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Abstract We present a general compositional formula-
tion using multi-point flux mixed finite element (MFMFE)
method on general hexahedral grids. The mixed finite ele-
ment framework allows for local mass conservation, accu-
rate flux approximation, and a more general treatment
of boundary conditions. The multi-point flux inherent in
MFMFE scheme allows the usage of a full permeability
tensor. The proposed formulation is an extension of sin-
gle and two-phase flow formulations presented by Wheeler
and Yotov, SIAM J. Numer. Anal. 44(5), 2082–2106 (2006)
with similar convergence properties. Furthermore, the for-
mulation allows for black oil, single-phase and multi-phase
incompressible, slightly and fully compressible flow mod-
els utilizing the same design for different fluid systems.
An accurate treatment of diffusive/dispersive fluxes owing
to additional velocity degrees of freedom is also presented.
The applications areas of interest include gas flooding,
CO2 sequestration, contaminant removal, and groundwater
remediation.

Keywords Compositional flow · Multipoint flux mixed
finite element method · General hexahedral grids ·
CO2 enhanced oil recovery

� Gurpreet Singh
gurpreet@ices.utexas.edu

Mary F. Wheeler
mfw@ices.utexas.edu

1 Center for Subsurface Modeling, Institute for Computational
Engineering and Sciences, POB 5.324, The University
of Texas at Austin, Austin, TX 78712, USA

1 Introduction

Compositional flow modeling has been used for simulating
CO2 sequestration, ground water remediation, and con-
taminant plume migration. In the oil and gas industry, it
is widely used for evaluating gas flooding scenarios as a
tertiary recovery process. The gas flooding targets achiev-
ing either direct miscibility or multi-contact miscibility to
counter adverse mobilities to maximize recovery. A number
of variants of the above process exist, based upon eco-
nomical considerations, such as gas slug injection along
with a chase fluid or water alternating gas (WAG). The
modeling involves solving a system of non-linear equa-
tions, invoking a local equilibrium assumption, including
an equation of state. This combined with partial differential
equations representing mass conservation represent a dif-
ferential algebraic system which is known for its numerical
difficulties. An extensive amount of literature is avail-
able which elaborate on different model formulations and
solution algorithms to address this problem.

Some of the earliest expositions in compositional flow
modeling were carried out by [27] using a fully implicit
solution scheme. Coats [6] later presented another implicit
formulation where the transmissibility terms (relative per-
meabilities) were treated implicitly during the construction
of Jacobian matrix. A similar formulation with explicit
transmissibility terms (relative permeabilities) was pre-
sented in [39]. These schemes were later categorized as
primary variable switching (PVS) owing to change of pri-
mary variables associated with phase appearance and dis-
appearance. A local criteria based upon saturation pressure
test is employed to test the stability of the hydrocarbon
phase. Here, a phase is assumed to be present only if
the phase saturations lie between 0 and 1. Furthermore,
the system of partial differential equations associated with
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component conservation equations and the algebraic system
of equations corresponding to the phase behavior model are
solved in a monolithic fashion. Lauser et al. [15] pointed
out some of the issues with PVS schemes at near criti-
cal conditions for the hydrocarbon fluid phase. The authors
used a non-linear complimentarity condition to circum-
vent the problems associated with phase appearance and
disappearance.

A number of sequential solution schemes are discussed
in literature ([1, 4, 14, 21]) for solving compositional flow
equations. An implicit pressure equation is formulated, with
explicit treatment of transmissibility terms, using a vol-
ume balance constraint which states pore volume is equal
to fluid volume. This is followed by an explicit concen-
tration update. Here, a backward Euler scheme is used,
for time-discretization of the PDEs, with respect to the
pressure variable (implicit pressure), whereas a forward
Euler scheme (time-lagging) is used for the concentration
variables (explicit concentration). Note that an implicit or
explicit treatment of a term, which can be expressed as
a function of the primary variables (pressure and concen-
trations), implies the time-level associated with the term.
This approach was later named implicit pressure explicit
concentration (IMPEC) scheme based on the well-known
implicit pressure explicit saturation (IMPES) scheme.
Watts [32] also presented an extension of the IMPES
scheme for compositional flow following [1] in the con-
struction of a pressure equation based upon a volume bal-
ance or constraint. Once the pressure equation is solved,
the total fluxes are evaluated and then a system of sat-
uration equations are solved explicitly. This is followed
by phase flux evaluation and component transport. In all
the above approaches, a finite difference method is used
for spatial discretization. An iteratively coupled IMPEC
scheme is presented by [30] where iterations are performed,
between an implicit pressure system and explicit concen-
tration updates, until a desired tolerance is achieved. Here,
an RT0, a mixed finite element scheme (cell-centered finite
difference) ([28]), and a second-order DG method were
used for spatial discretization of pressure and saturation
equations, respectively.

A sequential implicit scheme is an implicit approach
that relies upon an inexact Newton method to construct
an approximation of the exact Jacobian. A compositional
formulation, with mixed methods for pressure and first-
order scheme for concentrations, can be found in [16],
and [31] where this sequential implicit scheme is used.
Hajibeygi and Tchelepi [11] present another composi-
tional formulation where a sequential implicit solution
approach is employed along with a finite-volume dis-
cretization scheme. In this work, we formulate a sim-
ilar scheme based on a multi-point flux mixed finite

element (MFMFE) method as the discretization. The
MFMFE scheme provides accurate and locally mass con-
servative fluxes and eliminates grid orientation effects
owing to gradient in pressure. This scheme allows for a
full tensor permeability to capture permeability anisotropy.
We also differ in the use of a logically rectangular grid
with general hexahedral elements. These elements reduce
the number of unknowns when compared to tetrahedral
meshes. Furthermore, the general hexahedral elements
capture complex reservoir geometries without requiring
substantial manipulation of associated petrophysical prop-
erties. This also allows for capturing of non-planar fractures
[29] as a future prospect for compositional flow modeling
in fractured poroelastic reservoirs.

It is also imperative to discuss some of the restrictions
placed on phase-behavior modeling owing to a choice of
solution algorithms discussed before. The Rachford-Rice
(RR) ([26]) equations allows a better treatment of the non-
linearities presented by the phase behavior model. The
constant-K flash represented by RR equations can be eas-
ily reformulated as a constrained optimization problem
[20]. The objective function for this minimization prob-
lem is known to be convex and therefore robust solution
schemes can be utilized [22]. However, the model formula-
tions used in [6, 15] cannot take advantage of this due to the
restrictive choice of primary unknowns. For these implicit
solution schemes, where the algebraic equations associated
with phase behavior model and partial differential equations
for the compositional flow model are solved monolith-
ically, phase appearance and disappearance due to near
critical fluid phase behavior poses significant problems.
For primary variable switching (PVS) schemes, this might
introduce oscillations due to frequent changes in the rank
of the Jacobian. Whereas, for complementarity condition
based method, the Jacobian might become ill-conditioned
or rank deficient. The sequential implicit scheme, used in
this work, and a few other fully implicit formulations such
as variants of method presented by [9], circumvent these
issues by solving the algebraic system for phase behav-
ior model equations separately using robust solution algo-
rithms. Another exposition in this direction can be found
in [38]. A comparison of different linearization approaches,
using finite difference scheme, and the resulting computa-
tional costs is presented by [7].

In the sections below, we begin by describing the com-
positional model formulation along with boundary, initial
and closure conditions. This is followed by a description
of the hydrocarbon phase behavior model based upon the
local equilibrium assumption. Please note that the aqueous
phase is assumed to be slightly compressible. For the sake
of brevity, we skip directly to the fully discrete formula-
tion where a weak formulation of the problem is presented



Comput Geosci (2016) 20:421–435 423

along with the associated finite element spaces and quadra-
ture rules. We also briefly discuss the linearization choices
leading to the construction of the implicit pressure equa-
tion. Finally, we present a number of numerical results
comprising of verification and benchmarking cases along
with a comparison between two-point flux approximation
(TPFA) and MFMFE schemes. We also present two field
cases where gas flooding is used as a tertiary recovery
process to further demonstrate the model capabilities for
complex cases.

2 Compositional model formulation

We begin by describing a continuum description of the com-
positional model. The general mass balance equation can be
written in the differential form (also referred to as the strong
form) and is given by Eq. 1,

∂Wiα

∂t
+ ∇ · Fiα − Riα − rmiα = 0. (1)

Where Wiα is the concentration of component i in phase
α, Fiα the flux of component i in phase α, Riα the rate
of generation/destruction of component i in phase α owing
to reactive changes, and rmiα the rate of increase/decrease
component i in phase α owing to phase changes. The mass
balance Eq. 1 can be expressed in an expanded form given
by,

∂(εαραξiα)

∂t
+ ∇ · (ραξiαuα − εαDiα · ∇ (ραξiα)) = εαriα + rmiα.

(2)

Here, εα it the volume occupied by phase α, ρα the den-
sity of phase α, ξiα the fraction of component i in phase
α, and Diα the dispersion tensor. Please note that the equa-
tions outlined in this section can have either a mass or molar
basis. For the sake of simplicity of model description, the
following assumptions are made:

1. Isothermal reservoir conditions.
2. Rock-fluid interactions are neglected, i.e., no sorption

processes are considered.
3. Non-reactive flow.

Appying these assumptions to Eq. 2, we obtain Eq. 3.

∂(φSαραξiα)

∂t
+ ∇ · (ραξiαuα − φSαDiα · ∇ (ραξiα)) = qiα + rmiα

(3)

2.1 Component conservation equations

Summing Eq. 3 over the total number of phases (Np) and
noting that

∑
α rmiα = 0 results in Eq. 4.

∂

∂t

(∑
α

φSαραξiα

)
+ ∇ ·

∑
α

(ραξiαuα − φSαDiα · ∇ (ραξiα))

=
∑
α

qiα (4)

The phase fluxes (uα) are given by Darcy’s law,

uα = −K
krα

μα

(∇pα − ρm,αg
)
. (5)

Here, Sα is the saturation of phase α (ratio of volume of
phase α to pore volume), φ the porosity (ratio of pore
volume to bulk volume), qiα the rate of injection of compo-
nent i in phase α (mass/mole/volume basis), uα the Darcy
flux, and ρm,α the mass density of phase α. Also let,
Ni = ∑

α ραSαξiα and qi = ∑
α qiα then the component

conservation equations can be written as,

∂

∂t
(φNi)+∇ ·Fi −∇ ·

(∑
α

φSαDiα (∇ραξiα)

)
= qi. (6)

We define component flux Fi as,

Fi = −K
∑
α

ραξiα

krα

μα

(∇pα − ρm,αg
)
. (7)

Rearranging,

Fi = −K�i

(
∇pref − 1

�i

∑
α

ραξiα

krα

μα

ρm,αg

+ 1

�i

∑
α �=ref

ραξiα

krα

μα

∇pcα

⎞
⎠ (8)

where,

�i =
∑
α

ραξiα

krα

μα

(9)

In the following text, we will describe a system of par-
tial differential equations associated with component mass
conservation (compositional equations) with the reference
phase pressure (pref ) and component concentrations (Ni) as
the primary variables. We define N1 as the water component
concentration, �NHC = N2,...,Nc the hydrocarbon compo-
nent concentration vector and �N = N1,...,Nc the component
concentration vector.

2.2 Boundary and initial conditions

For the sake of convenience of model description, we
assume no flow external boundary condition everywhere.
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However, this is by no means restrictive and more general
boundary conditions can be also be treated.

uα · n = 0 on ∂	 (10)

The initial condition is as follows,

pref = p0, (11a)

Ni = N0
i . (11b)

2.3 Closure and constraints

The phase saturations Sα are calculated as functions of
primary variables pref and Ni=1,...,Nc as follows,

Sw(pref , N1) = Nw

ρw

,

So(pref , �NHC) = (1 − ν)

ρo

Nc∑
i=2

Ni,

Sg(pref , �NHC) = ν

ρg

Nc∑
i=2

Ni. (12)

Where ν is the mole fraction of the hydrocarbon gas
phase, and o, w, and g represent the hydrocarbon oil, water,
and hydrocarbon gas phases, respectively. A saturation con-
straint exist on phase saturation given by,

∑
α

Sα = 1. (13)

The capillary pressure is a monotonic and continuous
function of reference phase saturation (Sref). The relative
permeabilities are continuous functions of reference phase
saturation (Sref). A more general table-based capillary pres-
sure and relative permeability curve description has also
been implemented.

pcα(pref , �N) = pcα(Sref ) = pα − pref (14)

Furthermore, a slightly compressible Eq.15a and cubic
equation of state Eq. 15b are used for water and hydrocarbon
phases, respectively.

ρw(pref ) = ρw,0exp
[
Cw(pref + pcw − pref,0)

]
(15a)

ρα(pref , �NHC) = pα

ZαRT
, α �= w (15b)

Here, ρα is the molar density of phase α and ρw the water
phase density. The porous rock matrix is assumed to be com-
pressible, with Cr as the rock compressibility, satisfying the
following relationship,

φ(pref ) = φ0
[
1 + Cr(pref − pref,0)

]
, (16)

where φ0 and pref,0 are constants at the reference state (or
standard conditions).

3 Hydrocarbon phase behavior model

The phase behavior modeling for hydrocarbon phases is
based upon a local equilibrium assumption. The equilib-
rium component concentrations are then calculated point
wise given a pressure (pref), temperature (T), and overall
mole fraction (�z). A normalization of hydrocarbon com-
ponent concentrations �NHC give overall component mole
fractions �z.

zi( �NHC) = Ni∑Nc

i=2 Ni

(17)

Let ξiα be the mole fraction of component i in phase α

and ν the normalized moles of gas phase, then from mass
balance we have,

νξig + (1 − ν)ξio = zi, (18a)
Nc∑
i=2

ξio = 1, (18b)

Nc∑
i=2

ξig = 1. (18c)

The partitioning coefficient �Kpar for a component i between
hydrocarbon phases is given by,

K
par
i = ξig

ξio

, i �= 1. (19)

Rearranging the above equations we have,

ξio( �NHC, �Kpar , ν) = zi

1 + (K
par
i − 1)ν

, (20a)

ξig( �NHC, �Kpar , ν) = K
par
i zi

1 + (K
par
i − 1)ν

. (20b)

The equilibrium hydrocarbon component distribution is
calculated using Rachford-Rice (RR) equation ([26]) given
as,

f ( �NHC, �Kpar , ν) =
Nc∑
i=2

(K
par
i − 1)zi

1 + (K
par
i − 1)ν

= 0. (21)

At equilibrium, the fugacities of a component i are equal
in all the phases given by the iso-fugacity criteria Eq. 22.

g(pref , �NHC, �Kpar , ν) = ln�io − ln�ig − lnK
par
i = 0.

(22)
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Where the fugacity of component i in phase α is given by,

ln�iα(pref , �NHC, �Kpar , ν) = − Ci + Bi

Bα

(Z̄α − 1) − ln(Z̄α − Bα)

− Aα

2
√
2Bα

(
2
∑Nc

j=2 ξjαAij

Aα

− Bi

Bα

)

ln

(
Z̄α + (1 + √

2)Bα

Z̄α + (1 − √
2)Bα

)
. (23)

Here, Z̄α = Z̄α(pref , �NHC, �Kpar , ν). For a given pres-
sure (pref ) and hydrocarbon composition (NHC) and tem-
perature (T) Eqs. 21 and 22 can be linearized in terms of
lnKi and ν.

(
∂f/∂lnKpar ∂f/∂ν

∂g/∂lnKpar ∂g/∂ν

)(
δlnKpar

δν

)
=

(−R1

−R2

)
(24)

Eliminating δν from the linear system,

(
∂f

∂lnKpar − ∂f

∂ν

(
∂g

∂ν

)−1
∂g

∂lnKpar

)
δlnKpar = −R1 + ∂f

∂ν

(
∂g

∂ν

)−1

R2.

(25)

Since the system under consideration is highly non-linear
with multiple solutions, we must either provide good ini-
tial guesses or constraint the system appropriately so as
to get a unique solution. The hydrocarbon phase behav-
ior model is a global optimization problem and therefore
relies upon providing a good initial estimates for �Kpar and
ν based upon heuristics. The Wilson’s equation ([37]) (26)
is an empirical correlation which provides initial guesses
for K

par
i s.

K
par
i = 1

pri

exp

[
5.37(1 + ωi)

(
1 − 1

Tri

)]
(26)

Using these partitioning coefficients (Kpar
i ) and the given

composition (zi) (21) is then solved to get an initial
estimate for ν. We use three different ways of deter-
mining phase stability and consequently the composi-
tions of unstable phases using iso-fugacity flash calcu-
lations. The three methods differ either in the calcula-
tion of initial estimates of K

par
i s or the determination

of phase stability (negative flash vs. tangent plane dis-
tance). However, the primary unknowns and equations for
the three methodologies are the same as presented in this
section.

For non-polar molecules (hydrocarbons), a Peng-
Robinson cubic equation of state ([24]) empirically corre-
lates pressure, temperature, and molar volume. The values
of Zα are calculated using this cubic equation of state,
given in the Appendix (51). For given pressure, tempera-
ture, composition (�n), partitioning coefficients ( �Kpar), and

vapor fraction (ν), the cubic equation of state provides
three values of Zα . A unique solution is obtained by select-
ing the root which has the minimum Gibb’s free energy
given by,

∂G

∂ni

∣∣∣∣
α,T ,P

= μiα = μo
i + RT ln�iα, (27a)

dG|α,T ,P =
Nc∑
i=2

∂G

∂ni

∣∣∣∣
α,T ,P

dni = h(Zα). (27b)

Here, μo
i represents the reference state and is a different

constant for each component. Among the three roots of the
cubic EOS, Zα corresponding to the minimum dG|α,T ,P is
chosen. The cubic EOS, or alternatively Zα , is not a part
of the Jacobian (50) due to the restriction placed by mini-
mum Gibb’s free energy constraint. The algorithm for flash
iteration can be outlined as follows:

1. Calculate an initial estimate of K
par
i s from Wilson’s

correlation (26).
2. For a given P, T, �z, and K

par
i s calculated above, solve

the Rachford-Rice (21) for ν.
3. Calculate ξiα from Eq. 20.
4. Evaluate Zα using Eq. 51.
5. Evaluate residuals of fugacity Eq. 22, stop if conver-

gence tolerance is achieved.
6. If tolerance is not achieved, solve (25) for new values

of K
par
i s.

7. Stop if K
par
i is trivial i.e., Kpar

i = 1.
8. Return to 1.

A tangent plane distance analysis is used to deter-
mine phase-stability and the number of stable hydrocar-
bon phases which was originally presented by [2] and
later improved and extended by [18, 19]. Furthermore, a
quasi-Newton successive substitution algorithm is used to
calculate phase and component mole fractions. An exten-
sive literature is dedicated to the solution algorithms ([8,
10, 12, 17, 23]) associated with phase behavior model-
ing and a detailed description is therefore curtailed in
this paper.

4 Fully discrete formulation

We utilize a multi-point flux mixed finite element method
to construct a fully discrete form of the flow problem
describe earlier. Multi-point flux mixed finite element meth-
ods have been developed by [13, 35] for general hexa-
hedral grids. Mixed finite element methods are preferred
over other variational formulations due to their local mass
conservation and improved flux approximation properties.
An appropriate choice of mixed finite element spaces and
degrees of freedom based upon the qudrature rule for
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numerical integration ([33, 36]) allow flux degrees of free-
doms to be defined in terms of cell-centered gridblock
pressures adajacent to the vertex. A 9 and 27 point pressure
stencil is formed for logically rectangular 2D and 3D grids,
respectively.

4.1 Finite element spaces

Here, we present the appropriate finite element spaces
utilized to formulate an MFMFE scheme. An enhanced
BDDF1 space on Ê ,with additional degrees of freedom, for
a general hexahedral element is defined on a reference unit
cube Eq. 30 by enhancing the BDDF1 space Eq. 28. Here,
BDDF1 is the Brezzi-Douglas-Duŕan-Fortin mixed finite
element space for second order elliptic problems ([3]). Let,
V = {v ∈ H(div; 	) : v · n = 0 on ∂	N }, W ≡ L2(	)

BDDF1(Ê) = P1(Ê)3 + r0curl(0, 0, x̂ŷẑ)T + r1curl(0, 0, x̂ŷ2)T

+s0curl(x̂ŷẑ, 0, 0)T + s1curl(ŷẑ2, 0, 0)T

+t0curl(0, x̂ŷẑ, 0)T + t1curl(0, x̂2ẑ, 0)T

= P1(Ê)3 + r0(x̂ẑ,−ŷẑ, 0)T + r1(2x̂ŷ,−ŷ2, 0)T

+s0(0, x̂ŷ,−x̂ẑ)T + s1(0, 2ŷẑ,−ẑ2)T

+t0(−x̂ŷ, 0, ŷẑ)T + t1(−x̂2, 0, 2x̂ẑ)T (28)

Ŵ (Ê) = P0(Ê) (29)

V̂ ∗(Ê) = BDDF1(Ê) + r2curl(0, 0, x̂2ẑ)T + r3curl(0, 0, x̂2ŷẑ)T

+s2curl(x̂ŷ2, 0, 0)T + s3curl(x̂ŷ2ẑ, 0, 0)T

+t2curl(0, ŷẑ2, 0)T + t3curl(0, x̂2ẑ, 0)T

= BDDF1(Ê) + r2(0, −2x̂ẑ, 0)T + r3(x̂
2ẑ,−2x̂ŷẑ, 0)T

+s2(0, 0, −2x̂ŷ)T + s3(0, x̂ŷ2,−2x̂ŷẑ)T

+t2(−2ŷẑ, 0, 0)T + t3(−2x̂ŷẑ, 0, ŷẑ2) (30)

The mixed finite element spaces on a physical element
is mapped from a reference using the Piola and scalar
transformations (31).

v ↔ v̂ : v̂ = 1

JE

DFEv̂ ◦ F−1
E

w ↔ ŵ : w = ŵ ◦ F−1
E (31)

where FE denotes mapping from Ê to E; DFE and JE are
the Jacobian and the determinant of FE , respectively. The
discrete finite element spaces Vh and Wh on τh are given by,

Vh ≡ {v ∈ V : v|E ↔ v̂, v̂ ∈ V̂ (Ê), ∀E ∈ τh},
Wh ≡ {w ∈ W : v|E ↔ ŵ, ŵ ∈ ŵ(Ê), ∀E ∈ τh}, (32)

where H(div; 	) ≡ {v ∈ (L2(	))3 : ∇ · v ∈ L2(	)}.

4.2 Quadrature rule

For q, v ∈ V ∗
h the local (on element E) and global

(on domain 	) quadrature rules are given by Eqs. 33–
35, respectively. Where Eqs. 33 and 34 give the sym-
metrical and non-symmetrical quadrature rules. The non-
symmetrical quadrature rules have been shown to have
convergence properties for general hexahedra by [34].

(K−1q, v)Q,E = 1

2d

2d∑
i=1

JE(r̂i)(DF−1
E )T (ri)DFT

E (ri)

K−1
E (FE(r̂i))q(ri) · v(ri) (33)

(K−1q, v)Q,E = 1

2d

2d∑
i=1

JE(r̂i)(DF−1
E )T (ri)DFT

E (r̂
c,Ê

)

K̄−1
E q(ri) · v(ri) (34)

(K−1q, v)Q ≡
∑
E∈τh

(K−1q, v)Q,E (35)

Here, r̂i is the vertex of the reference element Ê, r̂
c,Ê

is the

center of mass of Ê, K̄E is the mean of K on E.

4.3 Weak formulation

We now consider the fully discrete variational formulation
of the compositional flow model. The variables are taken at
the most recent time iterate level everywhere except when-
ever explicitly indicated by index n. A sequential implicit
approach is used to solve equations in pressure (pref) and
concentration (Ni) variables. The pressure and concentra-
tion equations are discretized in time using a backward
Euler scheme. The discrete variational problem for reservoir
pressure then reads: Given Nn

i,h ∈ Wh and pn
ref,h ∈ Wh, find

Nn+1
i,h ∈ Wh, F

n+1
i,h ∈ Vh and pn+1

ref,h ∈ Wh such that,

〈
1

�i,h(pref , �NHC)
K−1Fi,h, vh

〉
Q,E

− (
pref,h, ∇ · vh

)
E

= −
∫

∂E∩∂	

prefvh · n −
⎛
⎝ 1

�i,h

∑
α �=ref

ρα,hξiα,hλα,h∇pcα,h, vh

⎞
⎠

E

+
(

1

�i,h

∑
α

(
ρ2

α,h

)
ξiα,hg, vh

)
E

, (36)
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(
φhNi,h

�t
, wh

)
E

+ (∇ · Fi,h, wh

)
E

−
(

∇ ·
∑
α

{
φhSα,hDiα,h · ∇ (

ρα,hξiα,h

)}
, wh

)
E

= (
qi,h, wh

) +
(

φnNn
i

�t
, wh

)
E

. (37)

Nw

ρw

+
(
1 − ν

ρo

+ ν

ρg

) Nc∑
i=2

Ni = 1 (38)

Equations 36–38 constitute (2×Nc+1) equations in vari-
ables pref (1 variable), Ni (Nc variables), and Fi (Nc

variables). Please note that all terms, in the equations above,
are at the current time level (n + 1) unless stated otherwise
with a superscript n.

4.4 Treatment of diffusion/dispersion

The diffusion-dispersion tensor is the sum of molecular
diffusion and hydrodynamic dispersion given by:

Diα = Dmol
iα + D

hyd
iα , (39a)

Dmol
iα = ταdm,iαI, (39b)

D
hyd
iα = dt,α|vα|I + (

dl,α − dt,α

)
vαvT

α /|vα|. (39c)

Here, τα is the tortuousity of phase α, dm,iα , dl,α , dt,α are
the molecular, longitudinal, and transverse dispersion coef-
ficients, respectively. We define the diffusive/dispersive flux
as:

Jiα = φSαDiαρα · ∇ (ξiα) , (40)

〈
1

φραSα

D−1
iα Jiα, vh

〉
Q,E

− (ξiα,∇ · vh)E = −
∫

∂E∩∂	

ξiαvh · n.

(41)

The diffusion-dispersion tensor is evaluated locally for each
corner-point similar to the permeability tensor. The molec-
ular diffusion (Dmol

iα ) is evaluated using cell-centered values
of dm,iα . Furthermore, the hydrodynamic dispersion tensor

(Dhyd
iα ) is calculated using the three flux degrees of freedom

associated with each corner-point.

5 Linearization

A Newton method is applied to form a linear system of
equations followed by elimination of component concen-
trations and fluxes resulting in an implicit pressure system.
Linearizing the above system of equations,

〈
1

�i,h(pk
ref , �Nk)

K−1δFi,h, vh

〉
Q,E

− (
δpref,h,∇ · vh

)
E

= −Rk
3i ,

(42)

(
φh(pk

ref )

�t
δNi,h, wh

)
E

+
(

crφ0N
k
i,h

�t
δpref,h, wh

)
E

+ (∇ · δFi,h, wh

)
E

= −Rk
4i . (43)

The local mass matrix and right-hand side for component i

can be written as,

(
Ak

i B 0
BT Ck

i Dk
i

)⎛
⎝ δF i

δpref

δNi

⎞
⎠ =

(−Rk
3i

−Rk
4i

)
. (44)

Here, Ci and Di are diagonal matrices corresponding to the
first and second terms in Eq. 44. Also the Newton increment
for a variable vector �x is given by,

δx = �xk+1 − �xk. (45)

Eliminating δF i in favor of cell centered quantities δpref and
δNi .

(
Ck

i − BT (A−1
i )kB

)
δpref + Dk

i δNi = −Rk
4i + BT (A−1

i )kRk
3i

(46)

The RR Eq. 21, iso-fugacity criteria Eq. 22, and saturation
constraint Eq. 38 can be linearized in terms of the unknowns
pref, Ni , K

par
i and ν using Eqs. 17 and 20 as,

∑
α

(
∂Sα

∂pref

)k

δpref +
∑
α

∑
i

(
∂Sα

∂Ni

)k

δNi

+
∑
α

∑
i

(
∂Sα

∂lnK
par
i

)
δlnK

par
i

+
∑
α

(
∂Sα

∂ν

)k

δν = 1 −
∑
α

Sk
α = −Rk

5, (47)
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�iα = �iα(pref, ξiα) = �iα(pref, zi, K
par
i )

= �iα(pref, Ni, K
par
i ), (48)

(
∂ln�io

∂pref

)k

δpref +
Nc∑
j=2

(
∂ln�io

∂Nj

)k

δNj

+
Nc∑
j=2

(
∂ln�io

∂lnK
par
j

)k

δlnK
par
j +

(
∂ln�io

∂ν

)k

δν

−
(

∂ln�ig

∂pref

)k

δpref −
Nc∑
j=2

(
∂ln�ig

∂Nj

)k

δNj

−
Nc∑
j=2

(
∂ln�ig

∂lnK
par
j

)k

δlnK
par
j −

(
∂ln�ig

∂ν

)k

δν

−
Nc∑
j=2

(
∂lnK

par
i

∂lnK
par
j

)k

δlnK
par
j = −Rk

6i . (49)

The above equations can also be written in the matrix
form as,

⎛
⎝Ek Fk Gk Hk

Ik J k Kk Lk

0 Nk Ok P k

⎞
⎠
⎛
⎜⎜⎝

δpref

δN

δlnKpar

δν

⎞
⎟⎟⎠ =

⎛
⎝−Rk

5
−Rk

6
−Rk

7

⎞
⎠ . (50)

We then construct the pressure equation by fur-
ther eliminating δN and δlnKpar. Eliminating δF , δN ,
and δlnKpar from the above linear system of equa-
tions results in an implicit pressure system. Once the
pressure increments (δpref ) are evaluated, the concen-
tration increments (δNi) are obtained by back solving
the linear system. Figure 1 shows a flow chart of the
sequential implicit scheme used in this work. The cor-
responding Newton iterate level is represented by the
index k.

The values of phase compressibilities (Zα) are eval-
uated explicitly given pressure pref , temperature T, and
component concentrations Nis. The derivatives of Zα with
respect to pref and Ni are therefore set to zero in the Jaco-
bian. The Zα contribution is accounted for in the residual
term. A more rigorous treatment would be to expand the
Jacobian in terms of Zα as well. However, the minimum
Gibbs free energy constraint (for a unique Zα) given by Eq.
27 is difficult to utilize.

6 Results

In this section, we present numerical experiments to verify
and demonstrate the capabilities of MFMFE discretization

Fig. 1 Sequential implicit scheme

scheme for compositional flow modeling. We begin with
a verification case where a comparison is made between
TPFA and MFMFE discretization schemes for matching
conditions. This is followed by two 2D numerical exper-
iments, for a quarter five-spot well pattern, with homo-
geneous and heterogeneous permeability fields. The het-
erogeneous case uses a checker-board pattern permeability
field to demonstrate differences in fluid front resolution for
the TPFA and MFMFE scheme. Furthermore, a 2D flu-
vial river bed example is presented to show the effect of
permeability anisotropy and reservoir geometry represen-
tation on the sweep pattern. Finally, we present numer-
ical simulations for gas flooding of Frio and Brugge
fields to demonstrate MFMFE capability to capture gen-
eral reservoir geometries and field scale representation.
For all the results below, a Newton tolerance of (ε) 10−8

is used with average Newton iterations (k) of 2-4 for
a typical time-step sizes of 0.25–1.0 days. Please note
that the values of k and time-step sizes are problem
dependent and therefore the previous statement is highly
subjective.

6.1 Verification and benchmarking

Here, we present a comparison between TPFA and MFMFE
discretizations with a diagonal permeability tensor. A
quarter five spot pattern with three components (C1, C6, and
C20) in addition to the water component. Both the injec-
tion (bottom left corner) and production (top right corner,
Fig. 2) wells are bottom hole pressure specified with a



Comput Geosci (2016) 20:421–435 429

Fig. 2 Oil saturation profile
after 500 days using TPFA (left)
and MFMFE (right)
discretizations

pressure specification of 1200 and 900 psi, respectively.
The injection composition is kept constant at 100 %
C1 with reservoir and grid block dimensions of 1000 ft
× 1000 ft × 20 ft and 20 ft × 20ft × 20ft, respec-
tively. The initial reservoir pressures and water satura-
tions are 1000 psi and 0.2, respectively. A homoge-
neous, isotropic, and diagonal permeability tensor field
of 50 mD was assumed with a homogeneous poros-
ity field of 0.3. The temperature was kept constant at
160 ◦F.

Figure 3 shows variation of component concentrations
along the line joining injector and producer for both TPFA
and MFMFE discretizations.

6.2 2D Homogeneous case

Here, we present a comparison between TPFA and MFMFE
discretization schemes on a quarter five spot well pattern.
The injector and producer are located at diagonally opposite

corners in the bottom left and top right corners, respec-
tively. The reservoir and fluid property information is kept
the same as in the previous example differing only in per-
meability values. A homogeneous, isotropic permeability
field of 100 mD is assumed with small off diagonal per-
meability values of 0.5 mD to construct a full permeability
tensor for the MFMFE scheme. The injection (bottom left
corner) and production (top right corner) wells are bottom
hole pressure specified with a pressure specification of 2200
and 900 psi, respectively. Figure 4 shows the oil saturation
profiles after 100 days of gas (100 % C1) injection. The sat-
uration profiles indicate minor differences between TPFA
and MFMFE schemes using diagonal and fully permeability
tensors, respectively.

6.3 2D Heterogeneous case: checkerboard pattern

This numerical experiment demonstrates the differences in
saturation profiles between TPFA and MFMFE discretiza-

Fig. 3 Component
concentrations along the
injector-producer line after
500 days for TPFA (solid-line)
and MFMFE (dots)
discretizations
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Fig. 4 Gas saturation profiles
after 100 days for TPFA (left)
and MFMFE (right)
discretizations

tions owing to fully permeability tensor. The reservoir, fluid
property, and transient information is kept the same as in
the previous example differing only in permeability values.
A checkerboard permeability field, as shown in Fig. 5 (left),
is taken with values of 1 mD (blue) and 100 mD (red) to
exaggerate the effect of heterogeneity. Additionally, small
off diagonal permeability values of 0.5 mD were taken to
construct a full permeability tensor for the MFMFE scheme.
Figure 5 also shows the gas saturation profiles for the two
discretization schemes after 3000 days. The differences in
saturation profiles are significant when compared to the
homogeneous case (Fig. 4). The MFMFE scheme is able
to identify the high permeability diagonal direction allow-
ing better resolution of pressure and saturations at the fluid
front. The differences are more pronounced as we go from
first contact miscible, multi-contact miscible to immiscible
gas flooding cases.

6.4 2D Anisotropic case: fluvial river bed deposit

A simple 2D fluvial river bed deposit is considered which
has a curved geometry as shown in Fig. 6. The purpose
of this numerical experiment is two fold: (1) to cap-
ture the reservoir geometry and (2) to show differences

resulting from representing the permeability anisotropy
as a diagonal and full permeability tensor for TPFA
and MFMFE schemes, respectively. The sandstone reser-
voirs are formed from river bed deposits consolidating
over time owing to chemical and mechanical processes.
These formations often exhibit a permeability anisotropy
with maximum and minimum horizontal permeabilities
parallel and orthogonal to the flowing river direction,
respectively.

The permeability fields in such reservoirs is most accu-
rately represented by a full tensor which rotates in a
continuous fashion (Fig. 6, left) as we move upstream or
downstream from a point or reference. A permeability field
is generated by assuming a diagonal permeability tensor
with Kx = 100 mD and Ky = 10 mD at the top left corner.
A rotation of 90◦ is applied in small increments as we move
from top left corner to the middle of the stream and back
to 0 degrees at the bottom right corner. Figure 6 (middle and
right) shows variations in x and y direction permeabilities
along the river bed. The homogeneous reservoir porosity of
0.3 is also assumed.

The injection and production wells are placed at the top
left and bottom right of the S-shaped reservoir. Furthermore,
a bottom hole pressure specification of 3500 and 3000 psi

Fig. 5 Permeability field (left)
and gas saturation profiles after
3000 days for TPFA (middle)
and MFMFE (right)
discretizations



Comput Geosci (2016) 20:421–435 431

Fig. 6 X and Y direction
permeabilities

was used for the injector and producer, respectively. An in
situ hydrocarbon fluid composition of (0 % C1, 10 % C6,
20 % C10, 10 % C15, and 60 % C20) was assumed along
with an initial water saturation of 0.2. The hydrocarbon fluid
composition for the gas injection well was kept constant at
100 % CH4.

Figure 7 shows the oil saturation and CH4 concentra-
tion profiles after 1000 days for the finite-difference (TPFA)
and MFMFE scheme, respectively. Please note that the

Fig. 7 Oil saturation (top) and CO2 concentration profile (bottom)
after 1000 days for TPFA (left) and MFMFE (right) discretizations

finite difference scheme requires three times the number of
elements for the MFMFE discretization to effectively cap-
ture the problem geometry. Figure 8 shows a comparison
of saturation and concentration profiles after 5000 days.
The results clearly show differences in sweep pattern
which effect hydrocarbon recoveries resulting from differ-
ences in representation of permeability ansitropy. Figure 8
also shows that compared to the MFMFE scheme, the
finite difference scheme with the diagonal permeability

Fig. 8 Oil saturation (top) and CO2 concentration profile (bottom)
after 5000 days for TPFA (left) and MFMFE (right) discretizations
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Fig. 9 Concentration profiles
for lightest (C1) and heaviest
(C20) components after
1000 days

tensor results in larger stagnant zones (high oil satura-
tions) once the injection fluid breakthrough occurs at the
production well.

6.5 Frio field case

In this example, we present a synthetic field case using
a section of Frio field geometry information to demon-
strate some of the model capabilities. Note that the general
hexahedral elements allows us to capture reservoir geome-
try accurately without requiring substantial changes in the
available petrophysical data. We consider six hydrocarbon
components (C1, C3, C6, C10, C15, and C20) in addition to
water forming the fluid composition. The fluid system can
be at most three phases at given location, depending upon
phase behavior calculations, including water, oil, and gas
phases. The initial hydrocarbon composition in the reservoir
is taken to be 5 % C3, 40 % C6, 5 % C10, 10 % C15, and
40 % C20 with an initial reservoir pressure of 2000 psi. Fur-
thermore, the water saturation (Sw) at time t = 0 is taken
to be 0.2. A total of eight bottom hole pressure specified
wells were considered comprising of three production and
five injection wells. A permeability and porosity field with
typical values of 50 mD and 0.2, respectively is assumed.
The injection composition was kept constant at 100 % C1

during the entire simulation run spanning 1000 days. An

isothermal reservoir condition was assumed at a temperature
of 160 ◦F.

A multi-contact miscible (MCM) flood is achieved at
the given reservoir pressure and temperature conditions.
Figure 9 shows the concentration profiles for the lightest and
heaviest hydrocarbon components after 1000 days. Further-
more, Fig. 10 shows the gas and oil saturation profiles after
1000 days.

6.6 Brugge field CO2 flooding

In this example, we use CO2 gas flooding ([5, 25])
as the tertiary mechanism for recovering hydrocar-
bons. The distorted reservoir geometry is captured using
9×48×139 general hexahedral elements and then dis-
cretized using a MFMFE scheme. Figure 11 shows Brugge
field reservoir geometry along with locations of injec-
tion and production wells. A constant temperature of
160 ◦F is specified assuming an isothermal reservoir
condition. The initial hydrocarbon composition is 40 %
(C6) and 60 % (C20) with an initial reservoir pressure
of 1500 psi.

An injected gas composition of 100 % CO2 is fur-
ther specified. The figure shows the Brugge field geom-
etry with 30 bottom-hole pressure specified wells with
10 injectors at 3000 psi and 20 producers at 1000 psi.

Fig. 10 Saturation profiles for
gas (left) and oil (right) phases
after 1000 days
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Fig. 11 Brugge field geometry with well locations

The porous rock matrix is assumed to be water wet as
reflected by the relative permeability and capillary pressure
curves in Figs. 12 and 13, respectively. Figure 14 shows
the oil and gas saturation profile after 1000 days, whereas
Fig. 15 shows the pressure distribution and concentration
profiles for light (CO2), intermediate (C6) and heavy (C20)
components. A multi-contact miscible flood is achieved
with miscibility occurring at the tail end of the injected
gas front.

7 Conclusions

We developed a compositional flow model using MFMFE
for spatial discretization. The use of general hexahedral
grid leads to fewer number unknowns when compared
to tetrahedral grids and therefore lower computational
costs. Furthermore, the discretization scheme allows suf-
ficient flexibility in capturing complex reservoir geome-
tries including non-planar interfaces. The hexahedra is a
plausible choice for mesh elements since reservoir petro-
physical data is usually available on similar elements. An
MFMFE scheme therefore facilitates adaptation with min-
imal changes to given information. Finally, the general

compositional flow model presented here encompasses sin-
gle, multi-phase and black oil flow models. This presents a
future prospect for multi-model capabilities where different
flow models can be used in separate reservoir domains.
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Appendix A: Peng-robinson cubic equation of state

Z̄3
α − (1 − Bα)Z̄2

α +
(
Aα − 3B2

α − 2Bα

)
Z̄α −

(
AαBα − B2

α − B3
α

)
= 0(51a)

Zα(pref , �NHC, �Kpar , ν) = Z̄α(pref , �NHC, �Kpar , ν) − Cα(51b)

Aα =
Nc∑
i=2

Nc∑
j=2

ξiαξjαAij (51c)

Aij = (1 − δij )(AiAj)0.5(51d)

Ai = 	o
ai

[
1 + mi(1 − T 0.5

ri )
]2 pri

Tri

2
(51e)

Bα =
Nc∑
i=2

ξiαBi (51f)

Cα = P ∗

RT

Nc∑
i=2

ξiαci(51g)

Bi = 	o
bi

pri

Tri

(51h)

Ci = pref ci

RT
(51i)

pri = pref

Pci

(51j)

Tri = T

Tci

(51k)

mi = 0.374640 + 1.54226ωi − 0.26992ω2
i if ωi ≤ 0.49

= 0.379642 + 1.48502ωi = 0.164423ω2
i + 0.0166663i if ωi >0.49

(52)

Fig. 12 Water, oil, and gas
relative permeabilities
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Fig. 13 Capillary pressure
curves
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Fig. 14 Oil and gas saturation
profiles after 1000 days

Fig. 15 Pressure and concentration profiles after 1000 days
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where,

δij = Binary interaction parameters between component
‘i’ and ‘j’ (constant).

pci = Critical pressure of component ‘i’ (constant).
Tci = Critical temperature of component ‘i’ (constant).
ωi = Accentric factor for component ‘i’ (constant, devia-

tion of a molecule from being spherical).
Cα = Volume shift parameter (constant).
	o

a/bi = Constants corresponding to the equation of state.
Zα = Compressibility of phase ‘α’.
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