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Abstract Ensemble-based optimization methods are of-
ten efficiently applied to history-matching problems.
Although satisfactory matches can be obtained, the updated
realizations, affected by spurious correlations, generally fail
to preserve prior information when using a small ensem-
ble, even when localization is applied. In this work, we
propose a multi-scale approach based on grid-adaptive
second-generation wavelets. These wavelets can be applied
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on irregular reservoir grids of any dimensions containing
dead or flat cells. The proposed method starts by mod-
ifying a few low frequency parameters (coarse scales)
and then progressively allows more important updates on
a limited number of sensitive parameters of higher res-
olution (fine scales). The Levenberg-Marquardt ensemble
randomized maximum likelihood (LM-enRML) is used as
optimization method with a new space-frequency distance-
based localization of the Kalman gain, specifically designed
for the multi-scale scheme. The algorithm is evaluated
on two test cases. The first test is a 2D synthetic case
in which several inversions are run using independent
ensembles. The second test is the Brugge benchmark case
with 10 years of history. The efficiency and quality of
results of the multi-scale approach are compared with the
grid-block-based LM-enRML with distance-based local-
ization. We observe that the final realizations better pre-
serve the spatial contrasts of the prior models and are less
noisy than the realizations updated using a standard grid-
block method, while matching the production data equally
well.

Keywords Multi-scale · Second-generation wavelets
transform · Grid-adaptive parameterization ·
Ensemble-based optimization · Multi-scale localization ·
Prior information preservation · History-matching ·
Inverse problem

1 Introduction

In standard geo-modeling workflows, integration of static
and dynamic data is usually performed sequentially: Petro-
physical geo-models are initially built using log data and
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geophysical data and are then perturbed to match historic
production data. For this last step, ensemble-based meth-
ods of optimization [1–3] have become popular, thanks
to their flexibility, computational efficiency, and ability to
match dynamic data using a wide range of parameters and
quantify posterior uncertainties. A quadratic approximation
of the objective function is statistically estimated from an
ensemble of realizations and is used to update each individ-
ual member. However, for high dimensional problems, the
size of the ensemble is limited as a full fluid flow simula-
tion needs to be run for each member. For this reason, the
resulting approximation may be noisy and leads to spurious
updates which will damage important geological features
of the prior models and significantly reduce the variability
of the ensemble. The aim of this work is to update a set
of realizations, generated from a prior assimilation of data
and knowledge, with production history using an efficient
ensemble-based optimization method, while minimizing
the perturbation of parameters and the addition of noise in
order to maintain the variability of the ensemble and the
consistency with all the available data used to constrain the
realizations.

Low resolutions of property fields (large scales, e.g.,
porosity or permeability means) generally have an impor-
tant impact on fluid flow in the reservoir and are well
characterized by the production data [4–6]. Moreover, prop-
erty contrasts, derived from facies modeling or seismic
inversion, are not affected by the perturbations of low
frequencies: Geological objects, such as channels, are char-
acterized by sharp high frequency transitions of properties
and seismic reflection data only give information about
property contrasts and are band-limited such that they do not
record low frequencies [7]. Therefore, our method postu-
lates that the match of the production data can be improved
by primarily modifying low resolutions, with a limited
impact on the prior characterization and without introduc-
ing noise in higher frequencies. Under this hypothesis, a
multi-scale re-parameterization of the model variables is
appropriate.

Information carried by the production data is spatially
heterogeneous [6], the flow response being more affected
by the variations of parameters close to the wells where
true correlations exist between the dynamic flow response
and the high frequencies. Far from the measurements, high
frequencies are generally not characterized by the data
(except when they have an important impact on fluid flow,
e.g., fine flow barriers). Therefore, the parameterization
should be defined both in space and frequency. In this
work, we decompose the property fields in space and fre-
quency using a grid-adaptive second-generation wavelet
parameterization. These wavelets are very efficient and
can be applied on irregular reservoir grids containing dead
or flat cells. Moreover, reservoir models typically contain

hundreds to millions of unknown parameters and the avail-
able data are usually sparse and uncertain, which makes
the problem under-determined. Re-parameterization then
also helps stabilize the inversion by reducing the number
of parameters, while preserving the main structures of the
property fields, thanks to the compression properties of
wavelets.

Based on this parameterization, we propose a multi-scale
inverse approach: Different subsets of wavelet coefficients
are successively updated with the production data using the
iterative Levenberg-Marquardt ensemble-based randomized
maximum likelihood (LM-enRML) [8, 9] as optimization
method. The algorithm starts by optimizing an initial sub-
set of large-scale coefficients. The parameterization is then
progressively refined, and a new optimization is run each
time new coefficients are added to the subset. However, the
prior realizations may include uncertain fine-scale hetero-
geneities, which also have a significant impact on the flow
response. For this reason, we propose to attenuate these
high frequencies during the optimization of the large-scale
coefficients in order to avoid bias in their estimation. The
original values of the attenuated coefficients are then easily
restored once they have been included in the optimization.
Finally, the refinement process stops when all the coeffi-
cients are part of the optimization set. The mismatch being
significantly reduced during the first optimizations of the
large scales, the perturbation at finer scales is then limited.

Although re-parameterization helps identify sensitive
parameters, it does not remove spurious correlations of the
ensemble (i.e., correlations that do not exist, but appear in
the ensemble because of its limited size). In ensemble-based
methods, localization is used to attenuate these effects and
avoid the deterioration of the ensemble. In this work, we
propose a new space-frequency localization of the Kalman
gain. We assume that the flow response is highly sensitive
to the large-scale coefficients as they are corresponding to
wavelet functions that are covering all the domain and data,
whereas fine-scale coefficients (local high-frequency het-
erogeneities) only have an important impact close to the
well locations as their corresponding wavelets have a more
restricted impact on the property fields (smaller support).
Thus, we adapt the localization to the current set of opti-
mized parameters. At the beginning of the process, when
only large scales are optimized, the correlations between
parameters and data are assumed reliable and no regulariza-
tion needs to be applied, which allows for global updates
of the property fields. The localization later becomes
effective when less sensitive coefficients are used in the
optimization.

The algorithm is tested on two history-matching cases
(Section 6). The first one is a 2D synthetic channelized
reservoir with about 6 years of production history mea-
sured in nine producer and four injector wells. The second
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test is the Brugge benchmark case with 10 years of his-
tory. The results of the multi-scale approach are compared
with the grid-block-based LM-enRML optimization with
distance-based localization. While both methods perform
well in matching the data, the regularization effect of the
multi-scale approach avoids addition of noise and allows
a better preservation of the models by minimizing the
amplitude of the updates.

1.1 Features

The new multi-scale method includes the following fea-
tures:

1. Grid-adaptive second generation smooth wavelets are
used to re-parameterize property fields contained in
complex stratigraphic reservoir grids (Section 3 and
Appendix).

2. A sequence of LM-enRML optimizations is performed
with an adaptive subset of optimized coefficients, ini-
tially composed of a few sensitive coarse-scale coeffi-
cients and progressively refined allowing more impor-
tant updates on a limited number of sensitive coeffi-
cients of higher resolution (Section 4.2.1).

3. A reversible scheme attenuates the effects of non-
included coefficients during the first optimizations in
order to avoid bias in the estimation and then restores
their influence on the fluid flow when they are added
into the subset of optimized coefficients (Section 4.2.2
and Section 5). This allows incorporation of prior
knowledge at all scales during the multi-scale inversion
process.

4. A multi-scale space-frequency localization method and
a specific control of the LM-enRML optimization,
which depend on the subset of optimized coefficients,
are used to further regularize the problem (Section 5.1
and Section 5.2).

1.2 Outline

In Section 2, we introduce the different concepts used
in this work and give further references to related
work. In Section 3, we present the second generation
wavelets, which are used to re-parameterize the prop-
erty fields. The LM-enRML optimization of a subset of
the wavelets coefficients is then presented in Section 4.
The multi-scale approach using space-frequency localiza-
tion is described in Section 5. In Section 6, this method
is applied on two history-matching test cases and results
are compared with the LM-enRML method based on
grid-block parameterization. Technical descriptions and
implementations of the algorithm are relegated to the
Appendix.

2 Previous work

2.1 Multi-scale approaches and re-parameterization

Multi-scale methods are commonly used in history-
matching [10–15] in order to adapt the parameteriza-
tion to the data, stabilize the inversion, and avoid over-
parameterization (i.e., the use of an excessive number of
parameters to explain the data). Although not formally
proven, multi-scale optimization is considered to help avoid
local minima [16–18] or lead to simpler optimum solu-
tion [19]. These methods typically start by optimizing a
limited number of large-scale coefficients. The parameteri-
zation resolution is then increased by analyzing the results
of the optimization step: Refinement indicators can be com-
puted using the sensitivity matrix and/or the gradient in
order to choose new parameters that will help reduce the
value of the objective function at the next iteration without
over-parameterizing the problem.

Different multi-scale parameterizations are found in the
petroleum literature, as reviewed by [3, 14]. Methods based
on adaptive zonation usually start with a coarse model and
sequentially refine local regions depending on their impact
on the flow response [10, 11]. A significant challenge with
these methods is to use prior information at different scales,
which is essential when other source of data are integrated
in the model. Multi-scale geostatistical-based parameteriza-
tion techniques [20] manage to preserve spatial variability,
but cannot handle prior models that contain geological
structures or seismic-derived information.

More common re-parameterizations based on linear
transformation perform a change of basis. Interesting char-
acteristics can result from these transformations, such as
multi-scale decomposition, sparse representation, or param-
eters de-correlation. Methods based on the covariance of
the model variables, such as principle components analysis
(PCA) or Karhunen-Loeve transform (KLT) [21, 22], have
been used to reduce the dimension of inversion problems.
In petroleum reservoirs, however, the covariance is rarely
known a priori and the computation of the basis can be
problematic for large problems.

More recent approaches coming from the numerical
image compression have the advantage to be independent
of the prior knowledge and are computationally effective.
Two main transformations are used in reservoir history-
matching: the discrete cosine transform (DCT) [5, 23–25]
and the discrete wavelet transform (DWT) [4, 6, 13]. For
DCT, the transformed domain is characterized by global
cosine functions, whereas the DWT uses more compli-
cated functions called wavelets, which are also localized
in space. With these parameterizations, the coarse resolu-
tions of a signal can be optimized by only using specific
coefficients whereas high resolutions characterized by the
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prior information (seismic, conceptual models, etc.) are not
modified.

It is generally difficult in multi-scale approaches to
account for prior information at all frequencies as the
parameterization evolves and is not initially adapted to the
frequency content of the prior information. In order to
address this problem, Feng and Mannseth [26] propose a
predictor-corrector strategy, which enables the downscal-
ing of the multi-scale estimate and assimilation of prior
covariance functions. Sahni and Horne [6] propose to fix
some wavelet coefficients for history-matching and use
the remaining coefficients to match a variogram. However,
these techniques are difficult to use when detailed prior
information, such as seismic derived attributes or complex
geological structures, is available.

Although re-parameterization with few low-scale param-
eters gives satisfying results when applied to smooth syn-
thetic cases, the optimization of the coarse scales is gen-
erally not sufficient to achieve a satisfying match of the
production data. Fine-scale heterogeneities can have a large
impact on the flow response where the changes of the
dynamic properties are important and more frequencies
need to be included in the inversion. Since these parame-
ters are subject to spurious correlations, it is necessary to
ensure that only sensitive parameters are modified during
the ensemble-based optimization in order to preserve the
information carried by the prior models.

2.2 Localization

In real applications, when the ensemble size is relatively
small as compared to the dimension of the problem, local-
ization helps prevent the spurious updates of variables that
are not sensitive to the observation. Element-wise multi-
plications with a screening matrix are generally used to
regularize the covariances matrices [27–29] or the Kalman
gain [29, 30] directly. Distance-based localization has been
used in atmospheric and petroleum applications to limit the
update of the parameters within a certain distance of the
observed dynamic data. Localization functions, usually cho-
sen on the basis of the experience, are used to define the
screening matrix. Their ranges are dependent on the size of
the ensemble as it conditions the quality of the covariance
approximations [27, 28, 31]. When distance-based functions
fail to regularize correctly the ensemble update, sensitivity
analysis may be used to define localization area [29], but
can turn out to be fairly complex. Moreover, for parame-
ters such as relative permeability curves or fluid contrasts, a
distance interpretation is not relevant.

In this case, more general methods have been proposed
for limiting the effects of the spurious correlations [4, 32,
33]. These methods can benefit from re-parameterization as
it helps bring out important parameters. Chen and Oliver [4]

apply the bootstrap method to wavelet coefficients and show
that the estimate of the Kalman gain for the low frequencies
using a small ensemble is less subject to noise. However, the
automatic adaptive localization fails to estimate correctly
the correlations associated with the high frequencies (fine
scales).

2.3 First- and second-generation wavelets

The discrete wavelet transform is a linear transformation
which decomposes a signal into different frequencies with-
out increasing the number of coefficients. Its basis is com-
posed of finite support functions called wavelets. Each
wavelet is associated with a frequency range and a finite
localization in space. This property is used in image com-
pression where high frequencies are only included where
they bring important information, for example, to charac-
terize a sharp color variation. Since images or reservoir
properties are generally spatially correlated, only a few
wavelet coefficients are needed to obtain a good approxi-
mation of the original signal. For this reason, wavelet-based
re-parameterization of an ill-posed inverse problem is inter-
esting as it yields a significant reduction in the number of
inverted parameters. However, unlike image compression
in which coefficients are selected based on their impact
on the visual aspect of an image, our history-matching
method selects additional frequencies only where they have
an important impact on the flow response.

Standard first-generation wavelet basis [34, 35], ψr,k(t),
is built from translations and dilatations (by a factor of two)
of a generating function ψ(t) ∈ L2(R) called the mother
wavelet:

ψr,k(t) = 1
√

sr
0

ψ

(
t − kτ0s

r
0

sr
0

)
, (1)

where τ0 and s0 correspond respectively to the translation
and dilatation factor, which are usually set to τ0 = 1 and
s0 = 2. The indices r and k refer to the frequency and space
localization of the wavelet. With the decrease of r , the fre-
quency spectrum covered by the wavelets are compressed
by a factor of two and translated from high to low reso-
lutions (Fig. 1). For each set of wavelets, we can define a
complementary set of functions, �r,k(t), which cover the
rest of the spectrum of the signal (Fig. 1) called the scaling
functions [35]. Similarly to the wavelets, the scaling func-
tions are built from a generating function (called the father
wavelet) by translation and dilatation. Scaling functions
have a low-pass nature and, for this reason, are sometimes
called averaging functions.

Because of translation-dilatation invariance, first-
generation wavelets are usually only applicable to regularly
sampled infinite signals or bounded signals of dimensions
equal to a power of 2.
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Fig. 1 Wavelet filter bank:
cascade algorithm. The
coefficients γr and λr

correspond to the scaling and
wavelet coefficients at the
resolution r , respectively (left).
Frequency coverage of the
wavelets and scaling functions
(right). The filters high-pass
filter(HP ) and low-pass filter
(LP ) can be deduced from the
properties of the wavelet and
scaling function [36]

For this reason, we use second generation wavelets
[37] which can be applied to any grid (Appendixes 2 and
3). Second-generation wavelets lack the translation and
dilatation invariance property. Instead, they are adapted
to their spatial localization, but keep the same space-
frequency localization property as traditional wavelets. The
full wavelet transform follows the lifting scheme [37]. This
process performs in-place processing of the signal which
reduces memory requirements as compared to standard
first-generation transform implementations. It is composed
of reversible operators that are applied sequentially on a
sequence of coefficients (Appendix 1). The main purpose
of these operators is to improve the properties of an ini-
tial wavelet. The lifting of the Lazy wavelet [37] (Split
operator, see Appendixes 1 and 2) and the Haar wavelet
(Appendix 3) is presented in the Appendix. In this paper, we
build grid-adaptive wavelets, which can handle dead or flat
cells, by accounting for the volume of the cells during their
construction.

3 Grid adaptive 3D wavelets transform

The lifting also enables the construction of grid-dependent
wavelets. We use a scheme which takes into account the
cell volumes, as described in Appendix 2, in order to han-
dle zero volume cells (dead cells) and obtain a weighted
average of the property fields at coarse resolutions. Because
the zero volume or dead cells do not participate in the
reconstruction of the property field, the associated coeffi-
cients can be neglected and the number of active parameters
is not increased after the transformation. In the examples
presented here, we use a quadratic wavelet based on a
polynomial interpolation of degree 2, which can be seen
as an improved Haar wavelet ([38], Appendix 3). This
wavelet is smoother than the Haar wavelet, which helps
avoid the introduction of sharp artifacts after perturba-
tions of the wavelet coefficients caused by the optimiza-
tion. The quadratic wavelets have a compact support (i.e.,
area where the wavelet is not nil) comparable to the Haar
wavelet (wavelet with the smallest support), which allows

a more precise localization in space compared to higher
order wavelets associated with larger supports and an eas-
ier interpretation of the contribution of each wavelet in the
reconstruction of the property fields as the overlaps between
these basis functions are limited. Nevertheless, depending
on the property of a signal (e.g., smooth and repeated pat-
tern) and the field of application of the transform (e.g.,
compression and inversion), a wavelet transform may turn
out to be more efficient than another, but this analysis is not
in the scope of this article.

For two- or three-dimensional (2D and 3D) signals, it is
possible to use 2D or 3D wavelet functions or to perform 1D
transforms along each direction. The first approach is still
rarely used as 2D or 3D wavelets are more difficult to cre-
ate and the transform can be computationally less efficient.
The second approach, followed in this work, is widely used
in image compression because of its efficiency. The origi-
nal 3D (or 2D) signal is decomposed into several 1D signals
aligned along a first direction of the grid. One level of the
wavelet transform is applied independently of each 1D sig-
nal, which results in the computation of detail and scaling
coefficients (Fig. 2b). The 1D decomposition and wavelet
transforms are repeated for each direction on both the detail
and scaling coefficients (Fig. 2c, d). The same process is
then repeated on the remaining scaling coefficients until the
coarsest resolution is reached (Fig. 2a, b).

Different wavelets can be used in the different directions
depending on the spatial variations of the properties. In a
3D reservoir model, the lateral property transitions inside
a given layer can be smooth whereas the property tran-
sitions between layers can be sharp. In this case, smooth
wavelets can be used laterally whereas sharp wavelets (e.g.,
Haar wavelet) can be used vertically. Lateral anisotropy can
also be handled by using different wavelets depending on
the correlation. Typically, high-order wavelets will be more
efficient when the property correlation is important.

In the examples presented here, independent 2D wavelet
transforms are used on either 2D grids or 3D grids with
geologically independent layers.

In the following, we denote bym ∈ R
n the property vec-

tor of size n = np × ngrid + nd in the grid-block space,
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Fig. 2 3D wavelet transform. a Scaling coefficients at resolution r .
b After wavelet decomposition along U direction. c After wavelet
decomposition along V direction. dAfter wavelet decomposition along
W direction. (d → a) Repeat with the block of remaining scaling
coefficients

where np, ngrid, and nd are the number of spatial properties
(e.g., grid-block porosity, and permeabilities), the size of
the grid, and the number of flow simulator parameters (e.g.,
relative permeabilities); γ ∈ R

n the vector of all wavelet
coefficients; and W the direct wavelet transform such that
γ = Wm andW−1 the inverse wavelet transform.

4 Optimization with a subset of wavelet coefficients

4.1 Notations

In this section, we introduce mathematical notations used
to define and access submatrices or subvectors of a given
matrix or vector. Let n and k be integers with 1 � k � n.
We denote by Qk,n the totality of all sequences of k integers
where the elements of the sequence are strictly increasing
and chosen from {1, . . . , n}. Let A = (aij ) be a (m × n)

matrix with elements aij ∈ R. Let r and c be positive inte-
gers with 1 � r � m, 1 � c � n, and α ∈ Qr,m, β ∈ Qc,n

two sequences of i and j indices of matrix A, such that
α = (i1, . . . , ir ) , β = (j1, . . . , jc). Then, the submatrix
A [α, β] has (l, t) entries equal to ail ,jt and has r rows and
c columns. We denote by “∗ ” the increasing sequence Qn,n

of all the elements of {1, . . . , n}, such that A [∗, ∗] = A.
We denote by A (α, β) the submatrix of A whose rows and
columns are complementary to α and β, respectively.

In the following, the terms scale or resolution refer to
frequency ranges carried by the wavelets (see Fig. 1) and
we denote by n and nr the total number of wavelets coef-
ficients and the number of wavelet coefficients associated

to the resolution r , with n = ∑
nr . We denote by

{
iγ

}
r

the set of wavelet coefficient indices of resolution r and by
q

({
iγ

}
r

) ∈ Qnr,n its corresponding increasing sequence.
Finally, we denote by

{
Iγ

}
r,r ′ = {

iγ
}
r

∪ . . .
{
iγ

}
r ′ the

set of all coefficient indices from resolution r to r ′ and
qr,r ′ ∈ Qnr′+···+nr ,n its corresponding increasing sequence.
With these notations, the universe (set of all wavelet coef-
ficient indices) is defined as U = {

Iγ

}
0,rmax

, where r = 0
and r = rmax correspond to the coarsest (or lowest) (e.g.,
the mean) and finest (or highest) resolutions, respectively.

4.2 Optimization method

4.2.1 Levenberg-Marquardt ensemble-based randomized
maximum likelihood

The Levenberg-Marquardt ensemble randomized maximum
likelihood (LM-enRML) [9, 39] is an iterative Levenberg-
Marquardt method which provides a quadratic approxima-
tion to the logarithm of the maximum a posteriori estimate
using an ensemble of realizations. This approximation is
then used to update simultaneously several realizations
which are members of the ensemble [8]. The initial ensem-
ble is sampled from a prior distribution (which might be
conditioned by other data, such as core or seismic data)
and deemed to be representative of the uncertainties before
assimilation of the production data.

Each ensemble member (vector of parameters, i.e., cell
porosities, permeabilities) m ∈ R

n is transformed into
wavelet coefficients γ ∈ R

n by applying the lifting scheme.
The optimization is then performed on a subvector of
selected coefficients γ ∗ ∈ R

n∗
with n∗ � n such that

γ ∗ = γ [α] and γ =
[

γ ∗
γ c

]
= Wm, where α ∈ Qn∗,n

and γ c = γ (α) correspond to the indices of selected coef-
ficients of γ and the complement vector of γ ∗, respectively.
The corresponding property values used by the flow simula-
tor can be reconstructed using the inverse wavelet transform,
W−1, such thatm = W−1γ .

One common method of uncertainty quantification for
large history-matching problems is to condition each indi-
vidual member j ∈ N to a data realization, d0j ∈ R

nd
,

generated from a prior multivariate Gaussian distribution
characterized by the data mean dobs ∈ R

nd
and the (nd ×nd)

data covariance, CD (often assumed diagonal) [40, 41]. This
is accomplished by minimizing an objective function of the
form:

Srml
j

([
γ ∗

j

γ c

])

= 1

2
(γ ∗

j − γ ∗
pr,j )

T C−1
γ ∗ (γ ∗

j − γ ∗
pr,j ) +

1

2
(g(mj ) − d0j )

T CD
−1(g(mj ) − d0j ) (2)
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Where γ ∗
pr,j = γ pr,j [α], C

−1
γ ∗ = Cγ [α]−1, and g(.) are

the subvector of the j th ensemble prior member γ pr,j , the
inverse of the submatrix of the covariance Cγ , and the for-
ward model (i.e., flow simulator), respectively. Since the
forward model is non-linear, the solution of this problem
cannot be calculated analytically and calls for an iterative
resolution.

Gauss-Newton methods and, in particular, the
Levenberg-Marquardt algorithm are known to be very effi-
cient when the (n∗ × nd) sensitivity matrix (or Jacobian),
G = ∂g(m)

∂m , is cheap to compute. For each iteration, a per-
turbation of the parameters is computed from the gradient
(first derivative, steepest descent) and the Hessian (second
derivative, shape) of the objective function. For non-linear
problems, the approximation of the objective function can
only be trusted around the current state of the model. In
the Levenberg-Marquardt method, the Hessian is modified
with a multiplier λ in order to reduce the influence of data
mismatch in early iterations and therefore limit the ampli-
tude of the parameter updates. The perturbation, δγ ∗

l , at the
lth iteration is obtained by solving:

[(λl + 1)C−1
γ ∗ + GT

l CD
−1Gl]δγ ∗

l = (3)

− [C−1
γ ∗ (γ ∗

l − γ ∗
pr) + GT

l CD
−1(g(ml ) − d0)]

Where the right and first left term of the equality corre-
spond to the gradient and the modified Hessian of Srml (γ ).
The (nd × n∗) sensitivity matrix Gl is computed from the
ensemble of ne realizations by solving:

�Dl = Gl .��l . (4)

Each column of the (nd ×ne) matrix �Dl and the (n∗ × ne)

matrix ��l store, for each realization, the deviation of
the predicted data, and deviation of the wavelets coeffi-
cients from the ensemble means, respectively [8]. Since the
matrix is generally not invertible (or even square), (trun-
cated) singular value decomposition ((T)SVD) is used to
solve the system. If TSVD is applied, the parameters must
be scaled in order to avoid the loss of valuable information
[9]. Because of the reduction in the number of parameters
(n∗ � n) and the small size of the ensemble (ne � n), the
computation of G is relatively fast.

In this work, we use the approximate form of the
Levenberg-Marquardt method [9], where the covariance
matrix Cγ ∗ in the Hessian is approximated by a positive
definite matrix Pl = ��l��l

T /(ne − 1), which is com-
puted from the current ensemble in each iteration. Using
the Sherman-Woodbury-Morrison matrix inversion formu-
las [42] and substituting C−1

γ ∗ by Pl
−1 in the Hessian, (4) is

written as:

δγ ∗
l = −[(λl + 1)Pl

−1 + GT
l CD

−1Gl]−1C−1
γ ∗ (γ ∗

l − γ ∗
pr)

−PlGT
l [(λl + 1)CD + GlPlGT

l ]−1
(g(ml ) − d0) (5)

Finally, the deviation from prior term is neglected (first term
in Eq. 5) in which case the update is only driven by the data
mismatch:

δγ ∗
l = −PlGT

l [(λl + 1)CD + GlPlGT
l ]−1

(g(ml )−d0). (6)

It is shown [9] that this form which gives slightly better
data matches is numerically more stable and is computation-
ally more efficient than the original form (Eq. 5). From the
authors’ experience, this approximated form can give better
matches when the initial ensemble of simulated responses
is not enclosing the data, and the quality of the output real-
izations does not suffer from the loss of the prior deviation
constraint. When the same ensemble is used to compute the
sensitivity and the current covariance matrices, Eq. (6) sim-
plifies to the ensemble smoother update and the sensitivity
matrix does not need to be computed explicitly:

δγ ∗
l = −Cγd

l [(λl + 1)CD + Cdd
l]−1

(g(ml ) − d0)

= −Ke
l (g(ml ) − d0), (7)

where Cγd
l = ��l�Dl

T /(ne − 1) is the cross-covariance
between parameters included in the optimization and simu-
lated data, Cdd

l = �Dl�Dl
T /(ne −1) is the simulated data

covariance matrix and Ke
l is similar to the estimate of the

Kalman gain.

4.2.2 Initial smoothing of the property fields

Although we optimize only a subset of n∗ coefficients, all
coefficients are used to reconstruct the properties needed
by the flow simulator. However, for non-linear problems,
it is generally useful to attenuate the impact of non-selected
coefficients (mostly high frequencies) on the flow response
in order to avoid bias in the estimation of the large scales
and avoid local minima. At well locations, high resolu-
tions may have an important impact on the flow response
and can bias the characterization of the low resolutions
if not removed. For example, fine-scale heterogeneities
may introduce high or low permeability values (local drain
or barriers) in the cells of the model that intersect or are
located close to the well perforations. As these fine scales
have an important impact on the flow response, but are not
included in the optimization, it could result in an unreal-
istic deformation of the large scales (e.g., large increase or
decrease of the permeability average) that attempt to correct
a local state. In other words, we are trying to limit the influ-
ence of sensitive parameters that are not yet included in
the optimization. Accordingly, the effect of wavelet coeffi-
cients that are not included in the optimization is attenuated
before starting the optimization by multiplying them with
an attenuation vector s0 ∈ R

n such that,

γ s = s0 ◦ γ =
[

γ ∗
γ c

s

]
, (8)
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where ◦ corresponds to the Schur or Hadamard element-
wise product, γ ∗ is the subvector of optimized coefficients,
and γ c

s is the attenuated version of γ c (coefficients not used
in the optimization). The application of the inverse wavelet
transform on the vector γ s results in the reconstruction of
smoothed property fields, as displayed in Fig. 3. Generally,
s0 is not constant, but its elements vary with the resolution
and location of the corresponding wavelet coefficients. In
this work, the values of the elements of s0 decrease linearly
with the resolution of the associated parameters from 1 (no
attenuation) to a minimum value (strongest attenuation),
smin, set to 0.1 in the applications presented here, such that:

∀r ∈ {0, ..., rmax} , ∀jr ∈ {
iγ

}
r

s0 (jr ) = min

(
1,

(1− smin) × r+smin × r0−rmax

(r0 − rmax)

)
, (9)

where r is the resolution associated with the wavelet coeffi-
cients from the coarsest (r = 0) to the finest (r = rmax), r0
is the starting resolution for the optimization (see Section
5), and

{
iγ

}
r
is a set of wavelet coefficient indices, jr , for

resolution r .
As developed later, the attenuation values must be greater

than 0 in order to compute the sensitivity or the cross-
covariance (Eqs. (4) or (7)) of the wavelet coefficients after
refinement of the parameterization and to restore the orig-
inal value of the coefficients. Thanks to the compression
property of the wavelet basis, all important features are still
preserved, as illustrated in Fig. 3. The attenuated frequen-
cies are easily restored during the process by multiplying
the wavelets coefficients by s−1

0 , such that γ = s−1
0 ◦γ s (see

Section 5 and Algorithm 2 in Appendix 4), where s−1
0 is the

element-wise inverse of s0.
In general, the minimum attenuation factor smin associ-

ated with high frequencies must be small in order to avoid
an incorrect estimation of the lower scale coefficients that
impact the entire domain. The strategy proposed in Eq. 9
does not claim to be optimal or generic, but we observed
that an increase of smin results in a smaller decrease of the
objective function when optimizing the low frequencies and

Fig. 3 Original porosity realization (left) and its smoothed version
(right) used at the beginning of the optimization after attenuation of
the high frequencies

a too important attenuation (i.e., decrease of smin) can result
in an increase of the objective function when restoring the
original value of the coefficients in the last iterations (see
Section 5). Note that all the elements of s0 corresponding to
the coefficients γ ∗ are equal to one since they are included
in the optimization (9).

5 Multi-scale approach

We propose a multi-scale approach based on the LM-
enRML optimization using wavelet parameterization, which
includes highly detailed prior knowledge. An overview of
this method is given in Fig. 4. The main central loop corre-
sponds to iterations through the different resolutions. Before
entering the loop (step 0), some low resolutions (from
0 to r0) wavelet coefficients, γ ∗

r0
, are selected, such that

γ ∗
r0

= γ
[
q0,r0

]
and a reversible attenuation (Section 4.2.2)

is applied to the remaining coefficients, γ c
r0

= γ
(
q0,r0

)
.

The initial selection should only include coefficients asso-
ciated with wavelets, �∗, that are covering at least one
element of the observed data locations set, Pd , such that,

∀ψr,k ∈ �∗, ∃xd ∈ Pd | (
ψr,k ∗ δxd

)
(x) > ε, (10)

where (∗) is a convolution operator,ψr,k denotes wavelets of
resolution r and position k, δxd

is a Dirac function centered
on the location xd , and ε is a minimum impact value.

Moreover, the initial parameterization should include a
minimum number of parameters so that the main features of
the prior realizations remain discernible after attenuation of
the high frequencies (Fig. 3) in order to avoid convergence at
large scales that is not compatible with the prior information
at finer scales. Visual qualitative controls of the preserva-
tion of the main features of property fields after smoothing
tests have been used in this work to select the initial coeffi-
cients (starting resolution) for the applications examples of
the Section 6.

Fig. 4 Overview of the multi-scale method. Step 0: initialization of
the parameterization and attenuation of the high frequencies (smooth-
ing). Step 1: ensemble-based closed loop optimization with the current
parameterization. Step 2: refinement of the parameterization and
restoration of the attenuated wavelets coefficients with their original
values
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In the first step (step 1), the parameters γ ∗
r are optimized

using the LM-enRML algorithm as described in Section 4.
Although the ensemble is generally not large enough to
obtain a perfect estimate of the Kalman gain for the full
parameterization, it usually gives a good approximation for
the large-scale coefficients. We emphasize here that the
wavelet transform by itself does not remove the spurious
effects related to the use of a small ensemble, but only helps
re-parameterize the problem with few sensitive parameters.
In geological or atmospheric applications, only a limited
number of large-scale scenarios of variation of the spatial
properties are consistent with the physics, the depositional
processes, and the prior knowledge, which enable a better
approximation of the parameters distribution with a small
ensemble. The simulated response is also very sensitive to
these coefficients as their associated basis functions are cov-
ering a large part of the model. However, during the first
resolutions, because all the coefficients needed to match the
data that are not included, it is not recommended to seek
convergence as it can lead to unrealistic updates. Moreover,
the optimization of the low frequencies is only performed
after attenuating the effect of the fine-scale parameters (8)
in order to avoid bias in the estimation (see Section 4.2.2).

Then (step 2), new parameters corresponding to the next
finer resolution r + 1 are added with their original values
and the attenuation vector sr+1 is updated, such that,

γ ∗
r+1 = sr

[
q0,r+1

]−1 ◦ γ s [
q0,r+1

]
(11)

∀j ∈ {
Iγ

}
0,r+1 , sr+1(j) = 1. (12)

The influence of the finer scale are also partially re-
introduced by multiplying the non-included coefficients by
a factor εs set to 1.15 in the applications presented here, such
that the original values of the coefficients are progressively
restored (see Algorithm 2 in Appendix 4):

∀j ∈ {
Iγ

}c

0,r+1 ,

γ c
s,r+1(j) = γ c

s,r (j) × εs (13)

sr+1(j) = sr (j) × εs, (14)

where
{
Iγ

}c

0,r+1 is the complementary set of non-included
wavelets coefficients indices (indices of γ c

s,r+1). Finally,
a new optimization is run with the new parameterization.
In order to avoid running specific flow simulations for the
unsmoothed realizations, the results of the last evaluation of
the objective function before refinement are used to com-
pute the first update with the new parameterization. For this
reason, the initial attenuation factors must be greater than 0.

This process is repeated until the finest resolution is
reached and a stopping criterion (Section 5.2) is fulfilled at
the optimization step. Because of the initial attenuation of
the coefficients, the process should not end before entering
the finest resolution even if the data are sufficiently well
matched since some prior knowledge could be lost.

5.1 Multi-scale localization

The objective of the localization in ensemble-based opti-
mization is to minimize the difference between the true
Kalman gain, K, and the estimate of the Kalman gain, Ke,
affected by spurious correlations considering that it is com-
puted from an insufficiently large ensemble. This can be
achieved by multiplying element-wise the estimate of the
Kalman gain by a screening matrix A that minimizes the
function:

f (A) = ∥∥A ◦ Ke − K
∥∥2

f
, (15)

where ‖.‖2f is the Frobenius norm.
We define two screening matrices, Agb and Awt, applied

sequentially in the grid-block and wavelet spaces in order
to regularize the estimate of the Kalman gain. The first
regularization is based on distance functions defined in
the grid-block space that vary with the resolution. The
second regularization is derived from a user-defined pseudo-
sensitivity map which is translated into the space-frequency
domain. Although they are both related to the position of
the coefficients in space and frequency, they are serving dif-
ferent purposes. The grid-block localization only limits the
update of the parameters inside pre-defined areas without
distinguishing between frequencies, whereas the wavelet
localization only restricts the updates of some frequencies
at some locations, but allows global modifications of the
property fields.

5.1.1 Multi-scale grid-block localization

Distance-based localization aims at regularizing the esti-
mate by limiting the effects of the data to sensitive areas.
Equivalently, distance-based localization can be seen as the
decomposition of one large problem into several smaller
semi-independent problems that are less affected by the spu-
rious correlations as only a reduced number of parameters
with significant correlations to the data are included.

We propose here to adapt the localization to the current
parameterization used in the optimization. A localization
function, Agb, similar to the one proposed by Furrer and
Bengtsson [31] is used to screen the estimate of the Kalman
gain in the grid-block space:

Agb(h, r) = 1

1 + [f (0, r)2/f (h, r)2]/ne
, (16)

where f (h, r) is a distance function which depends both
on the separation distance h and the resolution r of the
multi-scale loop. In the first iterations of the multi-scale
loop, the dimension of the problem is highly reduced as
only few large-scale parameters are optimized. As discussed
before, the distribution of these parameters is generally
better sampled by the ensemble and these parameters are
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generally sensitive, which give a better estimation of the
Kalman gain. We also recall that the initial smoothing pre-
vents introduction of a bias induced by the effect of the
high resolutions. In this case, no regularization needs to be
applied and the localization functions are constant functions
equal to one, allowing global updating of the realizations
without introducing noise in finer resolutions. With succes-
sive refinements, the number of parameters increases and
the estimate of the Kalman gain becomes more affected by
the spurious correlations. As a consequence, the range of the
distance function decreases and the updates are applied in
smaller sensitive areas (see Fig. 5, top). At the finest resolu-
tion, the localization function simplifies to the one proposed
by Furrer and Bengtsson [31].

As localization is defined in the grid-block and because
of the use of the Hadamard product in Eq. 15, it is not
straightforward to apply localization directly in the wavelet
space (W(B◦C) �= W ·B◦W ·C, where B,C represent any
matrices with consistent dimensions). Instead, the Kalman

Fig. 5 Multi-scale localization for pressure data at well P5. Applied
on the Kalman gain in the grid-block space at the different resolu-
tions of the multi-scale loop (top). Applied on the Kalman gain in the
wavelet space (bottom) (see Algorithm 3 in Appendix 3)

gain is transformed back into the grid-block space where the
localization is applied and is then re-transformed into the
wavelet space in order to update the reduced set of wavelet
coefficients (see Algorithm 3 in Appendix 4), such that:

Ktmp = W
(
Agb ◦

(
W−1 · Kγ ∗

n,nd

))

Kγ ∗ = Ktmp [
q0,r , ∗

]
, (17)

where Ktmp is a
(
n × nd

)
temporary matrix, Kγ ∗

n,nd is a
(
n × nd

)
matrix defined such that, Kγ ∗

n,nd

[
q0,r , ∗

] = Ke,

and Kγ ∗
n,nd

(
q0,r , ∗

) = 0n−n∗,nd , where Ke is the
(
n∗ × nd

)

estimate of the Kalman gain for the selected wavelet coef-
ficients and 0n−n∗,nd is a

(
(n − n∗) × nd

)
zero matrix

corresponding the non-selected coefficients, and Kγ ∗
is the

resulting localized
(
n∗ × nd

)
Kalman gain in the wavelet

space. Thus, even the update of global parameters, such as
the mean, only have impact inside localizations areas at the
current resolution. Unless a strict stationarity of the property
field can be assumed, it is important to limit the effect of
the global parameters when the parameterization is refined.
Indeed, with the inclusion of high frequencies, the esti-
mation of the large-scale parameters, far from the data, is
biased by the local state (except in strictly stationary state).
In other words, we avoid incorrect extrapolations of local
observations. The wavelet transform being fast and easily
parallelizable, the transformation and reconstruction of the
Kalman gain take a reasonable amount of time compared to
the ensemble of the fluid flow simulations.

5.1.2 Regularization of the Kalman gain in the wavelet
space

For large problems, even by taking into account spatial
dependencies, it is generally not possible to ensure total sup-
pression of the spurious correlations. Localization functions
generally depends on the size ne of the ensemble [31] as in
Eq. 16, meaning that when the ensemble is small, the local-
ization may become very restrictive and only allows updates
of a limited numbers of parameters, which conversely may
remove true correlations and lead to bad data match or cre-
ate artifacts. Generally, the localization function should be
larger than a single pattern and include nearby wells [29]. In
this work, another kind of regularization, inspired from the
analysis based on the adaptive localization presented in [4],
is used in addition to the space localization described above.

We propose to apply a regularization of the estimate of
the Kalman gain in the wavelet space. Generally, parame-
ters close to the well measurements will have a significant
impact on the flow response and fine scales heterogeneities
are more likely to be characterized, whereas far from wells,
only low frequency content can be deduced from the data
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(except in very heterogeneous reservoirs). Accordingly,
pseudo-sensitivity maps are first defined in the grid-block
space and aim at identifying areas where production data
are highly informative. Distance functions with small ranges
are used to generate these maps, where values drop rapidly
from 1 to 0 with the inverse of the distance from the loca-
tion of the data (Fig. 5, bottom left). Because water cuts
are sensitive to the heterogeneities between producer and
injector, a larger range is used in order to include more fine-
scale parameters between the wells. Then, this knowledge
is translated into the wavelet space by considering that the
reliability of the cross-correlation between data and wavelet
coefficients is related to the sensitivity of the area covered
by the basis functions. Thus, operators similar to the scaling
functions are used to integrate the values of the pseudo-
sensitivity maps over the support of the wavelet functions
in order to estimate the importance of the different wavelet
coefficients.

If the Haar transform is used to decompose a given 1D
property and if we denote by ms

j+1,k , the initial pseudo-
sensitivity map, then the value ms

j,k associated with the
wavelet coefficient γj,k is computed, such that,

ms
j,k = ms

j+1,k + ms
j+1,k+1. (18)

This operation is performed on the remaining ms
j,k values

until the coarsest resolution is reached in the same man-
ner as the cascade algorithm (Fig. 1). For a 2D or 3D
property, the process is successively applied along the dif-
ferent directions, and the resulting values correspond to the
sum over a surface or a volume. Thus, the importance of
the wavelet coefficients increases quickly when their fre-
quencies decrease (see Fig. 5, bottom) and only the finest
frequencies are affected by this regularization (large-scale
correlations are supposed reliable as shown in [4]). The final
values are then leveled to 1 in order to be used as elements
of the

(
n∗ × nd

)
screening matrix Awt of the Kalman gain

in the wavelet space, such that:

Kγ ∗
loc = Awt ◦ Kγ ∗

, (19)

where Kγ ∗
loc is the resulting Kalman gain after both regular-

izations in the grid-block and wavelet space. We emphasize
that even though the term pseudo-sensitivity is used to
define the maps in the grid-block space, the matrix Awt is
not an approximation of the sensitivity in the wavelet space,
but is only used to identify the reliable correlations between
the parameters and data.

When higher order wavelets are used, the sum in Eq. 18
includes more elements (depending on the order of the
wavelet) with different weights deduced from the associated
scaling functions. Because scaling functions, in the second-
generation context, are changing with the sampling of the

signal and are not computed explicitly, it can be difficult
to define correctly the corresponding integrating functions
and approximations can be made. In this work, a wavelet
based on a quadratic average interpolation is used to decom-
pose the properties, but we approximate the computation of
the screening coefficients to the Haar case (18) as the two
wavelets are quite similar (Appendix 3).

5.2 Optimization and control of the Levenberg-Marquardt
parameter

In our multi-scale method, an optimization is performed
after each refinement of the parameterization. During the
first resolutions, the parameterization only includes large-
scale parameters and the problem is simplified, thanks to
the initial smoothing of the realizations, which allows a fast
convergence. However, because the problem is generally
under-parameterized at this stage (i.e., the parameteriza-
tion does not contain enough degrees of freedom to match
the data), it is not suitable to reach full convergence as it
would result in unrealistic solutions. Moreover, the initially
smoothed components reintroduced during the refinement
step might be incompatible with the current optimal state.
For these reasons, only one LM-enRML iteration is per-
formed at each resolution level while the total number of
parameters is lower or equal to the total number of data. At
intermediate scales, when iterations are allowed, refinement
criteria based on the maximum number of iterations and
the improvement of the mismatch are applied. Because all
the parameters are not optimized and finer scales have been
smoothed, only a few iterations are permitted. In the appli-
cations presented in this work, the maximum number of
iterations at an intermediate scale is limited to 2, but the con-
trol of the iteration would benefit from automatic techniques
based on the approximation of the objective function, as
described in [11]. Several stopping criteria are used for the
last optimization (at the finest resolution), including total
number of flow simulations, maximum number of iterations,
maximum increase of λ at one iteration, or whether the mis-
match falls within production data uncertainty (Sav < nd ).

Initialization and control of the Levenberg-Marquardt
parameter λ are based on the initial mismatch of data
and the evolution of the ensemble mean, Sav (see (20)
below), and standard deviation of the data mismatch, σS ,
as described in [9]. When both Sav and σS decrease, λ is
reduced by a factor noted ω, but is bounded by a minimum
value. If Sav is improved but σS is increased, reflecting
a heterogeneous improvements of the realizations, the
ensemble update is accepted, but the value of λ is kept
unchanged. When Sav is increased, the update is rejected
and λ is multiplied by a factor of ω.

However, after refinement and restoration of the wavelet
coefficients with their original values, a reasonable increase
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of the global objective function is tolerated. If Sav after
refinement is greater than the one before optimizing the
parameters at the previous resolution, the update is rejected
and only half of the frequency components are reintroduced
at the next update. When the update is accepted, but the
objective function is not improved, the value of λ is not
changed (see Algorithm 1 in Appendix 4). A rejection at
early stage may reflect a too strong initial attenuation of
the coefficients or an incoherent prior information. In this
case, incorporation of high frequency parameters inside sen-
sitive areas (such as well neighborhood) from the start of the
optimization can help stabilize the behavior of the objective
function, but may affect the preservation of the prior infor-
mation. The approach for selecting λ described here is fairly
standard and has worked well on similar history-matching
problems [9, 43], but it is clear that the method of Iglesias
and coworkers [44] might be advantageous in stabilizing
convergence.

In standard approaches, ω is usually constant. In our
multi-scale approach, the value of ω is tuned depending
on the current resolution. In the first multi-scale iterations,
the value of ω is kept low in order to maintain a relatively
large λ and limit the update of the large-scale parameters
as it is generally not desirable to converge with a reduced
parameterization. The value of ω is then increased with
refinements and reaches its maximum at the finest reso-
lution (see Algorithm 1 in Appendix 4). In our examples,
the initial value of ω is set to 2 and increases linearly
to 10 and λ is bounded to 0.01. When the same con-
trol of the Levenberg-Marquardt parameter is used with
the standard grid-block approach, the optimization strug-
gles to reduce the objective function in the first iterations
without improvement of the quality of the output mod-
els, whereas the updates of large-scale sensitive parame-
ters allow significant improvements even with a relatively
large λ.

5.3 Validation of the method

Re-parameterization and multi-scale methods are gener-
ally efficient when the original inverse problem is under-
determined. In order to illustrate the advantages of our
approach, two different medium-to-large test cases are used
in this paper. The results obtained with our multi-scale
method (MS-LM-enRML) are compared with the grid-
block-based approximate form of the iterative Levenberg-
Marquardt ensemble-based randomized maximum likeli-
hood method (GB-LM-enRML) [9] with distance-based
localization of the estimated Kalman gain, which proved
to be an efficient method for history-matching problems.
In both cases, the same criteria are used to stop the
algorithm (see Section 5.2). Since our algorithm is using
the LM-enRML to optimize the wavelet coefficients, the

benefits of the multi-scale approach can be assessed from
the comparison of the two methods.

The quality of the data match and prediction along with
the quality of the updated realizations are used as compar-
ison criteria. The magnitude of the data mismatch in the
RML objective function (second term in Eq. 2) is evaluated
to ensure that the realizations are possible samples from the
posterior:

Sav(mj ) = 1

ne

ne∑

j=1

(g(mj ) − d0j )
T CD

−1(g(mj ) − d0j ),

(20)

where d0j is a realization from the data distribution. If the
data mismatch of the realizations is too large, then the likeli-
hood of these being samples from the posterior is nil. When
the mismatch is small, the realizations might be samples
but further investigations would be necessary to ensure it
(see [45]). In any case, it is generally not possible to reach
Sav � nd , even if the uncertainties are overestimated,
because the samples d0j are physically not consistent as
independence of samples is assumed (CD is diagonal).

The quality of the output realizations is difficult to
quantify since most realizations of geological models are
generated algorithmically. Consequently, it is not possible
to compute the probability that the updated realization is
a sample from the posterior. However, spatial analysis of
the realizations can provide insight on the behavior of the
different inversion processes. For this reason, qualitative
examination of the realizations (the “eyeball test”) along
with variogram analysis is performed in this article.

Because the prior ensemble may incorporate other forms
of knowledge, such as seismic and/or geological interpreta-
tion, it is generally desirable to minimize the magnitude of
changes to the models and, in particular, to avoid spurious
updates that do not improve the data match. Average cell-
by-cell absolute deviation from prior realizations are also
computed using the entire ensemble in order to analyze the
magnitude and quality of the changes: For each cell i of
the reservoir grid and for each property p, a deviation value
devp(i) is computed as:

devp(i) = 1

ne

ne∑

j=1

|pj (i) − p
j
pr(i)|, (21)

where |x| is the absolute value of x, pj (i) and p
j
pr(i) are the

values of the property p of the realization j in the cell i after
and before the optimization process, respectively. Devia-
tion from the prior is further summarized by the average
deviation adp over all the cells:

adp = 1

n

n∑

i=1

devp(i), (22)
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Fig. 6 Reference porosity and permeability fields for test case 1

where n is the number of cells. For a similar quality of data
match, the smallest deviation to the model is preferred since
in that case, the prior information is better preserved and the
updates have been less subject to noise.

One of the major purposes of this work is to reduce the
effects of spurious correlations due to small ensemble size.
These spurious correlations result in addition of noise to
the realizations. In order to quantify the increase of noise,
we analyze the energy of the wavelet coefficients in a sim-
ilar manner to the compressed sensing processing [46]. We

define the energy ej of a realization j as the L1-norm of its

wavelet coefficient vector γ j , such that ej =
n∑

i=1
|γ j (i)|,

where γ j (i) is the ith wavelet coefficient of γ j . Thus,

re = 1

ne

ne∑

j=1

ej

e
j
pr

, (23)

is the average ratio of energies (independent of the prop-
erty type) after and before the optimization. When a small
amount of noise is added to the realizations, the energy is
unchanged and re takes values around 1. When noise is
introduced during the inversion, the energy of the realiza-
tions increases and re becomes greater than 1.

Execution times (wall clock times) for both methods are
similar as they are mainly controlled by the flow simulations
of the ensemble. Wavelets transforms and reconstructions
in the multi-scale method require additional computations,
but the reduction of parameters helps improve the efficiency
of the Levenberg-Marquardt updates. The implementations
of the two methods are based on the same source code in
order to be comparable, except that in the grid-block case,
the wavelet transform is replaced by the identity and the
optimization starts at the finest resolution.

Fig. 7 The change of the
average mismatch (20) and the
value λ with iteration for the
five ensembles. The number of
data is about 700 (horizontal
dashed lines)
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6 Numerical experiments

Both methods are applied on two history-matching test
cases. The first problem is a 2D synthetic reservoir includ-
ing 13 wells with about 8 years of production history. The
first 6 years are used to constrain the inversion, and the
remaining 2 years are used to test the prediction of the
updated ensembles. The second test case is the well-known
3D Brugge benchmark [47] with 10 years of history, includ-
ing 30 wells and 9 geologically independents layers. The
history-matching takes about 3 h in the first case and about
o1 day in the second for both MS-LM-enRML and GB-LM-
enRML methods, flow simulations being simultaneously
run on 25 cores.

Wavelets based on average interpolation of a quadratic
polynomial (Appendix 3) are used as basis function in all
MS-LM-enRML applications. Distance-based localization
and control of the Levenberg-Marquardt parameter λ are
applied as described in [9] for the GB-LM-enRML, whereas
multi-scale localization and control of λ (Sections 5.1 and
5.2) are used for theMS-LM-enRML. In both cases, a spher-
ical covariance function, f (.), is used in the localization
functions (16).

6.1 2D reservoir

6.1.1 Presentation of the problem

The first test is a 2D synthetic case composed of 3355 active
cells which are populated by porosity and permeability
fields generated from the blending of object-based simula-
tion and sequential Gaussian simulation (SGS). Properties
used to generate the synthetic data set are shown in Fig. 6.
A probabilistic non-linear relation is used to generate the
permeability field from the porosity. Final distributions of
the properties are bimodal, mimicking a channelized system
with floodplain deposits.

A total of nine producers and four injectors, arranged in a
five-spot pattern, are used to generate 8 years of production
history. The primary constraints of wells are oil production
rates and water injection rates. Bottom hole pressure (BHP)
limits of 120 bars are set to all wells. The production scheme
includes shut-ins of 1 year at wells P1, P3, P5, and P9 and
several buildup periods for all the wells. Producing water
cut (WCT), BHP, and gas-oil ratio (GOR) are used to con-
strain the inversion of the permeability and porosity fields,
with a total number of about 700 data points. The standard

Fig. 8 The match (0 to 2200 days) and prediction (2200 to 3000 days) to water cut and pressure at four wells. The red curve represents the
observed data. The gray curves show the ensemble prediction. The black curve is the ensemble average
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deviation of noise used for the different data type are 2 bars
for BHP, 2.5 % for WCT, and 3 sm3/sm3 for GOR.

In both GB- and MS-LM-enRML, a maximum num-
ber of 20 updates are permitted using an ensemble of 50
realizations conditioned to noisy log data and generated
from object-based simulation and SGS. The orientation
of the channels is known a priori with an uncertainty of
30◦, such that prior models are already constrained by this
information. The initial value of the Levenberg-Marquart
damping parameter λ is set to 1000 for the two methods.
Due to the relatively small size of the problem (compared
to real cases), ensembles of only 50 realizations are used
during the optimizations.

6.1.2 Application and comparison of the multi-scale
approach

Final results generally depend on the initial ensemble espe-
cially when it is small. In order to avoid bias in the analysis
of the results, five different ensembles are independently
used to assimilate the production data using both GB and

MS-LM-enRML methods. Note, however, that all the real-
izations in the different ensembles have been generated
using the same process.

Figure 7 shows the evolution of the data mismatch Sav for
both methods with the five ensembles. In the first iterations,
the decrease of the mismatch for the two methods is quite
similar even if the MS-LM-enRML uses a reduced param-
eterization. Only one or two iterations per resolution are
performed before reaching the full parameterization (1 iter-
ation from resolutions 1 to 4 and 2 iterations at resolution 5).
The re-introduction of smoothed frequency components at
the final refinement step sometimes causes a small increase
of Sav (ensembles 1, 3, and 4), which is rapidly corrected
at the next iteration. After reaching the finest resolution, all
the groups using the multi-scale approach stop because the
mismatch falls into data uncertainties (Sav < nd ), whereas
most of the grid-block cases converge slightly above this
value because the mismatch does not improve anymore.

Figure 8 shows initial and final data matches and predic-
tions for wells P1, P2, P6, and P9. Note that it is compulsory
to use an iterative scheme in this case as the non-linearity is

Fig. 9 Comparison of ensemble
updated log-permeability
averages using MS-LM-enRML
(bottom left) and
GB-LM-enRML method
(bottom right) with the truth (top
left) and initial mean (top right)
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large and the initial realizations are not spanning the data.
The results of ensemble number 4 are used in this compari-
son as that final data match is the most similar between the
two methods. A good match of the data is achieved in both
cases. Predictions are also similar, but ensembles sometimes
fail to correctly predict the evolution of the production. The
performance of prediction can slightly change depending
on the method, but the analysis of the results with all the
ensembles does not bring out major differences between
GB- and MS-LM-enRML.

Comparison of output log-permeability averages with
the truth is shown in Fig. 9. The color scale is set such
that the main flow structures and property contrast, reflect-
ing the two lithologies present in the field, can be eas-
ily identified. In both GB- and MS-enRML cases, the
shape of the important flow structures are characterized
after assimilation of the production data (e.g., perme-
able branch on the left). However, we can observe that
the property contrasts are better defined and less noisy
with the multi-scale approach. Figure 10 shows a set
of individual realizations sampled from the five ensem-
bles before and after assimilation of production data,
and Fig. 11 summarizes the average deviation from prior
maps for the porosity and log-permeability including all

the realizations of the five ensembles. The final real-
izations generated using the multi-scale approach better
preserve the spatial structure of the prior models and
are less noisy while matching the data equally well.
Moreover, the important deviations from the prior mod-
els are mainly localized where modifications are needed
to match the data (i.e., a flow barrier between wells P7
and P8).

Figure 12 shows the variograms, oriented north 0◦ (ori-
entation of the channels) with a tolerance of 20◦ and
a bandwidth of 20 % of the model extension, corre-
sponding to the realizations of Fig. 10. Posterior MS-
LM-enRML variograms remain similar to the prior var-
iograms, whereas GB-LM-enRML variograms are highly
affected by the assimilation of the data. Preservation
of the properties is only possible because prior mod-
els somehow contain prior knowledge (the existence of
a channelized system, channel orientation, and log data)
which is consistent with the truth. When the prior ensem-
ble is poorly constrained, meaning that no information
is used to constrain the realizations, more important
perturbations are needed, but the multi-scale approach
still helps stabilizing the inversion (see Brugge case,
Section 6.2).

Fig. 10 Individual porosity/
log-permeability realization
before and after production data
assimilation
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Fig. 11 Average deviation
(cell-by-cell the difference
between initial and final model)
from the prior computed from
all the realizations (five
independent ensembles).
MS-LM-enRML (left) and
GB-LM-enRML (right)

Fig. 12 Variogram analysis
(north 0) of prior and posterior
porosity and permeability
realizations displayed in Fig. 10.
Black squares represent the
variogram of the prior
realizations. Red and blue dots
represent the variogram of the
posterior realizations with
MS-LM-enRML and GB-LM-
enRML methods, respectively.
Vertical and horizontal lines
correspond to the interpreted
sills and ranges, respectively
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6.1.3 Analysis of the multi-scale algorithm

In this section, we provide examples that illustrate the
effects of the adapted truncated wavelet parameterization
and the localization processes. Three additional cases are
run with the same ensemble of 50 realizations used in
the previous section: (case 1) the standard GB-LM-enRML
without localization, (case 2) the MS-LM-enRML with-
out any localization, and (case 3) the MS-LM-enRML with
only localization in the wavelet space (Section 5.1.2). For
each of these cases, the control of the Levenberg-Marquart
parameter λ is applied as described in [9]. Comparison
is made with two previous examples: (case 4) GB-LM-
enRMLwith localization and (case 5) MS-LM-enRMLwith
space-frequency localization. Details on the localization and

optimization controls for cases 4 and 5 are provided in the
previous section. The effect of the specific control of λ is
not presented here as it appears to be negligible for this test
case.

All the cases stop after ten iterations and show good
matches with the production data. Figure 13 shows one
updated log-permeability realization and the deviation maps
for cases 1–3. Table 1 gives the values of adp, p ∈
{log-perm,poro} and re for all five cases. Although the
adaptive truncated multi-scale parametrization (case 2)
helps limit the increase of energy (noise) as compared to
the standard GB-LM-enRML approach (case 1), it does not
suppress the effect of the spurious correlations and does not
help preserve the prior realizations by itself. After the last
refinements, the parameterization includes coefficients that

Fig. 13 Analysis of the
resulting log-permeability
realizations. a One prior
realization. Corresponding
updated realization/average
cell-by-cell deviation map: b,e
GB-LM-enRML without
localization, c,fMS-LM-enRML
without localization, d,/gMS-
LM-enRML with localization in
the wavelet space only
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Table 1 Average cell-by-cell deviation values and energy ratios (see
Section 5.3)

adPoro adlog-perm re

Case 1 0.060 1.30 2.92

Case 2 0.060 1.16 2.30

Case 3 0.038 0.67 1.12

Case 4 0.041 0.73 1.75

Case 5 0.029 0.47 1.15

Case 1: GB-LM-enRML without localization. Case 2: MS-LM-
enRML without localization. Case 3: MS-LM-enRML with wavelet
localization only. Case 4: GB-enRML with localization. Case 5: MS-
enRML with localization in both the wavelet and grid-block space.
Note that for cases 4 and 5, the values are computed using the five
ensembles

can be incorrectly correlated to the production data. More-
over, the variance of these coefficients is relatively high as
they have not been updated during the previous iterations.
Thus, the impact of the spurious correlations is important
even though the mismatch reduction at the coarse iterations
helps limit the amplitude of the perturbations.

The localization in wavelet space helps limit these spuri-
ous updates (case 3), and the increase of the energy is more
efficient than the standard grid-block localization (case 4).
However, comparable preservations of the prior proper-
ties are obtained in cases 3 and 4. As discussed before in
Section 5.1.1, we think this is caused by an inappropriate
modification of the low resolutions (large scales) induced
by the conditioning of well production data measured in
regions that do not present the same distribution of proper-
ties (non-stationary case). This effect can be observed in the
Fig. 13g (top left) where important large-scale perturbations
are applied away from the wells. By limiting the regions of
updates (case 5 with grid-block localization), it is possible
to limit the perturbation of the properties, while matching
the data.

6.2 Brugge benchmark case

The Brugge field case is a (139 × 48 × 9) 3D simulation
model designed by the Dutch Organization for Applied Sci-
entific Research (TNO). The original geological model is
built in a fine resolution grid composed of 20 million grid-
blocks. A first upscaling of the petro-physical properties
is performed in order to generate production data from 30
vertical wells (20 producers and 10 injectors) with a half
million grid-block flow model. Only oil and water phases
are present in the reservoir. These data are used to test dif-
ferent optimization algorithms on a further upscaled models
that contains 44,550 active cells. More information and opti-
mization results can be found in the study of Peters et al.

[47]. The primary constraint of the wells are the produc-
tion rates (FPR) of 2000 bbl/day for the producers and the
water injection rate (WIR) of 4000 bbl/day for the injec-
tor. Bottom hole pressure limits of 725 psi are set for all
wells and is the active constraint of well P9 throughout
the 10 years. The data used in this work include bottom-
hole pressure for the 30 wells, water cuts (WCT), and fluid
injection/production rates corresponding to 10 years of his-
tory for a total number of about 1330 data points. The
standard deviation of noise used for different types of data
are 30 psi for BHP, 3.5 % for WCT, 2 bbl/day for FPR
and WIR if they are active constraint, and 20 bbl/day for
FPR of P9. The update parameters are the porosity, lateral
and vertical permeabilities, net-to-gross (NTG) ratio, three
end points of Corey-type realtive permeability curves, and
one initial oil-water contact. For the MS-LM-enRML, the
wavelets coefficients of the transformed property fields are
included in the optimization, whereas grid-blocks values are
used in the GB-LM-enRML. Note that we do not include
mean properties of individual layers in the GB-LM-enRML
as in [4, 9] as it can be considered as a part of a multi-scale
parameterization. It should, however, improve the results of
the GB-LM-enRML. The total number of model parameters
for the full parameterization is about 178,200. An ensemble
of 104 realizations generated from object-based simulation
process and SGS (provided by TNO [47]) is used for all
the methods. The initial realizations are poorly constrained
and therefore very disparate, making the preservation of the
models a more challenging task. Initial Corey end points
and initial oil-water contact are generated from uniform
distributions defined in [30].

Fig. 14 Top: evolution of the data mismatch with iteration for MS-
LM-enRML (black curve) and GB-LM-enRML (red curve). Bottom:
evolution of the value of λ for both methods and number of param-
eters included in the MS-LM-enRML optimization (blue curve) with
iteration
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Figure 14 shows the evolution of the objective func-
tion (top) and the value of the λ parameter (bottom)
with iterations for both methods. The GB-LM-enRML per-
forms better at early iterations and stops with an aver-
age data mismatch of 1389 before the MS-LM-enRML
because of three unsuccessful updates, whereas the MS-
LM-enRML stops after 14 iterations as it falls below
data uncertainties with an average data mismatch of
1300. In both cases, the initial value of λ is 10,000
and the lower bound is 0.01. At early iterations, only
a few parameters are included in the MS-LM-enRML,
which explains the difference of efficiency, but a sig-
nificant improvement of the match is obtained. We can
see that after the two last refinements, the re-introduction
of the smoothed components causes a slight increase

of the objective function. The dissimilarity of the prior
realizations (generated from different methods without sec-
ondary data conditioning) may explain the need of individ-
ual gradient after re-introduction of the smoothed compo-
nents. With the full grid-block parameterization, this effect
is attenuated by the linear projection of all the parameters
during the first updates, leading to a reduction of the vari-
ability at all frequencies, but damaging the prior model at
the same time.

Figure 15 shows the initial and final match to bottom-
hole pressure, fluid production rate, and water cut at
three producers for the MS-LM-enRML and GB-LM-
enRML. In both cases, very good matches are obtained
and it is not possible to discriminate one method from
another.

Fig. 15 The match to bottom-hole pressure, fluid production rate, and water cut at three wells. The red curves show the observed data. The black
and gray curves show the average and individual predictions of the ensemble, respectively
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Fig. 16 One porosity realization (left) and one log-permeability realization (right) from the initial ensemble (top row) and the corresponding
updated realizations using MS-LM-enRML (middle row) and GB-LM-enRML (bottom row). Only properties of the second layer are shown

Figure 16 shows the porosity and log-permeability of two
different realizations (generated from different processes)

Fig. 17 Average porosity deviation (cell-by-cell the difference
between initial and final model) from the prior computed from all the
realizations. MS-LM-enRML (top) and GB-LM-enRML (bottom)

from the initial ensemble and the corresponding update real-
izations using MS-LM-enRML and GB-LM-enRML, and
the average absolute deviation from initial porosity maps
are shown in Fig. 17. Only the second layer is displayed
as it has an important control on the flow response and
important updates are performed. Average deviations from
prior models and energy ratios indicators are also given
in Table 2. For an equivalent data match, the multi-scale

Table 2 Average cell-by-cell deviation values and energy ratios for
the Brugge case (see Section 5.3)

adPoro adlog-perm re

GB-LM-enRML 0.010 0.710 1.180

MS-LM-enRML 0.008 0.450 0.940

GB-LM-enRML grid-block approach with distance based localization,
MS-LM-enRML multi-scale approach with space-frequency localiza-
tion
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approach clearly performed more realistic updates by avoid-
ing the appearance of unnecessary high or low property
values or addition of noise and minimizing the amplitude of
the changes. We can observe that the energy is decreasing
in the MS-LM-enRML case. This might be explained by a
smoothing of some of the object-based realizations caused
by the Gauss-Newton updates.

By making low frequency (large scale) modifications of
the property fields at early iterations, the adaptive multi-
scale localization approach ensures that subsequent modi-
fications at the fine scale are relatively small so that the
magnitude of spurious high-frequency updates are reduced
and features of the initial property field are better pre-
served (e.g., log-permeability of the channels in Fig. 16,
realization 2).

7 Discussions and conclusions

The adaptive multi-scale method based on second-
generation wavelet parameterization appears to be useful
for stabilizing the inversion and avoiding spurious effects
related to ensemble-based optimization methods. In the
examples presented here, a better preservation of the prior
is obtained with the multi-scale approach compared to the
grid-block-LM-enRML, while matching the production data
equally well. However, our multi-scale approach is based
on the assumption that the flow is more affected by the low
than the high frequencies. In reservoirs, where the fluid flow
is mainly controlled by fine-scale structures (e.g., fractured
or laminated reservoirs), the multi-scale approach might fail
to recover the correct structure of the reservoir. In this case,
it might be useful to include high frequencies from the
beginning of the optimization (e.g., for laminated reservoirs,
individual 2D transforms can be used for each layers).

The multi-scale approach and the smoothing of the real-
izations tend to make the problemmore linear by attenuating
the effects of the high frequencies and reducing the num-
ber of parameters at early stage [48]. Global updates of
the property fields are then possible without the influence
of small-scale spurious correlations. Significant mismatch
reduction is obtained by optimizing only few large-scale
parameters at the first iterations, resulting in smaller per-
turbations of the finer scales after refinements. However,
inter-scales re-introduction of the a priori smoothed com-
ponents may slightly affect the convergence as compared
with the standard approach. In the current implemen-
tation of the algorithm, the smoothing simply depends
on the resolution of the parameters. However, a more
advanced initial smoothing, based on the localization of the

parameters and/or prior uncertainties, might be more effi-
cient. Indeed, smoothing should first be applied on sensitive
high frequencies (e.g., close to wells) and becomes less
essential in insensitive areas. Moreover, when the uncer-
tainty of the model has already been reduced by integration
of other sources of data, the smoothing should be less impor-
tant since the different realizations are more similar. The
flow impact of certain features of the prior model should
also be taken into account during the first updates, assuming
that the different sources of information are consistent.

The regularization of the Kalman gain using localiza-
tion can be a fairly complex task and a wrong localization
can lead to inconsistent updates and insufficient data match.
With the multi-scale approach, the effect of the localization
at early iterations is limited because only sensitive param-
eters are included in the optimization. However, when the
prior model contains information at all frequencies, it is gen-
erally required to refine the parameterization to the finest
level and the need for regularization becomes essential.
For this reason, a localization of the wavelet coefficients,
depending on their location and associated frequency, is
applied in this work in order to stabilize the inversion and
preserve prior information. Nevertheless, similarly to the
grid-block localization, the implementation of the regular-
ization in the wavelet space is not always trivial. Further
analysis based on cross-covariance matrices [29] or boot-
strap sampling [33] might help define more appropriate
multi-scale localization functions.

Preserving the prior information is one of the major
purposes of this work, and the multi-scale approach helps
restrict the updates to sensitive areas. Qualitative com-
parisons and quantitative spatial analysis are used in this
article to check this preservation. When the prior ensem-
ble integrates quantitative information, such as seismic
data, it might be suitable to perform posterior quality
controls using these data. This process, however, might
not be straightforward as the different data might be
expressed in different domains (time/depth) and sampling
intervals.

If little information is used to generate the prior ensem-
ble, the successive re-introduction of the initial smoothed
frequencies may affect the efficiency of the optimization,
especially when the realizations are disparate, as the local
quadratic approximation of the objective function might
not be appropriate for each individual realization of the
ensemble. In this case, methods using full parameterization
might be more efficient in term of convergence speed, but
wavelet re-parameterization might still be useful in iden-
tifying sensitive parameters for regularization or to avoid
over-parameterization and addition of noise.
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Appendix 1 Lifting scheme

In the following, we consider an original signal λr,k , defined
at a finer scale r in all spatial locations k. The construc-
tion of the second generation wavelets is based on the lifting
scheme [37], which is composed of three main reversible
operators: split, predict, and update (Fig. 18). It should be
made clear that these operators are not related to the enKF
update and prediction steps.

First, the splitting operator, S, subdivides the initial set
λr,k into two different subsets. The correlation between the
two subsets should be maximized. Usually, the subdivision
is simply done between odd and even samples as neighbors
have more chances to be correlated. A new sequence λr−1,k

at resolution r − 1 is obtained by taking the even samples:

λ∗
r−1,k = λr,2k. (24)

The loss of information is conserved in the odd samples,
which correspond to the detail coefficients:

γ ∗
r−1,k = λr,2k+1. (25)

At this step, the algorithm performs a poor decorrelation of
the signal and leads to aliasing effects. Proper decorrelation
and subsampling are handled by the predict and update oper-
ators. The predict step, P , uses the correlation between the
odd and even subsets. The basic idea is to try to predict the
odd samples by only using the even samples. Generally, the
predict step must be independent of the data values in order

Fig. 18 The lifting scheme: decomposition of the signal. Split (S),
predict (P), update (U ), and merge (M)

to remain reversible (Fig. 18). The predicted value is then
subtracted from the original odd sample, such as:

γr−1,k = γ ∗
r−1,k − P(λ∗

r−1,k). (26)

The detail coefficients γr−1,k reflect how good the predic-
tion is. The aim of the predict step is to produce detail
coefficients as small as possible. In this case, the original
signal would be well characterized only with the sub-
sampled coefficients. The predict step conditions the quality
of the decomposition. Any prediction operators can be used
and specific predictors can be built for specific applications,
for example, taking into account the sampling of the data
(Appendix 2) or external weights [38]. The predict step pro-
duces a set of filter coefficients, which are adapted to the
localization of the data.

At this stage, the subsamples λ∗
r−1,k have not been mod-

ified and are not necessarily representative of the original
signal and strong aliasing problems could appear. It is often
desirable to preserve some properties of the original data,
such as the mean, at different scales. This is done by the
update operator U . The update operator can be compared to
the action of the scaling functions in the case of first gen-
eration wavelets since it produces a coarser version of an
original signal. The detail coefficients γr−1,k are used to
update the values of the sub-sampled signal:

λr−1,k = λ∗
r−1,k + U(γr−1,k). (27)

The update step maintains the moments (mean, first
moment, . . . ) of the sequences λr up to an order equal to
the number of samples used in the prediction step. A set
of coefficients, known as lifting coefficients, are deduced
from the preservation of the moments. An efficient method
of computation can be found in [49] in the case of polyno-
mial interpolating scaling functions. The complete wavelet
transform is performed by recursively applying the lifting
scheme to the samples λr (similarly to Fig. 1) until the
number of samples at one scale becomes smaller than the
number of samples needed in the prediction step.

Appendix 2 Grid-adaptive Haar transform

Grid-adapted Haar transform integrates the grid cell vol-
umes in the prediction and update steps in order to compute
a weighted average sequence. This transform, also called
the unbalanced Haar transform, is the generalization of
the Haar wavelet to the second-generation setting [50]. It
belongs to the class of wavelets based on average inter-
polating subdivision (Appendix 3). Values λr,k of every
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Fig. 19 Grid-adaptive Haar
transform. Top: unbalanced Haar
transform. The update step at
resolution r needs volumes
which are given by the
sequences Vr . Bottom:
sequences Vr are available
during the Haar transform of the
cell volume property

sequence in the decomposition represent an average over
an interval [xr,k, xr,k+1]. In the 3D discrete wavelet trans-
form, it can be useful to associate each λr,k as average of
a grid volume Vr,k . Before wavelet transform, the weights
Vr,k are the cell volumes of the grid and it directly follows
that,

Vr−1,k = Vr,2k + Vr,2k+1. (28)

The aim of the unbalanced Haar wavelet is to preserve the
weighted average:

λr−1,k = Vr,2k · λr,2k + Vr,2k+1 · λr,2k+1

Vr−1,k
. (29)

The lifting scheme version of the unbalanced Haar wavelet
starts exactly like the classical Haar wavelet. The splitting
operator divides the odd and even samples. The prediction
step uses only one even sample to predict the odd. The only
polynomial which can be constructed is the constant poly-
nomial. Therefore, the prediction operator returns the even
sample value and the detail coefficient is given by,

γr−1,k = λr,2k+1 − λr,2k. (30)

The update step preserves the weighted average by the such
as

λr−1,k = λr,2k + Vr,2k+1 × γr−1,k

Vr−1,k
=

(Vr,2k + Vr,2k+1)λr,2k + Vr,2k+1(λr,2k+1 − λr,2k)

Vr−1,k
=

Vr,2k · λr,2k + Vr,2k+1 · λr,2k+1

Vr−1,k
. (31)

Instead of computing each weight Vr,k directly from the
grid during the decomposition and reconstruction, a usual
Haar transform of the cell volume property can be per-
formed in parallel of the unbalanced Haar transform
(Fig. 19).

The unbalanced Haar wavelet is useful when the sam-
pling is irregular which is typically the case in realistic geo-
models where the cell volumes can vary a lot. Moreover, this
transform can handle the presence of dead cells (inactive or

zero volume cells) without increasing the number of active
parameters.

Appendix 3 Wavelets based on average-interpolating
subdivision

Average-interpolating subdivision is based on the idea that
samples of a given sequence λr,k are not subsamples of an
original signal but are local averages over intervals.

Therefore, for a given sequence to reconstruct (Fig. 20),
using the coarse sequence of λr−1,k a prediction opera-
tor models the underlying integrated function in order to
interpolate the samples at a finer scale. If the underlying
function is a polynomial, its primitive will also be a poly-
nomial. In a first time, the prediction step will find this
primitive. Using this primitive, it is then possible to find,
for a given coarse sample, the two samples of the signals
at the finer scale, which follow the underlying polyno-
mial. Then, the difference of these two samples is given
to the Haar reconstruction. If the detail coefficient is null,
the Haar reconstruction will reform the modeled polyno-
mial, which will produce a smooth transition (see [38]
for more details). The Haar transform ensures that local
averages of the property are preserved at coarse scales.
If the unbalanced Haar wavelet is used, the weighted
average is preserved which leads to a better upscaled
property.

Fig. 20 Wavelet based on average-interpolating subdivision
(improved Haar transform), reconstruction step (modified from [38])
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Appendix 4 Algorithm

λ Levenberg-Marquardt regularization para-
meter

ne number of realizations
nd number of data
n∗ current number of parameters to optimize
r maximum resolution of the optimized

parameters γ ∗
lr iteration index at resolution r

lmax
r maximum number of iteration for terminat-

ing iteration at resolution r

ωr factor for changing λ with the resoltuion r

SFact control factor of unsmoothing
Mpr ensemble of prior model variables
Mup ensemble of updated model variables
�pr ensemble of prior wavelet coefficients
�s ensemble of smoothed wavelet coefficients
�∗ ensemble of wavelet coefficients used in the

optimization
W direct wavelet transform
W−1 inverse wavelet transform
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Ir Set of wavelet coefficient indices included
in the optimization after reaching resolution
r

Floor(.) return the largest previous integer
g(.) function relationship between model vari-

ables and predicted data
Dl = g(W−1 · �s

l )

zeros(nr , nc) generate a (nr × nc) zero matrix
S Smoothing of wavelet coefficients
Savl Average objective function at the lth itera-

tion
Savr Best value of the objective function at the

rth resolution
dobs Observed data
D0 ensemble of perturbed data
Agb

r Grid-block localization matrix at resolution
r

Awt
r Wavelet localization matrix at resolution r

CD covariance of data noise
Dl ensemble of simulated data
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