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Abstract In this paper, we study two different model reduc-
tion strategies for solving problems involving single phase
flow in a porous medium containing faults or fractures
whose location and properties are known. These faults are
represented as interfaces of dimension N − 1 immersed
in an N dimensional domain. Both approaches can handle
various configurations of position and permeability of the
faults, and one can handle different fracture permeabilities
on the two inner sides of the fracture. For the numerical dis-
cretization, we use the hybrid finite volume scheme as it is
known to be well suited to simulating subsurface flow. Some
results, which may be of use in the implementation of the
proposed methods in industrial codes, are demonstrated.
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1 Introduction

Fluid flow in porous media can be strongly influenced by
the presence of large faults, which, depending on their
porosity and permeability, may act as preferential paths for
flow linking geologically otherwise unconnected layers or
as barriers isolating some part of the fluid. The faults may
connect different parts of the domain, and they may also
intersect one another. Among the many domains of appli-
cation requiring an accurate description of fluid flow in
faulted media, we mention CO2 injection and sequestration,
oil migration and recovery, and prevention of groundwater
contamination from underground nuclear waste disposal, to
cite just a few.

Since the width of a fault is several orders of magni-
tude smaller than any other characteristic size of the porous
medium in which it lies and since it is usually very small in
comparison to the typical mesh size, it is unreasonable and
often for real cases completely unaffordable to uniformly
refine the computational grid to a degree that the fault may
be represented exactly. To deal with this difficulty, we con-
sider approximation based on a reduced model (RM) in
which flow along and across the fracture is described using a
simplified set of equations. A reduced model for Darcy flow
was introduced in [4] and extended in [18, 34]. In these ref-
erences, the authors propose a reduced model in which each
fault is represented by a single (N − 1) dimensional object
and flow in the fault is coupled with flow in the rest of the
domain by suitable interface conditions. In this article, we
will refer to such a model as a single layer-reduced model
(SLRM) or simply (SL). In the aforementioned works, it
was essentially supposed that the fault crossed the entire
domain, so, to take into account fractures terminating in
the interior of the domain, in [5], the authors extended the
model by imposing no flow conditions on the tips of the
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faults lying in the interior of the domain. These models were
all concerned with single phase Darcy flow. Other results
considering similar single-layer reduced models for single
phase Darcy flow include [6, 10, 25, 27–29, 31, 32, 36, 37]
to name a few.

The SLRM has also been extended to treat nonlinear
problems: in [22, 33], an extension was given that cou-
ples Forchheimer flow in the fracture with Darcy flow in
the surrounding rock matrix. In [30], the authors extended
the reduced model to treat a two-phase flow problem by
introducing new non-linear coupling conditions for the sat-
uration, which involve the capillary pressure, at the fault
interface. Other authors have also treated the case of two-
phase flow; we cite [11, 23, 35, 39] among others.

Other types of models for flow in fractured porous media
can be found in the literature; see for instance [2, 3, 8, 9].

For the numerical discretization of these reduced models,
both finite element and finite volume methods have been
analyzed and used effectively showing the flexibility of the
models with respect to discretization method. In [21], it was
shown that for the numerical discretization of the SLRM,
the mesh on one side of the fracture does not need to match
up with that on the other nor with the mesh inside the inter-
face fracture. In [13, 20, 24], the authors went further and
showed that by using extended finite elements, the mesh on
the rock matrix can be chosen completely independently of
the fracture, allowing the fracture to cut across cells of the
grid.

One application that particularly concerns us here is the
simulation of sedimentary basins. In such basins, due to
subsurface movements on a geological time scale, the sur-
rounding porous medium on one side of a fault may slip
with respect to that on the other. An example is depicted in
Fig. 1, where the right side of the domain has slipped with
respect to the left side.

To better deal with the case of slipping faults, in [42], the
authors extended the reduced model in such a way that each
fault is approximated by two distinct (N − 1)-dimensional
objects, one associated with each side of the fault. In the
sequel, we will refer to this type of approximation as a
double-layer reduced model (DLRM) or (DL).

Fig. 1 Example of a schematic basin with slippage along a fault

The main purpose of this article is to give a numerical
discretization of the model proposed in [42] using the hybrid
finite volume scheme [16, 17] modified to handle the fault
flow. A comparison of the SLRM and the DLRM is given in
the continuous as well as numerical context, showing their
equivalence under suitable conditions. Moreover for both
the reduced models, SLRM or DLRM, we prove an equiv-
alence between their numerical approximation and what we
call the “virtual fault cell” approach, avoiding the construc-
tion of the tangential operators. Several numerical examples
are presented to show the robustness of the proposed method
for both academic and realistic problems.

The paper is organized as follows: in Section 2, the nota-
tion and the governing equations of the physical problem are
presented. In Section 3, the double-layer reduced model and
the single-layer reduced model are derived and compared.
Section 4 is devoted to the discretization of the proposed
schemes, and some theoretical results, which may facilitate
the implementation, are presented. In Section 5, a collec-
tion of examples highlights the possibilities of the proposed
methods. Section 6 contains the conclusions. An Appendix
A, in which we briefly recall the derivation of the hybrid
finite volume scheme for a standard diffusion problem, is
included.

2 Flow in a domain with a fault

Throughout the rest of this article, unless otherwise spec-
ified, i, respectively j , will denote an index with values
i ∈ {1, 2, f }, respectively j ∈ {1, 2}.

We consider as a computational domain a bounded, con-
nected, open set� ⊂ R

N ,N = 2 or 3, representing a porous
medium.

We assume that � contains a fault �f , a connected, open
subset of �,and that � \ �f is divided into two disjoint,
connected, open subsets�j as is shown in Fig. 2. We denote
by � the boundary of �, i.e., � := � \ �, and by �i the
external boundary of �i , i.e., �i := ∂�i ∩ �.

The interface between the domain �j and �f is denoted
by γj and the unit normal vector field on γj pointing
outward from �j is denoted by nj . We suppose that the
fault has a central axis γ̂ , a non self-intersecting (N −
1)-dimensional surface, such that

�f =
{
x ∈ R

N : x = s + rn, s ∈ γ̂ , |r| <
d

2

}
,

where d is the thickness of �f and n is the continuous unit
normal vector field on γ̂ , pointing outward from �1 toward
�2. We assume that the thickness d of �f is negligible
compared to its other dimensions.

Throughout the following, we indicate with a subscript
i, or j as appropriate, the restriction of data and unknown
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Fig. 2 Representation of each
sub-domain

functions (scalar or vector) to the corresponding subdomain
of �.

Our purpose is to compute the steady pressure field p

and the velocity field, or Darcy velocity, u in the entire
domain �. We suppose that flow is governed by the law of
mass conservation together with Darcy’s law, and for sim-
plicity, we assume that the only boundary condition on � is
a homogeneous condition for the pressure:

∇ · u = q

u + �∇p = 0 in �

p = 0 on �.

(1)

Here, � denotes the symmetric and positive definite perme-
ability tensor in �, and the scalar source term q represents a
possible volume source or sink. We write problem (1) as an
equivalent transmission problem:

∇ · ui = qi

ui + �i∇pi = 0 in �i

pi = 0 on �i,

(2a)

coupled with interface conditions:

pj = pf

uj · nj = uf · nj on γj .
(2b)

We have supposed, following [34], that the permeability ten-
sor in �f can be written as �f = λf,nN + λf,τ T , where
the projection matrix N in the direction normal to γ̂ and
the projection matrix T in the direction tangential to γ̂ are
defined as follows:

N := n ⊗ n and T := I − N .

The demonstration of the well posedness of problem (1) in
its mixed weak form can be found in any number of texts;
see [12, 15, 38, 41].

3 A double-layer reduced model

We are interested in a reduced model in which the fault �f

is represented by an interface which is identified with its
central axis γ̂ . However, since �1 can slip along the fault

with respect to �2, or vice versa, following [42], we sub-
divide �f into two disjoint layers �fj

, such that �f =
∪j�fj

:

�fj
=

{
x ∈ R

N : x = s + rn, s ∈ γ̂ , r ∈ Tj

}
,

where T1 = (−d/2, 0) and T2 = (0, d/2) . Each layer
�fj

, in turn has a central axis, a translation of γ̂ , which we
denote by γ̂j . For a double-layer reduced model, a DLRM,
each layer �fj

is approximated by its central axis γ̂j . We
first derive equations governing flow in γ̂j and an equa-
tion coupling flow in γ̂j with flow in �j . These equations
are derived similarly to the corresponding equations in the
single-layer reduced model, the SLRM. Then to complete
the model, we derive an equation coupling flow in γ̂1 with
flow in γ̂2, as in the final model γ̂ , γ̂1, and γ̂2 are all
identified with each other. Also in the final model, after
the reductions process, it is implicitly supposed that the
surrounding porous medium is extended to the fault line.
However, this is not taken into account in the model as the
fracture is assumed to be narrow enough that the effect of
such an extension would be negligible

3.1 Derivation of the DLRM

To obtain the equations describing flow on γ̂j , we integrate
the equations for flow in �f , Eq. 2a, across normal cross
sections of �fj

. However, we first split the vector terms into
their normal and tangential parts. To do this, we will make use
of the normal and tangential divergence and gradient operators:

∇n· := N : ∇ and ∇τ · := T : ∇,

∇n := N∇ and ∇τ := T ∇,

and we will write the Darcy velocity in �f as a sum of its
normal and tangential components:

uf = Nuf + T uf = uf,n + uf,τ

with uf,n := Nuf and uf,τ := T uf . We will use the
hat notation ·̂ to denote reduced functions, i.e., functions
defined on γ̂1 or γ̂2 in the reduced model. The reduced
source term on γ̂j is defined to be q̂j := ∫

Tj
qf , while

the reduced (tangential) Darcy velocity along γ̂j is ûj :=∫
Tj

uf,τ . Then integrating the conservation equation, the
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second equation of Eq. 2a, across normal cross sections of
�fj

we obtain∫
Tj

∇ · uf = uf · n
∣∣
γ̂

− uf · n
∣∣
γj

+ ∇τ · ûj = q̂j

which we may now write as

∇τ · ûj = q̂j + �u · n�γj
in γ̂j , (3)

where we have introduced the flux jump �u · n�γj
across γ̂j

defined by

�u · n�γj
:= (−1)j (uf · n

∣∣
γ̂

− uf · n
∣∣
γj

)

= (−1)j
(
ûn − uj · n

∣∣
γj

)
.

For the second equality, we have used the continuity of
the flux at γj , the second equation of Eq. 2b, and have
introduced the notation ûn for uf · n

∣∣
γ̂
.

We consider now Darcy’s law in the fault �f and split it
into its normal and tangential components:

uf,n = −λf,n∇npf

uf,τ = −λf,τ∇τpf .

To derive a reduced form of Darcy’s law on γ̂j , we will
need the reduced pressure p̂j and the reduced permeability
λ̂ defined by

p̂j := 2

d

∫
Tj

pf and λ̂ := d
λf,τ

2
.

Considering the tangential part of Darcy’s law and integrat-
ing it across normal cross sections of each layer of the fault
we obtain

ûj = −λ̂∇τ p̂j , in γ̂j . (4)

The normal part of Darcy’s law can now be used to derive
a condition coupling flow in γ̂j with flow in �j . We inte-
grate over the normal cross sections of the outer half of the
layer �fj

and use the first equation of Eq. 2b, the continuity
condition for the pressure at the interface γj ,to obtain∫ b

a

uf,n · n = (−1)jλf,n

(
p̂j − pj

)
,

where a and b are, respectively, − d
2 and − d

4 if j = 1 and d
4

and d
2 if j = 2. Approximating the integral in the preceding

equation as follows:∫ b

a

uf,n · n ≈ d

4
uf,n · n

∣∣
γj

,

and using the continuity condition for the normal compo-
nent of the velocity, the second equation of Eq. 2b, we
obtain the coupling condition

uj · n = (−1)j2λ̂n

(
p̂j − pj

)
, on γ̂j , (5)

where λ̂n := 2

d
λf,n.

Now, even though γ̂j and γ̂ are, in the DLRM, in fact the
same interface, they are thought of as being different sides
of the interface, and two distinct flows (Darcy velocities and
pressures) (ûj , p̂j ) are calculated, so an additional equation
is now needed to express the coupling between the two sides
of the fault. To obtain this, we consider again the normal
component of the Darcy equation in �f and this time inte-
grate across the normal cross sections of the inner halves of
the two layers �f1 and �f2 :

∫ d
4

− d
4

uf,n · n = −λf,n

(
p̂2 − p̂1

)
.

Then using a mid-point rule to approximate the integral of
uf,n · n,

∫ d
4

− d
4

uf,n · n ≈ d

2
uf · n

∣∣
γ̂

= d

2
ûn,

we obtain the condition

ûn = λ̂n �p̂�γ̂ , (6)

where �p̂�γ̂ := p̂1 − p̂2.
Collecting the Eq. 2a for flow in �j , Eqs. 3 and 4 for

flow in the reduced fault layers γ̂j , and the coupling con-
ditions (5) and (6), we obtain the double-layer reduced
model: for the porous medium domains �j

∇ · uj = qj

uj = −�j∇pj in �j

pj = 0 on �j

, (7a)

for the two reduced layers of the fault

∇τ · ûj = q̂j + �u · n�γj

ûj = −λ̂∇τ p̂j in γ̂j

p̂j = 0 on ∂γ̂j

, (7b)

with the coupling conditions

u1 · n = 2λ̂n

(
p1 − p̂1

)
on γ̂1

u2 · n = 2λ̂n

(
p̂2 − p2

)
on γ̂2

ûn = λ̂n �p̂�γ̂ on γ̂ .

(7c)

As mentioned earlier, while constructing the DLRM, we
have distinguished three different interfaces, γ̂1, γ̂ , and γ̂2,
which are all in fact in the final model associated with the
same interface-domain. An alternative form of (7c) can thus
be obtained by considering the three equations to be equa-
tions on the same interface γ̂ and adding and subtracting
the first two equations to obtain an equivalent version of the
coupling conditions on γ̂ :
{{
u · n

}}
γ̂

= λ̂n

(
�p�γ̂ − �p̂�γ̂

)
�u · n�γ̂ = 4λ̂n

({{
p
}}

γ̂
− {{

p̂
}}

γ̂

)
ûn = λ̂n �p̂�γ̂ .

(7c-bis)



Comput Geosci (2016) 20:317–339 321

Here, the mean operators are defined by

{{
u · n

}}
γ̂

:= 1

2

(
u1 · n|γ̂ + u2 · n|γ̂

)
{{
p
}}

γ̂
:= 1

2

(
p1|γ̂ + p2|γ̂

)
and the jump operators by

�u · n�γ̂ := u1 · n|γ̂ − u2 · n|γ̂
�p�γ̂ := p1|γ̂ − p2|γ̂ .

Remark 1 We point that one can consider different val-
ues of λ̂ and λ̂n for each layer, and this is an important
property of the DLRM that the SLRM does not have. How-
ever, for simplicity of exposition, we have not done this
here. Nonetheless, in Section 5.3, we give an example with
different values of λ̂ each layer of the fault.

3.2 Weak formulation of the DLRM

The numerical discretization that we will use for the approx-
imation of Eq. 7 is based on a weak formulation which we
now define. Let V := ∏2

j=1 Vj , where Vj := H 1
�

(
�j

)
is

the space of those functions in H 1
(
�j

)
having a vanishing

trace on ∂�j ∩ � and V̂ := ∏2
j=1 V̂j , where V̂j = H 1

�

(
γ̂
)

is the space of functions in H 1
(
γ̂
)
having a vanishing trace

on ∂γ̂ ∩ �. We then define the bilinear forms a� and aγ̂ on

V × V and V̂ × V̂ , respectively, by

a� (p, v) :=
∑

j=1,2

(
�j∇pj , ∇vj

)
�j

, (8)

and

aγ̂

(
p̂, v̂

) :=
∑

j=1,2

(
λ̂∇τ p̂j , ∇τ v̂j

)
γ̂j

, (9)

and the global diffusion bilinear form a is defined on (V ×
V̂) × (V × V̂) by

a
((

p, p̂
)
,
(
v, v̂

)) := a� (p, v) + aγ̂

(
p̂, v̂

)
.

To enforce the coupling conditions (7c) in the weak for-
mulation, we need another bilinear form. Let cc denote the
bilinear form defined on (V × V̂) × (V × V̂) by

cc
((

p, p̂
)
,
(
v, v̂

)) :=
(
λ̂n �p̂�γ̂ , �v̂�γ̂

)
γ̂

+
∑

j=1,2

2
(
λ̂npj − λ̂np̂j , vj − v̂j

)
γ̂j

, (10)

which using Eq. 7c-bis may alternatively be written as

cc
((

p, p̂
)
,
(
v, v̂

)) :=
(
λ̂n �p̂�γ̂ , �v̂�γ̂

)
γ̂

+ 4
(
λ̂n

{{
p
}}

γ̂
− λ̂n

{{
p̂
}}

γ̂
,
{{
v
}}

γ̂
− {{

v̂
}}

γ̂

)
γ̂

+
(
λ̂n �p�γ̂ − λ̂n �p̂�γ̂ , �v�γ̂ − �v̂�γ̂

)
γ̂

. (10-bis)

The right-hand side functional F is defined on V × V̂ by

F
(
v, v̂

) :=
∑

j=1,2

(
qj , vj

)
�j

+
∑

j=1,2

(
q̂j , v̂j

)
γ̂j

.

The weak formulation of Eq. 7 may be written as follows:

find (p, p̂) ∈ V × V̂ such that

a
((

p, p̂
)
,
(
v, v̂

)) + cc
((

p, p̂
)
,
(
v, v̂

)) = F
(
v, v̂

)
,

for all (v, v̂) ∈ V × V̂. (11)

3.3 Weak formulation of the SLRM

We point out that the SLRM in [13, 34], with a suitable
choice of the weighting parameter, can be recovered by
requiring that p̂1 = p̂2, which implies that û1 = û2, and
that ûn = (u1 · n + u2 · n)/2 + (q̂1 − q̂2)/2. This, how-
ever, is equivalent to collapsing the interior half of the fault
resulting in a fault of half the width. Thus to maintain the
full width of the fault, every occurrence of d should be
replaced by 2d or more to the point, every occurrence of
λ̂ by 2λ̂ and every occurrence of λ̂n by λ̂n/2. Thus, now
writing p̂ for p̂j , û for û1 + û2 and q̂ for q̂1 + q̂2, the
SLRM can be written as follows: for the porous medium
domains �j

∇ · uj = qj

uj = −�j∇pj in �j

p = 0 on �j

(12a)

for the the reduced fault γ̂

∇τ · û = q̂ + �u · n�γ̂

û = −2λ̂∇τ p̂ in γ̂

p̂ = 0 on ∂γ̂

(12b)

with the coupling conditions

{{
u · n

}}
γ̂

= λ̂n

2
�p�γ̂

�u · n�γ̂ = 2λ̂n

({{
p
}}

γ̂
− p̂

)
on γ̂ .

(12c)

Note that in the case of the SLRM, the weak formulation
of Eq. 7 is modified as follows: the space V is unchanged,
the space V̂ is replaced by a single copy (instead of two) of
H 1

�(γ̂ ), in the two bilinear forms making up a((·, ·), (·, ·))
the bilinear form a�(·, ·) is unchanged, and the bilinear
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form aγ̂ (·, ·) is modified by removing the sum over j and
dropping the index j , and multiplying by 2:

aγ̂

(
p̂, v̂

) := 2
(
λ̂∇τ p̂, ∇τ v̂

)
γ̂

. (13)

For the SLRM, the bilinear form for the coupling simplifies
to

cc
((

p, p̂
)
,
(
v, v̂

)) := 1

2

(
λ̂n �p�γ̂ , �v�γ̂

)
γ̂

+ 2
(
λ̂n(

{{
p
}}

γ̂
− p̂), (

{{
v
}}

γ̂
− v̂)

)
γ̂

. (14)

4 Numerical approximation

The numerical approximation of the proposed models is the
main part of this work. For the derivation of the approxima-
tion, we will consider only planar faults and faces, although
some numerical results with non-planar faults are shown
in Section 5. In the first subsection, we briefly recall the
hybrid finite volume (HFV) scheme which is the basis for
the numerical scheme we use, (a more thorough description
is given in Appendix A.2) and show how this scheme can
be extended to approximate a reduced fault model. Then
follows an exposition of approximation using the virtual
fault cells approach. The final subsection is devoted to a
comparison of the two discretization techniques.

4.1 Discretization with the HFV scheme

In this part, we present the numerical discretization of both
DLRM and SLRM using the HFV scheme.

4.1.1 Discrete unknowns

To solve numerically (7) and (12), we use the hybrid finite
volume (HFV) scheme, introduced in [14, 17]. First, we
recall what is meant by an HFV discretization of an open set
O ⊂ R

N for N = 1, 2, 3.

Notation 1 (Discretization of O) For O an open set in R
N ,

a discretization of O, denoted by D is defined to be a triple
D := (M, E,P) where
1. M is a set of cells or control volumes, i.e., a set of dis-

joint, non-empty, open, polyhedra if N = 3, polygons
if N = 2, or line segments if N = 1, lying in O such
that

O =
⋃

K∈M
K. (15)

For K a cell, let |K| > 0 denote the measure of K .
2. E is the set of the (N−1)-dimensional faces of the cells

inM. The set E is divided into the set of external faces
Eext = {σ ∈ E : E ⊂ ∂O}, and the set of internal faces

Eint = {σ ∈ E : E ⊂ O}. We have E = Eint ∪ Eext.
For σ ∈ E, |σ | > 0 will denote the measure of σ . We
assume |σ | = 1 if N = 1. For each cell K ∈ M, we
denote by EK ⊂ E the set of all (N − 1)-dimensional
faces of K and for each face σ ∈ E , we denote by
Mσ := {K ∈ M : σ ∈ EK} the set of all cells in M
having σ as a face;

3. P is the set of points, defined by P := {xK : K ∈ M}
∪ {xσ : σ ∈ E} , where xK is the barycentre of the cell
K ∈ M and xσ is the barycentre of the face σ ∈ E ;

4. For each cell K ∈ M and face σ ∈ EK , we indicate
by nK,σ the unit vector normal to σ pointing out-
ward from K . If N = 1, then nK,σ is just the vector
tangential to K at σ and pointing outward from K;

5. For each cell K ∈ M and face σ ∈ EK , we denote by
DK,σ ⊂ K the cone with vertex xK and base σ and by
dK,σ ∈ R

+ the orthogonal distance between xK and σ .

To obtain an HFV discretization of a domain with a fault,
we extend this notation to the case of an open set � ⊂ R

N ,
for N = 2, 3, which is divided into the subdomains �1 and
�2 by an interface (planar ifN = 3,linear ifN = 2) fault γ̂ .

Notation 2 (Discretization of (�, γ̂ )) For a domain � ⊂
R

N divided into the subdomains �1 and �2 by an interface
fault γ̂ , we construct a discretization (D, D̂) from dis-
cretizationsDj = (Mj , Ej ,Pj ) of �j and from, in the case
of the SLRM, a discretization D̂ = (M̂, Ê, P̂) of γ̂ or in the
case of the DLRM, discretizations D̂j = (M̂j , Êj , P̂j ) of
γ̂j , where γ̂j is the part of the boundary of �j lying on the
fault γ̂ . Then D is defined to be

D = (M, E,P) where

M = M1 ∪ M2, E = E1 ∪ E2, P = P1 ∪ P2,

and D̂ is defined by

in the case of the SLRM

D̂ = (M̂, Ê, P̂) as given

or in the case of the DLRM

D̂ = (M̂, Ê, P̂) where

M̂ = M̂1 ∪ M̂2, Ê = Ê1 ∪ Ê2, P̂ = P̂1 ∪ P̂2,

Denote by Ej,int, the set of internal faces of Ej , and divide
the external faces of Ej into Ej,� , the set of faces lying on
the boundary � of �, and Ej,γ̂ , the set of those lying on the
fault γ̂ .

For the SLRM, we will say that the discretization (D, D̂)

is conforming if the set of control volumes M̂ is identical to
both the set of faces E1,γ̂ and the set of faces E2,γ̂ , i.e., the
discretizations D1 and D2 match up along γ̂ , and the dis-
cretization on γ̂ is inherited from each of the discretizations
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Fig. 3 Example of cells
adjacent to the fault for the
SLRM and DLRM. These
represent conforming meshes in
the sense that the fault mesh is
inherited from the domain mesh

D1 and D2. Then, if K̂ ∈ M̂, a face in Ej,γ̂ coinciding with

K̂ will be denoted σ
K̂,j

.

In the case of the DLRM, the discretization (D, D̂) is said
to be conforming if the set of cells in M̂j is identical with
the set of faces Ej,γ̂ . However, the two discretizations D̂j

(when viewed as discretizations on γ̂j ) are not required to
be identical. Then, if K̂j ∈ M̂j , a face in Ej,γ̂ coinciding

with K̂j will be denoted σ
K̂j

.
See Fig. 3 for an example of meshes. For a discretiza-

tion (D, D̂), the pressure in the matrix is approximated by a
scalar value pK in each cell K ∈ M and by a scalar value
pσ for each face σ ∈ E . Similarly, the pressure in the fault
is approximated by a scalar value p̂

K̂
in each cell K̂ ∈ M̂

and by a scalar value p̂σ̂ on each face σ̂ ∈ Ê . So the dis-
crete solution which we will denote (p, p̂), with apologies
for the abuse of notation, associated with (D, D̂) is of the
form

p = ((pK)K∈M, (pσ )σ∈E )

p̂ = (
(p̂

K̂
)
K̂∈M̂, (p̂σ̂ )

σ̂∈Ê
)

with pK, pσ , p̂
K̂

,and p̂σ̂ representing an approximation of

the average value of p in K, σ, K̂ , and σ̂ , respectively. Thus
for the SLRM with a conforming discretization (D, D̂),
a cell K̂ ∈ M̂ is also both a face σ1 ∈ E1,γ̂ and a
face σ2 ∈ E2,γ̂ and will thus be associated with three
values p̂

K̂
, pσ1 , and pσ2 . Similarly for the DLRM with

a conforming discretization (D, D̂), if a cell in M̂1 is
also a cell in M̂2, it will be associated with four values;
cf. Fig. 4.

4.1.2 A HFV scheme for the rock matrix

The discrete problem for the HFV scheme is based on
the variational form of the continuous problem (11) and
requires the definition of a discrete gradient. Once the dis-
crete gradient ∇D is defined, the bilinear form Eq. 8 is
approximated by replacing the gradient with the discrete
gradient in its definition. To define the discrete gradient

operator, we begin by defining for each K ∈ M a cell
gradient:

∇K p := 1

|K|
∑

σ∈EK

|σ | (pσ − pK) nK,σ

and for each face σ ∈ EK , a stabilization term for the cone
DK,σ with vertex xK and base σ (DK,σ ⊂ K):

RK,σ p := β

dK,σ

[pσ − pK − ∇K p · (xσ − xK)] ,

where β = √
αN , and α ∈ R

+ is a stabilization parameter
which can vary from cell to cell, see Appendix A.2.2. Then,
the discrete gradient for the matrix domain is defined by

∇D p|DK,σ
:= ∇K p + RK,σ p nK,σ .

The discrete gradient ∇D p is thus piecewise constant,
constant on each cone DK,σ , K ∈ M, σ ∈ EK,σ .

4.1.3 A HFV scheme for the fault

For implementation in the SLRM or DLRM, we also
need a discrete (tangential) gradient in the fault which is
defined similarly. Once the discrete tangential gradient ∇̂D

Fig. 4 Example, in the case of the SLRM, of a mesh for (�, γ̂ ) with
a representation of the d.o.f.’s. In the case of the DLRM, the d.o.f.’s in
the fault are doubled
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is defined, the bilinear form Eq. 9 is approximated by
replacing the tangential gradient with the discrete tangential
gradient in its definition. For each K̂ ∈ M̂, the (fault) cell
gradient is defined by

∇̂
K̂

p̂ := 1
ˆ|K|

∑
σ̂∈E

K̂

∣∣σ̂ ∣∣ (p̂σ̂ − p̂
K̂

)
n̂

K̂,σ̂
, (16)

and for each σ̂ ∈ Ê
K̂
, the stabilization term R

K̂,σ̂
is defined

on the cone D
K̂,σ̂

by

R
K̂,σ̂

p̂ := β̂

d
K̂,σ̂

[
p̂σ̂ − p̂

K̂
− ∇̂

K̂
p̂ · (

xσ̂ − x
K̂

)]
, (17)

where β̂ = √
α̂(N − 1) and α̂ ∈ R

+ is a stabilization
parameter for the fault cell K̂ . Then, as in the matrix, the dis-
crete (tangential) gradient for the fault domain γ̂ is defined
cone by cone:

∇̂D p̂

∣∣∣
D

K̂,σ̂

:= ∇̂
K̂

p̂ + R
K̂,σ̂

p̂ n̂
K̂,σ̂

. (18)

4.1.4 Coupling between the rock matrix and the fault

The HFV equations in the matrix domain and those in the
fault then must be coupled through a discrete version of the
coupling equations. For the SLRM with a conforming dis-
cretization (D, D̂), this approximation is quite simple; the
bilinear form cc((·, ·), (·, ·)) of Eq. 14 is approximated as
follows: for (p, p̂) and (v, v̂) in V × V̂,

cc
(
(p, p̂), (v, v̂)

) ≈
∑
K̂∈M̂

λ̂n

2

∣∣K̂∣∣ �p�
K̂

�v�
K̂

+
∑
K̂∈M̂

2λ̂n

∣∣K̂∣∣ ({{p}}
K̂

− p̂
K̂

) ({{
v
}}

K̂
− v̂

K̂

)
. (19)

where the jump and the average term are given by

�p�
K̂

= pσ
K̂,1

− pσ
K̂,2

,
{{
p
}}

K̂
=

pσ
K̂,1

+ pσ
K̂,2

2
,

with σ
K̂,j

the face in Ej,γ̂ coinciding with K̂ .
For the DLRM, even with a conforming discretization,

the fault cells in M̂1 do not match up with those in M̂2

and this non matching between the two layers must be taken
into account. Here, the expression for the bilinear form
cc((·, ·), (·, ·)) given in Eq. 10 is used. For the first term
of Eq. 10, we must consider a common refinement of the

meshes M̂j . We let ˆ̂M be the smallest common refinement

ˆ̂M = { ˆ̂
K = K̂1 ∩ K̂2 
= ∅ : K̂j ∈ M̂j },

and the approximation is given by
∑
ˆ̂

K∈ ˆ̂M
λ̂n| ˆ̂

K|(p̂
K̂ ˆ̂

K,1
− p̂

K̂ ˆ̂
K,2

)(v̂
K̂ ˆ̂

K,1
− v̂

K̂ ˆ̂
K,2

), (20)

where K̂ ˆ̂
K,j

∈ M̂j is such that ˆ̂
K = K̂ ˆ̂

K,1
∩ K̂ ˆ̂

K,2
. The

second term of Eq. 10, which is not affected by the fact that
the discretizations of the two layers of the fault may not
coincide, is approximated simply by∑
j

∑
K̂j ∈M̂j

2λ̂n|K̂j |(pσ
K̂j

− p̂
K̂j

)(vσ
K̂j

− v̂
K̂j

), (21)

where σ
K̂j

is the face in Eγ̂ ,j coinciding with K̂j .

4.2 Discretization with virtual fault cells

We consider another type of discretization based on a dif-
ferent construction of the fault mesh. This second approach
avoids the explicit construction of the tangential operators
placing all of the complexity of the approximation on the
construction of the fault mesh. We start with a conforming
discretization (D, D̂) as described in the preceding subsec-
tion and construct a new discretization (D, D̂) consisting
only of N-dimensional cells. This second method of dis-
cretization in fact is made by giving width to the interface
cells in the direction normal to the interface and can be seen
in some loose sense as the inverse of the process used to
obtain the reduced model. We will use the wide hat notation
·̂ to denote objects pertaining to the virtual fault domain.

Definition 1 (Virtual fault cell - SLRM) Given K̂ ∈ M̂,
we construct an N-dimensional cell K̂ , called a virtual fault
cell, by expanding K̂ in both directions ±n, normal to the
fault:

K̂ =
{
x = x̂ + ξd

2
n ∈ R

N : x̂ ∈ K̂, |ξ | < 1

}
.

Definition 2 (Virtual fault cell - DLRM) Given K̂ ∈ M̂j ,
we construct theN-dimensional cell K̂ , called a virtual fault
cell, by expanding K̂ in the normal direction but only on
one side of the fault, the side toward �j , i.e., in the direction
(−1)jn:

K̂ =
{
x = x̂ + (−1)j

ξd

2
n : x̂ ∈ K̂, 0 ≤ ξ < 1

}
.

In Fig. 5, we show an example of the construction of
virtual cells for both the SLRM and DLRM.

We consider the mesh M̂ for the faults defined to be the
collection of all the virtual cells. We will also need a set of
faces Ê and a set of points P̂ .

Definition 3 (Discretization of γ̂ by virtual cells - SLRM)
Given a conforming discretization (D, D̂) of (�, γ̂ ) as
defined in Notation 2, the corresponding discretization of
γ̂ by virtual fault cells is defined to be the triplet D̂ :=(
M̂, Ê, P̂

)
, where M̂ is the set of virtual fault cells obtained
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Fig. 5 Representation of virtual
cells, in red and blue, for a
general configuration

by expanding the cells of M̂, Ê is the set of ((N − 1)-
dimensional) faces of cells in M̂, and P̂ is the set of points
that are the barycentres of elements of M̂ or of elements of
Ê .

Now, we construct the set M′ = M ∪ M̂ but in which
we identify the faces in Ej,γ̂ with the corresponding faces
in Ê on the j th side of γ̂ . In this manner, we obtain a set of
cellsM′ which may be thought of as a mesh for the “virtual
domain” �̂ obtained from� by expanding the “flat domain”
γ̂ to obtain an N-dimensional fault domain of width d.
More precisely, since we have assumed that the discretiza-
tion (D, D̂) is conforming, each face σj ∈ Ej,γ̂ coincides

with a cell K̂ ∈ M̂, that we may denote K̂σj
. Then the vir-

tual cell K̂σj
∈ M̂ obtained by expanding K̂σj

has one face

σK̂σj
parallel to K̂σj

and on the j th side of K̂σj
, and we shall

identify this face with σj . There will be only one pressure
unknown associated with each face σj , i.e., pσj

= pσK̂σj

.

Then with E ′ and P ′ defined in the obvious manner, we
may consider the discretization D′ = (M′, E ′,P ′) as a
discretization of the domain

�̂ := �1 ∪ �2 ∪ γ̂ ,

where γ̂ is the interior of the union of the closures of the
virtual cells in M̂. Now, we may apply the standard HFV
method to the discretization D′ of �̂.

We will show below that, under certain hypotheses, this
scheme is equivalent to the scheme defined earlier.

Remark 2 In the general case where the fault segments are
not collinear, it is still possible to build up the virtual cells;
however, a more careful description of the pairs of degrees
of freedom should be considered. Moreover, the virtual cells
may overlap each others. In Section 5, we consider faults
made of non collinear elements. See Fig. 6 for an example
of virtual cells for a general mesh.

4.3 Comparison of the two approaches

In this subsection, we prove two results that can be use-
ful for the implementation of the proposed method. In
particular, we show that for the SLRM, the implementa-
tion of the HFV method for the reduced model by the
method with virtual cells as described in Section 4.2 is
equivalent to the implementation with the discretization
described in Section 4.1 cf. also [34, section 5] where a sim-
ilar result for the SLRM discretized with a mixed method
was used to establish error estimates. For the DLRM, we
show equivalence of modifications of the two methods
obtained by discretizing in the fault with a two-point flux
scheme instead of the HFV method while retaining the HFV
method for discretization in the matrix cells of M1 and
M2 and retaining the discretization given for the coupling
conditions.

Fig. 6 Example of construction
of virtual cells, for both the
SLRM and DLRM, for a general
configuration. The arrow in the
figure are the outward normals
for the tangential part of the
fault cells
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4.3.1 Discrete equivalence of SLRM

In this part, we detail the equivalence, at discrete level for
the SLRM, of the HFV numerical scheme applied directly
to the reduced model and the virtual cell approach.

Theorem 1 (Discrete equivalence - SLRM) For a domain
� with an interface fault γ̂ modeled with the SLRM and
a conforming discretization (D, D̂), the numerical solution
obtained using the HFV method of Section 4.1 with sta-
bilization parameters α and α̂ satisfying αN = 2 and
αN = 2α̂(N − 1) is equivalent to that obtained using the
HFV method with stabilization parameter α for the associ-
ated virtual fault discretization D′ = (D, D̂) of the virtual
domain �̂ described in Section 4.2.

Proof For simplicity, we give the proof only in the case in
which N = 2, the proof in the case N = 3 being quite
similar. Also for simplicity, we assume that �f is constant.
It is easy to check that there is an obvious correspondence
between the unknown values

p = ((pK)K∈M, (pσ )σ∈E ) and
p̂ = (

(p̂
K̂

)
K̂∈M̂, (p̂σ̂ )

σ̂∈Ê
)

for the standard HFV discretization for the reduced model
and those for the discretization with virtual fault cells

p′ = (
(p′

K)K∈M′, (p′
σ )σ∈E ′

) ;
see Fig. 7.

For the SLRM, the bilinear form a
(
(·, ·), (·, ·)) +

cc
(
(·, ·), (·, ·)) of Eq. 11 is made up of four parts:

a�(·, ·), aγ̂ (·, ·) and the two terms of cc
(
(·, ·), (·, ·)) as

given in Eq. 14. For the virtual fault scheme the weak
formulation takes the form

find p ∈ V�̂ such that

a�̂(p, v) = F(v), (22)

for all v ∈ V�̂,

where V�̂ = H 1
�(�̂) and where

a�̂(p, v) := (�∇p, ∇v)�̂ .

To compare the two schemes, we first observe that for p and
v in V�̂,we have

a�̂(p, v) = (�∇p, ∇v)�1∪�2
+ (�∇p, ∇v)γ̂ , (23)

where γ̂ is the interior of the union of the closures of the
virtual cells. Then, we compare the approximations of these
bilinear forms. As the terms from the form a�(·, ·) are
exactly the same as those in the first term in the decompo-
sition of a�̂(·, ·) given in Eq. 23, and they are approximated
in precisely the same manner, we are left to compare the
approximation of aγ̂ (·, ·) + cc((·, ·), (·, ·)) with that of the
second term of the decomposition of a�̂(·, ·) given in Eq. 23.

From Eq. 19, we see that the bilinear form cc
(
(·, ·), (·, ·)) of

Eq. 14 is approximated as follows: for (p, p̂) and (v, v̂) in
V × V̂ ,

cc
(
(p, p̂), (v, v̂)

) ≈
∑
K̂∈M̂

λ̂n

2

∣∣K̂∣∣ �p�
K̂

�v�
K̂

+
∑
K̂∈M̂

2λ̂n

∣∣K̂∣∣ ({{p}}
K̂

− p̂
K̂

) ({{
p
}}

K̂
− v̂

K̂

)
. (24)

From Eqs. 16–18, we calculate that the bilinear form
aγ̂ (·, ·) of Eq. 13, corresponding to the tangential flow Eq.

12b, is approximated as follows: for p̂ and v̂ in V̂ ,

aγ̂ (p̂, v̂) =
∑

K̂∈M̂

∫
K̂

2λ̂∇τ p̂ · ∇τ v̂dx̂

≈
∑

K̂∈M̂

∫
K̂

2λ̂∇̂D p̂ · ∇̂D v̂dx̂

=
∑

K̂∈M̂
2λ̂

∣∣K̂∣∣∇̂
K̂

p̂ · ∇̂
K̂

v̂

+ 2
∑

K̂∈M̂
λ̂
∣∣K̂∣∣ 2∑

j=1

R
K̂,σ̂

K̂,j
p̂R

K̂,σ̂
K̂,j

v̂,

where σ̂
K̂,1 and σ̂

K̂,2 are the two faces (i.e., vertices) of K̂ ,
which we suppose are numbered such that the vector point-
ing from σ̂

K̂,2 toward σ̂
K̂,1 is oriented in the same direction

as τ , so that the second summation in the last term is over
the two cones (i.e., half segments) of K̂ . The cell gradient
may be written

∇̂
K̂

p̂ = 1∣∣K̂∣∣δK̂
(p̂σ̂ )τ ,

where we have written δ
K̂

(p̂σ̂ ) for p̂σ̂
K̂,1

− p̂σ̂
K̂,2

, while the
stabilization term in the cone D

K̂,σ̂
K̂,j

is

R
K̂,σ̂

K̂,j
p̂ = (−1)j

β̂∣∣K̂∣∣/2
(
μ

K̂
(p̂σ̂ ) − p̂

K̂

)
,

where we have denoted by μ
K̂

(p̂σ̂ ) the average value
(p̂σ̂

K̂,1
+ p̂σ̂

K̂,2
)/2 . So we may nowwrite the approximation

for the bilinear form aγ̂ (·, ·),as follows:

aγ̂ (p̂, v̂) ≈
∑

K̂∈M̂

2λ̂∣∣K̂∣∣δK̂
(p̂σ̂ )δ

K̂
(v̂σ̂ )

+
∑

K̂∈M̂

8λ̂β̂2∣∣K̂∣∣
(
μ

K̂
(p̂σ̂ ) − p̂

K̂

) (
μ

K̂
(v̂σ̂ ) − v̂

K̂

)
, (25)

with β̂ = √
α̂(N − 1).

We next need to make explicit the terms in the approx-
imation of the second term in the decomposition given in
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Eq. 23 of a�̂(·, ·) which we then split into tangential and
normal components: for p and v in V�̂,

(�∇p, ∇v)γ̂ ≈
∑

K̂∈M̂

∫
K̂

∇D p · �∇D vdx

=
∑

K̂∈M̂

∫
K̂

N∇D p · �N∇D vdx

+
∑

K̂∈M̂

∫
K̂

T ∇D p · �T ∇D vdx.

For K̂ ∈ M̂ and σK̂,j , the face of K̂ identified with a face in

Ej,γ̂ and σ̂K̂,1 and σ̂K̂,2 the remaining two faces of K̂ num-
bered such that τ points from the midpoint of σ̂K̂,2 toward
that of σ̂K̂,1, (see Fig. 7) the cell gradient maybe written as
follows:

∇K̂p = − 1

d
(pσK̂,1

− pσK̂,2
)n + 1∣∣K̂∣∣ (pσ̂K̂,1

− pσ̂K̂,2
)τ ,

where we recall that K̂ is a rectangle with
∣∣K̂∣∣ = d

∣∣K̂∣∣,
while the four stabilization terms are

RK̂,σK̂,j
pnK̂,σK̂,j

=(−1)j
2β

d

(
μK̂(pσ )−pK̂

)
n

RK̂,̂σK̂,j
pnK̂,̂σK̂,j

=(−1)j+1 2β∣∣K̂∣∣
(
μK̂(pσ̂ )−pK̂

)
τ,

with the average terms μK̂(pσ ) = (pσK̂,1
+ pσK̂,2

)/2 and
μK̂(pσ̂ ) = (pσ̂K̂,1

+ pσ̂K̂,2
)/2. The contribution from the

normal part of the discrete term is thus

∑
K̂∈M̂

∫
K̂

N∇D p · �N∇D vdx

=
∑

K̂∈M̂

λ̂n

2

∣∣K̂∣∣δK̂ (pσ )δK̂ (vσ )

+
∑

K̂∈M̂
λ̂n

∣∣K̂∣∣β2(μK̂(pσ )−pK̂

)(
μK̂(vσ )−vK̂

)
, (26)

while that from the tangential part is

∑
K̂∈M̂

∫
K̂

T ∇D p · �T ∇D vdx

=
∑

K̂∈M̂

2λ̂∣∣K̂∣∣δK̂ (pσ̂ )δK̂ (vσ̂ )

+
∑

K̂∈M̂

4λ̂β2∣∣K̂∣∣
(
μK̂(pσ̂ )−pK̂

)(
μK̂(vσ̂ )−vK̂

)
, (27)

with δK̂ (pσ ) = pσK̂,1
− pσK̂,2

and δK̂ (pσ̂ ) = pσ̂K̂,1
− pσ̂K̂,2

,

and β = √
αN . Now identifying for each K̂ ∈ M̂, the

unknowns p̂
K̂
, p̂σ̂

K̂,1
, p̂σ̂

K̂,2
, pσ

K̂,1
, and pσ

K̂,2
, respectively,

of the HFV discretization of the SLRM with the unknowns

pK̂, pσ̂K̂,1
, pσ̂K̂,2

, pσK̂,1
and pσK̂,2

, respectively, of the HFV

discretization of �̂ using virtual elements, we have that Eq.
26 is equivalent to Eq. 24 if β2 = 2, while Eq. 27 is
equivalent to Eq. 25 provided that 2β̂2 = β2.

4.3.2 Discrete equivalence of DLRM

We turn our attention now to a comparison of the two dis-
cretization techniques for the DLRM for a domain � with
interface fault γ̂ = γ̂1 = γ̂2. We suppose that we have a con-
forming discretization (D, D̂), and recall that this does not
imply that M̂1 coincides with M̂2. We point out though that
in the case that M̂1 and M̂2 do coincide the demonstration
of Theorem 1 extends immediately to show that the dis-
cretization with virtual (N -dimensional) fault cells and that
with interface ((N − 1)-dimensional) cells for the fault are
equivalent with the appropriate conditions on β and β̂. How-
ever in the general case (when the grids M̂1 and M̂2 in the
fault are non matching), such an equivalence no longer holds
as tangential terms of the discrete gradient are involved in
the approximation of the coupling conditions. In the follow-
ing theorem, however, we do obtain an equivalence when
the classical two-point flux approximation (TPFA) scheme
is used for the problem inside the fault (while retaining the
HFV method in the matrix domains).

Before stating the equivalence theorem for the DLRM,
we give a more precise description of the modification
of each scheme that is used in the theorem. For the dis-
cretization using (N − 1)-dimensional cells in the fault, the
modifications are as follows:

– For the discretization of the bilinear form a�(·, ·),
there is no change as the HFV method is still used.

– For the discretization of aγ̂ (·, ·), the HFV method is
replaced by the two point flux method: there are no
pressure unknowns on the faces σ̂

K̂,j
of the cells K̂ ∈

M̂.
– For the discretization of cc

(
(·, ·), (·, ·)), there is no

change.
For the discretization using virtual (N-dimensional) cells in
the fault, we have

– For the discretization of the first term in the decompo-
sition Eq 23 of a�̂(·, ·), there is no change: the HFV
method is used.

– For the discretization of the second term in the decom-
position (23) of a�̂(·, ·), the two point flux method is
used with a minor modification:
– For the tangential component, the standard two-
point flux method is used. There are no pressure
unknowns associated with the faces σ̂K̂,j of K̂j ∈
M̂j that lie in the interior of γ̂ .

– For the normal component, for a cell K̂j ∈ M̂j , as
the HFV method has been used in the neighboring
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Fig. 7 Notations for a 1D-cell
and a virtual 2D-cell. The names
of the unknowns are chosen to
easily compare the results

cell Kj ∈ Mj , there is a pressure value available
on the the face σK̂j

common to the virtual cell K̂j

and to the cell Kj . The value pσK̂j
together with

the value pK̂j
is used to approximate the normal

component of the gradient of p in K̂j (instead of
the value pKj

).

The following result shows the equivalence when a two-
point flux scheme is considered to approximate the tangen-
tial component of the second term of Eq. 23, but would also
be the case if we were using the HFV method, provided or
course that 2β̂2 = β2. The proof is given in the simple case
of planar faults.

Theorem 2 (Two-points discrete equivalence—DLRM)
Suppose � is a domain with an interface fault γ̂ modeled
with the DLRM and that (D, D̂) is a conforming discretiza-
tion of (�, γ̂ ). The numerical solution obtained using the
HFV method of Section 4.1 but a two-point scheme as
described above for the fault is equivalent to that obtained
using the HFV method for the associated virtual fault dis-
cretization D′ = (D, D̂) of the virtual domain �̂ described
in Section 4.2 with the modification for the virtual cells
described above.

Proof Again for simplicity, we assume N = 2 and that
�f is constant. As in the proof of Theorem 1, it is suffi-
cient to compare the terms coming from the bilinear forms
cc

(
(·, ·), (·, ·)) and aγ̂ (·, ·), i.e., from the coupling terms and

those associated with flow in the fault, with the terms asso-
ciated with the second term in Eq. 23. It is also clear that the
terms in the discretization of aγ̂ (·, ·) correspond precisely

to those in the tangential component of the discretization of
the second term of Eq. 23.

So we have left to compare the terms associated with
the discretization of cc

(
(·, ·), (·, ·)) with those associated

with the normal component of the discretization of the sec-
ond term of Eq. 23. From Eq. 10 and the approximations
given in Eqs. 20 and 21, we have the approximation of
cc

(
(p, p̂), (v, v̂)

)
is given as follows:

∑
j

∑
K̂j ∈M̂j

2λ̂n|K̂j |(pσ
K̂j

− p̂
K̂j

)(vσ
K̂j

− v̂
K̂j

) (28)

+
∑
ˆ̂

K∈ ˆ̂M
λ̂n| ˆ̂

K|(p̂
K̂ ˆ̂

K,1
− p̂

K̂ ˆ̂
K,2

)(v̂
K̂ ˆ̂

K,1
− v̂

K̂ ˆ̂
K,2

), (29)

where as in Eq. 20, ˆ̂M is the smallest common refinement

of M̂1 and M̂2, and for ˆ̂
K ∈ ˆ̂M, K̂ ˆ̂

K,j
∈ M̂j is such that

K̂ ˆ̂
K,1

∩ K̂ ˆ̂
K,2

= ˆ̂
K .

The normal component of the second term of Eq. 23 is

(λf,n
∂p

∂n
,
∂v

∂n
)γ̂ and is approximated by

∑
j

∑
K̂j ∈M̂j

2λ̂n|K̂j |(pσK̂j
− pK̂j

)(vσK̂j
− vK̂j

) (30)

+
∑

̂̂
K∈̂̂M

λ̂n| ˆ̂
K|(pK̂ ˆ̂

K,2
− pK̂ ˆ̂

K,1
)(vK̂ ˆ̂

K,2
− vK̂ ˆ̂

K,1
), (31)

where we have used the fact that for K̂j ∈ M̂j ,

λf,n|K̂j | = λf,n
d|K̂j |
4

= 2λ̂n

(
d

4

)2

|K̂j |,



Comput Geosci (2016) 20:317–339 329

Fig. 8 Homogeneous academic
case: a computational domain
with some of the data for the
problem and meshes. The coarse
mesh b for the reduced model
has 1275 hexahedra outside the
fault and 51 elements in the
fault, while the fine mesh c
corresponding to a fine 2-D
discretization of the fault has
34,000 hexahedra

and similarly that if ̂̂
K ∈ ̂̂M, then

λf,n|̂̂K| = λf,n
d| ˆ̂

K|
2

= λ̂n

(
d

2

)2

| ˆ̂
K|.

Now identifying for each K̂j ∈ M̂j , the unknowns
p̂

K̂j
and pσ

K̂j
, respectively, of the discretization of the

DLRM using (N −1)-dimensional cells in the fault with the
unknowns pK̂j

and pσK̂j
, respectively, of the discretization

of the DLRM using virtual elements in the fault, we have
that expression (30) is equivalent to Eq. 28 while expression
(31) is equivalent to Eq. 29.

Remark 3 Theorem 2 shows that the straightforward dis-
cretization of the DLRM is similar to a two-point flux
approximation of the normal fluxes in the virtual fault cell
approach. While this is satisfactory for the fluxes between
the fault and its adjacent domain, it is not accurate enough
for the fluxes between the two sides of the fault where the
grids do not match. Therefore, in the following, we shall
only consider the virtual cell approach for which an accu-
rate approximation of the non matching terms is obtained
with the HFV scheme.

5 Numerical experiments

In the three following subsections, we present several
numerical experiments to validate and assess the proposed
double-layer reduced model discretized by the hybrid finite
volume scheme. The first subsection is devoted to academic
tests for a homogeneous porous medium divided into two

subdomains by a single fault while the second section con-
siders instead a layered heterogeneous medium outside the
fault. For these two academic tests, we use a direct method
to solve the linear systems. The third section is devoted
to a realistic test. In all experiments, the coercivity of the
discrete bilinear forms is ensured for α = 1. Moreover,
when α = 1, for Cartesian grid the HFV scheme reduces
to TPFA. See [26] for a discussion of different values
of α.

5.1 Model validity: homogeneous case

We consider the domain � = (0, 100)2, with a vertical fault
of thickness d = 2 running along the middle of �: γ̂ ={
(x, y) ∈ R

2 : x = 50
}
. See Fig. 8a. We assume Dirichlet

boundary conditions for

�D,1 =
{
(x, y) ∈ R

2 : y = 100 and x < 20
}

�D,2 =
{
(x, y) ∈ R

2 : y = 0 and x > 80
}

with data p = 1 and homogeneous Neumann boundary
conditions for the rest of the boundary. For the fault, we
impose homogeneous Neumann boundary conditions. We
set a source term in the regions

�q,1 = {(x, y) ∈ (0, 2) × (0, 4)}
�q,2 =

{
(x, y) ∈ (98, 100)2

}

equal to 10−2, for �q,1 and −10−2 for �q,2.
We consider a coarse mesh where the reduced model

is used and a fine mesh corresponding to a fine 2-D dis-
cretization of a region including the fault is used. In the

Fig. 9 Barrier case: Model
error between the reduced
model solution on the coarse
mesh (Fig. 8b) and the full 2-D
model solution on the fine mesh
(Fig. 8c)
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Fig. 10 Channel case: Model
error between the reduced
model solution on the coarse
mesh (Fig. 8b) and the full 2-D
model solution on the fine mesh
(Fig. 8c)

latter method, the fault is discretized with six elements in
the normal direction to the fault. See Figs. 8b, c. One should
note that for the reduced model, the subdomain meshes do
not match (Fig. 8). We introduce the relative error between
the solution pcoarse obtained with the reduced model and
a coarse grid and the full 2-D model solution pfine, that
obtained with a fine 2-D discretization of the fault, as an
indicator of the validity of the reduced model. For a given
cell K ∈ M, we have

err(K) := ‖
pfine − pcoarse‖L2(K)

‖
pfine‖L2(K)

, (32)

with M the coarse mesh and 
pfine the interpolation of
pfine on the coarse mesh M, setting up the problem such
that the pressure field is not zero. Of course, this definition
of the error gives a larger error than one would obtain with
an error calculated by comparing the pressure in the matrix
obtained with the reduced model with that obtained using
the non-reduced model and then comparing the correspond-
ing pressures in the fracture. With the error as we define
it here, on a very narrow strip surrounding the fracture, we
are actually comparing a pressure in the fracture (from the
non-reduced model) with a pressure in the matrix (from the
reduced model).

We consider three test cases corresponding to different
permeabilities in the fault while maintaining the identity
matrix for the permeability tensor in �i for i = 1, 2.

We choose as the permeability in the fault �f =
diag

{
10−2, 1

}
. In Fig. 9, we show the solutions obtained

with the reduced model, Fig. 9a, with the full 2-D model on
a refined mesh, Fig. 9b, and the error between them err(K)

given by Eq. 32, (Fig. 9c). We observe that the largest part

of the error is concentrated in the strip along the fracture
where fracture pressure is being compared with matrix pres-
sure. This is as expected since in the non-reduced model,
there is a steep pressure gradient across the fault, where as
in the reduced model, the pressure has a large discontinu-
ity across the fracture. See Figs. 9a, b. However, a little far
away from the fault the error is much smaller. The error in
all the domain is of the order O

(
10−2

)
, confirming a good

approximation in this case.
We chose as the permeability in the fault �f =

diag
{
1, 102

}
. Figure 10 shows the solutions obtained with

the reduced model, Fig. 10a, with the full 2-D model on
a refined mesh, Fig. 10b, and the error between them,
Fig. 10c.

We note that the error in the strip around the fracture is
not dominant as in the barrier case because the pressure is
smoother; it changes more gradually across the fracture. For
this problem, the error is half that of the previous case and
is concentrated in the left part of the domain, since there
the source term is larger. The solution is qualitatively the
same.

We chose as the permeability in the fault �f =
diag

{
10−2, 102

}
if 25 ≤ y ≤ 75 and �f equal to the

identity matrix otherwise, like in the subdomains. Figure
11 shows the solutions obtained with the reduced model,
Fig. 11a, with the full 2-D model on a refined mesh, Fig.
11b. The behaviour of the error is a combination of the
two previous cases. In fact, the larger error is concentrated
close to the fault and decays away from it. Around the two
extremities, the error behaves like in the last test case. The
error is, however, of the same magnitude as for the first test
case.

Fig. 11 Fully immersed case:
Model error between the
reduced model solution on the
coarse mesh (Fig 8b) and the
full 2-D model solution on the
fine mesh (Fig. 8c)
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Fig. 12 Heterogeneous
academic case: a computational
domain with some of the data
and meshes. The coarse mesh b
for the reduced model has 45
hexahedra outside the fault and
9 elements in the fault, while the
fine mesh c corresponding to a
fine 2-D discretization of the
fault has 6400 hexahedra. In
blue is depicted �l and in red is
depicted �r

5.2 Model validity: heterogeneous problem

The following test case is inspired by the last example in
[19]. We consider a problem with a heterogeneous porous
medium composed by several layers and a fault in its
middle. The domain and fault are

� = (0, 100)2 and γ̂ =
{
(x, y) ∈ R

2 : x = 50
}

with fault thickness d = 2.5. We impose a zero source term
and for pressure boundary conditions p = 1.5 on the top,
and p = 1 on the bottom. Moreover, on the left and on the
right, we impose a no flow boundary condition. The layers
of the porous medium are defined as

�l =
{
(x, y) ∈ R

2 : y ∈ Il and x < 50
}

�r =
{
(x, y) ∈ R

2 : y ∈ Ir and x > 50
}

,

where the intervals are defined as

Il = [25, 50] ∪ [75, 100] and

Ir = [12.5, 37.5] ∪ [62.5, 87.5].

A sketch of the computational domain is given in Fig. 12a.
The permeability for the two layers are

�l = diag
{
10−3, 10−3

}
in �l,

�r = diag
{
10−2, 10−2

}
in �r

and � = I in � \ (�l ∪ �r). Also, Fig. 12a shows two
meshes, a non conforming coarse mesh which is used with
the reduced model and a fine mesh corresponding to a fine
2-D discretization of the fault which is used for the full 2-D
model.

For the permeability in the fault, we introduce the param-
eter ζ ∈ R

+ which is the ratio of the permeability in each
layer of the fault to the permeability of the closer cell in the
porous medium.

In Fig. 13, we present the solutions for the reduced model
with the coarse mesh shown in Fig. 12b and for the full 2-D
model with the fine mesh shown in Fig. 12c, for ζ = 10−2

and ζ = 104.
For the case of a small value of ζ , i.e., the fault behaves

as a barrier, we can see that the two solutions are sim-
ilar qualitatively. When the fault behaves like a channel,
i.e., ζ = 104, we observe that all the small scales are
lost near the fault and they are “homogenized” in a big-
ger cell. Anyway, the model error is still small in this
case.

We performed some experiments varying ζ from 10−6

up to 1010. We computed the error (32) for each value of
ζ and we plotted the results in Fig. 14. We can see that the
maximum of the error is very small for each value of ζ , even
if we have an oscillation close to ζ = 10−1.

Moreover, we notice two different plateaus for ζ smaller
than 10−5 and bigger than 105. We notice also that we com-
mit at most an error lower than the 7 �, conforming that the
method is quite robust despite the fact that the mesh in this
test is really coarse.

Fig. 13 Heterogeneous
academic case: reduced model
solutions on the coarse mesh
(Fig. 12b) and the full 2-D
model solutions on the fine mesh
(Fig. 12c) for two values of ζ .
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Fig. 14 Maximum of model error as a function of ζ

5.3 A realistic experiment

For our final experiment, we consider a problem in a realis-
tic setting. We consider the porous medium depicted in Fig.
15a with a T-shaped fault presented in Fig. 15b, c.

From these figures, we can see that the problem exhibits a
geometrical non-conformity close to the fault. Unlike in the
previous experiments, the faults here are not planar surfaces.
This situation produces additional difficulties. Indeed, the
two sides of a fault are non-matching, i.e., their topological
structure differs, but also their geometric realization differ
as they can have gaps in between each other due to the dis-
cretization. In particular, due to a precedent deposition and
movement of the sedimentary layers, because of the fault,

Fig. 16 Initial solution for the homogeneous case

we have a different data distribution on the two sides of the
fault. We will nonetheless employ the DLRM using appro-
priate projections to write the coupling conditions between
the two sides of the fault. Moreover, some faces of the fault
have only partial contact or even no contact with the other
side of the fault. These faces or parts of faces are considered
as boundary faces.

We have the following bounds for the computational
domain � ⊂ (−1.37, 1.34) · 104 m×(−25.6, 1.73) ·
103 m×(−4.11 · 103, −75.2) m and a fault of thickness
d = 50 m. We denote by ∂�top the top part of the boundary,
by ∂�bott the bottom part of the boundary and by

∂�rem = ∂� \ (∂�top ∪ ∂�bott)

the rest of the boundary. Also for this last example, we
consider a problem slightly different from that of Eq. 1, a
problem more closely related to those encountered in basin
modeling in which flow is induced not by wells but by
the compressibility of the porous medium thus leading to

Fig. 15 Representation of the
domain and the fault grid for
both layers. We can notice that
the discretization is
non-matching and we have a
geometrical non-conformity.
The color represents the
different homogeneous strata
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Fig. 17 Solution for t = 0.7 My
when the fault is a barrier or a
channel for the flow

a parabolic equation for the pressure. Given t∗ and T the
initial and final times, we calculate p such that

c�
∂p

∂t
= ∇ · �

μ
∇p in � × (t∗, T ),

�∇p · n = 0 on ∂�rem × (t∗, T ),

p = 0 on ∂�top × (t∗, T ),

p = p0 in � × {t∗} ,

where μ = 3.1 · 104 Pa· s is the dynamic viscosity, c is the
compressibility, and � the porosity. Considering Fig. 15a,
we impose c� = 0.2 · 10−4 Pa−1 in each of the black layer
while c� = 10−4 Pa−1 in each of the white layer. The initial
and final times are t∗ = 0y and T = 2My, respectively.
The initial solution p0 is the stationary solution of

−∇ · �

μ
∇p0 = 0 in �,

�∇p0 · n = 0 on ∂�rem,

�∇p0 · n = 0 on ∂�bott,

p0 = 0 on ∂�top,

p0 = 20 on ∂�bott.

For the computation of p0, we consider the permeability
in the fault cells equal to that of the surrounding domain
cell, while for the bottom boundary condition of the fault
we impose a zero flow condition. We use an implicit Euler
scheme for the time discretization. The number of domain
cells is 19,152, while the fault is discretized using 798
elements for each layer.

We consider different configurations of the problem cor-
responding to different values of the permeabilities of the
porous medium and the fault. In the first case, we consider

Fig. 18 Set of cells where we focus our attention
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a homogeneous porous media with a permeability equal to
� = 10−17Im2. In this case, we focus our attention on how
the fault modifies the solution globally when we consider
different values of its permeability.

Figure 16 shows the initial solution. As in the two fol-
lowing figures, we represent the Darcy solution with grey

arrows in some of the cells close to the faults and with
green arrows elsewhere. Since the permeability is constant
we expect an almost linear solution for the pressure and a
constant velocity. The solution respects the prevision.

We change now the permeability inside the fault con-
sidering two different scenarios, the fault is a barrier or

Fig. 19 Solution for t = 0.7 My
for different configurations of
the fault. We use the same color
for cells and arrows according to
the cell permeability where the
arrow origin is located, like in
Fig. 15a. The scaling of the
arrows in the three figures is
different
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Table 1 Average of the
number of iterations for
different configurations

� γ̂ ILU0

Homogeneous Barrier 1

Homogeneous Channel 3

Heterogeneous Neutral 3

Heterogeneous Barrier 2

Heterogeneous Channel 5

the fault is a channel. In the first case, we impose a fault
permeability �f = 10−19Im2 while in the second case
�f = 10−15Im2.

In Fig. 17, we present the solution for both cases. In Fig.
17a, the fault clearly behaves like a barrier. Indeed, we do
not see any arrow that cross the fault and the Darcy velocity
tends to follow the fault geometry. Not very far from the
fault, the flow is still vertical. The pressure has an almost
linear shape from the bottom to the top of the domain. In the
second case, reported in Fig. 17b, the fault behaves like a
conductive channel for the flow of the surrounding domain.
We clearly see that the flow of the closer cells, represented
by the grey arrows, are directed to the fault since it is easier
for the flow to move inside the fault than to stay outside.
Some of the green arrows close to the fault are pointing to
the fault since the influence of the fault is stronger than in
the previous case. The pressure is smaller for the cells close
to the fault than in the previous case.

We change now the permeability of the porous medium
to analyze the interaction between the heterogeneities and
the fault. Considering Fig. 15a, we impose as permeability
in each of the black layer � = 10−17Im2 while in each
of the white layer � = 10−15Im2. The black layers act
as barriers while the latter are channels. We can notice that
far from the fault the flow is almost upward, while close to
the fault and thanks to the non uniform strata deposition the
solution is complicated and not easily predictable. Since the
solution is much more complex than in the previous cases,
we focus our attention only on the red cells represented in
Fig. 18.

Thanks to the different layers the flow can pass from
one permeable layer to the other following the fault or
the less permeable layers. We consider three different test
cases changing the permeability in the fault. First of all,
we impose the permeability in the fault cells equal to that
the neighboring domain cell. In this case, the fault behaves
like the surrounding part of the domain. Figure 19a repre-
sents the Darcy velocity only in the selected cells. In the
bottom part of the domain, thanks to the fault, the flow can
pass through the latter and starts to move upward in the
more permeable strata. In the middle of the domain, since
the barrier in the left part of the domain is thinner than in
the right part, the flow is concentrated there. In the upper

part of the domain the fluid moves from the left part to the
right part and vice versa. In the second test case, represented
in Fig. 19b, we consider the fault as a barrier imposing a
small permeability�f = 10−19Im2. We see that the arrows
never cross the fault and the fluid moves only upward. Even
considering the big black strata, the flow avoids to pass
through the fault. The Darcy velocity of the cells close to
the fault is parallel to the fault surface. The last test consid-
ers a fault that behaves like a channel. In fact, we impose
�f = 10−13Im2 as the permeability in the fault. Figure
19c shows the Darcy velocity for t = 0.7 My. The flow goes
directly into the fault since the arrows are almost parallel to
the layers and direct inward to the fault. Finally, the Darcy
flow is stronger close the fault and larger at the bottom of
the domain then at the top.

We have used an iterative scheme to solve the linear sys-
tem. The algorithm chosen is the GMRES with tolerance on
the stop criteria of 10−8 with ILU0 as preconditioner from
PETSc library [7]. In Table 1 are reported the number of iter-
ations for different configuration of the problem. We note
that in all the case the preconditioner performs well.

6 Conclusion

In this paper, we have presented a novel approximation of
the double-layer reduced model to describe the fault flows
in a complex porous medium. The reduced model is a rea-
sonable approximation when the thickness of a fault is some
order of magnitude smaller than its other sizes. Moreover,
the choice of the hybrid finite volume method allows us to
handle, in a much robust and accurate way, different prob-
lem configurations. Particular attention is devoted to the
analyses of the discrete equivalence that ease the imple-
mentation of the reduced model, for both the single-layer
and double-layer model, avoiding to introduce the tangen-
tial operators and to approximate the coupling conditions.
In the examples we have seen, the solution obtained with
the reduced model compared to a reference solution in sev-
eral situations. Finally, a real geometry with realistic data
is presented to show the applicability of the reduced model
to a real problem. The solution behaves as expected and no
evidence of serious problems is seen.
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A Appendix

A.1 Nomenclature

We present the main nomenclature of this work. Some of the
symbols are used only in one part of the domain, we use a
subscript to indicate them. Some symbols for the numerical
approximation can be found in Notation 1.
N Dimension of the domain
i Index s.t. i ∈ {1, 2, f }
j Index s.t. j ∈ {1, 2}
� Computational domain
�f Fault domain
�fj

Layer j of �f

γ̂ Fault centre
d Fault thickness
n Normal to γ̂

Tj Normal thickness of �fj

p Pressure field
u Darcy velocity
� Permeability matrix
λf,n Normal fault permeability
λf,τ Tangential fault permeability
q Source term
N Normal projection matrix
T Tangential projection matri
p̂ Reduced pressure
û Reduced Darcy velocity
λ̂ Reduced tangential permeability
λγ̂ Reduced normal permeability
q̂ Reduced source term
ûn Interface Darcy velocity normal to γ̂

∇τ Tangential gradient to γ̂

∇τ · Tangential divergence to γ̂

∇D Discrete gradient
∇K Discrete cell gradient
RK,σ Stabilization term for ∇D
α Stabilization parameter
α̂ Reduced stabilization parameter
�·�γ Jump operator across γ{{·}}

γ
Mean operator across γ

A.2 TPFA and HFV schemes

The TPFA and HFV scheme are cell-centred finite volume
schemes that gives an approximation of conductive fluxes
on non-conforming grids. Theirs principle, using a finite

volume philosophy, is briefly recalled in this section. A
more detailed presentation can be found in [1, 16, 17]. The
model problem is: find the unknown p such that

−∇ · �∇p = q in �

p = 0 on ∂�
(33)

We consider the computational grid, approximation of �,
defined as in Definition 1. Integrating (33) over each control
volume K ∈ M, gives the following

∑
σ∈EK

∫
σ

�∇p · nK,σdσ =
∫

K

qdx ∀K ∈ M.

The flux
∫
σ

�∇p · nK,σdσ on each mesh edge σ ∈ EK

is approximated through a numerical flux function FK,σ (p)

which depends only on the local unknowns related to K and
EK . The discrete approximation of Eq. 33 is given by

∑
σ∈EK

FK,σ (p) =
∫

K

qdx ∀K ∈ M. (34)

Since the previous system is defined cell-wise, we require
the continuity of the flux on all the interior edges, imposing

FK,σ (p) + FL,σ (p) = 0 ∀σ ∈ Eint (35)

withMσ = {K, L}.

A.2.1 TPFA scheme

To simplify the presentation, we require that �(x) = λ(x)I ,
with λ piece-wise constant on M. We also assume that the
discretization of � satisfies the superadmissible condition

nK,σ = (xσ − xK) /dK,σ ∀K ∈ M, ∀σ ∈ EK (36)

Then xσ satisfies

xσ = dK,σ xL + dL,σ xK

dK,σ + dL,σ

withMσ = {K,L} , (37)

The TPFA is constructed in the following way: if σ ∈ Eint
with Mσ = {K, L}, the approximate fluxes are given by

FK,σ (p) = λK |σ | pK − pσ

dK,σ

FL,σ (p) = λL |σ | pL − pσ

dL,σ

,

while if σ ∈ Eext withMσ = {K}, the approximated flux is

FK,σ (p) = λK |σ | pK − pσ

dK,σ

.

For each internal edge σ ∈ Eint, imposing the continuity
of the flux through it Eq. 35, it is possible to eliminate the
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edge unknown pσ and obtain the following expression for
the discrete flux

FK,σ = −FL,σ =

⎧⎪⎪⎨
⎪⎪⎩

λσ |σ |
dK,σ + dL,σ

(pK − pL) if σ ∈ Eint

λK |σ |
dK,σ

pK if σ ∈ Eext

with

λσ = λKλL(dK,σ + dL,σ )

λKdL,σ + λLdK,σ

.

A.2.2 HFV scheme

To derive the HFV scheme, we express the Eqs. 34 and 35,
introducing the test functions v constant for each cell K ∈
M as

〈p, v〉F =
∑

K∈M
vK

∫
K

qdx,

where the bilinear form is defined as

〈p, v〉F :=
∑

K∈M

∑
σ∈EK

FK,σ (p) (vK − vσ ) .

The HFV scheme is based on a suitable choice of the dis-
crete gradient ∇D p, approximation of ∇p, such that the
following relation holds true

〈p, v〉F =
∑

K∈M
(�∇D p, ∇D v)K .

The discrete gradient is chosen such that it is exact if the
values of p correspond to a linear function and such that the
bilinear form is coercive. Following [16, 17], we introduce
the cell gradient

∇Kp := 1

|K|
∑

σ∈EK

|σ | (pσ − pK)nK,σ

and a stabilization term, defined in each cone of the cell (see
Fig. 20), which is zero for linear functions and gives the
definiteness property for the discrete bilinear form:

RK,σ p := β

dK,σ

[pσ − pK − ∇Kp · (xσ − xK)] ,

with β = α
√

N and α a stabilization parameter which can
vary between each cell. The stabilization parameter α > 0

is used to ensure coercivity of the discrete bilinear form. If
RK,σ is not considered, the cell unknowns are not uniquely
defined and the corresponding linear system is singular.
Finally, the discrete gradient ∇D p is defined for each cone
DK,σ ⊂ K as

∇D p|DK,σ
:= ∇Kp + RK,σ pnK,σ .

It is shown that then, the bilinear form writes

〈p, v〉F =
∑

K∈M
|K| �K∇Kp · ∇Kv+ (38)

+
∑

σ∈EK

α2 |σ | dK,σ

d
RK,σ pRK,σ vnK,σ · �KnK,σ

It can be derived also a closed form for the discrete flux
FK,σ , which can be expressed as

FK,σ (p) =
∑

σ ′∈EK

Aσσ ′
K (pK − pσ ′) ,

with (Aσσ ′
K )σσ ′∈EK

a local symmetric and positive matrix.
Its expression can be found in [17].

Remark 4 It is straightforward to extend the HFV scheme
to the case of non-conforming grids. Instead of consider-
ing edges of the mesh, we consider sub-edges which are
intersections of edges of different cells, and then for the con-
struction of the discrete gradient the cones are built based
on the sub-edges. An example is shown in Fig. 20.

Remark 5 If the discretization fulfills the superadmissible
condition (36) and the centre of the edges is chosen as in
Eq. 37 and moreover if the permeability is such that �(x) =
λ(x)I , with λ piece-wise constant onM then, from Lemma
2.1 of [17], the HFV scheme with α = 1 is equivalent to the
TPFA presented in Section 6.

Remark 6 An extension, presented in [14], of the HFV
scheme considers a stabilization parameter that is no longer

Fig. 20 Representation of the
subdivision in cones for a
matching pair of cells and for
non-matching cells
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a scalar but a matrix. The stabilization term in Eq. 38
becomes

∑
K∈M

∑
σ,σ ′∈EK

BK,σ,σ ′SK,σ pSK,σ ′v,

with
(
BK,σ,σ ′

)
σ,σ ′∈EK

a symmetric and positive matrix for
the cell K ∈ M and

SK,σ p := pσ − pK − ∇Kp · (xσ − xK) .
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