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Abstract We present a high-order method for miscible dis-
placement simulation in porous media. The method is based
on discontinuous Galerkin discretization with weighted
average stabilization technique and flux reconstruction post
processing. The mathematical model is decoupled and
solved sequentially. We apply domain decomposition and
algebraic multigrid preconditioner for the linear system
resulting from the high-order discretization. The accuracy
and robustness of the method are demonstrated in the
convergence study with analytical solutions and heteroge-
neous porous media, respectively. We also investigate the
effect of grid orientation and anisotropic permeability using
high-order discontinuous Galerkin method in contrast with
cell-centered finite volume method. The study of the parallel
implementation shows the scalability and efficiency of the
method on parallel architecture. We also verify the simula-
tion result on highly heterogeneous permeability field from
the SPE10 model.

Keywords Porous media flow · Miscible displacement ·
High-order method · Discontinuous Galerkin ·
Flux reconstruction · Algebraic multigrid ·
Domain decomposition · Parallel computing ·
Heterogeneous permeability · Anisotropy · SPE10 model

� Beatrice Riviere
riviere@rice.edu

Jizhou Li
Jizhou.Li@rice.edu

1 Rice University, Houston TX, USA

1 Introduction

In enhanced oil recovery, a polymer-based solvent is
injected in the reservoir to help improve total production
of hydrocarbon from the reservoir. Unlike immiscible flu-
ids such as water that do not mixed with the residing
hydrocarbon, the injected solvent mixes with the remain-
ing oil, forming a single-phase fluid mixture that is further
displaced throughout the reservoir.

The mathematical model that governs the displacement
of the fluid mixture is known to be the miscible dis-
placement equations. The problem consists of a system of
partial differential equations (PDE) with pressure, velocity,
and concentration as unknowns. The problem poses several
numerical challenges. The PDE system itself is nonlinear.
Input data, such as the permeability field, is discontinu-
ous and varies with several orders in magnitude for realistic
porous media.

Low-order methods such as finite difference and finite
volume method have long been used to solve the miscible
displacement problem. However, these methods suffer sig-
nificantly from grid orientation [1, 2]. In order to properly
simulate the fluid flow, many of these low-order meth-
ods , when used on unstructured meshes, require carefully
constructed unstructured meshes [3], such as k-orthogonal
grids. The constraint on griding of the computational
domain can be significantly restrictive to accurately portrait
the complex geometry of the subsurface formations.

Recently, there has been a significant interest generated
in the study of high-order methods for porous media flow
[4–6]. High-order methods are less restricted to the grid
orientation and complex geometry. Methods such as discon-
tinuous Galerkin (DG) methods are a popular choice for the
fluid flow problem. The DG methods provide high-order
accuracy while maintaining local mass-conservation. The
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Fig. 1 Flux driven problem

idea of using discontinuous Galerkin methods for solving
the miscible displacement problem is not new. In [7], the
DG method is applied to two-dimensional media with mild
heterogeneities. Theoretical convergence has been obtained
for smooth solutions in [8]. The novelty of this paper is to
show robustness and efficiency of a DG method for two- and
three-dimensional media with realistic permeability fields.
Our proposed method is based on the plain interior penalty
discontinuous Galerkin method, studied in [7, 8], but it
incorporates additional techniques to make it competitive
for large scale computations.

We identify three challenges when using discontinuous
Galerkin methods for solving porous media flow prob-
lems such as miscible displacement. A first challenge arises
from highly heterogeneous permeabilities and flux recon-
struction. As a consequence of using discontinuous poly-
nomial approximations, the flux we obtain directly from
taking the gradient of the pressure is not continuous in the

Fig. 2 Discontinuous permeability field

Fig. 3 Overall performance

normal direction across element boundaries. This can lead
to numerical instabilities for heterogeneous media [9]. One
approach to resolve the issue is to use a fully-implicit
scheme to weakly impose the continuity of the flux in the
coupled scheme [10, 11]. The fully-implicit scheme, how-
ever, can pose additional difficulties in solving the large
nonlinear coupled system for pressure and concentration.
A less costly method is the sequential approach that first
solves the pressure and velocity from the Darcy system,
and second the concentration from the transport system.
Both pressure and velocity can be solved simultaneously by
the locally mass conservative mixed finite element (MFE)
method. This has the advantage of producing a continu-
ous flux in the normal direction. The transport system is
solved subsequently using DG [6, 12–15]. Mixed DG was

Fig. 4 AMG solver speedup
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Fig. 5 Error in spatial discretization for first-, second-, third-, and fourth-order methods in space. A second order in time method is used

also introduced in [16] to impose continuity of the flux
on the face weakly. For large scale simulations, however,
the higher order mixed finite methods using either Raviart-
Thomas (RT) basis of order two or three or Brezzi-Douglas-
Marini (BDM) basis of order two or higher have rarely
been used due to the complexity of generating the finite
element space and the fact that hybridization is required
for MFE to avoid solving large indefinite saddle-point sys-
tems. The method we propose uses discontinuous Galerkin
method, with weighted average stabilization [17], for both
the Darcy and transport systems. It allows for arbitrary order
of approximation in space. The resulting discontinuous flux
obtained by taking the gradient of the pressure has to be
reconstructed, following approaches introduced in [9, 18].
The BDM flux reconstruction proposed in [9] has been used
for single-phase flow in [19]. The RT flux reconstruction
introduced in [18] has been used for two-phase flow [20–
22]. In our method, we extend the reconstruction approach
to the miscible displacement problem.

A second challenge arises from the linear solver. As the
consequence of the high-order DG discretization and highly

heterogeneous permeability for realistic simulations, the lin-
ear system resulting from the discretization is much more
ill-conditioned than the system resulting from the low-order
discretization. This issue is addressed by using a modified
algebraic multigrid (AMG) preconditioner based on [23,
24]. We show that with domain decomposition and AMG
preconditioning on parallel clusters, high-order discontinu-
ous Galerkin method can be both efficient and accurate for
simulating large scale porous media flow problems. Two-
level AMG preconditioning of DG systems, in particular the
selection of the subspaces for the coarsening step, is itself
a subject of great interest. Conforming piecewise linear
finite element, Crouzeix-Raviart non-conforming piecewise
linear finite element and piecewise constant subspace cor-
rections are indeed effective coarsening strategies for the
smoothed aggregation AMG approach [25]. More recently,
the work [26] demonstrates the feasibility and efficiency
for piecewise constant subspace correction with smoothed
aggregation AMG. But, to our knowledge, this type of
subspace correction has not been used in the framework
of non-smoothed aggregation AMG. In contrast with the
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Fig. 6 Error in time updating for first- and second-order methods in time. A fourth-order method in space is used

non-smoothed aggregated AMG, the smoothed aggregated
AMG produces additional fill-in on the coarser level. The
effect is more obvious in the case with higher order approx-
imation. Hence, it is suggested that non-smoothed aggre-
gation AMG can be used for higher order DG with highly
heterogeneous porous media. Blatt et al. [24] uses non-
smoothed aggregation AMG with piecewise continuous
linear subspace correction. The novelty in our work is to
propose a piecewise constant subspace correction strategy
for the non-smoothed aggregation AMG.

Finally, overshoot and undershoot phenomena occur in
many high-order methods including mixed finite element
or multi-point flux approximation [27]. The issue can be
resolved using slope limiter [28–30]. However, in our sim-
ulations, overshoot and undershoot are sparse and less than
5 %, and thus, we do not use slope limiters. Our numeri-
cal examples show that our method can produce solutions
of good quality.

The outline of the paper is as follows. After a brief
description of the mathematical problem in Section 2, we
introduce the semi-discrete scheme in Section 3. The cou-
pling strategy is defined in Section 4. Section 5 addresses

scalability of the AMG solver. Various numerical examples
that test the convergence and robustness of our method are
shown in Section 6. Conclusions follow.

2 Model problem

The displacement of the single phase fluid mixture in the
porous medium � ⊂ �d over a time interval [0, T ] is
characterized by the following mathematical model:

∇ · u = qI − qP , in � × (0, T ), (1)

u = −K(c)(∇p − ρ(c)g), in � × (0, T ), (2)

∂t (φc) − div (D(u)∇c − cu) = qI ĉ − qP c, in � × (0, T ),(3)

where the physical unknowns are p the fluid pressure, u the
velocity, and c the concentration of the solvent.

The flow and transport processes can be driven by the
functions qI and qP which represent injection wells and
production wells, respectively. The other coefficients in the
system are the fluid density ρ(c), the gravity vector g, the
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Fig. 7 Computation time vs. accuracy

porosity of the medium φ, the diffusion-dispersion matrix
D(u), the injected concentration ĉ, and the matrix K(c),
which is the product of the scalar 1/μ(c) and the permeabil-
ity matrix k. The initial concentration is denoted by c0.
Throughout the paper, we choose a commonly used form for
the fluid mixture density

ρ(c) = cρs + (1 − c)ρo,

where ρs is the density for the fluid used to displace the
residing fluid with density ρo [31]. The diffusion-dispersion
tensor is based on the semi-empirical relation [12],

D(u) = dmI + |u| (αlE(u) + αt (I − E(u))),

where E(u) = uuT |u|−2. The parameter dm is associated
with molecular diffusion; αl is the longitudinal dispersivity
and αt is the transverse dispersivity.
For the viscosity, we will use the quarter mixing rule [32],

μ(c) = (cμ−0.25
s + (1 − c)μ−0.25

o )−4,

where μs is viscosity of the solvent and μo is viscosity of
residing fluid. We complete the system by the boundary
conditions:

p = pD on �D, u · n = uN · n on �N,

and c = cin on �in, D(u)∇c · n = qout on �out .

Fig. 8 2D flux driven problem with lens
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Fig. 9 Concentration profile
with DG2 on 40 × 40 Cartesian
grid: no flux reconstruction
(left) and with flux
reconstruction (right)

If the boundary condition is set to be no flow bound-
ary condition, i.e., �N = ∂�, then we have to complete
the system by an additional constraint on the pressure for
uniqueness and we also need a compatibility condition,∫

∂�

uN · n =
∫

�

(qI − qP ).

3 Spatial discretization

Let {Eh}h>0 be a regular family of meshes of �, where h is
the maximum element diameter and let �h denote the set of
all the interior faces of the mesh Eh. We fix a unit normal
vector ne for each interior face and denote by Ee+ and Ee−
the elements in Eh such that e = ∂Ee+ ∩ ∂Ee− and ne points
from Ee+ to Ee−. Then, we define the average and jump on
the face e to be,

{v} = 1

2
v|Ee+ + 1

2
v|Ee− , and [v] = v|Ee+ − v|Ee− .

Fig. 10 SPE10 permeability: layer 39 (log scale)

The weighted average {·}ω is defined, with the weights ωEe+
and ωEe−
{v}ω = ωEe+v|Ee+ + ωEe−v|Ee− , and ωEe+ + ωEe− = 1.

If e is a boundary face, then the average and jump are
defined as

{v} = v, and [v] = v.

We use (·, ·) to denote the standard L2 inner product over
the entire domain. For the broken Sobolev spaces, we define
the L2 inner-product on Eh and �h to be:

(·, ·)Eh
=

∑
E∈Eh

(·, ·)E, (·, ·)�h
=

∑
e∈�h

(·, ·)e.

3.1 Discretization of pressure equation

Now, we can define the DG discretization for the pressure
equation obtained by combining (1) and (2)

Bd(ph, qh; ch) = 	d(qh; ch), (4)

Fig. 11 Concentration profile after 13 days, obtained with second-
order method: no flux reconstruction (left) and with flux reconstruction
(right)
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Fig. 12 Velocity in x-direction
with -G2 on 80 × 80 Cartesian
grid

where

Bd(ph, qh; ch) = (K(ch)(∇ph − ρ(ch)g),∇qh)Eh

+
(
σγeh

−1
e [ph], [qh]

)
�h∪�D

− ([qh], {K(ch)(∇ph − ρ(ch)g) · ne}ω)�h∪�D

+ε1 ([ph], {K(ch)∇qh · ne}ω)�h∪�D
.

The right-hand side is defined as,

	d(qh; ch) =
(
qI − qP , qh

)
− (uN · ne, qh)�N

+
(
σγeh

−1
e pD, qh

)
�D

+ε1 (K(ch)∇qh · ne, pD)�D
.

The pressure, concentration, and their corresponding test
functions are in the following finite-dimensional subspaces:

Ph = {qh ∈ L2(�) : qh|E ∈ Pk(E), E ∈ Eh},
Ch = {ch ∈ L2(�) : ch|E ∈ Pr (E), E ∈ Eh}.

Here, Pk(E) denotes the space of polynomials of degree
less than or equal to k over the element E.

Fig. 13 Quarter five-spot problem set-up

The parameter ε1 is set to be either −1, 0 or 1. This will
yield symmetric interior penalty Galerkin (SIPG), incom-
plete interior penalty Galerkin (IIPG), or non-symmetric
penalty Galerkin (NIPG) method, respectively.

For the weights in the weighted average, we first define,

δ+
e = K+(c̃+

h )ne · ne and δ+
e = K−(c̃−

h )ne · ne,

where c̃h is taken to be the concentration evaluated at the
center of the cell. Hence, the weights are constructed as

ωEe+ = δ−
e (δ+

e + δ−
e )−1 and ωEe− = δ+

e (δ+
e + δ−

e )−1,

and the penalty term is chosen as [33]

γe = 2δ+
e δ−

e (δ+
e + δ−

e )−1k(k + d − 1).

The term he is given by

he = |e|−1 min
(∣∣E+∣∣ , ∣∣E−∣∣) .

The multiplicative factor σ in the penalty term is constant
and chosen equal to one in our simulations.

3.2 Flux reconstruction

Flux reconstruction methods have been proposed to improve
the accuracy of the DG velocity, in particular for heteroge-
neous media. In Section 6.2, we compare various numerical
solutions obtained with and without flux reconstruction.
We employ the Raviart-Thomas (RT) flux reconstruction
approach proposed by Ern et al. [18]. We recall below
the flux reconstruction method for triangular elements. The
DG velocity, obtained directly from DG discretization of
the pressure, is projected onto the Raviart-Thomas space,
denoted by Uh.

Uh ={uh ∈H(�; div)|uh|E ∈(Pk(E))2+xPk(E), E ∈ Eh}.
Let uh ∈ Uh denote the reconstructed flux. It is defined

locally on each element E by:

(uh, vh)E = (
uDG

h , vh

)
E

+ ε1
∑

e∈∂E ωEe (K(ch)vh · ne, [ph])e, (5)

(uh · ne, qh)e = ({
uDG

h

}
ω

· ne + σγeh
−1
e [ph], qh

)
e
, ∀e ∈ ∂E, (6)
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Fig. 14 Meshes for grid
distortions study: no distortion
(left), 30◦ distortion (centre),
−30◦ distortion (right)

with qh ∈ Pk(e) and vh ∈ (Pk−1(E))2, and with

uDG
h = −K(ch)(∇ph − gρ(ch)).

We note that the penalty term in the right-hand side of
Eq. 6 is needed for maintaining mass conservation. We
also generalize the projection for quadrilateral elements by
defining the space Uh as

Uh={uh ∈H(�; div)|uh|E ∈Qk+1,k(E)×Qk,k+1(E),E∈Eh},

and

Ql,m(E)=
⎧⎨
⎩φ : φ(x)=

l∑
i=0

m∑
j=0

αi,jxi
1x

j

2, x∈E, αi,j ∈ �
⎫⎬
⎭ .

The flux reconstruction is given the same as Eqs. 5 and 6
with qh ∈ Pk(e) and vh ∈ Qk−1,k(E) × Qk,k−1(E). The
projection can also be extended to three-dimensional ele-
ments. The projection is an element-wise post-processing,
therefore, not computationally expensive. Typically, the
order of the space Uh is chosen consistently with the order
of the pressure space Ph.

3.3 Discretization of concentration equation

We now proceed to define the DG discretization of the
transport Eq. 3 that utilizes the projected velocity uh.

First, we discretize the diffusion term −div(D(u)∇c) as
follow.

Bdi(ch, wh; uh) = (D(uh)∇ch, ∇wh)Eh

−({D(uh)∇ch · ne}ω, [wh])�h∪�in

+ε2({D(uh)∇wh · ne}ω, [ch])�h∪�in

+
(
σγeh

−1
e [ch], [wh]

)
�h∪�in

.

The construction of the weighted average and other related
terms is similar to the DG discretization of the Darcy sys-
tem.
Now, for the convection-source term div(chuh) + qP ch, we
define:

Bcq(ch,wh; uh) = −(chuh,∇wh)Eh
+(c

up
h uh · ne,[wh])�h∪�out

+(qP ch, wh),

where the upwind term is given as

c
up
h =

{
ch|Ee+ if uh · ne > 0,

ch|Ee− if uh · ne ≤ 0.

We then set

Btr(ch, wh; uh) = Bdi(ch, wh; uh) + Bcq(ch, wh; uh).

For the right-hand side, we have

	tr (wh;uh) = (qout , wh)�out + (qI ĉ, wh) − (cinuh · ne, wh)�in

+ε2(D(uh)∇wh · ne, cin)�in
+

(
σγeh

−1
e cin, wh

)
�in

.

Fig. 15 Concentration profiles
on grid with 30◦ distortion:
CCFV reference (left), CCFV on
h5 (centre), DG1 on h3 (right)
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Fig. 16 Concentration profiles
on grid with −30◦ distortion:
CCFV reference (left), CCFV on
h5 (center), DG1 on h3 (right)

Hence, the semi-discrete formulation for the transport
system becomes:
for all t > 0 the solution ch(t) ∈ Ch satisfies

(φ∂t ch, wh) + Btr(ch, wh; uh) = 	tr (wh; uh), (7)

(ch(0), wh) = (c0, wh),

for all wh ∈ Ch.

4 Fully-discrete scheme and decoupling algorithm

We solve the system (4) and (7) sequentially. This decou-
pling approach is advantageous over the fully implicit
scheme with respect to computational cost. In addition,
physical evidence has shown that the pressure does not vary
as rapidly as the concentration, and the cost can be further
reduced by taking larger time steps for the pressure than for
the concentration [34].

Let {tj }Nj=0 be a regular time step partition of time inter-
val [0, T ]. The time step is denoted by �tj = tj+1 − tj .

The solutions at time tj are denoted p
j
h, c

j
h, and uj

h. We use
implicit Euler or Crank-Nicolson updating for the transport
equation.

Now, we present our proposed algorithms for solving the
miscible displacement problem.

For higher order approximation in time with Crank-
Nicolson method, the algorithm is given based on [14].

The extrapolated velocity ûj+1
h is needed to maintain the

second-order convergence rate in time [35]. For other types

Fig. 17 Unstructured
quadrilateral (left) and triangular
(right) meshes
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of high-order sequential time updating scheme, we refer
readers to the algorithm in [6].

5 AMG preconditioner and overlapping domain
decomposition

The Darcy system (4) resulting from the pressure equa-
tion is more difficult to solve than the transport system
(7) because of the highly varying permeability field. Over-
lapping domain decomposition is used for the transport
problem; each block is preconditioned by ILU(0) and solved
by restarted GMRES.

For the Darcy system, we construct our preconditioner
using algebraic multigrid (AMG) algorithm based on the
works [23, 24]. Without going into the details of the solver,
we give an overview of our approach for the reader famil-
iar with AMG. We use overlapping domain decomposition
for the parallel implementation and subspace correction
to reduce the first coarse level onto low-order finite ele-
ment space. The resulting coarser levels are constructed and
solved by going through a V-cycle using non-smooth aggre-
gation AMG. The coarsest level is solved using direct solver.
We choose ILU(1) to be the smoother for the original sys-
tem (4). On the coarse level, SSOR is used as smoother. Our
approach differs from [23] by the choice of nonconforming
piecewise constant for the low-order finite element space
instead of continuous piecewise linears. We have observed
that this choice results in a more robust solver for highly
heterogeneous porous media. For the reduction onto the
piecewise constant space, the restrictive operator can be
constructed as follows

ψEi
=

∑
Ei∈Eh

∑
j

REi,jφEi,j ,

with

φEi,j ∈ Ph and ψEi
=

{
1 on Ei,

0 elsewhere.

Then the restrictive operator is

R0 =

⎛
⎜⎜⎜⎝

RE1 0 · · · 0
0 RE2 · · · 0
...

...
. . .

...

0 0 · · · REn

⎞
⎟⎟⎟⎠ .

The first coarse level can be constructed as

A0 = R0ADGRT
0 ,

where ADG is the linear system from (4). BiCGStab is used
to solve the preconditioned system. We point out that A0

corresponds to cell-centered finite volume with harmonic
averaging up to a constant (the penalty parameter) due to the
weighted averages of [17].

To demonstrate the efficiency and the robustness of the
solver, we consider a problem driven by flux boundary con-
ditions at one side (velocity is 0.1 m/s), pressure on the
other side (pD = 1000 Pa), and no-flow boundary con-
dition on the rest of the boundary, as illustrated in Fig. 1.
Viscosities are chosen as

μs = 5.8Pa · s and μo = 2.9Pa · s (8)

Throughout the rest of the paper, the following parameters
for the diffusion-dispersion matrix and porosity are fixed

dm = 1.8 × 10−7m2/s , αl = 1.8 × 10−5m and

αt = 1.8 × 10−6m, φ = 0.2. (9)

The permeability field, as illustrated in Fig. 2, is discon-
tinuous; the lens inside the domain have permeability equal
to 10−4m2 while the rest of the domain has permeability
equal to 1m2. The gravitational effect is neglected. The grid
Peclet number is 104.

We have implemented the discretization in parallel archi-
tecture IBM iDataPlex with Intel(R) Xeon(R) CPU X5660
2.80 GHz processors. In Fig. 3, we present the performance
of the entire simulation for one time step up to 512 pro-
cessors with piecewise quadratic approximation (Q2 for the
pressure and P2 for the concentration). The mesh contains
262,114 cells (cubes) which yields 7,077,078 degrees of
freedom for the Darcy system and 2,621,140 degrees of
freedom for the transport system.

Fig. 18 Convergence of DG1
solutions on successively
refined quadrilateral meshes:
levels 1, 2, and 3
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Fig. 19 Convergence of DG1
solutions on successively
refined triangular meshes: levels
1, 2, and 3

Figure 3 shows the computational time for different
aspects of the solver, in a strong scaling set-up. The most
time-consuming process is the AMG solver for the Darcy
system. Coarsening time is included in the speedup. This
cost increases with the heterogeneities and discontinuities
of the permeability field. Our proposed AMG solver per-
forms well on the parallel cluster. Figure 4 suggests strong
scalability of the AMG solver.

The implementation was done within Distributed and
Unified Numerics Environment (DUNE) [36, 37] and
DUNE-PDELab [38]. The flexible C++ template based
development environment allows for an efficient implemen-
tation of our method.

6 Numerical results

6.1 Convergence study

First, we conduct study on the convergence of the dis-
cretization by testing the method with the following analytic
solutions over the unit square

p(x, y, t) = (2+(−e−x(1 + x + x2) − e−y(1 + y + y2)))e
πt
2 ,

c(x, y, t) = 0.5(sin(2πx)2 + cos(2πy)2) sin (0.5πt) .

The permeability is constant, k = 9.44 × 10−3m2, grav-
ity is neglected and the viscosities are given by Eq. 8. We
plot the L2 norm of the errors in pressure, velocity, and
concentration, and the broken H 1

0 norm of the errors in
concentration. We vary the order of the spatial discretiza-
tion from one to four. Crank-Nicolson updating is used with
T = 0.5 s and a uniform time step �t = 0.001 s (Fig. 5).

We observe, as expected, a higher convergence rate and a
greater accuracy as the order of the method increases. Next,
we test the convergence in time by fixing spatial order (four)
and grid (size h = 1/128). Figure 6 demonstrates optimal
rates in time for both implicit Euler and Crank-Nicolson
decoupled algorithms.

We remark that for smooth solutions the Crank-Nicolson
scheme yields second-order approximation in time. How-
ever, we have observed that for non-smooth realistic
solutions, important overshoot and undershoot phenom-
ena (about 10 %) occur in the neighborhood of a sharp
gradient. Slope limiters are needed to minimize the over-
shoot/undershoot amounts even if they remain bounded
throughout the simulation. For the remainder of the paper,
we choose to use the implicit Euler scheme as over-
shoot/undershoot phenomena are negligible.

We also investigate the computational time required in
order to achieve a given accuracy. We vary the order of

Fig. 20 p-Convergence of DG
solutions on coarse quadrilateral
mesh: k = r = 1 (left) and
k = r = 2 (right)
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Fig. 21 p-Convergence of DG
solutions on coarse triangular
mesh: k = r = 1 (left) and
k = r = 2 (right)

the method as well as the mesh size. Results are shown in
Fig. 7.

From the results, we see that choosing a higher order
method on a coarse mesh can not only yield greater accuracy
but can also be faster than a lower order method on a finer
mesh. The experiment is run in serial on Intel(R) Xeon(R)
CPU X5660 2.80 GHz.

6.2 Effect of flux reconstruction

In this part, we investigate the impact of flux reconstruction,
more specifically how it improves the quality of the solu-
tion. First, we consider a simple 2D case with flux driven
flow for a discontinuous permeability (10−6m2 in the lens
and 1m2 throughout the rest of the domain, see Fig. 8).
The flux boundary condition is uN · n = −0.1m/s on the
left boundary of the domain and the pressure on the right
boundary is pD = 1000 Pa. No flow boundary condition is
imposed on the rest of the domain. The viscosity is the same
as in Eq. 8. The time step is chosen as �t = 0.1 s. The
second-order method in space is employed. Through the
remainder of the paper, we choose the IIPG method (ε1 =
0), as it reduces the complexity of discretization and flux
reconstruction.

For the case without the flux reconstruction, the velocity
on the face is given by

uDG
h = {uh}ω.

In Fig. 9, we observe a significant contrast for the con-
centration profile at T = 8 s if flux reconstruction is
activated or not.

We can observe in Fig. 9 that the flux reconstruction
reduces the non-physical oscillations around the region
where the permeability changes. The effect is more obvi-
ous in the case of highly varying permeability. In the next
numerical experiment, we use the permeability field from
layer 39 of the SPE10 model [39]. The highly discontinuous
permeability is shown in Fig. 10.

The flow is driven by injection and production wells:∫
�

qI = ∫
�

qP = 0.01m2/s. We inject from the lower
left corner and produce from the upper right corner of
domain. No flow boundary condition is imposed. The rest
of the parameters is the same as in the previous experiment.
Figure 11 demonstrates a clear improvement of the numer-
ical concentration if flux reconstruction is activated. The
case without flux reconstruction produces poor results with
severe overshoot and undershoot.

Fig. 22 Cross-section
comparison: quadrilateral mesh
(left) and triangular mesh (right)
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We conclude this section by noting that, even for homo-
geneous porous media, solutions obtained with flux recon-
struction are more accurate. We repeat the simple flux
driven problem for a permeability equal to 1m2. Figure 12
compares the x-component velocity obtained with or with-
out flux reconstruction at time t = 0.8 s. In this homo-
geneous case, the exact velocity is (0.1, 0). We observe a
non-negligible error in the velocity without flux reconstruc-
tion. The error is larger at the location of the concentration
front and arises from the coupling between the Darcy and
transport systems.

6.3 Grid orientation effect

In subsurface modeling, the complex geological formations
can be too complicated to be appropriately approximated
by structured grids. On the other hand, unstructured grids,
although they can more vividly portrait the geological for-
mations, are likely to yield grid distortions. In the following
numerical experiments, we evaluate the quality of the DG
discretization when using distorted unstructured grids.

We consider the quarter five-spot problem illustrated in
Fig. 13.

We consider injection and production rates given by∫
�

qI = ∫
�

qP = 0.18m2/s and no flow boundary condi-
tion. The permeability is homogeneous (1m2) and viscosity
is set to be the same as Eq. 8. Our first test case is to con-
sider grid distortion of 30◦ and −30◦. The meshes that we
use to test our method are shown in Fig. 14. The experiment
is based on a numerical experiment conducted in [2].

We compare the solutions obtained with our DG method
of first order (DG1) to the solutions obtained with the
cell-centered finite volume (CCFV) method. It is well
known that CCFV is not consistent on grids that are not k-
orthogonal. Therefore, we also compute a reference CCFV
solution on a 2048×2048 undistorted k-orthogonal grid. We

Fig. 23 pinch-out problem set-up and unstructured grid

Fig. 24 Unstructured mesh for pinch-out example

first compare the concentration profiles at time t = 0.5 s on
the grid with 30◦ distortion.

We observe in Fig. 15 that the DG solution is not sen-
sitive to the grid distortion and can represent the reference
solution well, which is to be expected since the DG method
remains consistent on general arbitrary grids. Similar con-
clusions can be made from the comparisons on grid with
−30◦ distortion, shown in Fig. 16.

We now test the quality of the DG solutions obtained on
quadrilateral and triangular meshes given in Fig. 17.

Figures 18 and 19 show convergence of the DG solutions
using h-refinement.

Figures 20 and 21 show convergence of the DG solu-
tions using p-refinement. Solutions are computed on coarse
meshes shown in Fig. 17.

We also plot the cross-section along the line with y = x

in Fig. 22 for the first-order method on several meshes

Fig. 25 Concentration profiles
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Fig. 26 Anisotropic permeability set-up

(level 1 to 3), and for the second-order method on the mesh
of level 1. We observe that all curves coincide for the tri-
angular meshes, whereas there are some small differences
for the rectangular meshes, in particular with the first-order
method on the mesh of level 1. Figure 22 also shows that
there is no violation of the maximum principle. The grid
Peclet number is 104 for the mesh of level 3, and 105 for the
mesh of level 1.

Figure 22 demonstrates the accuracy of the DG solution
in comparison with the reference solution by CCFV. Also,
we observe the overshoot resulting from DG discretization,
but it was reduced under hp-refinement.

Unstructured grid can better capture the complex geolog-
ical formation as we will demonstrate in the next experiment
that models a pinch-out geological formation. In Fig. 23, the
pinch-out is the white triangular region with high perme-
ability of 1m2, and the shaded region has low permeability
10−10m2.

Flow is driven by boundary conditions, identical to the
ones in Fig. 8. In order for CCFV to provide accurate solu-
tions, we have to use k-orthogonal grid such as Cartesian
grid. But, for this problem, the k-orthogonal grid simply
fails to capture the realistic geometry around the pinch-out
location. The flexibility of DG methods is an advantage for
this particular set-up and enables us to both attain accurate
geometry and solution accuracy. The unstructured grid that
we use to realistically represent the geometry is illustrated
in Fig. 24.

The concentration profile obtained by DG at time t =
0.3s is shown in Fig. 25. The second-order DG solutions are
obtained on a mesh with three levels of refinement.

Throughout the test cases that we have conducted, we
observe that the method we propose has low sensitivity with
respect to grid distortion and can achieve convergence using
h- and p-refinement on unstructured grids.

Fig. 27 Comparison between
DG solutions for anisotropic
medium: degree 1, 2, 3, 4, and 5
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Fig. 28 SPE10 permeability
and location of wells

6.4 Anisotropy permeability

Another important aspect when incorporating realistic geo-
logical model for the simulation in porous media is the
anisotropy of the permeability.

To test the numerical method’s ability to produce correct
solution for anisotropic permeability field, we consider the
same model problem as in Fig. 13 with the same input data
except for permeability. Let R(θ) denote the rotation matrix
of angle θ . The permeability is defined as

k = R(−θ)

(
100 0
0 1

)
R(θ).

Figure 26 shows the spatial distribution of the permeability
field; the angle θ is equal to 45◦ in the red regions and
alternates between 90◦ and 0◦ in the green and blue regions.
This experiment is based on a numerical experiment done
in [2].

Figure 27 shows the concentration profiles obtained on a
Cartesian grid of size 256 × 256 at time 0.25s. We increase
the polynomial degree from one to five. We note that as
the polynomial degree increases the DG solution has less
numerical diffusion. With the first-order DG method, the
channel flow is captured but with some amount of numer-
ical diffusion. In contrast, differences between the profiles
obtained with DG of order two to five are negligible or very
small.

Fig. 29 Concentration snapshots obtained with DG2: 1, 5, 8, 10, 15, 20 days
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Fig. 30 Breakthrough curves at
the production wells

6.5 Three-dimensional heterogeneous medium

The experiments we have done so far have demonstrated
the robustness of the DG discretization while facing sev-
eral numerical challenges. Next, we would like to test our
discretization on some realistic physical data. We select the
permeability field from the SPE10 model, which is well
known for its large heterogeneities varying from 10−10m2 to
10−18m2. In addition, the bottom 50 layers of the permeabil-
ity field represent the Upper Ness structure which includes
underground channels that pose additional challenges. How-
ever, for simplicity, we assume the medium is isotropic and
we keep the permeability in the z-direction the same as in
the xy-direction.

We consider the five-spot problem by placing injection
and production wells as in Fig. 28.

We set the injection rate to be
∫
�

qI = 1.7 m3/s and
production rate at each corner to be

∫
�

qP = 0.425 m3/s.
Gravitational force g = (0, 0, −9.8)T m/s2 is incorporated
in the simulation. No flow boundary condition is imposed.
Viscosities are

μs = 10−3Pa · s and μo = 9 × 10−4Pa · s.

Densities are

ρs = ρo = 1000 kg/m3.

We set a uniform time step to be 1 day and use piecewise
quadratic approximation. The mesh consists of 1,220,000
elements. The Darcy system has 32,940,000 degrees of free-
dom (Q2) and the transport system 12,220,000 degrees of
freedom (P2). Snapshots of the concentration profiles over
several days are shown in Fig. 29. Concentrations are plotted
above a threshold of 0.5. Even though we cannot theo-
retically guarantee a maximum principle, we observe that
the numerical concentrations remain bounded between 0
and 1.

We observe in Fig. 29 that the simulation results can
realistically represent the channels in the bottom layer of
the Upper Ness structure. To validate our simulation result,
we plot in Fig. 30 the average of the concentration at the
production well over time. This curve is referred to as
the breakthrough curve. We use the first- and second-order
methods.

We observe in Fig. 30 that the breakthrough curves coin-
cide. The plots give us confidence that the DG discretization
can produce reliable results for large scale simulations.
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7 Conclusion

In this paper, we have introduced a high-order discontinuous
Galerkin method with weighted average stabilization and
Raviart-Thomas flux reconstruction for solving the miscible
displacement equations. Sequential decoupling approaches
we employ maintain high-order convergence rate in time.
The resulting linear system is implemented on parallel clus-
ters using domain decomposition and solved using AMG
preconditioner. A series of numerical experiments demon-
strate the robustness and accuracy of the numerical method.
Apart from the specific challenges in miscible displacement
problem, the study of single-phase flow is the foundation for
understanding multi-phase and multi-component flow prob-
lems in porous media. More work is needed to be able to
apply our method to multi-phase and multi-component flow
in porous media.
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