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Abstract This paper is a review of applications of den-
sity functional theory (DFT) in compositional hydrody-
namics. The basic idea is representation of the entropy
or the Helmholtz energy of the mixture as the functional
depending on the molar densities of chemical components
(density functional). The hydrodynamics is governed by
local conservation laws of chemical components, momen-
tum, and energy, while constitutive relations and boundary
conditions are introduced in accordance with the explicit
form of the density functional. The general ideas and the
history of the DFT in compositional hydrodynamics are
discussed. Then the DFT for multiphase multicomponent
mixtures is presented including the exposition of the first
principles, governing equations and constitutive relations,
and explicit expressions of density functional depending
on physical situation. The DFT-based numerical simulator
is described, and several multiphase simulation results are
presented to illustrate the scope and effectiveness of DFT:
sessile drop with and without surfactant, droplet breakup
in shear flow, and three-phase hydrodynamics with mobile
solid phase. Also, two practical scenarios with multiphase
simulations in micro-CT porous rock models are presented:
two-phase immiscible water-oil flow and three-phase water-
gas-condensate flow with phase transitions. All numerical
results are obtained by essentially the same code; both the
number of chemical components and the Helmholtz energy
have been set up in accordance with physical situation.
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1 Introduction

The modeling approach to the pore-scale processes in
hydrocarbon reservoirs should satisfy several requirements.
First, it must take account of the complex chemical compo-
sition of the reservoir fluids and describe changes in com-
position caused by phase transitions and chemical reactions.
Second, the exact number of phases in the reservoir mixture
is not predetermined and constitutes one of the unknown
quantities. Moreover, the number and the nature of phases
in the mixture can change with time being dependent on the
processes in the reservoir. For example, the gas-condensate
deposits are usually characterized by two-phase initial state
of the mixture containing aqueous solution and hydrocarbon
gas. When the gas is recovered, drop in reservoir pressure
can cause retrograde condensation with appearance of third
liquid hydrocarbon phase. Then, under certain development
schemes, dry gas can be injected into the reservoir, and this
can result in local evaporation of water and condensate with
gas as the only remaining phase.

Third, the spatial distribution of phases is not predeter-
mined and can evolve in time. Thus, the modeling approach
should be sufficiently flexible and efficient to handle the
complex dynamics of interfacial boundaries. Fourth, the
description of phase transitions should cover near-critical
region and, therefore, cannot be based on phase indicator
or phase saturation concepts. Indeed, variables of this kind
cannot be defined continuously in the vicinity of critical
points.
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These requirements are satisfied in the framework of
the density functional theory (DFT) hydrodynamics, or,
more shortly, the density functional hydrodynamics (DFH),
which relies on the molar density fields of chemical compo-
nents constituting the mixture. The thermodynamic model
is based on Helmholtz energy (or entropy), which is a
function of molar densities. The new system of dynamic
equations obtained within the DFT framework represents M

scalar equations for conservation of chemical components,
three scalar equations for conservation of momentum, and a
scalar equation for total energy conservation with constitu-
tive relations consistent with density functional (Section 2).
The basic density functional contains molar density gradient
terms, which produce higher order spatial partial derivatives
in hydrodynamic equations (Section 3). Additional equa-
tions are introduced for complex systems containing mobile
solid phases with or without structural defects (Section 4).

Section 5 discusses the DFH numerical simulator, while
Section 6 presents several multiphase numerical solutions,
which demonstrate the capabilities of DFH. Finally, the
capabilities of the method are demonstrated by simulation
of a two pore-scale multiphase flow scenarios related to oil
and gas production (Section 7).

The origins of DFT can be traced to the model by Thomas
[57] and Fermi [23] developed in 1927. This quantum
mechanical model was used in describing inhomogeneous
ground state electron configurations; however, the modern
DFT originates in the 1964 works by Kohn and his coau-
thors [27, 32]. In the following years, the DFT found its
place in many disciplines of physics; see reviews in [20, 22,
31, 45].

The applications of DFT in compositional hydrodynam-
ics can be traced to [11] in isothermal formulation. In 1998,
the theory was extended for non-isothermal cases [12].
Since then, a large experience was accumulated in DFT
numerical applications for different multiphase problems
with or without phase transitions. A significant part of it is
covered by our book [9]. In the present review, we have tried
to reach a balance between fundamentals and applications.

There are many similar approaches to the description
of interfaces, which are based on introduction of gradient
terms for phase transition zones [1, 53]. Though quite effec-
tive in their respective areas of applications, they are not
adequate for the whole set of possible processes in hydro-
carbon reservoirs. For instance, concentration gradients are
not indicative for azeotropic mixtures, while mass density
gradients are not indicative for two-phase mixtures with low
mass density contrast. More detailed comparative discus-
sion of different methods in multiphase hydrodynamics can
be found in [9, 10].

In the following text, the number of different chemical
components in the mixture is denoted by M . The indices
i, j , and k correspond to the component numbers and

take values 1 , ..., M . The indices a and b correspond to
the Cartesian coordinates xa or curvilinear coordinates ya

and take values 1, 2, and 3. We use shortened notations
for partial derivatives in respect to Cartesian coordinates
∂a = ∂/∂xa , time ∂t = ∂/∂t , and molar density of the
ith chemical component ∂f,i = ∂f/∂ni . By default, the
summation is carried out over the repeated indices. In Carte-
sian coordinates, the tensors with up or down indices are
identical.

2 Physical foundations

We describe the multicomponent mixture using the concepts
of continuum mechanics. The mixture is represented as a
medium, which is continuously distributed in space. The
molecules are not resolved as objects with individual param-
eters. Instead, we deal with certain integral parameters,
which characterize the mixture as a system of molecules.
The continuum mechanics is applicable for fluids in pores
when molecular free path is significantly smaller than the
typical size of the pore. This condition is satisfied for many
natural hydrocarbon reservoirs (but not for all). In order
to incorporate capillary phenomena in our description, we
expand classical continuum medium concepts by allowing
local values of fluid parameters outside the thermodynamic
stability range in the bulk.

The primary variables are assumed to be molar density of
chemical components ni , mass velocity va of the medium,
and internal energy density u. For the homogeneous mix-
tures, which stay at rest or maintain uniform translational
motion, these parameters are constant in time and space. In
general case, these parameters can be variable fields. Let us
recall definition for ni, va , and u.

We consider spatial region D with volume VD . Suppose
that at a given instant of time t in this region the total number
of molecules (in moles) of a component with the number i

is NiD = NiD(t). The molar density of the component with
the number i at point with coordinates xa is defined as the
limit of the ratio of NiD to VD , when the volume VD tends
to zero, andD becomes infinitesimal vicinity of the point xa

ni = ni(t, x
a) = lim

VD→0

(
NiD

VD

)
. (1)

Like in any continuous medium concept, here the transi-
tion to zero volume VD is understood conventionally: it is
assumed that the characteristic size of the domain D goes
down but remains significantly larger than the molecular
dimensions.

The molecules in the considered regionD possess kinetic
and potential energy. Summarizing all terms of the energy,
we obtain some quantity ED = ED(t). The energy density
of a mixture is defined as the limit of the ratio of ED to VD
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as the volume VD tends to zero (with the same conventions
as those assumed in Eq. 1)

ε = ε(t, xa) = lim
VD→0

(
ED

VD

)
. (2)

In order to define molecular fluxes within the medium,
let us consider a surface element with unit normal vector la
and area �A. A number of molecules �Ni (in moles) of
the component i passing through the surface element in the
direction of la per unit time are approximately proportional
to the value of �A. Thus, it is possible to introduce the flux
vector Iia of this component as the following:

laIia(t, x
b) = lim

�A→0

(
�Ni

�A

)
. (3)

Using molar masses of chemical componentsmi , one can
calculate the total mass flux Ia = miIia and the mass den-
sity of the mixture ρ = mini . After that, the mass velocity
is defined by the following equation

va = va(t, x
b) = Ia(t, x

b)

ρ(t, xb)
(4)

The difference between the total flux of molecules and the
convective transport is the diffusion flux

Qia = Qia(t, x
b) = Iia − niva. (5)

Also, we can introduce the internal energy of a mixture
as the difference between the total energy and the kinetic
energy or, equivalently, the energy in the frame of reference,
where the medium is locally at rest

u = u(t, xa) = ε − 1

2
ρvava. (6)

Since the quantities ni, va , and u are assumed to be the
primary variables, all other variables can be calculated from
ni, va , and u according to certain rules. In particular, one
can calculate the entropy SD of the mixture.

It is important to make several remarks concerning the
concept of the entropy in continuum mechanics. In one-
phase hydrodynamics or fluid dynamics, the mixture is
usually represented as an aggregate of locally equilibrium
subsystems, which are continuously distributed in space
and interact with each other by exchanging components,
momentum, and energy [52]. In this case, the entropy is
calculated by summation of the subsystem entropies. In
multiphase mixtures, such approach is not valid, and the
entropy must be considered as a functional of primary fields.
The exact expression for the entropy functional can be
derived in classical or quantum statistical mechanics [12,
14, 15, 59]. From a mathematical point of view the entropy
is defined up to certain coefficient (Boltzmann constant) as
information entropy [25, 42], while the information entropy
is calculated for locally equilibrium Gibbs state associated
with given distribution of primary fields ni(t, x

a), va(t, x
b),

and u(t, xa). This definition is consistent with second law of

thermodynamics, which requires non-negative entropy pro-
duction for non-equilibrium processes [13, 14] Also one can
rigorously derive the independence of the entropy on the
velocity field [59], as a remarkable corollary of the Galilean
invariance

SD = SD[u, ni]. (7)

Notwithstanding the described well-known procedure for
the calculation of the entropy it is but rarely used for prac-
tical problems, because it depends on insufficiently under-
stood collective molecular interaction phenomena. Thus the
effective way to deal with the entropy functional is to
introduce certain explicit model expressions, which can be
checked against existing experimental evidence and the-
oretical considerations. It is convenient to list theoretical
requirements, which follow from the definition of entropy
functional in classical or quantum statistical mechanics.

Entropy property 1 The entropy functional (7) is sup-
posed to be continuous and differentiable at a suitable
convex set in linear functional space of the fields of internal
energy and of molar densities of components.

In accordance with property 1, one can calculate the
variation of the entropy functional (7)

δSD =
∫
D

(�0δu + �iδni)dV + �u[δu] + �n[δni], (8)

where there are following variational derivatives

�0 = δSD

δu
, �i = δSD

δni

, (9)

and the terms �u and �n denote linear boundary operators
of the variations δu and δni , respectively.

Entropy property 2 In the particular case, when the
boundary of the domain ∂D coincides with a solid surface
that is homogeneous in its properties and the values of u

and ni are constants (i.e., the state of a mixture is homoge-
neous), then the entropy functional is reduced to the simple
expression

SD = sVD + s∗A∂D (10)

where s = s(u, ni) is the entropy density in the conven-
tional equilibrium thermodynamics, s∗ = s∗(u, ni) is the
surface entropy density associated with the boundary sur-
face between the mixture and the solid, and A∂D is the area
of this surface.

Considering well-known thermodynamic equation for
absolute temperature T −1 = (

∂s
∂u

)
ni

[1, 46] and Eq. 10

one has to identify the quantity �−1
0 with absolute temper-

ature T with for homogeneous states of the mixture. Also
for homogeneous states one can calculate �i = −T −1κi ,
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where κi is the chemical potential of the component with
number i. For inhomogeneous states of the mixture the
quantity TS = �−1

0 can be regarded as an extension of
the definition of temperature. This is why it is suitable to
introduce the following

Entropy property 3 The value of T S is positive.
The entropy functional must be consistent with the zeroth

law of thermodynamics [2], which states that in thermody-
namic equilibrium, the temperature is constant everywhere
within the system. Besides, the growth of the entropy as a
result of internal dissipative processes is always associated
with equalization of temperature. The following condi-
tion provides the required connection between the entropy
growth and the temperature equalization.

Entropy property 4 The functional (−SD) is strictly con-
vex over the variable u, when the distribution of ni is fixed.
In other words, for distributions of u1 = u1(t, x

a), u2 =
u2(t, x

a), ni = ni(t, x
a), and real number λ ∈ [0, 1], the

following inequality takes place

SD[λu1+(1−λ)u2, ni] ≥ λSD[u1, ni]+(1−λ)SD[u2, ni],
(11)

while the equality sign can be in the following cases only:
(a) u 1 = u 2, (b) λ = 0, and (c) λ = 1.

The value of this property can be seen from the following
statement.

Let us consider two distributions of the internal energy
u1 and u2 with the same total internal energy value. If the
field u1 corresponds to some constant temperature, then

SD[u1, ni] ≥ SD[u2, ni], (12)

while the equality sign is achieved only when u1 = u2.
In order to prove this statement, it is convenient to define

the auxiliary function of scalar argument λ ∈ [0, 1]

ψ(λ) = SD[u1 + λ(u2 − u1), ni] − SD[u1, ni] (13)

By reason of the assumed conjectures and property 4, the
function (13) satisfies the relations ψ(0) = 0, dψ

dλ
(0) =

0, d2ψ

dλ2
(λ) ≤ 0, while d2ψ

dλ2
(λ) = 0, if and only if u1 = u2.

Therefore, ψ(1) ≤ 0, which is equivalent to Eq. 12. At that
ψ(1) = 0, only if u1 = u2. The proof is finished.

Up to now, all discussion was conducted in the frame of
Cartesian coordinate systems. Yet in some problems with
complex geometry, it is convenient to use curvilinear coor-
dinate systems. Thus, it is relevant to consider the extension
of the theory for arbitrary coordinate systems. Let us assume

by definition that in curvilinear coordinate system ya the
internal energy density and densities of mixture compo-
nents are related to the corresponding values in the Cartesian
system xa by the following equations

u(yc) = u(xc)

∣∣∣det(∂xa/∂yb)

∣∣∣ , ni(y
c)=ni(x

c)

∣∣∣det(∂xa/∂yb)

∣∣∣ .
(14)

Entropy property 5 The functional (7) can be rewritten in
a curvilinear coordinate system ya as the functional depend-
ing on internal energy density u(t, ya), molar densities of
chemical components of the mixture ni(t, y

a), and the met-
ric tensor of the curvilinear coordinate system gab(y

c) =
∂xd

∂ya × ∂xd

∂yb :

SD = SD[u, ni, gab], (15)

and the functional (15) is invariant with respect to any
transformations of coordinates.

Varying the functional (15), one can write down the
equation, which generalizes Eq. 8:

δSD = ∫
D

(�0δu+�iδni − 2−1�abδgab) |g|1/2 dy1dy2dy3

+�u[δu] + �n[δni] + �g[δgab]
(16)

where g = det(gab) and �g is the boundary operator acting
on the variation of the metrics, and the set of new parameters
�ab is related to the variational derivative of the entropy in
respect to the metrics

�ab = −2
δS

δgab

. (17)

This second-order tensor plays an important role in hydro-
dynamic processes. It will be shown below that this tensor
is directly related to the static stress tensor of the mixture

σab = TS�ab. (18)

One can easily calculate (18) for homogeneous states of the
mixture using property 2 and the result is the following:

σab = −pδab, (18a)

where p is the hydrostatic pressure and δab is the Kronecker
symbol.

The invariance of the expression (15) in respect to the
coordinate transformations (see property 5) makes it pos-
sible to use the Noether’s theorem [24, 33] for deriving
the differential identity, which establish relations between
variational derivatives �0, �i , and �ab. In a curvilinear
coordinate system, this identity has the following form:

∇b�
ab = gabg−1/2(u∂b(g

1/2�0) + ni∂b(g
1/2�i)), (19)
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where ∇a is the covariant derivative operator [52]. In the
Cartesian coordinate system, expression (19) is simplified

∂b�ab = u∂a�0 + ni∂a�i. (20)

Before the study of dynamic problems, it is helpful to
consider stationary equilibrium states of a mixture. Let us
start with a mixture, in which no chemical reactions take
place. The total internal energy and the amount of matter of
each chemical component can be computed in the Cartesian
coordinates by the following:

UD =
∫
D

udV +
∫

∂D

u∗dA, (21)

NiD =
∫
D

nidV, (22)

where u∗ is the surface density of the internal energy of the
mixture. The stationary equilibrium states can be found as
critical points of the functional (7) constrained by conditions
(21) and (22) assuming the left side of both Eqs. 21 and 22
is constant. The corresponding states of the mixture satisfy
the variational equation

δSD − λ0δUD − λiδNiD = 0, (23)

where λ0, and λi are Lagrangian multipliers. In order to
derive the explicit expressions from Eq. 23, one should use
Eq. 8. Then Eq. 23 can be reduced to the form∫
D

((�0 − λ0)δu + (�i − λi)δni)dV

+(�0[δu] − λ0
∫

∂D

δu∗dA) + �i[δni] = 0
, (24)

which produces the following equilibrium conditions

�0 = λ0, (25)

�i = λi. (26)

Boundary terms in the left-hand part of Eq. 24 should be
used for setting up the boundary conditions on the fields u

and ni . We will discuss these boundary conditions in detail
below for particular model entropy functionals. Here, it is
important to note that Eq. 25 means the constant temper-
ature TS = λ−1

0 all over the mixture. This demonstrates
the consistency with the zeroth law of thermodynamics
[2], which states that in thermodynamic equilibrium, the
temperature is constant everywhere within the system.

Now let us consider a mixture, which can undergo a set
of chemical reactions defined by

υIiCi ↔ υ ′
I iCi . (27)

Here, Ci is the symbol of a component with the number
i, while υIi and υ ′

I i are non-negative stoichiometric coef-
ficients. The index I here and below takes values 1, ..., K
corresponding to the chemical reaction number.

Due to chemical reactions (27), the chemical compo-
nents are not conserved and Eq. 22 does not hold. In order
to determine conserved combinations of quantities (22), it
is convenient to introduce a set of numbers ηIi = υIi −
υ ′

I i(I = 1, ..., K; i = 1, ...,M), which can be interpreted
as a set of K vectors in M-dimensional space. Let us select
the basis ζJ i of K1 vectors in the orthogonal complemen-
tary subspace to the vectors ηIi . Here and below the indexes
J and J ′ take values of 1, ..., K1. Note that the orthogonal
complementary subspace to the ηIi is non-empty, because,
by reason of conservation of mass in chemical reactions, the
following identity is valid (remember that mi is the mass of
the mole of the ith component of the mixture)

miηIi = 0. (28)

By definition, chemical reactions (27) conserve the fol-
lowing set of K1 quantities

ZJD = ζJ iNiD = ζJ i

∫
D

ni(x
a)dxa. (29)

Equilibrium states of the mixture in the presence of
chemical reactions are critical points of the entropy func-
tional SD with constraint on the sum of bulk and surface
internal energy (21) and constraints (29) on the number of
molecules of the mixture assuming the quantities ZJD are
fixed. Thus, equilibrium states of the mixture must satisfy
the variational equation, which generalizes Eq. 23

δSD − λ0δUD − λJ δZJD = 0, (30)

where λ0 and λJ are Lagrangian multipliers. After substi-
tution of expression (8) into Eq. 30, the new equation is
obtained instead of Eq. 26

�i = λJ ζJ i . (31)

Notwithstanding the fact that coefficients ζJ i are defined
non-uniquely, Eq. 31 is formulated quite uniquely. Any
transformation ζJ i → ζ ′

J i = αJJ ′ζJ ′i with a square non-
degenerate matrix αJJ ′ of dimension K1 corresponds to
the transformation of Lagrangian multipliers λJ → λ′

J =
βJJ ′λJ ′i , where βJJ ′ is the inverse matrix to the matrix
αJJ ′ . Note that in the absence of chemical reactions, K = 0
and a square matrix ζJ i can be selected as unity matrix
ζJ i = δJ i . Therefore, the system of Eq. 31 is reduced to
Eq. 26. Thus, Eq. 31 generalizes Eq. 26. If two or sev-
eral phases are present in an equilibrium state, then far
from the interfacial regions, these phases can be considered
practically homogeneous, so system of Eq. 31 provides for
the equality of chemical potentials for each chemical com-
ponent in every phase. In this way, the developed theory
complies with the classical thermodynamics [2, 47].
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It follows from the identity (20) and Eqs. 18, 25, and
31 that for equilibrium states, the following equations are
satisfied

∂bσab = 0, (32)

which should be interpreted as conditions for mechanical
equilibrium of the mixture.

Let us now turn to hydrodynamic processes without
chemical reactions and external sources described in the
frame of the theory with entropy functional (7). The motion
of a mixture obeys conservation laws for chemical com-
ponents, momentum, and energy [52]. In the Cartesian
coordinate system, these laws can be presented in the form
of the following equations

∂tni + ∂a(niva + Qia) = 0, (33)

∂t (ρva) + ∂b(ρvavb − pab) = 0, (34)

∂t ε + ∂a(εva + qa + pbavb) = 0. (35)

Here, we introduce symmetric stress tensor pab, diffu-
sion flux vector Qia , and heat flux vector qa . By definition,
the diffusion flux satisfies the constraint

miQia = 0. (36)

The hydrodynamic problem (33–35) is not yet closed. To
close the Cauchy problem in Eqs. 33–35, it is necessary to
specify boundary conditions and constitutive relations, i.e.,
explicit expressions for Qia, pab, and qa . We introduce no-
slip boundary condition at a contact with solid

va |∂D= 0 (37)

and the condition of impermeability for the diffusion flux
(la is the internal normal unit vector at the boundary ∂D)

laQia |∂D= 0. (38)

There can be other boundary conditions directly associ-
ated with particular model entropy functionals; those will be
discussed below.

The constitutive relations characterize internal rheolog-
ical and dissipative properties of the system. They should
provide a non-negative contribution to the entropy produc-
tion. This requirement helps us to derive the constitutive
relations (but not in a unique way). In order to calculate the
contribution of various processes to entropy production, we
use Eq. 8, in which we substitute the expressions for time
derivatives of densities of components and internal energy

using Eqs. 33–35. After integrating by parts with account
for Eqs. 37 and 38, we obtain

dSD

dt
= �int + �b, (39)

�int =
∫
D

σintdV, (40)

�b =
∫

∂D

�0qaladA + �u[∂tu] + �i[∂tni], (41)

σint = (�0pab − �ab)∂bva + qa∂a�0 + Qia∂a�i, (42)

In Eq. 39, the term �int describes the entropy change rate
caused by internal processes, i.e., the entropy production,
and the term �b describes the entropy changes caused by
boundary effects (for example, heat inflow at the boundary).
The quantity σint characterizes entropy production per unit
volume. The analysis of expression (42) makes it possible
to identify the tensor σab = TS�ab with the tensor of static
stresses in the mixture, i.e., with the part of the total stress
tensor pab, which does not depend on velocity gradient and
gives no contribution to the entropy production. The contri-
bution to entropy production from internal stresses is caused
by the tensor τab = pab − σab, which is referred to as the
viscous stress tensor. Since the entropy production must be
non-negative, we will formulate the constitutive relations in
accordance with two inequalities

qa∂a�0 + Qia∂a�i ≥ 0, (43)

τab∂bva ≥ 0. (44)

To formulate the constitutive relations for the heat flux qa

and diffusion fluxes Qia in a compact form, it is convenient
to denote Q 0 a = q a and introduce indices A and B =
0, 1, ...M . Then the inequality (43) can be rewritten in a
simple form QAa∂a�A ≥ 0, which is satisfied by the
following constitutive relations

QAa = μAB∂a�B. (45)

Here, in accordance with Onsager’s theory [5], the matrix
μAB must be symmetric with non-negative eigenvalues.
Only one zero eigenvalue exists that is related to the condi-
tion (36)

miμiB = 0. (46)

The constitutive relations (45) are interpreted as the gen-
eralized Fourier-Fick law. Let us turn now to the inequality
(44), which puts a restriction on the possible type of rela-
tion between the viscous stress tensor τab and the strain rate
tensor eab = 2−1(∂avb + ∂bva). To formulate the possible
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types of such relation, it is convenient to subdivide τab and
eab into spherical and deviator terms

τab = τvδab+τ s
ab, τ v =τaa/3, τ s

ab =τab−τvδab and

(47)

eab = evδab + es
ab, ev = eaa/3, es

ab = eab − evδab.

(48)

Inequality (44) is satisfied by the following constitutive rela-
tions, which establish the dependence between τv, ev and
τ s
ab, e

s
ab respectively

τv = kv

( ∣∣ τ v
∣∣ ) ev, (49)

τ s
ab = ks

(
τ s

)
es
ab, τ s = (τ s

abτ
s
ab)

1/2, (50)

where kv and ks are non-negative functions. In the special
case when kv = ηv and ks = ηs are coefficients of volume
and shear viscosity, respectively, we obtain the well-known
linear viscous Newtonian model

τab =
(

ηv − 2

3
ηs

)
eccδab + 2ηseab. (51)

Now let us consider the hydrodynamics of mixtures with
chemical reactions. The motion of a mixture obeys the
hydrodynamic Eqs. 34 and 35 for momentum and energy
of the mixture and the modified equation for the molar
densities of components (instead of Eq. 33)

∂tni + ∂a(niva + Qia) = hIηIi (52)

where hI is the intensity of chemical reaction with the
number I .

In much the same way as previously, it is possible to
derive the entropy production rate per unit volume (compare
with Eq. 42)

σint = (�0pab−�ab)∂bva +qa∂a �0+Qia∂a�i +hIηIi�i

(53)

Thus, for a mixture with chemical reactions, additional con-
stitutive relations are required for the quantities hI , which
determine the chemical reactions kinetics. All the consid-
erations with respect to the heat flux qa , diffusion fluxes
Qia , and the stress tensor pab presented previously remain
in force. For the quantities hI , it is sufficient to satisfy the
inequality

hIηI i�i ≥ 0 (54)

This can be achieved using the expression for reaction
kinetic terms as follows

hI = XI (υ
′
I i�i) − XI (υIi�i) (55)

In the right-hand part of Eq. 55, there is no summation over
I and XI = XI (ψ) is a monotonically decreasing function.
In a particular case of the Arrhenius kinetic law, there is the

explicit expression XI (ψ) = XI0 exp
(
−ψ

R

)
, where R is

the universal gas constant and XI0 is a positive temperature-
dependent coefficient.

The constitutive relations (45), (49), (50), and (54) close
the hydrodynamic problem in the sense that the number of
unknowns becomes equal to the number of equations. Of
course, it is implied that the coefficients or functions enter-
ing into these relations are explicitly given in an analytical
of tabular form. Also, it is worth to repeat that these relations
are sufficient for non-negative entropy production, but not
necessary. This means that there can be more complex dif-
fusion, rheology, or chemical kinetics, which is consistent
with non-negative entropy production.

There are many instances when hydrodynamic processes
can be described in isothermal approximation. The isother-
mal problem formulation for multicomponent mixtures can
be obtained from the non-isothermal formulation just by
dropping the energy Eq. 35 and assuming the condition
TS = const.

However, because the scope of isothermal problems is
very wide, it is useful to have independent exposition of
DFT approach just for these problems. The chemical reac-
tions are assumed to be absent. Instead of the entropy
functional, one has to use the Helmholtz energy functional,
which depends on the fields of molar densities of chemical
components

FD = FD[ni]. (56)

The dependence on temperature is not shown explicitly
here and further in other equations for isothermal problems.
The functional (56) can be obtained from the relationship
between Helmholtz energy, internal energy, and entropy

FD = UD − TSSD, (57)

The properties of the functional (57) depend on proper-
ties of the entropy functional (7). At the same time, since
Helmholtz energy is used for isothermal processes, the num-
ber of main properties is considerably less than in the case
of the entropy.

Helmholtz energy property 1 The Helmholtz energy func-
tional (56) is supposed to be continuous and differentiable at
a suitable convex set in linear functional space of the fields
of component molar densities.

In accordance with this property, the variation of the
Helmholtz free energy functional in the general case has the
form

δFD =
∫
D

�iδnidV + �̃n[δni] (58)

where variational derivatives are used

�i = δFD

δni

(59)
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and the term �̃n denotes linear boundary operator acting on
variations δni . The explicit expressions for boundary opera-
tors �̃n are dependent on the explicit form of the Helmholtz
energy functional and will be discussed below.

Helmholtz energy property 2 In a particular case, when

(a) The boundary of the domain under consideration
∂Dcoincides with a solid surface that is uniform in
terms of its properties

(b) The values of ni are constants (i.e., the state of the
mixture is homogeneous)

then the Helmholtz energy functional FD is reduced to the
expression

FD = f VD + f∗A∂D, (60)

where f = u − T s is the Helmholtz energy density in the
conventional equilibrium thermodynamics, f∗ = u∗ − T s∗
is the surface density of Helmholtz energy associated with
the boundary between the mixture and the solid surface, and
A∂D is the area of this boundary.

Helmholtz energy property 3 Functional (56) can be
rewritten in a curvilinear coordinate system ya as the func-
tional of molar densities of chemical components of the
mixture ni(t, y

a) and the metric tensor of the curvilinear
coordinate system gab(y

c) = ∂xd

∂ya × ∂xd

∂ y b , as follows:

FD = FD[ni, gab], (61)

and the functional (61) is invariant with respect to any
transformation of coordinates.

Calculating the variation of the functional (61), it is
possible to derive the extended version of Eq. 58

δFD = ∫
D

(�iδni + 2−1σabδgab)g
1/2dy1dy2dy3

+�̃n[δni] + �̃g[δgab]
, (62)

where �̃g is the boundary operator acting on the variation of
the metric and the set of values σab is associated with the
variational derivative of Helmholtz free energy with respect
to the metric

σab = 2
δFD

δgab

(63)

The definition (63) of the static stress tensor σab is consis-
tent with Eq. 18. The postulated invariance of Eq. 61 with
respect to transformation of coordinates (see Helmholtz
energy property 3 above) makes it possible to use the
Noether’s theorem for deriving the differential identity
bridging the variational derivatives �i and σab [24, 33]. In
a curvilinear coordinate system, this identity has the form

∇bσ
ab = −gabg−1/2ni∂b(g

1/2�i), (64)

where ∇a is the operator of covariant derivative [54].

In the Cartesian coordinate system identity (64) is sim-
plified

∂bσab = −ni∂a�i. (65)

In equilibrium states, Eq. 26 actually means that quanti-
ties (59) are constants, and we again arrive to the equations
of mechanical equilibrium (32).

In isothermal problems, there exists the dissipative con-
dition, which is similar to the condition of non-negative
entropy production. Namely, when there are no exter-
nal forces in bulk or at the boundary, the total energy,
which is composed of kinetic energy and Helmholtz energy
(56), should decrease. Performing direct calculations with
account of Eqs. 33, 34, 37, and 38, it is possible to find the
expression for the total energy change rate

dE

dt
=�̃int +�̃b, (66)

E= 1

2

∫
D

ρvavadV +FD, �̃int =
∫
D

χintdV, �̃b = �̃i[∂tni]

(67)

χint=Qia∂a�i − τab∂avb. (68)

Evidently, the term �̃int describes the dissipation of
energy in the bulk, while the term �̃b describes boundary
effects. For the consistency with dissipative condition, it is
necessary to satisfy two inequalities, one of which is Eq. 44
and another is the following:

Qia∂a�i ≤ 0. (69)

We have already discussed how to satisfy inequality (44)
(see Eqs. 47–51). Inequality (69) can be satisfied by the
following constitutive relations for diffusion fluxes

Qia = −Dij ∂a�j , (70)

where Dij is a symmetrical non-negative matrix, which has
one eigenvector with the zero eigenvalue

Dijmj = 0. (71)

Comparison with Eq. 45 makes it possible to make the
identification

Dij = T −1
S μij . (72)

Now we have introduced the constitutive relations, which
make the hydrodynamic problem closed and consistent with
thermodynamics. These additional relations contain rheo-
logical and transport parameters, which should be specified
in every particular case. Usually they are measured exper-
imentally for the considered mixtures or calculated with
the help of semiempirical correlations. Though the general
mathematical structure of the density functional hydrody-
namics is developed, one has to specify the functional of
entropy or Helmholtz energy explicitly to apply to this
theory. This is done in the next section.
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3 Basic DFT hydrodynamic model

The simplest way to take account of entropy associated with
inhomogeneous parts of the mixture is to introduce terms
dependent on gradients of component molar densities

SD = SD[u, ni] =
∫
D

(s(u, ni) − 2−1αij (nk)∂ani∂anj )dV

+
∫

∂D

s∗(u, ni)dA (73)

Having expression Eq. 73, it is possible to find explicit
expressions for all quantities, which were discussed in
Secttion 2, in a straightforward way:

SD = SD[u, ni, gab] =
∫
D

�dV +
∫

∂D

�∗dA (74)

� = s(u |g|−1/2 , ni |g|−1/2)

−2−1gabαij (nk |g|−1/2)∂a(ni |g|−1/2)∂a(nj |g|−1/2)

(75)

�∗ = s∗(u |g|−1/2 , ni |g|−1/2) (76)

�i = −T −1κi − 2−1αjk,i∂anj ∂ank + ∂ a(αij ∂anj ), (77)

�ab = (−T −1(p − κini) + 2−1αij ∂ani∂anj + �ini)δab

−αij ∂ani∂bnj , (78)

�u =
∫

∂D

s∗,uδu, �i =
∫

∂D

(s∗,i + αij la∂anj )δnidA, (79)

where la is the internal unit normal vector to the surface
∂D. Note that elementary volume dV and surface area dA

in Eq. 74 are implicitly dependent on metric tensor gab,
because they are calculated in curvilinear coordinates. Also,
it is useful to write down quantities, which are related to
Helmholtz energy functional:

FD =FD[ni ]=
∫
D

(f (ni)+2−1νij (nk)∂ani∂anj )dV +
∫

∂D

f∗(ni)dA

(80)

�i = κi + 2−1νjk,i∂anj ∂ank − ∂a(νij ∂anj ), (81)

σab = (f + 2−1νij ∂ani∂anj − �ini)δab − νij ∂ani∂bnj , (82)

where νij = TSαij . All requirements from Section 2 for
entropy functional and Helmholtz energy functional are sat-
isfied. They can be checked directly or follow from the
properties of equilibrium thermodynamic functions, which

are used in definitions (73) and (80). The explicit expres-
sions for boundary terms (79) make it possible to find
additional boundary conditions. They must be consistent
with Eq. 24 for equilibrium states. We introduce boundary
conditions for the densities

νij la∂anj = f∗,i (83)

Also in non-isothermal problems, it is necessary to spec-
ify temperature or heat flux at the boundary. The explicit
form for the static stress tensor makes it possible to find the
expression for interfacial tension coefficient in case of two-
phase states. Indeed, let us consider the equilibrium state
with all parameters dependent on only one coordinate x1.
Let us assume that at x1 → −∞ the densities ni converge
to the densities niA of phase A, and at x1 → +∞ they con-
verge to the densities niB of phase B. Since the quantities
(81) are constant in equilibrium, we derive the equilibrium
condition for chemical potentials

κi(njA) = κi(njB) (84)

Besides, we get from the Eq. 32 a very simple equation
∂1σ11 = 0, which proves the equality of pressures in phases
A and B

p(njA) = p(njB) (85)

Then one calculates the interfacial tension between phases
A and B

γAB =
+∞∫

−∞
(σ22 − σ11)dx1 =

+∞∫
−∞

νij (nk)∂1ni∂1njdx1 (86)

By more detailed consideration it is possible to prove the
Laplace equation for capillary pressure jump in case of
curved interfacial surfaces [11].

4 Advanced DFT models

Advanced DFT models use more complex density func-
tional expressions in order to describe the phenomena,
which lie outside the basic model. In particular, some phe-
nomena would require non-local and non-linear operations
for the computation of density functional. Here, we describe
the extension of the basic model with a possibility to
describe elastic bodies (or elastic phases) alongside with
fluid phases. In order to introduce elasticity in hydrodynam-
ics, it is necessary to introduce strain tensor. We rely on the
ideas of the continuous defect theory [6, 28, 29, 37–39, 43],
which treat the strain tensor as an individual primary quan-
tity with separate dynamic equation. This strain tensor does
not necessarily satisfy the compatibility conditions, because
of the possible presence of continuously distributed defects.
In non-linear theory, there are different strain tensors; here,
we assume the Almansi strain tensor εab [21, 34, 41, 44, 58]
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as primary quantity. In addition to usual Eqs. 33–35, one has
the equations for the strain tensor εab

∂t εab = 2−1(∂bva+∂avb)−εcb∂avc−εac∂bvc−vc∂cεab−ωab

(87)

Here, the quantities ωab are related to possible defects.
In case of classical elasticity theory, these quantities are
identically zero. In general case, they must be specified in
accordance with non-negative entropy production require-
ment.

For the problems with elastic phases, we use entropy
functional (73) with additional condition that internal
energy and entropy of a deformable solid depend on tem-
perature T , molar densities ni , and the strain tensor εab:

u = u(T , ni, εab), s = s(T , ni, εab) (88)

Using this with auxiliary parameters χab =
(

∂u
∂εab

)
s,ni

, one

can recalculate the entropy production term (42) and the
static stress tensor (82) with the following results:

σint = T −1τab∂bva + qa∂a�0 + Qia∂a�i + T −1ωabχab,

(89)

σab = (f + 2−1νij ∂ani∂anj − �ini)δab (90)

−νij ∂ani∂bnj + χab − χacεbc − χbcεac.

Thus, we have an additional condition for non-negative
entropy production

ωabχab ≥ 0 (91)

It is easy to verify that this inequality is satisfied by the
following constitutive relations

ωab = αvδabχcc + αs

(
χab − 1

3
δabχcc

)
(92)

where αv and αs non-negative kinetic coefficients (relax-
ation parameters of volume and shear strains, respectively).
Of course, in numerical modeling or practical applications,
parameters αv and αs must be explicitly specified as well as
function (88) and other relevant parameters (see Section 3).
This is done by using experimental data or semiempirical
expressions.

5 Numerical simulator

The system of equations described in Section 2 and given
by Eqs. 33–34 jointly with the necessary constitutive rela-
tions and boundary conditions (Sections 2–4) represents a
rather complex mathematical problem. This problem differs
significantly from the problems known in other multiphase
flow modeling techniques. Indeed, Eqs. 33–34 are highly
non-linear. They involve Helmholtz energy or entropy den-

sity and its derivatives. The particular expressions for these
functions come from thermodynamics and usually contain
polynomial rational functions and logarithms. Besides being
non-linear, Eqs. 33–34 are complicated by the higher order
spatial derivatives—to the fourth order. The scope of the
difficulties demands usage of new unconventional numeri-
cal methods. Historically, we began numerical simulations
using an explicit first-order in space and time method [7,
8] that was a development from the large-particle class of
methods [4]. In the later simulations, we focused on a more
advanced explicit second-order in space first-order in time
method, which we developed following the ideas described
in [46]. Our conservative finite-volume method uses Carte-
sian uniform staggered grid, on which scalar quantities and
diagonal tensor components are ascribed to the centers of
cells, vector components are ascribed to the centers of cell
sides, and off-diagonal tensor components are ascribed to
the centers of cell edges. Our method, called tensor-aligned
conservative uniform symmetric (TACUS) [9], allows for
efficient parallelization and implementation on the mod-
ern computer clusters. In 2005, we developed a research
code called direct hydrodynamic (DHD) simulator, which
solves the DFH equations numerically using the TACUS
method. Later, the simulator was parallelized and optimized,
and now it runs on the multicore CPU or GPGPU clus-
ters. Depending on the physics of a multiphase problem,
the typical scenarios can be simulated on models with sizes
from 2003 cells (using several GPGPU cards) to 10003 and
more cells (using a 64-GPGPU computer cluster) within
a day.

6 Basic numerical solutions

In this section, we show numerical simulation of several rel-
atively simple problems to demonstrate modeling of partic-
ular fundamental multiphase phenomena such as capillary
pressure, contact angles, moving contact line, interfacial
topological changes, dynamic effects and surfactantrelated
phenomena. Historically, we used such problems for valida-
tion of our numerical simulator, DHD. The comprehensive
validation is summed up in our book [9], while particular
validation examples can be found in our papers [7, 8, 10,
16–19] In Sections 6.1–6.3 we obtain numerical solutions
of governing Eqs. 33 and 34 with constitutive relations (51),
(70), (81), and (82) and boundary conditions (37), (38), and
(83). In Section 6.4 we use additional governing Eq. 87.
The interfacial tension γ is related to the coefficients νij

by Eq. 86. Assuming γ is known from experiment, Eq. 86
is solved numerically to find parameters νij . The construc-
tion of Helmholtz energy functions f and f∗ is the domain
of chemical thermodynamics; for this kind of problems, it is
described in [9, 10].
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(c)(b)(a)

Fig. 1 Sessile drop problem. 3D view of component 1 concentration in initial conditions (a) and equilibrium solution in case 1 (b) and case 2 (c);
phase A is shown in red and phase B in semitransparent blue, and other colors indicate the transition zone

6.1 Sessile drop

We start from a simple two-phase problem of an equilibrium
sessile drop. Let a drop of one liquid (phase B) be immersed
in a bulk of another liquid (phase A), and the drop touches
a flat solid surface. In this case, the drop forms a contact
angle, whose value depends on the wetting properties (wet-
tability) of the surface and on the interfacial tension (IFT)
or capillary pressure between the two liquid phases. In the
absence of gravity, the contact angle is calculated using the
well-known Young equation [40]:

cos θ = γA − γB

γAB
, (93)

where γAB is the IFT between phases A and B, γA and γB
are the IFTs between the solid and phases A and B, respec-
tively, and θ is the contact angle.

In extreme cases when |γA − γB| ≥ γAB, the drop either
spreads over the solid surface (γA − γB > 0, θ = 0◦) or
completely detaches (γA − γB < 0, θ = 180◦).

As an example, we will consider two cases, one of which
is that a drop forms an obtuse contact angle and in the other
case, an acute one.

The simulation is conducted within a model, which
is a parallelepiped with the dimensions 0.01 m ×0.01 m
×0.006 m along the x−, y−, and z-axes, respectively. The
model is approximated by 200 ×200 ×120 cubic cells. The
IFT between phases A and B is γAB = 0.056N/m. The

mixture contains two chemical components and the equilib-
rium phase A consists 100 % of the component 1, while the
equilibrium phase B consists 100 % of the component 2.

In both cases, the boundary conditions are impermeable
walls on either side of the model. At one of the walls—the
bottom one at z = 0 m—the surface wettability is deter-
mined by the condition γA − γB = −0.025 N/m for case 1
or γA − γB = 0.025 N/m for case 2. At all the other walls,
the condition γA − γB = 0 N/m is specified in both cases.

The initial conditions are identical in both cases. The
model is filled with phase A everywhere except a place near
the center of the bottom wall, where a fragment of phase B
is specified. This fragment is a cube with the edge size of
0.004 m (Fig. 1a).

Obviously, the initial conditions just described are non-
equilibrium with respect to the acting surface forces. There-
fore, once numerical simulation is started, the system begins
evolving towards the equilibrium configuration. Figure 1b,
c shows the achieved equilibrium distribution of phases in
cases 1 and 2, respectively. The equilibrium contact angles
can be measured conveniently using the distribution of
phases as they appear within a 2D section passing through
the drop axis of symmetry as shown in Fig. 2; measure-
ment accuracy is determined by grid resolution. The contact
angles given by (90) are θ1 ∼= 117◦in case 1 and θ2 ∼= 63◦
in case 2. The values, measured using Fig. 2, are very close
to the expected ones within 3.5 % tolerance.

Concluding the sessile drop discussion, we note that
although this simple numerical simulation example vali-
dates consistency between IFTs (or capillary pressure) and

(b)(a)

Fig. 2 Sessile drop problem. Equilibrium component 1 concentration in case 1 (a) and case 2 (b) shown within 2D section passing through the
coordinate y = 0.005 m parallel xz-plane; phase A is shown in red and phase B in semitransparent blue, and other colors indicate the transition
zone
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contact angles, it also demonstrate modeling of such an
important phenomenon as moving contact line. Indeed, the
contact line motion is the necessary mechanism involved in
bringing the system from the initial state shown in Fig. 1a
to one of the equilibrium states shown in Fig. 1b, c.

6.2 Sessile drop in the presence of surfactant

In one of our previous papers [19], we have explained
how surfactant-related phenomena can be modeled by DFH.
Those well-known phenomena are as follows [50]:

• Accumulation of surfactant inside interfacial area with
simultaneous reduction of IFT

• Gibbs effect—an apparent increase in IFT when the
interface surface is stretched

• Marangoni effect—the local flow and mass transfer
along an interface driven by an IFT gradient

Here, we demonstrate how the sessile drop from Sect. 6.1 is
changed under the influence of surfactant dissolved in one
of the phases. We model two mechanisms:

• Surfactant accumulation inside of an interfacial region
between two liquid phases and simultaneous reduction
of IFT

• Surfactant adsorption on a liquid-solid contact and
simultaneous reduction of IFT

Note that generally, the presence of one of the mechanisms
does not exclude the possibility of the other mechanism,
because a mixture may contain several surfactants acting in
different ways.

Modeling of the said surfactant mechanisms is possible
in the following way. In the DFH, it is necessary to specify
dependence between the surfactant local molar density and
the coefficient vij in Eq. 80. Analogy with the Langmuir
isotherm [50] leads to the following relation:

vij =
(

ν0 + �ν

1 + as ns

)
δij , (94)

with positive model parameters v0, �ν, and as. Coeffi-
cients v0 and �ν are selected numerically to ensure that a
given IFT value γ0 in the absence of surfactant is held and
that it never goes below the specified γmin in the presence
of surfactant. The coefficient as characterizes the influence
of surfactant adsorption on the IFT reduction. This coeffi-
cient is also selected numerically to have a specified IFT
value γ1 when the surfactant surface density inside an inter-
face is nsrfs1 ; this surface density corresponds to a particular
surfactant bulk molar density ns1 in one of the phases.
The described approach is suitable for modeling surfactant
acting on a liquid-liquid interface.

To model surfactant acting on a liquid-solid interface, it
is necessary to introduce Helmholtz energy surface density

dependence on the surfactant local molar density:

f∗ = ξ1ini + (ξ ′
1ini)ψs(ns) + ξ0, (95)

where ns is the surfactant molar density and 0 ≤ ψs(ns) ≤
1 is the surfactant adsorption function that is determined
by the particular surfactant properties. The coefficients
ξ ′
1i , i = 1, ..,M describe surfactant-induced influence on
IFT in the presence of particular mixture components, and
ξ0 is the irreducible surface energy, which does not influ-
ence the solution. The unknown coefficients, ξ ′

1i , i =
1, ..,M and ξ0 satisfy the following system of linear alge-
braic equations:

ξ1inim + (ξ ′
1inim) + ξ0 = f ′∗m, m = 1, ...,Mph (96)

where f ′∗m
are the given liquid-solid IFT values (the

Helmholtz energy surface density) for the mth phase cor-
responding to ψs(ns) = 1 (i.e., at maximum surfactant
adsorption), nim and nsm are molar densities of the ith mix-
ture component and surfactant, respectively, in the mth
phase, and Mph is the number of phases possible in the
mixture. The function ψs(ns) has the form as follows:

ψs(ns) = βsns

1 + βsns
, (97)

where βs is the auxiliary positive model coefficient. The
function ψs(ns) in Eq. 97 describes the classical behavior
of a surfactant, which is a rapid initial growth of adsorption
followed by a slower adsorption when surfactant surface
concentration approaches saturation. The coefficient βs is
selected numerically to have a given liquid-solid IFT value
γs at the surfactant surface density nsrfs 1.

In case of surfactant, the bulk Helmholtz energy includes
additional terms to ensure specific solubility of the surfac-
tant in phases. The examples can be found in [10, 19].

We begin by modeling surfactant acting on a liquid-liquid
interface. Let us recall the sessile drop problem statement
from Section 6.1. Here, we use the same model geome-
try and the same two liquid phases. We add an additional
chemical component, a surfactant, with the following rele-
vant properties: γAB min = 0.035 N/m, γAB 1 = 0.037 N/m,
nsrfs 1 = 3.7 · 10−9 kmol/m2, and ns 1 = 2.1 × 10−9 kmol/m3.
The surfactant is dissolvable in both phases. The model
coefficients v0, �ν, and as were selected to ensure surfac-
tant’s action with the said properties.

We demonstrate surfactant modeling using case 2 from
Sect. 6.1, which is specified by liquid-solid IFTs such that
γA − γB = 0.025 N/m corresponding to the contact angle
θ2 ∼= 63◦ in the absence of surfactant. We assume the ini-
tial conditions to be the steady-state solution of the original
sessile drop problem (Figs. 1c and 2b). We add the third
chemical component, the surfactant, distributed uniformly
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(a) 

(b) 

A B

Surfactant accumulated on the interface Phase A - Phase B

mmol/m3 3.4

Fig. 3 The sessile drop in the presence of surfactant acting on the
liquid-liquid interface. a Steady-state distribution of component 1 con-
centration in the presence of a surfactant; b steady-state distribution
of the surfactant molar density. The left-hand column shows 3D views
of the model, while the right-hand column shows the 2D view inside
of the section passing through y = 0.005 m parallel to the xz-plane.

In (a), phase A is shown in semitransparent blue, phase B in red,
and the other colors indicate the transition zone. In (b), the left-hand
image shows half of the 3D view with the portion of the model at
0m ≤ y ≤ 0.005m removed from view; the colors correspond to the
color palette with the range ns ≤ 1.9 mmol/m3 being semitransparent
in the 3D view

with molar density ns = 1.7×10−6 kmol/m3. The presence
of the surfactant makes the state of the two-phase system
non-equilibrium.

The new equilibrium solution found by perfuming
numerical simulation is presented in Fig. 3. During the
evolution of the system, the surfactant has partially accu-
mulated inside of the interfacial area between phases A and
B (Fig. 3b). Due to the IFT reduction, the contact angle
has changed. In particular, the new contact angle measured
using the 2D section of Fig. 3a appears to be close to 45◦.
The theoretical value for the angle is obtainable from Eq. 93
by using the known values of γA − γB and γAB min; it is
44◦, which gives very good correspondence to the numerical
result.

Now let us turn to modeling the second mechanism, when
a surfactant acts on the liquid-solid interface. The mod-
eling parameters are as follows: γAs = 0.013 N/m and
nsrfs = 3.5 × 10−9 kmol/m2. The surfactant is dissolv-
able in the ambient phase A only. The liquid-solid IFT for
phase B, γBs, is not affected by the surfactant. The required
surfactant model parameters were found by solving the lin-
ear algebraic system (96) and by selecting numerically the

coefficient βs in Eq. 97. Using the conditions of the same
case 2, we have for the liquid-solid IFTs at the maximum
surfactant adsorption the following relation γAs − γB =
0.013 N/m (at γB = 0 N/m).

Again, the steady-state solution for case 2 (Section 6.1)
is taken as initial conditions for the distribution of the
first two chemical components. The third chemical compo-
nent (surfactant) is distributed uniformly with molar density,
ns = 1.9 × 10−6 kmol/m3, in the entire bulk of the model.
The new steady-state solution was found by performing the
numerical simulation. During the evolution of the system,
the surfactant was gradually adsorbed into the boundary
between phase A and the solid wall of the model; the resid-
ual surfactant has migrated into phase A. The process was
accompanied by a simultaneous reduction in IFT between
phase A and the solid surface, from γA0 to γAs . The numer-
ical solution is presented in Fig. 4. The new contact angle
measured using the 2D section in Fig. 4b appears to be on
the order of 75◦. The theoretical one calculated from (90)
with the known values of γAs − γB and γAB gives 77◦,
which makes a good correspondence with the numerical
result.
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Fig. 4 The sessile drop in the
presence of surfactant acting on
the liquid-solid interface. a
Steady-state distribution of
component 1 concentration in
the presence of a surfactant; b
steady-state distribution of the
surfactant molar density. The
left-hand column show 3D
views of the model, while the
right-hand column shows the 2D
view inside of the section
passing through y = 0.005 m
parallel to the xz-plane. In (a),
phase A is shown in
semitransparent blue, phase B in
red, and the other colors
indicate the transition zone. In
(b), the colors correspond to the
color palette with the range
ns ≤ 1.5 mmol/m3 being
semitransparent in the 3D view

(a) 

A B

 (b) 

Surfactant accumulated on the

 interface Phase A - Solid surface

mmol/m3 3.2

To conclude this discussion, we note that the different
surfactant mechanisms considered have changed the con-
tact angle in the opposite ways. Indeed, the first mechanism
affects the numerator of Eq. 93, while the second one
influences the denominator.

6.3 Elongation and breakup of a drop in a shear flow

The behavior of a drop placed in a shear flow has been
extensively studied and reported in the literature. Both
experimental and theoretical works are abundant. There-
fore, such a problem is an excellent numerical modeling
demonstration.

The behavior of the drop is determined by the flow
parameters and properties of the liquids. Here, we follow
the description methodology from the review articles by
Rallison [48] and Stone [55].

Suppose that a liquid drop of phase B is suspended
inside an ambient liquid phase A. A simple shear (Cou-
ette) flow imposed upon phase A, is quantified using the

Table 1 Scope of properties of the simulation cases for the problem
of the drop elongation and breakup

Ca η̄ D

Case 1 0.014 100 0.017

Case 2 0.14 10 0.17

Case 3 0.28 5 0.33

Case 4 0.71 2 –

concept of a capillary number (Ca), which is defined by
Ca = ηsAGaγ −1

AB , where ηsA is the ambient liquid shear
viscosity,G is a typical shear rate in the neighborhood of the
drop, a is the non-deformed drop radius, and γAB is the IFT.
Another important characteristic parameter is the ratio of the
drop viscosity and the ambient liquid viscosity expressed by
η̄ = ηsBη−1

sA . According to the review by Stone [55], one
can distinguish several principal regimes of the drop:

• The drop retains a nearly spherical shape. Such a regime
is possible when Ca approaches zero. But more interest-
ingly, the spherical shape is still possible at a high value
of Cawhen the viscosity ratio η̄ is sufficiently large,
i.e., η̄ >> 1. In such cases, circular fluid flow appears
inside of the drop and the latter rotates more like a rigid
body.

• In intermediate regimes, when η̄ ∼ 1 or smaller and
Ca is sufficiently high, the drop can undergo significant
shape distortions and assume a steady elongated form.

• With even higher Ca values, the elongation process
becomes transient and the drop breaks into fragments.
The value of Ca where breakup is observed is called
the critical capillary number (Cacr). The typical depen-
dence of Cacr on η̄ for simple shear flow is given by
Rallison [48].

We have performed a numerical simulation of this
problem using four different datasets (cases 1 through 4,
Table 1). The modeling of cases 1 through 3 was carried out
in parallelepiped geometry with sizes of 0.03 m×0.01 m×
0.01 m approximated by 300 × 100 × 100 cubic cells. For
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Fig. 5 Elongation of the drop in
the shear flow. Steady-state
distribution of component 1
concentration; a, b case 1; c, d
case 2; e, f case 3. Images (a, c,
e) show 3D view of the model,
while images (b, d, f) show the
phases within 2D section passing
z = 0.005 m. A reference angle
of 45°is indicated on the 2D
images. Phase A is shown in
blue (semitransparent in the 3D
views), phase B in red, and the
other colors indicate the
transition zone

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 

case 4, a longer model was used with a size of 0.1 m ×
0.01 m × 0.01 m approximated with 1000 × 100 × 100
cubic cells. In each case, periodic boundary conditions were
applied in the x and y directions. A simple shear flow was
imposed by means of the slip boundary conditions speci-
fied at the bottom and top sides of the model (at z = 0 m
and z = 0.01 m), where the lateral velocity component vx

was non-zero. The mixture is two-phase two-component;
pure component 1 constitutes phase A and pure component
2 forms phase B. In each case, the model was filled with liq-
uid phase A, and a drop of another liquid phase B, having a
radius of a = 0.002 m, was placed in the geometric center
of the corresponding model. The IFT was γAB = 0.056 N/m
and the shear viscosity of phase B was ηsB = 0.1 Pa · m.
Both Ca and η̄ were varied by changing the shear viscosity
of phase A. The scope of Ca and η̄ used in the simulations
is given in Table 1.

The results of the numerical simulations for cases 1
through 4 are presented in Figs. 5 and 6. In cases 1 through
3 (Fig. 5), the steady-state solution exists, while in case
4 (Fig. 6), the solution is transient. In Fig. 5, 2D sections
of the model are presented in addition to 3D views. These
2D sections are convenient for quantitative analysis of the
simulation results.

As expected, the shape of the drop in case 1 is nearly
spherical, while in cases 2 and 3, the drop becomes vis-
ibly elongated. As was first demonstrated by Taylor [56],
when Ca << 1,the drop shape factor converges to D =
Ca(19η̄ + 16)(16η̄ + 16)−1, where Dis defined using the
drop length (2A) and breadth (2B) D = (A−B)(A+B).

The values of Dfor cases 1 through 3 are given in the third
column of Table 1. Figure 5 shows a good agreement
between the simulation results and the theory.

Guido and Greco [26] provided the theory and the exper-
imental data on the drop orientation measured as an angle
between the major axis of the drop and the flow direction.
For small values of Ca, this angle is very close to 45◦, while
with an increase of Ca, the angle decreases. Our simulation
results show the same trend (compare 2D cross sections in
Fig. 5b, d, e).

The simulation results of the transient case 4 are pre-
sented in Fig. 6. Initially, the drop becomes more and more
elongated (b, c); then, the necking structure appears (d);
and finally, the drop breaks up and forms satellite drops (e).
The entire simulated configuration, including the satellite
drops, is remarkably close to the experimental observations
presented in [55].

According to the experimental diagram from [49] to [48],
the value of Cacr for η̄ = 2 (as is in Case 4) is ∼ 0.5. Our
simulations with Ca = 0.71 in case 4 do not contradict those
observations.

6.4 Three-phase flow with mobile solid phase

We will now consider the flow of a three-phase mixture
containing two liquid phases (A and B) and one mobile
solid (elastic) phase (C). In our earlier papers, we have
explained the DFHmodeling principles for both three-phase
mixtures [18] and mixtures containing mobile solid phases
[17].
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(a) 

(b) 

(c) 

(d) 

(e) 

Fig. 6 Case 4—Breakup of the drop in the shear flow. 3D view of
the transient distributions of phases at consecutive moments in time;
phase A is shown in semitransparent blue, phase B in red, and the
other colors indicate the transition zone

In this demonstrational scenario, the flow is arranged
inside of a hollow rectangular parallelepiped model with
dimensions 0.02 m× 0.02 m× 0.012 m along the x−, y−,
andz−axes, respectively. The model is approximated by

200 × 200 × 120 cubic cells. The lower third of the model
(i.e., 0 m ≤ z ≤ 0.004 m) is filled initially with a liq-
uid phase A, and the rest is filled with a liquid phase B.
Furthermore, a solid torus-shaped body (phase C) is placed
on the interfacial boundary in such a way that a half of the
torus is within one of the liquid phases and the second half
is immersed in another liquid phase (Fig. 7a). The height of
the torus is 0.002 m, its internal radius is 0.0019 m, and the
external radius is 0.0039 m.

The three-phase three-component mixture with phases A,
B, and C is such that phase A contains 100 % of the compo-
nent 1, phase B contains 100 % of component 2, and phase
C contains 100 % of the component 3. The relevant parame-
ters of the phases are as follows: ηsA = ηs B = 0.001 Pa · s,
ηvA = ηvB = 0.01 Pa · s, μC = 106 Pa, andλC =
106 Pa, where ηsA and ηvA and ηs B and ηvB are shear
and volume viscosities of phases A and B, respectively,
and μC and λC are the Lame coefficients of phase C. The
IFTs between each pair of phases are γAB = 0.045 N/m,
γCA = 0.049 N/m, and γBC = 0.039 N/m.

The fluid flow within the model was arranged by periodic
injection of phases A and B at two sides of the model. To
match the injection, the corresponding withdrawal of the liq-
uid was arranged at the opposite sides. In particular, phase
A was injected into the rectangle R1 = {x = 0m, 0 m ≤
y ≤ 0.016 m, 0 m ≤ z ≤ 0.004 m}, while withdrawal of
the liquid was made from the rectangle R2 = {x = 0.02 m,
0m ≤ y ≤ 0.02 m, 0.004m ≤ z ≤ 0.008m}. Phase B was
injected into the rectangle R3 = {x = 0.02 m, 0.004 m ≤
y ≤ 0.02 m, 0.004 m ≤ z ≤ 0.008 m}, and withdrawal of
the liquid was made from the rectangle R4 = {x = 0m,
0 m ≤ y ≤ 0.02 m, 0 m ≤ z ≤ 0.004 m}. The period of

Fig. 7 3D view of the
distribution of phases at initial
conditions (a), and three
consecutive time moments 0.03
s (b), 0.075 s (c), and 0.12 s (d);
phase A (liquid) is shown in
semitransparent blue, phase B
(liquid) in semitransparent
green, and phase C (solid) in
red; the other colors indicate the
transition zone

(a) (b)

(c) (d)
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Fig. 8 Distributions of velocity
component vx (a), vy (b), and vz

(c) at the time moment 0.075 s;
the distributions shown within
2D sections of the model passing
at z = 0.0045 m parallel to the
xy-plane (upper row) and at
y = 0.009 m parallel to the xz-
plane (lower row). The velocity
magnitude is depicted according
to the shown color palettes

(a) (b) (c)

both injection-withdrawal cycles was the same and equal to
0.015 s. The injection rate in both phases was identical and
equal to 1.15 l/min. It was assumed that gravity is not acting
on the model.

The results of the numerical simulation of this problem
are presented in Figs. 7 and 8. As a result of the cyclic
injection-withdrawal procedure, a complex quasi-periodic
flow with capillary waves on the two-phase liquid-liquid
interface was formed inside of the model. Meanwhile, phase
C maintained its initial torus shape and was moving as
a solid body. In Fig. 8, we present an instantaneous lon-
gitudinal, vx , and transverse, vy, vz, velocity component
distributions within several 2D sections of the model. The
velocity distributions clearly demonstrate the presence of
the toroid solid body within the flow. Moreover, the veloc-
ity fields in the liquid and inside of the solid body are
continuous and in concert with each other. Inside of the
solid body, the necessary equalities ∂avb + ∂bva = 0 are
fulfilled.

7 Examples of pore-scale multiphase flow

In this section, we demonstrate typical applications, where
our modeling method, DFH, can be efficiently employed.
Both examples presented here are related to the so-called
digital rock (DR) modeling technique, which is an emerging
method for the non-destructive description of the pore-scale
processes within porous rocks. The concept of DR is dis-
cussed in many papers; for example [3, 30, 35, 36, 49, 51].
In a nutshell, the DR approach is contained in the following
steps:

• X-ray scanning of a rock sample (core) at a high micro-
or nanometer resolution.

• Construction of a 3D digital model of the scanned
sample; the model contains information about resolved
pores and mineralogical composition.

• Pore-scale numerical simulation of the processes rele-
vant to the core.

While the contents of the first two steps are determined
mostly by the type of the available equipment, the essence
of the last step is shaped by the modeling methodology,
which is applied for the pore-scale processes simulation.
The methodology that we use is that of DFH.

7.1 Two-phase immiscible water-oil flow

We begin with the description of an immiscible two-phase
flow. The flow occurs in pores of a sandstone core sample
taken from Cenomanian formation of one of the Western
Siberia oilfields. The 3D DR model constructed for this
sample has porosity equal to 22.2 % and absolute perme-
ability equal to 210 mD. The model is a cube; the size of
an edge is 2.1 mm. The model resolution is 2.67 µm, which
is the same as the voxel resolution of the X-ray scanning
done for the sample. Thus, the computational grid of the DR
model contains 8003, or just over half a billion, cubic cells
(Figure 9a).

The fluids used in the modeling were water (phase A) and
oil (phase B) with the following relevant properties: ηsA =
0.001 Pa ·s, ηs B = 0.00092 Pa ·s, γAB = 0.029 N/m, where
ηsA and ηs B are shear viscosities of phases A and B and γAB
is the water-oil IFT.

The wettability boundary conditions were specified over
entire rock surface by a stochastic Gaussian distribution of
the Helmholtz surface energy density with correlation radius
on the order of two mean pore sizes. The maximum sur-
face energy for oil was 0.3 N/m and 0.1 N/m for water.
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(a) (b)

(c) (d)

(e)

Fig. 9 The DRmodel of the Cenomanian Berea sandstone sample. 3D
view of the a rock. Distribution of oil and water at b initial equilibrium
conditions, c an intermediate stage of the water flood, and d after the
water flood; in (b–d), water is shown in semitransparent blue and oil in

semitransparent red, while rock is removed from view. e Oil recovery
factor and water cut as the functions of cumulative liquid production
in pore volumes (PV)

Therefore, the model was mixed-wet with a bigger portion
of rock wet by water.

Initially, oil and water were randomly distributed within
the pores with average water saturation equal to 22 %.
Then the numerical simulation on the closed model (all
six models’ sides are impermeable) was performed to let
the phases come to equilibrium with the local wetting

properties. The resulting distribution of phases (Fig. 9b)
was used as initial conditions for the two-phase flow
simulation.

The flow was arranged to mimic a typical oil recov-
ery scenario using water flood. Four sides of the model
were left impermeable, while the rest two opposite sides
were opened. At one of the open sides, a constant ref-
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 The DR model of the gas-condensate field Berea sandstone
sample. 3D view of the a rock, distribution of gas, and water at b ini-
tial reservoir conditions; distribution of gas, condensate, and water at
c, d an intermediate stage of the production and e after stabilization of
the production rates; in (b–e), water is shown in semitransparent blue,

gas in semitransparent green, and condensate in semitransparent red;
rock is removed from view. f Gas and condensate production rates in
pore volumes (PV) per second and overall condensate saturation as the
functions of cumulative fluid production in PV

erence pressure was sustained, while on the other side
water was injected by connecting an infinite-volume water
reservoir held at a constant pressure 1000 Pa above the ref-
erence value. Given the size of the model, this corresponds
to the pressure gradient about 5 bar/m. The simulation was
carried out till the moment when water cut has exceeded
98 %.

Figure 9c–e show the flow simulation results. The flow
occurs from right to left as seen in the figures. Figure 9d
shows the distribution of residual oil and water after about

2.4 pore volumes (PV) of water pumped through, while
Fig. 9c shows an intermediate state after about 0.4 PV. The
chart in Fig. 9e demonstrates the recovery factor (i.e., ratio
of cumulative volumetric oil produced to the initial volumet-
ric oil in place) and the water cut (i.e., ratio of volumetric
water production rate to volumetric liquid production rate)
as the functions of the cumulative liquid production. The
recovery factor reached at 98 % water cut appeared to be
about 74 %, which corresponds to about 20 % of the residual
oil saturation.
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7.2 Non-equilibrium three-phase flow

In this subsection, we consider three-phase water-gas-
condensate flow with phase transitions. The flow occurs
in pores of a Berea sandstone core sample. The 3D DR
model constructed for this sample has porosity equal to
22.5 % and absolute permeability equal to 830 mD. The
model is a parallelepiped with sizes 0.69 mm× 0.35 mm×
0.35 mm along the x−, y−, and z−axes, respectively. The
model is approximated by 300 × 150 × 150 cubic cells
and has resolution of 2.67 µm, which is the same as the
voxel resolution of the X-ray scanning done for the sample
(Fig. 10a).

The fluids used in the modeling were water (phase A),
gas (phase B), and condensate (phase C) with the following
relevant properties: ηsA = 0.001 Pa·s, ηs B = 2×10−5 Pa·s,
ηs C = 5×10−4 Pa·s, γAB = 0.019 N/m, γAC = 0.017 N/m,
γBC = 0.005 N/m, where ηsA, ηs B, and ηs C are shear vis-
cosities of phases A, B, and C and γAB, γAC, and γBC are
the IFT values between pairs of phases AB, AC, and BC.
The mixture is described by three pseudocomponents—one
per each phase.

The simulated scenario corresponds to the typical situa-
tion happening during the later stages of a gas-condensate
reservoir production when pressure drops below the dew
point. Initially, a typical gas-condensate reservoir contains
only two-phase mixture—one phase is water and another
phase is gas containing both light and heavy hydrocar-
bons. During the development, pressure drops gradually
below the dew point. At that moment, dropout of condensate
begins. Condensate accumulates gradually within some of
the pores and hinders the gas flow. Such situation is known
as condensate banking.

To model the described scenario, we pumped a heavy
gas-condensate mixture (i.e., with high proportion of heavy
components) having the composition corresponding to the
initial reservoir conditions through the DR model in the
lateral direction (along the x-axis). The pumping occurs
due to the assumed lateral pressure drawdown equal to
80 Pa.

The wettability boundary conditions were specified over
entire rock surface by a stochastic Gaussian distribution of
the Helmholtz surface energy density with correlation radius
on the order of two mean pore sizes. The minimum and
maximum surface energies for condensate were 0.15 and
0.2 N/m, and for gas they were 0.25 and 0.3 N/m, respec-
tively. Therefore, the model was strongly wet by water with
forming a water film (zero contact angle). At the same time,
in the presence of both gas and condensate, the latter needs
less energy than the former to come into contact with rock.

Initially, gas and water were randomly distributed within
the pores with average water saturation equal to 10 %.

Then the numerical simulation on the closed model (all six
models’ sides impermeable) was performed to let the phases
come to equilibrium with the local wetting properties. The
resulting distribution of phases (Fig. 10b) was used as initial
conditions for the flow simulation.

In the flow simulation, the four lateral sides of the model
were left impermeable, while the two transverse sides were
opened. The flow was in the positive x-direction (from left
to right in Fig. 10c–e). The simulation was carried out until
stabilization of the gas and condensate production rates
(Fig. 10f).

Figure 10c–e shows gradual grows of condensate dropout
(semitransparent red). Eventually, the flow reaches quasi-
steady regime, in which time average production rates of
both gas and condensate become constant. At the same time,
overall condensate saturation stabilizes at about 20 %. This
20 % of condensate constitutes the accumulated condensate
bank, which hinders the fluid flow and negatively impacts
the production.

8 Discussion and conclusions

The presented results demonstrate that the DFT approach
in multiphase hydrodynamics is able to handle effectively
the variety of two-phase and three-phase problems includ-
ing phase transitions and surfactants. Since the presented
method is rigorously derived from the first principles, it
is consistent with classical chemical thermodynamics. It
is applicable and effective in both simple geometries and
complex pore-scale models.

The important fact is that all the simulations were car-
ried out by the same numerical code. In every case, the same
system of equations was solved numerically by the same
procedure. It has been necessary only to set up the number
of chemical components, parameters of density functional,
boundary conditions, and rheological parameters. This flex-
ibility is very convenient in practice. Also, it provides the
consistency between three-phase, two-phase, and one-phase
simulations.

In this paper, we have presented only the basic and
typical examples of DFT applications. The scope of phys-
ical phenomena covered by DFT is continuously growing
with ever more chemically and physically complex cases
coming under consideration. In particular, the processes
with thermal effects and chemical reactions are presently
in intensive study involving validation and benchmarking.
Also, the cross-disciplinary modeling is under develop-
ment, which combines multiphase pore-scale hydrodynam-
ics with nuclear magnetic resonance, electromagnetic and
electrokinetic phenomena, microgeomechanics, and X-ray
and neutron scattering.
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