the well known Mean Spherical Approximation
(MSA) [21], recalling that at local equilibrium with a bulk
fluid μi = μb

i and using the decomposition (μb
i )

ex = μb
i −

kBT ln
[
�3

i ρ
b
i

]
[9], we obtain the integral representation for

the local ion densities (see [15] for details)

ρi(r) = ρb
i exp

[
−βφi(r) +

∑
m

∫
�ρm(r ′)cb

im(|r − r ′|)dr ′
]

. (4)

Now, introduce the ion-particle correlation functions
gαi := ρi(r)/ρb

i and hαi := gαi − 1 where the index α is
related to the solid phase [20]. We then have

�ρi(r) = ρi − ρb
i = ρb

i gαi(r) − ρb
i = ρb

i hαi(r) ,

which when combined with Eq. 4 gives

gαi(r) = exp

[
−φi(r)

kBT
+

∑
m

ρb
m

∫
hαm(r ′)cb

im(|r − r ′|)dr ′
]

. (5)

The complete determination of the ion-particle correla-
tion function requires a constitutive law for the exterior
potential φi(r) induced by the solid particle. Such quan-
tity is decomposed into a long-range electrostatic interaction
φel

i (r) and a hard plane/hard sphere interaction component
φhs

i (r), treated separately through the characterization of

an exclusion region defined by ion / clay particle distances
smaller than the ion radius d/2 [15]. We then have

φi(r) = φhs
i (r) + φel

i (r) = φhs
i (r) + zi e ψs(r) , (6)

where

φhs
i (r) =

{∞ in the exclusion zone
0 elsewhere

and ψs(r) the electrical potential generated by the net sur-
face charge of the solid phase, zi the valence of the ion i and
e the proton charge. The net electric charge density in the
fluid q(r ′) at point r ′ is defined by

q(r ′) :=
∑
m

ρm(r ′) zm e =
∑
m

ρb
m zm e gαm(r ′)

=
∑
m

ρb
m zm e

(
1 + hαm(r ′)

)

=
∑
m

ρb
m zm e hαm(r ′) , (7)

as the electroneutrality condition in the bulk fluid enforces∑
m ρb

m zm e = 0. Within the Mean Spherical Approxima-
tion framework, the direct correlation function is decom-
posed as the sum of a long-range Coulombic term and a
short-range component c̃im(r) associated with the finite size
of the ions (see Appendix B for details). We then have

cMSA
im (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c̃im(r) − βzi zm e2

4π ε̃ ε̃0 r
for r < d

− βzi zm e2

4π ε̃ ε̃0 r
for r > d ,

(8)

where ε̃0 is the permittivity of the free space and ε̃ the rel-
ative dielectric constant of the solvent (assumed constant).
The representation for the short-range component due to the
finite size of the ions is given in Eq. B.5 (see also [45, 46]).

Using the above decomposition and Eq. 6 in Eq. 5, intro-
ducing the ion charge qi = zi e and the total electrical
double layer potential ψ(r):

ψ(r) := ψs(r) +
∫ ∑

m

ρb
m zm e hαm(r ′)

4π ε̃ ε̃0 |r − r ′| dr ′ = ψs(r)

+
∫

q(r ′)
4π ε̃ ε̃0 |r − r ′|dr ′ ,

where Eq. 7 for the net charge density has been used,
we obtain the final integral equation for the ion/particle
distribution function [15, 20]

gαi(r)= exp

[
−β qi ψ(r)+

∑
m

ρb
m

∫
hαm(r ′) c̃im(|r−r ′|) dr ′

]
.(9)

The above result consists of the classical Boltzmann dis-
tribution, given by the exponential dependence on ψ , sup-
plemented by non-local ion size effects associated with the
short-range correlation c̃im(r).
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2.2 Gauss-poisson equation

In order to compute gαi(r) from Eq. 9, we need to solve the
coupled electrochemical problem posed in terms of the elec-
tric potential and ion-particle correlation function. Denoting
�f , the nanopore domain occupied by the aqueous elec-
trolyte solution, E the electric field of the EDL and recalling
the net charge density in the fluid q := ∑

m qm ρm(r) =∑
m qm ρb

m gαm(r), the classical Gauss-Poisson equation for
the pair {ψ, E} reads
{

ε̃̃ε0∇ · E = ∑
i qi ρb

i gαi(r)

E = −∇ψ in �f ,
(10)

with the ion-particle correlation function given by the gen-
eralized Boltzmann distributions (9). Note that the classical
EDL theory can be recovered from Eq. 9 by setting c̃im = 0

under the assumptions of point charge ions and symmetric
electrolytes z+ = −z− = z. In this setting using electroneu-
trality in the bulk fluid

∑
m ρb

m zm = 0, which yields ρb+ =
ρb− = ρb and the classical Poisson-Boltzmann problem is
recovered:

ε̃̃ε0�ψ = 2 ρb z e sinh

(
z e ψ

kBT

)
.

2.3 Summary of the nanoscale model

Our nanoscale model consists in: given the set of constants
{̃ε0, ε̃, β, qi = zi e}, the ion concentrations in the outer
bulk solution {ρb

m} satisfying the electroneutrality condition
(
∑

m qm ρb
m = 0), and short-range ion-ion direct correla-

tion functions c̃im given by the MSA closure (8), find the
microscopic fields {gαi, ψ} satisfying

⎧⎪⎪⎨
⎪⎪⎩

ε̃̃ε0 �ψ = −
∑

i

ρb
i qigαi

gαi(r) = hαi(r) + 1 = exp
{

− βqiψ(r) +
∑
m

ρb
m

∫
c̃im

(|r − r ′|)hαm(r ′)dr ′} (11)

along with the interface condition

E · n = − σ

ε̃ ε̃0
on �f s (12)

where �f s denotes the boundary between fluid and solid, n
the unit normal outward to �f , and σ the constant surface
charge of the clay particles which is related to q through the
global electroneutrality condition∫

�f

q dV =
∑

i

ρb
i qi

∫
�f

gαi dV = −
∫

�f s

σ dS . (13)

2.4 Mechanical equilibrium and disjoining pressure

We now present the post-processing approach for comput-
ing the disjoining pressure. Thus, denoting pb the constant
pressure of the outer bulk fluid at thermodynamic equilib-
rium with the electrolyte solution, the fluid stress tensor σ f

admits the decomposition [15]

σ f = −pb I − �d ,

where I is the unit tensor and �d the disjoining stress ten-
sor which quantifies the excess in fluid stress relative to pb.
Following [15], the computation of the disjoining pressure
can be accomplished using the contact theorem which states
that within the exclusion zone the stress in the fluid phase
admits the decomposition

σ f = τM + σV (14)

where τM is the Maxwell tensor

τM = ε̃̃ε0

2

(
2E ⊗ E − E2I

)
(15)

with normal (τM)nn := τMn · n = σ 2/(2 ε̃ ε̃0), given
by boundary condition (12), and σV a hard wall/sphere
stress interaction term solely responsible for transmitting
the osmotic kinetic component of the disjoining pressure
(due to the collisions between the fluid molecules and
the solid phase) through the exclusion zone. The equality
between the normal (σV )nn and kinetic components at the
interface between the fluid domain �f and the exclusion
zone �∗

f s is stated in the contact theorem [3],[15] which
gives

σV = −kBT
∑

i

ρi

∣∣∣
�∗

f s

n ⊗ n . (16)

Using the above results in Eq. 14, the normal component of
the fluid stress tensor at the wall is given by

(
σ f

)
nn

= −kBT
∑

i

ρi

∣∣∣
�∗

f s

+ σ 2

2 ε̃̃ε0
, (17)

In order to determine the disjoining pressure at the wall, we
subtract the bulk pressure which is nothing but the pressure
at the interface with the exclusion zone in the asymptotic
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limit of a single particle with the same charge density σ ,
computed for large particle distances. This yields

(�d)nn = kB T
∑
m

ρb
m gαm

−kB T
∑
m

ρb
m gαm

∣∣∣∞ on �∗
f s , (18)

where the symbol
∣∣∞ designates the computation of the

quantity at infinity particle distances reflecting the behav-
ior of the bulk fluid. The above result furnishes a general
expression for the component of the disjoining pressure
normal to the solid particles (see [15] for details).

It is worth noting that in the one-dimensional case of par-
allel particles, the equilibrium condition in the electrolyte
solution implies that (�d)nn is constant also in the exclusion
zone (see [15] for details).

2.5 Macroscopic effective stress principle

Following [15], by upscaling the aforementioned micro-
scopic model to the macroscale within the framework of
the formal homogenization procedure leads to the two-
scale form of the effective stress principle for expansive
clays. At the homogenized scale, the clay particles and elec-
trolyte solution are regarded as a solid/fluid mixture with
co-existing phases and properties defined everywhere in the
macroscopic domain �M . In the absence of gravitational
forces, the overall macroscopic equilibrium reads

∇x ·σ 0
T = 0 in �M ,

where σ 0
T is the macroscopic overall stress tensor of the

mixture and the subscript x denotes the differential operator
with respect to the macroscopic coordinate. The modified
effective stress principle states the decomposition [29]

σ 0
T = −α pbI + Cs Ex

(
u0

)
− �0 . (19)

The first two components are well-known [2] with α the
Biot-Willis parameter, Cs the macroscopic fourth rank elas-
tic tensor of the solid matrix, and Ex

(
u0

)
the strain of the

porous matrix, given by symmetric part of the macroscopic
displacement u0. The last term in the rhs is the electro-
chemo-mechanical component which admits the local rep-
resentation in the unit cell Y = Ys ∪ Yf with Ys, Yf the
subdomains occupied by the nanopores and clay particles.
We then have the local decompositions [27, 29]{

�0 = 〈�d〉 + φs �S

�S = −〈σπ 〉s = − 〈
cs Ey

(
u1

π

)〉s
,

(20)

where φs = |Ys | / |Y | is the volume fractions of the solid
phase, cs the elastic modulus of the clay particles, and
〈·〉, 〈·〉s = φ−1

s 〈·〉 the average and intrinsic average oper-
ators over the unit cell Y , respectively. The component

�S designates the effective swelling stress which directly
incorporates the traction boundary condition on the clay
matrix induced by the disjoining pressure. Such quantity is
computed by solving the local elasticity problem{∇y · σπ = 0

σπ = cs Ey

(
u1

π

)
in Ys

(21)

along with the local traction condition

σπ n = −�d n on ∂Yf s , (22)

with ∂Yf s the solid-fluid interface within the unit cell
along with periodicity conditions. Thus, by solving the
integro-differential problem at the nanoscale level along
with post processing the disjoining stress and averaging
to the macroscale, we obtained a new systematic frame-
work for quantifying the effects of the swelling stress in the
modified effective stress principle.

3 A new numerical scheme for discretizing
the non-local nanoscale problem

We shall henceforth proceed by developing a new computa-
tional scheme for solving the non-local integro-differential
nanoscale model to compute local distributions (ρi, gαi, ψ)

along with constructing the constitutive response of the
swelling stress.

3.1 Staggered algorithm

We begin by proposing a consistent linearization proce-
dure to discretize the nonlinear coupled integro-differential
Eq. 11. Hereafter, we consider an electrolyte solution
containing two types of ions (e.g., NaCl) of symmetric
valences z+ = −z− = z with reduced set of unknowns
{ψ, gα+, gα−} (i = +, −) so that the electroneutrality con-
straint in the bulk fluid (

∑
m ρb

m zm = 0) implies ρb+ =
ρb− = ρb. In terms of the dimensionless electric potential
ψ∗ = β e ψ , the Gauss-Poisson problem reads⎧⎪⎪⎨
⎪⎪⎩

�ψ∗ = −β z e2 ρb

ε̃ ε̃0
(gα+ − gα−) in Yf

∇ ψ∗ · n = −β e σ

ε̃ ε̃0
on ∂Yf s ,

(23)

with

gαi(r) = exp

[
−zi ψ∗(r) +

∑
m

ρb
m

∫
c̃im(|r−r ′|)hαm(r ′)dr ′

]
,

i = {+, −} . (24)

A first attempt at solving the system in a staggered fash-
ion would be in a Picard-type algorithm by computing the
source term in the Poisson problem at previous iteration.
However, such procedure leads to a Neumann problem for
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ψ∗ with loss of uniqueness. To avoid this shortcoming, we
pursue an alternative strategy based on the decompositions

gα+(r) = exp [−z ψ∗] g̃+(r) ,

gα−(r) = exp [+z ψ∗] g̃−(r) ,
(25)

with

g̃i (r) : = exp

[∑
m

ρb
m

∫
c̃im(|r − r ′|)hαm(r ′)dr ′

]
,

i = {+, −} .

The alternative staggered algorithm is based on calculat-
ing at the previous iteration only the component g̃i involving
the short-range direct correlation, whereas the computation
of the nonlinear term exp[−zi ψ∗] is performed simulta-
neously with the electric potential by solving a nonlinear
Poisson Boltzmann-type problem. Denoting k = 1, 2, ...

the iteration index associated with the staggered algorithm,
we have

It should be noted that the ψ∗-dependent source in the rhs
of Eq. 26a overcomes the problem of lack of uniqueness
in the Neumann problem. After solving for ψ

(k)∗ , we need
to compute the solution of the nonlinear integral Fredholm
equation of second kind for g̃

(k)
i , i = {+, −}. The initial

choice of the iterative procedure is given by the absence of
finite ion size effects so that c̃im = 0, implying g̃

(0)
i ≡

1, i = {+, −}, consequently leading to the nonlinear
Poisson-Boltzmann problem for the electric potential at the
first iteration

For the discretization of Eq. 26a, we consider the vari-
ational formulation along with the linearization using the
Newton’s method. Denoting s = 1, 2, ... the index associ-
ated with the iterations in a Newton-type scheme we then
have

exp
(
±zψ(k,s+1)∗

)
≈ exp

(
±zψ(k,s)∗

)

±z exp
(
±zψ(k,s)∗

)(
ψ(k,s+1)∗ −ψ(k,s)∗

)
.

The variational formulation of the linearized problem con-
sists in: denoting W = L2(Yf ) the space of square
integrable functions defined on the unit cell Yf , (·, ·)
the classical inner product in W and V = H 1 =
{f ; f ∈ W and ∂f/∂xi ∈ W}, given ψ

(k,s)∗ ∈ V at the s-th
iteration, find ψ

(k,s+1)∗ ∈ V such that

a(ψ(k,s+1)∗ , η) = f (ψ(k,s)∗ , η) ∀η ∈ V , (28)

with the bilinear form a(ψ∗, η) and the functional f (ψ∗, η)
given by

a(ψ∗, η) = (∇ψ∗, ∇η) + β z2 e2 ρb

ε̃ ε̃0

(
exp

(
−z ψ(k,s)∗

)
ψ∗ g̃

(k−1)
+ , η

)

+β z2 e2 ρb

ε̃ ε̃0

(
exp

(
z ψ(k,s)∗

)
ψ∗ g̃

(k−1)
− , η

)
,

and

f (ψ∗, η) = β z e2 ρb

ε̃ ε̃0

(
(1 + z ψ∗) exp (−z ψ∗) g̃

(k−1)
+ , η

)

+ β e

ε̃ ε̃0

∫
∂Yf s

σ η d�

−β z e2 ρb

ε̃ ε̃0

(
(1 − z ψ∗) exp (z ψ∗) g̃

(k−1)
− , η

)
.

For a fixed kth iteration associated with the coupling with
the integral problem, the Newton scheme consists of an
internal loop parametrized by the index s.
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3.2 Discretization of the Fredholm equation in ordered
rectangular nanopores

We shall now consider the discretization of the Fredholm
equations of second kind (24) for a particular bidimensional
rectangular cell geometry adopting a cartesian (x, y) coor-
dinate system (Fig. 1). The particles are separated from
each other by distances 2Hy and 2Hx in the y and x direc-
tions, respectively. The exclusion zone of thickness d/2 is
characterized by flat shapes in the vicinity of each particle.

3.3 Ion distributions

Considering the EDL potential ψ
(k)∗ satisfying the Gauss-

Poisson problem in the 2D rectangular domain and the
short-range ion-ion direct correlation function given by the
MSA closure (8), the integral (24) can be precisely rep-
resented in rectangular coordinates (see Appendix A for
details)

g
(k)
αi (x, y) = exp

{
−zi ψ(k)∗ (x, y) +

∫ Hx− d
2

0

∫ Hy− d
2

0

×K+i (x, y, x′, y′) h
(k)
α+(x′, y′) dy′ dx′

+
∫ Hx− d

2

0

∫ Hy− d
2

0
K−i (x, y, x′, y′)

× h
(k)
α−(x′, y′)dy′dx′+J (x, y)

}
, i ={+, −} .

(29)

The developments for obtaining the representations of the
kernels K±i (A.9) and the function J (x, y) (A.4) are given
in Appendix A.

Hereafter, we present the numerical procedure for solv-
ing each equation in Eq. (26). The Poisson equation is

Fig. 1 Periodic cell with rectangular geometry

discretized by the Galerkin procedure, whereas the approx-
imation of the Fredholm equation is performed using the
Collocation Method with basis functions suitably selected
as the eigenfunctions associated with the eigenvalue prob-
lem of the kernels. The resultant nonlinear coupled system
of algebraic equations is solved by a Picard-type scheme.

3.4 Galerkin method for the linearized gauss-poisson
problem

At each Newton iteration, the weak form of Poisson prob-
lem for the electric potential (28) is discretized by the
Galerkin method. Denote Vh the finite dimensional space of
continuous piecewise polynomials of degree kp associated
with a partition of Yf . The discrete form of the variational

problem (28) reads: Given ψ
(k,s)
∗h ∈ Vh, find ψ

(k,s+1)
∗h ∈ Vh

such that:

a
(
ψ

(k,s+1)
∗h , ηh

)
= f

(
ψ

(k,s)
∗h , ηh

)
∀ηh ∈ Vh . (30)

In the notation that follows, we designate ψ
(k)
∗h the discrete

solution obtained after convergence in the Newton iterations
has been achieved for a given tolerance.

3.5 Discretization of the Fredholm integral equations

After computing ψ
(k)
∗h , we proceed by discretizing the sys-

tem of integral equations (29). By invoking the represen-
tation of the kernels in Appendix A, for symmetric ions
z+ = z− = z we have

K++(x, y, x′, y′) = K−−(x, y, x′, y′) = K(x, y, x′, y′) ,

K−+(x, y, x′, y′) = K+−(x, y, x′, y′) = K̂(x, y, x′, y′) ,

(31)

with K(x, y, x′, y′) and K̂(x, y, x′, y′) symmetric (see
(A.9),(A.10)). Such symmetry property suggests the adop-
tion of the eigenvalue expansion to obtain a robust discrete
solution. The resultant eigenvalue problems are subse-
quently discretized by the Galerkin method combined with
a Collocation eigenfunction scheme for the approximation
of the Fredholm equations.

3.6 Discretization of the eigenvalue problems

Let us consider the following eigenvalue problem for the
kernel K:∫

Yf

K(x, y, x′, y′) ui(x′, y′)dy′ dx′ = λ
i
ui(x, y),

(x, y) ∈ Yf i =1, . . . , (32)

From Eq. A.9, we have that the symmetric kernel K is
square-integrable which implies that the operator defined
in the lhs is compact in L2(Yf ) leading to the existence of
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a countable set of real eigenvalues {λi}∞i=1 with associated
linearly independent eigenfunctions {ui}∞i=1 [8]. In a sim-
ilar fashion to [32], we shall construct a basis of discrete
eigenfunctions of the Galerkin approximation of Eq. 32.

Let Wh ⊂ W = L2(Yf ) be the space of contin-
uous piecewise polynomial functions associated with the
partition Yh. Consider a cartesian mesh Yh with num-
ber of nodes n same as eigenvalues with coordinates
(xp, yp), p = 1, . . . , n. The Galerkin method consists

in: find
{
λ

i

h, u
i
h(x, y)

}n

i=1 ∈ R × Wh such that, for any
ϕh ∈ Wh and 1 ≤ i ≤ n,∫

Yf

∫
Yf

K(x, y, x′, y′) ui
h(x

′, y′)ϕh(x, y)dx′dy′ dxdy

= λ
i

h

∫
Yf

ui
h(x, y) ϕh(x, y)dydx .

The matrix formulation associated with the above dis-
cretization reads

A ui
h = λ

i

h ui
h , i = 1, ..., n , (33)

where the components of the matrix and vector are given by

Apq = wqK(xp, yp, xq, yq),

ui
hp =

[
ui

h(xp, yp)
]
, p, q = 1, ..., n,

with wq the weights of the trapezoidal rule. Analogously,
the discrete eigensystem for the kernel K̂ in matrix form
reads as

Â û
i
h = λ̂i

h û
i
h, i = 1, ..., n ,

Âpq = wqK̂(xp, yp, xq, yq),

û
i
hp = [̂ui

h(xp, yp)], p, q = 1, ..., n. (34)

The accuracy of the approximation (33)-(34) has been dis-
cussed in [33].

3.7 Collocation eigenfunction method for the Fredholm
equation

Within the framework of the Collocation eigenfunction
method, we consider the expansion of the discrete ion-

particle correlation functions
(
h

(k)
α+,h, h

(k)
α−,h

)
in terms of the

eigenfunctions:

h
(k)
α+,h(x, y) =

n∑
i=1

a
(k)
i ui

h(x, y) ,

h
(k)
α−,h(x, y) =

n∑
i=1

b̂
(k)
i ûi

h(x, y) , (35)

with
{
a

(k)
i , b̂

(k)
i

}n

i=1 the set of coefficients to be determined.
It should be noted that the eigenfunctions are independent of
the iteration k and therefore need to be computed only once,

not requiring updating in the iterative process for solving
(26).

Inserting the above expansion into the discrete form of
the integral system (29) and adopting the quadrature rule
gives

g
(k)
α+,h(x, y) = exp

{
− z ψ

(k)
∗h (x, y) +

n∑
i=1

a
(k)
i

n∑
q=1

wq

×K(x, y, xq, yq)ui
h(xq, yq)

+
n∑

i=1

b̂
(k)
i

n∑
q=1

wqK̂(x, y, xq, yq)

× ûi
h(xq, yq) + J (x, y)

}
, (36)

where g
(k)
α+,h = h

(k)
α+,h+1. Within the context of the colloca-

tion method, the coefficients
{̂
a

(k)
i , b̂

(k)
i

}n

i=1 are determined
by imposing the above equation at distinct collocation
points (xp, yp), p = 1, . . . , n:

g
(k)
α+,h(xp, yp) = exp

⎧⎨
⎩− z ψ

(k)
∗h (xp, yp)+

n∑
i=1

a
(k)
i

n∑
q=1

wq

×K(xp, yp, xq, yq)ui
h(xq, yq)

+
n∑

i=1

b̂
(k)
i

n∑
q=1

wqK̂(xp, yp, xq, yq)

×ûi
h (xq, yq)+J (xp, yp)

}
, 1 ≤ p ≤ n .

Thus, using the discrete form of the eigenvalue problem
given by Eq. 34 in the above result gives

g
(k)
α+,h(xp, yp) = exp

[
−z ψ

(k)
∗h (xp, yp)+

n∑
i=1

a
(k)
i λ

i

h ui
h(xp, yp)

+
n∑

i=1

b̂
(k)
i λ̂i

h ûi
h(xp, yp)

+J (xp, yp)

]
, 1 ≤ p ≤ n . (37)

In an analogous manner, we adopt a similar expansion for
h

(k)
α−,h. In addition, introduce the crossed expansions

h
(k)
α+,h(x, y) =

n∑
i=1

â
(k)
i ûi

h(x, y) ,

h
(k)
α−,h(x, y) =

n∑
i=1

b
(k)

i ui
h(x, y) . (38)
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Fig. 2 Eigenfunctions
associated with the kernels. a K

and b K̂

By proceeding in a similar fashion to the derivation of
(37) using the above expansions, we arrive at the following
approximation of (29) with i = +, −

g
(k)
α−,h(xp, yp) = exp

[
z ψ

(k)
∗h (xp, yp) +

n∑
i=1

â
(k)
i λ̂i

h ûi
h(xp, yp)

+
n∑

i=1

b
(k)

i λ
i

h ui(xp, yp)

+J (xp, yp)

]
, 1 ≤ p ≤ n . (39)

Therefore, we introduced the two representations (35), (38)
for h

(k)
α+,h and h

(k)
α−,h which leads to 4 n unknown coeffi-

cients:
{
a

(k)
i , â

(k)
i , b

(k)

i , b̂
(k)
i

}n

i=1. For the closure, we adopt
a suitable change of basis to obtain direct relations between({

a
(k)
i

}n

i=1,
{
b

(k)

i

}n

i=1

)
and

({̂
a

(k)
i

}n

i=1,
{
b̂

(k)
i

}n

i=1

)
. Denot-

ing [I ]
ûi

h

ui
h

= [dij ] the rotation matrix associated with the

change of basis [̂ui
h] → [ui

h] and making use of the
notation

[
h

(k)
α+,h

]
ui

h

=
⎡
⎢⎣

a
(k)
1

...

a
(k)
n

⎤
⎥⎦ ,

[
h

(k)
α+,h

]
ûi

h

=
⎡
⎢⎣

â
(k)
1

...

â
(k)
n

⎤
⎥⎦ ,

[
h

(k)
α−,h

]
ui

h

=

⎡
⎢⎢⎣

b
(k)

1
...

b
(k)

n

⎤
⎥⎥⎦ ,

[
h

(k)
α−,h

]
ûi

h

=
⎡
⎢⎣

b̂
(k)
1

...

b̂
(k)
n

⎤
⎥⎦ ,

for the coefficients of h
(k)
α+,h and h

(k)
α−h with respect to the

bases [ui
h] and [̂ui

h], respectively, we have

[
h

(k)
α+,h

]
ui

h

= [I ]
ûi

h

ui
h

[
h

(k)
α+,h

]
ûi

h

,

[
h

(k)
α−,h

]
ui

h

= [I ]
ûi

h

ui
h

[
h

(k)
α−,h

]
ûi

h

.

Thus, we have the additional restrictions

a
(k)
i =

n∑
j=1

dij â
(k)
j , b

(k)

i =
n∑

j=1

dij b̂
(k)
j . (40)

By substituting (40) in Eqs. 37 and 39, we arrive at

g
(k)
α+,h(xp, yp) = exp

⎡
⎣−zψ

(k)
∗h (xp, yp)+

n∑
i,j=1

dij â
(k)
j λ

i

h ui
h(xp, yp)

+
n∑

i=1

b̂
(k)
i λ̂i

h ûi
h(xp, yp) + J (xp, yp)

]
, (41a)

g
(k)
α−,h(xp, yp) = exp

[
z ψ

(k)
∗h (xp, yp) +

n∑
i=1

â
(k)
i λ̂i

h ûi
h(xp, yp)

+
n∑

i,j=1

dij b̂
(k)
j λ

i

h ui
h(xp, yp)

+J (xp, yp)

]
, 1 ≤ p ≤ n . (41b)

The last step consists in inserting the expansions (35)(b)
and (38)(a) for g

(k)
α+,h = h

(k)
α+,h + 1 and g

(k)
α−,h = h

(k)
α−,h +

1, respectively, in the above lhs. This yields the follow-
ing nonlinear system of 2n equations for the unknowns

Fig. 3 Decay of the eigenvalues associated with the kernels K and K̂
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Fig. 4 Error of first and last
eigenvalues associated with the
kernels. a K and bK̂ computed
with grids with
n = (8j + 1) × (j + 1) nodes,
j = 4, 8, 16, 32

{̂
a

(k)
i , b̂

(k)
i

}n

i=1 at the kth iteration with the Gauss-Poisson
problem:

n∑
i=1

â
(k)
i ûi

h(xp, yp) = exp

⎡
⎣−z ψ

(k)
∗h (xp, yp) +

n∑
i,j=1

dij â
(k)
j λ

i

hui
h(xp, yp)

+
n∑

i=1

b̂
(k)
i λ̂i

hûi
h(xp, yp) + J (xp, yp)

]
− 1 , (42a)

n∑
i=1

b̂
(k)
i ûi

h(xp, yp) = exp

[
z ψ

(k)
∗h (xp, yp) +

n∑
i=1

â
(k)
i λ̂i

h ûi
h(xp, yp)

+
n∑

i,j=1

dij b̂
(k)
j λ

i

h ui
h(xp, yp)

+J (xp, yp)

]
− 1 , 1 ≤ p ≤ n . (42b)

Once the coefficients
{̂
a

(k)
i , b̂

(k)
i

}n

i=1 have been com-
puted, the discrete ion-particle correlation functions can be
obtained in a straightforward fashion from the eigenpair
expansion

g
(k)
α+,h(xp, yp) = h

(k)
α+,h(xp, yp) + 1

=
n∑

i=1

â
(k)
i ûi (xp, yp) + 1 , (43a)

g
(k)
α−,h(xp, yp) = h

(k)
α−,h(xp, yp) + 1

=
n∑

i=1

b̂
(k)
i ûi (xp, yp) + 1, 1 ≤ p ≤ n .

(43b)

After computing the ion-particle correlation function
within the iterative procedure (26) make use of decom-
position (25) for g

(k)
αi (x, y) in the source term of the

Gauss-Poisson problem and update only the components
independent of the electric potential in Eq. 41

g̃
(k)
+ (xp, yp) = exp

⎡
⎣ n∑

i,j=1

dij â
(k)
j λ

i

h ui
h(xp, yp)

+
n∑

i=1

b̂
(k)
i λ̂i

h ûi
h(xp, yp) + J (xp, yp)

]
, (44a)

g̃
(k)
− (xp, yp) = exp

[
n∑

i=1

â
(k)
i λ̂i

h ûi
h(xp, yp)

+
n∑

i,j=1

dij b̂
(k)
j λ

i

h ui
h(xp, yp) (44b)

+J (xp, yp)

]
, 1 ≤ p ≤ n .

Fig. 5 Decay of the eigenvalues
associated with the kernels K

and K̂ . a cb =0.001 M and b
cb = 0.1 M



986 Comput Geosci (2016) 20:975–996

Fig. 6 Convergence of the
iterative schemes with k for
l = 1. a Newton (30) and b
Picard (45)

3.8 Picard’s method for the nonlinear system

Equations 42a and 42b give rise to a nonlinear system of
algebraic equations for the coefficients which can be solved
by the iterative Picard’s scheme. Thus, introducing the iter-
ation index l associated with the nonlinearity and x(k,l) =
[̂a(k,l)

i , b̂
(k,l)
i ]T , the vector of unknowns at the lth iteration

along with the vector associated with the rhs of Eq. 42
b(x(k,l)) = [b(k,l)

+ (ψ
(k,l)
∗h , x(k,l)), b

(k,l)
− (ψ

(k,l)
∗h , x(k,l))]T and

the matrix

B :=
[

B 0
0 B̂

]
,

{
Bp,i = ui

h(xp, yp)

B̂p,i = ûi
h(xp, yp)

,

the linearized form of Eq. 42 posed at the collocation points
reads as

B x(k,l+1) = b(ψ
(k,l)
∗h , x(k,l)), l = 1, 2, ... . (45)

The above system is solved in an internal loop for each
frozen iteration k associated with the coupling with the
Gauss-Poisson problem.

3.9 Summary of the staggered algorithm

For the sake of completeness, we present the final stag-
gered algorithm for the resolution of the coupled Poisson-
Fredholm integro-differential system:

1. Compute the eigenpairs
{
λ

i

h, u
i
h(xp, yp)

}n

p,i=1
and{̂

λi
h, û

i
h(xp, yp)

}n

p,i=1 at the collocation points by solv-
ing (33)-(34);

2. At the first iteration, choose g̃
(0)
i ≡ 1 and compute ψ

(1)
∗h

by solving the Poisson-Boltzmann problem (27) in the
iterative form (30) until convergence in s is achieved
within the Newton method;

3. For k = 1, 2, . . . ,:

3.1 Compute the coefficients x(k) =
{̂
a

(k)
i , b̂

(k)
i

}n

i=1
by

solving the nonlinear algebraic system (42) in the
iterative form (45) within the following procedure:
For l = 1, 2, . . . ,:

(a) Given x(k,l), solve the linear system (45) for
x(k,l+1);

(b) With x(k,l+1), update the source terms{
g̃

(k,l+1)
i , i = +, −

}
using (44);

(c) Return to (a) till ||x(k,l+1) − x(k,l)|| < tolx for
a given tolerance tolx.

3.2 Update
{
g

(k)
α+,h, g

(k)
α−,h

}
using (41);

3.3 Given g̃
(k)
i , i = {+, −} , update the electric poten-

tial ψ
(k+1)
∗h in the nonlinear Poisson problem;

• Return to 3.1 till ||ψ(k+1)
∗h − ψ

(k)
∗h || < tolψ is

achieved for a given tolerance tolψ .

An important feature underlying the above scheme is that
the inner Newton algorithm for the Gauss-Poisson prob-
lem needs to be performed for each update of the source
term in the Picard scheme. We also remark that in the com-
posed scheme, the iterations associated with the two Picard
algorithms need to be performed sequentially to avoid diver-
gence. Therefore, in the simulations that follow, the internal
loop in l is performed restricted to l = 1.

Fig. 7 Dimensionless electric potential profile
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Fig. 8 Dimensionless electric
potential distribution over the
planes (a) x = 0 and
x = Hx − d/2; (b) y = 0 and
y = Hy − d/2

4 Numerical results

The aforementioned computational model gives rise to a
new methodology for computing electro-chemomechanical
couplings in swelling porous media saturated by aque-
ous electrolyte solutions with multivalent ions. In order to
validate the new proposed approach, we shall henceforth
present numerical simulations of the non-local nanoscale
model for the particular ordered microstructures of the unit
cell Y aiming at illustrating local ion distributions and the
numerical constitutive law of the disjoining pressure.

In the discretization of the Poisson problem by the
Galerkin method, we make use of bilinear elements,
whereas for the solution of the integral equation for the coef-
ficients, we adopt collocation points that coincide with the
number of eigenfunctions adopted in the truncated expan-
sions (38). In all simulations, we adopt a constant surface
charge σ = −0.1 C m−2.

4.1 Eigenpairs

We begin by depicting the spectrum of the eigenvalues along
with the profile of some eigenfunctions. Note that the ker-
nels are well conditioned in the sense that the eigenvalues
are clustered away from zero. In spite of that, we cannot

ensure positive definiteness and therefore, the eigenvalues
are shown in absolute values.

In Figs. 2 and 3, we depict two eigenfunctions associated
with kernels K and K̂ along with the decay of the absolute

value of the eigenvalues
{
λ

i

h

}n

i=1,
{̂
λi

h

}n

i=1 respectively, for
monovalent ions and cb = 0.001M, Hx/d = 3.2, Hy/d =
0.8, adopting a mesh with 180 × 20 elements. For both K

and K̂ , the decay of the eigenvalues is abrupt at both ends
of the spectrum. Conversely, away from the ends, we may
observe slow decay with a non negligible ratio between the
magnitude of the smallest and largest eigenvalue. Therefore,
we keep track of the n eigenfunctions in the discrete basis.

In order to assess the accuracy of the computation of
the eigenvalues, we compute the errors of the first and last
eigenvalues with respect to the grid size. Figure 4 shows
the dependence of these errors for the two kernels with four
levels of mesh refinement. The exact eigenvalues are calcu-
lated with the finest mesh (512 × 64 elements). The decay
of the error of the first eigenvalue has a clear trend in both
kernels whereas for the last eigenvalue, owing to its smaller
magnitude, the error exhibits much higher sensitivity to the
discretization which may deteriorate trends in the decay.

Figure 5 compares the decay of the eigenvalues of the
kernels K and K̂ for the two salinities cb = 0.001M and
cb = 0.1M in the square domain (Hx/d = Hy/d = 0.8).

Fig. 9 Dimensionless electric
potential distribution over the
planes (a) x = 0 and (b)
x = Hx − d/2 for two
discretizations
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Fig. 10 Monovalent cationic profile computed with the DFT/MSA
approach

From Eq. A.5, we may observe linear behavior on cb =
ρb/Na (where Na is the Avogadro number) which is illus-
trated by the factor of 100 in the spectra shown in Figs. 5a
and b.

4.2 Convergence of the staggered algorithm

The subsequent numerical results displayed in Fig. 6 aim
at illustrating the performance of the iteration schemes for
handling the nonlinearities. Convergence results are pre-
sented for the case of monovalent ions and cb = 0.001M,
Hx/d = 3.2, Hy/d = 0.8 adopting a mesh with 180 × 20
elements. In Fig. 6a, we depict the decay of the differ-
ence (in the euclidean norm) between the electric poten-
tial in two consecutive iterations of the Newton scheme
parametrized by the number of k-iterations of the Picard
scheme for the Gauss-Poisson problem. With the exception
of the first iteration in k, fast convergence in the New-
ton scheme is observed. Moreover, the error decay for the
coefficients in the expansion of the ion-particle correla-
tion function in Eq. (43) with the number of k-iterations is
depicted in Fig. 6b illustrating the convergence of the Picard
scheme.

Fig. 12 Bi-dimensional cationic profile computed with DFT/MSA

4.3 Ionic profiles

We now display the ion distributions considering the local
rectangular arrangements of Fig. 1. The profiles are depicted
in the reduced domain [0, Hx − d/2] × [0, Hy − d/2] not
including the exclusion zone where ion concentration van-
ishes, adopting a mesh with 180 × 20 elements. Firstly, we
consider the monovalent case z+ = −z− = 1 with the dis-
tance between the particles in the y-direction (Hy/d = 0.8)

much smaller compared to that in the x-direction (Hx/d =
3.2). In Fig. 7, we depict the bidimensional profile of the
dimensionless electric potential for cb = 0.001 M. The
potential attains minimum absolute value at the center of
the rectangular domain x = y = 0 where the electric
field vanishes. Sharp layers are observed in the vicinity
of the charged surfaces where ψ∗ reaches maximum neg-
ative values. The effects of the ion-ion correlations due to
finite ion size are more pronounced for small particle dis-
tances where the correlations act to reduce the magnitude
of the source term in the Gauss-Poisson problem decreas-
ing the y-component of the electric field compared to the
x-component and also the intensity of the boundary layer at
y = ±(Hy −d/2) compared to x = ±(Hx −d/2) where the
PB solution provides a good approximation. Such behav-
ior is illustrated more precisely in Fig. 8 which shows the

Fig. 11 Comparison between
the one-dimensional ionic
profiles obtained with PB and
DFT/MSA approaches
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Fig. 13 Comparison between
the one-dimensional ionic
profiles computed with PB and
DFT/MSA procedures

1D profiles along the coordinate planes (x and y constant),
respectively. The influence of mesh refinement in the accu-
racy of the dimensionless electric potential profile is shown
in Fig. 9. We may observe good agreement between the
results obtained with two levels of refinement showing the
accuracy of the numerical profile.

For the same rectangular arrangement, with Hx >> Hy ,
in Figs. 10 and 11, we plot the local cation distributions
computed with the DFT/MSA approach along with one-
dimensional profiles for x and y fixed. In a similar fashion
to the electric potential, the cationic concentration tends to
increase substantially in the vicinity of the particles exhibit-
ing more pronounced sharp layers in the x-direction, where
the PB approximation is accurate. On the other hand, the

effects of the short-range correlations tend to reduce the
boundary layers located at y = ±(Hy − d/2). A com-
parison between PB and DFT/MSA profiles is presented in
Fig. 11. We may observe a less abrupt distribution of cations
computed with DFT/MSA in the vicinity of the particles
compared to the Poisson-Boltzmann profile where, owing
to the point charge assumption, allows for considerable
enhancement in concentration.

In order to analyze the influence of particle distance upon
the profiles obtained with PB and DFT/MSA, we now con-
sider a rectangular arrangement with larger horizontal and
vertical particle distances (Hy/d = 5, Hx/d = 11.75)

compared to the previous example and cb = 0.001 M. The
profiles of the correlation functions for cations obtained

Fig. 14 Comparison between
the ionic profiles computed with
PB and DFT/MSA: a, b
cb = 0.001 M and c, d cb =
0.1 M
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Fig. 15 Comparison between
the one-dimensional monovalent
ionic profiles computed with PB
and DFT/MSA. Cations (a) and
anions (b) for 2Hx/d = 6.4 and
2Hy/d = 1.6. Cations (c) and
anions (d) for
2Hx/d = 23.5, 2Hy/d = 10

with DFT/MSA are depicted in Fig. 12 and the 1D cuts
along the coordinates planes in Fig. 13. For larger distances

between particles, we may note a wider range of values of
cation distribution compared to the previous case (Fig. 11a)

Fig. 16 Comparison between
the one-dimensional bivalent
ionic profiles computed with PB
and DFT/MSA procedures.
Cations (a) and anions (b) for
2Hx/d = 6.4, 2Hy/d = 1.6.
Cations (c) and anions (d) for
2Hx/d = 37, 2Hy/d = 10
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of nearly uniform profile. By comparing the results in the
plane x = 0 obtained with the two models (Fig. 13), we
observe that the distribution of cations and anions computed
with DFT/MSA are very similar to the ones obtained by
PB. In fact, for large particle distances, the influence of the
short-range ion-ion direct correlation functions is somewhat
less pronounced and the effects of the long range Coulombic
interactions prevail.

We now illustrate the influence of the bulk fluid salin-
ity upon the local ionic profiles. The results are displayed
for the two values cb = 0.001 M and cb = 0.1 M in the
square arrangement of small particle distances (Hx/d =
Hy/d = 0.8). Figure 14 compares the one-dimensional ion
profiles (for x and y fixed) computed with DFT/MSA and
PB approaches. We may clearly observe that the DFT/MSA
profiles exhibit more uniformity due to ion-ion correlations
which tend to reduce the concentration near the charged

walls. The treatment of point charge ions in the PB based
approach leads to a substantial increase in ion density with
sharper boundary layers in the vicinity of the particles. Such
effect is more pronounced for lower concentration (cb =
0.001 M) where the strength of the electrical double layer is
higher.

Finally, we illustrate the ionic profiles in the limit case
of long parallel particles in the x-direction separated by
the distance 2Hy . Numerically, a large value is assigned
for Hx so that boundary effects have negligible influence.
In Fig. 15, we show the ionic profiles for monovalent ions
for small (Hy/d = 0.8) and large (Hy/d = 5) particle
distances and cb = 0.001 M. Again, we can observe dis-
crepancies between DFT/MSA and PB: for small spacing
where DFT/MSA furnishes a more uniform distribution,
PB allows higher concentrations of cations near the par-
ticles (Fig. 15a). On the other hand, in a similar fashion

Fig. 17 Dependence of the
disjoining pressure with particle
separation. a 1:1 ions and b 2:2
ions
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to the 2D case, we observe similar profiles for the two
models for large particles distance (Fig. 15c, d). Finally,
Fig. 16 shows the ionic profiles for divalent ions for the
same small and large particle distances. We note similar
behavior, however, with smaller magnitude of the correla-
tion, as the valence z = 2 implies in higher value of the ion
charge q = z e which tends to reduce gαi in order to fulfill
the electroneutrality condition (13).

4.4 Disjoining pressure

We now consider the post-processing approach for comput-
ing the disjoining pressure from the contact theorem (18).
The computations are carried out for the normal component
(�d)yy considering the stratified microstructure of infinity
parallel particles. Considering now the elastic problem (21)
with boundary condition (22), we approximate the mechan-
ics by two uncoupled one-dimensional elastic problems in
the x and y directions with solutions

(σπ )xx = −(�0
d)xx, (σπ )yy = −(�0

d)yy ,

which from Eq. 20d imply for the swelling stress

(�S)xx = −〈(σπ )xx〉s = (�d)xx , (�S)yy = −〈(σπ )yy〉s
= (�d)yy .

Thus, under the absence of shear stresses in the solid phase,
each component of the macroscopic swelling stress tensor is
nothing but the average of the respective component of the
disjoining pressure.

In Fig. 17, we show the dependency of (�S)yy with parti-
cle distance for the fixed salinity cb = 0.001 M and compare
the constitutive response for monovalent and divalent ions.
For the 1:1 case, we may observe good agreement between
the DFT/MSA and PB (Fig. 18) with both formulations pre-
dicting a pure repulsive stress regardless of particle distance.
On the other hand, for 2:2 ions, the DFT/MSA furnishes
negative values of the disjoining pressure for a particular
range of particle distances giving rise to a regime dominated
by attraction between the particles where the magnitude
of the Maxwell component (given by the term involving
the surface charge σ in Eq. 17) prevails over the kinetic
one associated with the osmotic pressure. Such attraction
regime, which has been reported in [37], validated exper-
imentally and through Monte Carlo simulation (see, e.g.,
[4], [40]) is not captured by the PB-based model which
overlooks the ionic correlation forces.

5 Conclusions

A new two-scale numerical model was proposed to com-
pute ionic profiles and the swelling pressure in expansive
porous media saturated by electrolyte solutions with mono

and multivalent ions. The proposed approach was based on
upscaling a non-local nanoscale model constructed within
the framework of the Density Functional Theory supple-
mented by the mean spherical approximation. Such method-
ology led to a coupled Poisson-Fredholm system posed in
terms of the correlation functions and electric potential. A
new computational scheme was designed to discretize the
nanoscale governing equations. The approximation of the
nonlinear Gauss-Poisson problem was conducted in a stag-
gered fashion by delaying the component of the source term
involving the correlations. For the computation of these lat-
ter unknowns, we made use of the expansion in terms of the
eigenpairs of the kernels. Such eigenfunctions were chosen
as basis function for the collocation scheme adopted in the
discretization of the Fredholm equation. The nonlinearities
in the discrete Gauss-Poisson and integral problems were
handled by the Newton and Picard schemes respectively.
Computational simulations of the ionic profiles in two-
dimensional geometries and the numerical reconstruction of
the constitutive law of the swelling pressure, which appears
in a modified form of Terzaghi effective principle, were
presented showing improvement obtained with DFT/MSA
compared to the Poisson-Boltzmann based approach. The
computational model proposed herein provides new direc-
tions for bridging the local effects of ionic correlation in
multivalent ionic solutions and the stress partitioning mech-
anisms in swelling clay soils ruled by the modified form of
the effective stress principle.
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Appendix A: Representation of the Kernels
in rectangular arrangements

For a precise representation of the kernels K and K̂ , we
consider the rectangular arrangement depicted in Fig. 18.
The plates are separated by distance 2Hx and 2Hy in the
horizontal and vertical directions, respectively. The ionic
species 1 and 3, located at r = (x, y) and r = (x′, y′),
respectively, are represented by ions 1 and 3 in Fig. 18,
whereas the subscript 2 represent the plates.

The closure relation for the ion-particle correlation func-
tion reads as

gαi(r) = exp

{
−β qi ψ(r) +

∑
m

ρb
m

∫
c̃im(|r − r ′|) hαm(r ′)dr ′

}
,

(A.1)

where

c̃im(r) = chs(|r|) + βe2zizm

4πε̃̃ε0d
csr
d (|r|) . (A.2)
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Fig. 18 Rectangular unit cell geometry for computation of the kernels

As the direct correlation functions chs(r) and csr
d (r) have

support |r| ≤ d, the integration is limited to the inte-
rior of the rectangle (|x| < Hx and |y| < Hy). By
exploring the symmetry hαm(x, y) = hαm(−x, y) =
hαm(x, −y), the above representation can be rewritten in the
form:

gαi(x, y) = exp

{
−β qi ψ(x, y) +

∫ Hy− d
2

0

∫ Hx− d
2

0

×K+i (x, y, x′, y′) hα+(x′, y′) dy′ dx′

+
∫ Hy− d

2

0

∫ Hx− d
2

0
K−i (x, y, x′, y′)

× hα−(x′, y′) dy′ dx′ + J (x, y)
}
, i = {+, −}

(A.3)

where the term J (x, y) is defined by

J (x, y) = −
∫ Hy+ d

2

Hy− d
2

∫ Hx+ d
2

0
M(x, y, x′, y′)

∑
m

ρb
m dy′ dx′

−
∫ Hy− d

2

0

∫ Hx+ d
2

Hx− d
2

M(x, y, x′, y′)
∑
m

ρb
m dy′ dx′

(A.4)

and each kernel given by

K±i (x, y, x′, y′) = ρb±
[
M(x, y, x′, y′) + zi z± L(x, y, x′, y′)

]
.

(A.5)

Thus, we are led to compute the two functions M and
L which incorporate the hard-sphere and electrostatic

component of the short-range direct correlation c̃im in
Eq. B.5. The component M is defined by

M(x, y, x′, y′) =
4∑

j=1

Mj(x, y, x′, y′)

where each component j ∈ {1, 2, 3, 4} is given by

Mj (x, y, x′, y′) =
∫ ∞

−∞
chs

(√
r2
j + z

′2
)

dz′

=

⎧⎪⎪⎨
⎪⎪⎩

∫ √
d2−r2

j

−
√

d2−r2
j

chs

(√
r2
j + z

′2
)

dz′ if r2
j < d2 ,

0 if r2
j > d2 ,

,(A.6)

with

r2
1 = (x − x′)2 + (y − y′)2 , (A.7a)

r2
2 = (x − x′)2 + (y + y′)2 , (A.7b)

r2
3 = (x + x′)2 + (y − y′)2 , (A.7c)

r2
4 = (x + x′)2 + (y + y′)2 . (A.7d)

In a similar fashion, L is given by replacing chs by
βe2/(4πε̃̃ε0d)csr

d in Eq. A.6.
Recalling the representation (B.6) for the hard-sphere

component chs(r), it follows that

Mj(x, y, x′, y′) =
∫ √

d2−r2
j

−
√

d2−r2
j

⎡
⎣a1+a2

⎛
⎝ rj

d

√
1 +

(
z′
rj

)2
⎞
⎠

+a3

⎛
⎝ rj

d

√
1 +

(
z′
rj

)2
⎞
⎠

3
⎤
⎥⎦ dz′

= mj1 + mj2 + mj3 . (A.8)

By performing the integrations, each component admits the
representation

mj1 = 2 a1 d

√
1 − r∗2

j ,

mj2 = a2 d

⎡
⎢⎣
√

1 − r∗2
j + r∗2

j log

⎛
⎜⎝1 +

√
1 − r∗2

j

r∗
j

⎞
⎟⎠
⎤
⎥⎦ ,

mj3 = a3 d

2

⎡
⎢⎣
(

1 + 3

2
r∗2
j

)√
1 − r∗2

j + 3

2
r∗4
j log

⎛
⎜⎝1 +

√
1 − r∗2

j

r∗
j

⎞
⎟⎠
⎤
⎥⎦ ,

with r∗2
j = r2

j /d2. Adopting the same procedure replac-

ing chs by βe2/(4πε̃̃ε0d)csr
d , we have for the electrostatic

component of the kernel

Lj (x, y, x′, y′) = β e2

4πε̃̃ε0d

∫ √
d2−r2

j

−
√

d2−r2
j

csr
d

⎛
⎝rj

√
1 +

(
z′
rj

)2
⎞
⎠ dz′,

j = 1, 2, 3, 4 .
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By inserting the representation (B.7) for csr
d (r) and perform-

ing the integrals, we arrive at

Lj (x, y, x′, y′) = β e2

4πε̃̃ε0d

∫ √
d2−r2

j

−
√

d2−r2
j

×
⎡
⎢⎣ d√

r2
j + z

′2
−2B+ B2

d

√
r2
j +z

′2

⎤
⎥⎦ dz′

= β e2

4πε̃̃ε0d

(
lj1 + lj2 + lj3

)
,

with lj1, lj2 and li3 given by

lj1 = 2d log

⎛
⎜⎝1 +

√
1 − r∗2

j

r∗
j

⎞
⎟⎠ ,

lj2 = −4Bd

√
1 − r∗2

j ,

lj3 = B2 d

⎡
⎢⎣
√

1 − r∗2
j + r∗2

j log

⎛
⎜⎝1 +

√
1 − r∗2

j

r∗
j

⎞
⎟⎠
⎤
⎥⎦ .

Finally, inserting the representations for M and L in
Eq. A.5, we obtain for the kernel

K±i (x, y, x′, y′) = ρb±
4∑

j=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 a1 d
√

1 − r∗2
j +

a2 d

[√
1 − r∗2

j + r∗2
j

2 log

(
1+

√
1−r∗2

j

1−
√

1−r∗2
j

)]

a3 d
2

[(
1 + 3

2 r∗2
j

)√
1 − r∗2

j + 3
4 r∗4

j log

(
1+

√
1−r∗2

j

1−
√

1−r∗2
j

)]

+β zi z± e2

4πε̃̃ε0d

[
d log

(
1+

√
1−r∗2

j

1−
√

1−r∗2
j

)
− 4Bd

√
1 − r∗2

j

+ B2 d

[√
1 − r∗2

j + r∗2
j

2 log

(
1+

√
1−r∗2

j

1−
√

1−r∗2
j

)]]
, if r∗

j < 1 ,

0, if r∗
j > 1 .

(A.9)

Note that, due to the square dependence of r2
j on coordinates

(x, y, x′, y′) in Eq. (A.7), the kernels are symmetric,

K±i (x, y, x′, y′) = K±i (x
′, y′, x, y) . (A.10)

Appendix B: Representations of the free energy
and direct correlation function

Our aim in this section is to derive the expression for the
free energy functional in terms of the correlation function
c
(2)
im (r, r ′). To this end, we begin by integrating (2) using

a linear path for the density variation parametrized by the
Onsager parameter ξ (0 ≤ ξ ≤),

ρi(r, ξ) = ρb
i + ξ�ρi(r)

where �ρi(r) = ρi(r) − ρb
i . This yields

Fex[ρi]=(Fb)ex −kBT

∫ 1

0
dξ

∑
i

∫
�ρi(r)c

(1)
i (r, ξ)dr .

(B.1)

In an analogous manner, by integrating (2), it follows that

c
(1)
i (r, ξ) = c

(1)
i |b(r) +

∑
m

∫ ξ ′

0
dξ ′

∫
�ρm(r ′)c(2)

im (r, r ′, ξ)dr ′ .

(B.2)

Thus, using (B.2) in Eq. B.1, we obtain

Fex[ρi] = (Fb)ex − kBT

∫ 1

0
dξ

∑
i

∫
�ρi(r)c

(1)
i |b(r)dr

−kBT

∫ 1

0
dξ

∑
i,m

∫ ξ ′

0
dξ ′

∫ ∫
�ρi(r)�ρm

×(r ′)c(2)
im (r, r ′, ξ)drdr ′ . (B.3)

Now, recalling the thermodynamic definition of the chem-
ical potential, we obtain for the excess component of this
quantity

(μi)
ex = δFex[ρi]

δ[ρi(r)] = −kBT c
(1)
i (r) .

Using the above relation in (B.3) gives

Fex[ρi] = (Fb)ex +
∑

i

(μb
i )

ex

∫
�ρi(r)dr

−kBT

∫ 1

0
dξ

∑
i,m

∫ ξ ′

0
dξ ′

∫ ∫
�ρi(r)�ρm

×(r ′)c(2)
im (r, r ′, ξ)drdr ′ .

From integration by parts, we have for any function y(ξ):∫ 1

0
dξ

∫ ξ

0
y(ξ ′)dξ ′ =

∫ 1

0
(1 − ξ)y(ξ)dξ .
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Therefore, we obtain

Fex[ρi] = (Fb)ex +
∑

i

(μb
i )

ex

∫
�ρi(r)dr

−kBT
∑
i,m

∫ 1

0
dξ(1 − ξ)

∫ ∫
�ρi(r)�ρm

×(r ′)c(2)
im (r, r ′, ξ)drdr ′ .

The closure issue for c
(2)
im (r, r ′, ξ) is seated on the Mean

Spherical Approximation (MSA) in the bulk fluid [45, 46]
and postulates independence of c

(2)
im (r, r ′, ξ) on the Onsager

parameter (c
(2)
im (r, r ′, ξ) ≈ cb

im(|r − r ′|)). Under this
assumption, we obtain

Fex[ρi] = (Fb)ex +
∑

i

(μb
i )

ex

∫
�ρi(r)dr

−kBT
∑
i,m

∫ 1

0
dξ(1 − ξ)

∫ ∫
�ρi(r)�ρm

×(r ′)cb
im(r, r ′)drdr ′.

Moreover, in the context of the MSA closure, cb
im(r) =

cMSA
im (r) is written as the sum of a Coulombic term and an

additional short-range component c̃im(r) which vanishes for
r > d

cMSA
im (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c̃im(r) − βzi zm e2

4π ε̃ ε̃0 r
for r < d

− βzi zm e2

4π ε̃ ε̃0 r
for r > d ,

(B.4)

The short-range component c̃im(r) is given by the sum of
the classical hard spheres component chs(r) [47] and of a
short-range electrostatic correction csr

d (r) (relative to the
Coulomb term due to the finite size of the ions). We then
have [45, 46].

c̃im(r) =

⎧⎪⎨
⎪⎩

chs(r) + β zi zm e2

4π ε̃ ε̃0
csr
d (r) for r < d

0 for r > d .

(B.5)

The hard sphere component is given by (see [43, 47] for
details)

chs(r) =

⎧⎪⎨
⎪⎩

a1 + a2
r

d
+ a3

r3

d3
for r < d,

0 for r > d ,

(B.6)

where η = (ρπ d3)/6 is the packing fraction, given by the
volume fraction occupied by the hard spheres, and

a1 = − (1 + 2η)2

(1 − η)4
, a2 = 6η

(1 + 0.5η)2

(1 − η)4
, a3 = η

2
a1 .

The function csr
d (r) incorporates the short range correc-

tion of the Coulomb term (see [45, 46])

csr
d (r) =

⎧⎨
⎩

d

r
− 2 B + B2 r

d
for r < d

0 for r > d ,

(B.7)

with the inverse of the Debye length κ and B given by

κ2 = β

ε̃ ε̃0

∑
m

ρb
m (zm e)2 ,

B = x2 + x − x
√

1 + 2 x

x2
with x = κ d .
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Lozada-Cassou, M., Hidalgo-Álvarez, R.: Overcharging in col-
loids: beyond the Poisson-Boltzmann approach. ChemPhysChem
4(3), 234–248 (2003)
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