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Abstract To study the full seismic, ocean acoustic, and
tsunami wavefields generated by subduction zone earth-
quakes, we have developed a provably stable and accurate
finite difference method that couples an elastic solid to a
compressible fluid subject to gravitational restoring forces.
We introduce a linearized dynamic traction-free bound-
ary condition for the moving sea surface that is valid for
small amplitude perturbations about an ocean initially in
hydrostatic balance. We derive an energy balance for the
continuous problem and then use high-order summation-by-
parts finite difference operators and weak enforcement of
boundary conditions to derive an equivalent discrete energy
balance. The discrete energy balance is used to prove stabil-
ity of the numerical scheme, and stability and accuracy are
verified through convergence tests. The method is applied
to study tsunami generation by time-dependent rupture on
a thrust fault in an elastic solid beneath a compressible
ocean. We compare the sea surface evolution in our model
to that predicted by the standard tsunami modeling proce-
dure, which assumes seafloor uplift occurs instantaneously
and neglects compressibility of the ocean. We find that the
leading shoreward-traveling tsunami wave in our model has
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a noticeably smaller amplitude than that predicted by the
standard approach.
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1 Introduction

In recent years, the world has twice witnessed the dev-
astation that a large tsunami can cause. Taken together,
the 26 December 2004 Indian Ocean tsunami and the 11
March 2011 Tohoku, Japan, tsunami claimed hundreds
of thousands of lives and caused immense damage [16,
18]. Tsunamis of such enormity can occur as a result of
megathrust earthquakes when shallow coseismic slip causes
seafloor uplift, displacing the ocean and exciting surface
gravity waves. We would like to better understand the gen-
eral problem of tsunami generation in a compressible ocean
with realistic geometry due to a time-dependent rupture
process on a fault.

As further motivation, the shallow slip that generates
tsunami waves also excites a wide range of seismic and
ocean acoustic waves [6, 14]. Of special interest are leak-
ing P-wave modes that are comprised of multiply-reflected
sound waves filling the entire depth of the ocean and seismic
waves penetrating ∼10 km into the solid. The amplitudes
of these waves correlate well with seafloor uplift at the
trench [7] and, thus, with tsunami heights. These guided
waves travel at several kilometers per second and reach the
coast many minutes sooner than tsunami waves [15, 17];
these waves could potentially be used to improve local early
warning systems for tsunami-prone regions.
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Addressing these problems requires simulation methods
that rigorously couple the elastodynamic response of the
solid earth with that of a compressible ocean in the pres-
ence of gravity. Maeda and Furumura [13] were the first
to develop such a method using a staggered grid finite
difference scheme. Their approach modifies the momen-
tum balance equations throughout the medium through the
addition of terms involving spatial derivatives of the sea sur-
face height. Calculating those derivatives at the surface and
communicating their values to all other grid points below
increases the computational cost and limits parallel scala-
bility. We present an alternative approach that introduces
no additional terms to the governing equations and requires
only a minor modification of the free surface boundary con-
dition at the sea surface. Our method has been implemented
in our 2-D finite difference code that handles complex
geometries, heterogeous material properties, and earthquake
rupture dynamics [6, 7, 9].

This paper extends the work done by Kozdon and Dun-
ham [9]; our novel contribution is the introduction of a
new free surface boundary condition on the moving sea
surface valid for small amplitude perturbations about an
ocean initially in hydrostatic balance. We can now model
tsunami waves in the linearized theory in the same code
as elastic and ocean acoustic waves. The code uses high
order summation-by-parts (SBP) finite difference opera-
tors for spatial discretization and a 4th-order low-storage
Runge-Kutta method in time. Modeling tsunamis accurately
requires taking hundreds of thousands of time steps , so we
must be able to guarantee the absence of spurious sources
or sinks of energy. SBP finite difference methods are very
useful because they allow us to derive a numerical energy
balance that mimics the continuous energy balance and
allows us to explicitly prove the stability of our numerical
method.

In this paper, we first present the continuous govern-
ing equations for wave propagation in a 2-D ocean layer
with a free surface upper boundary condition in the pres-
ence of a gravitational field. We derive an energy balance
for this system that establishes conservation of energy.
Next, we spatially discretize the same governing equa-
tions using high-order SBP finite difference operators and
weakly enforce boundary conditions using the simultane-
ous approximation term (SAT) method. This allows us to
establish a discrete energy balance that closely parallels the
continuous version, providing a means to prove stability of
the overall method. We present convergence tests verifying
the accuracy of the method for analytical modal solutions
to the governing equations in a rigid-bottomed compress-
ible ocean. We then apply the method to study generation of
seismic, ocean acoustic, and seismic waves by rupture on a
thrust fault in an elastic solid beneath the ocean. Compar-
isons are made to both an analytical solution for seafloor

displacement and to the evolution of the surface gravity
waves using an incompressible ocean theory.

2 Continuous problem

Consider a compressible ocean of initially uniform depth H

(Fig. 1), subject to 2-D perturbations. Let x and y be the
horizontal and vertical coordinates in an Eulerian descrip-
tion with y = 0 being the unperturbed ocean surface. The
ocean is initially in hydrostatic balance, for which pressure
p0 = p0(y) and density ρ0 = ρ0(y) satisfy

dp0

dy
= −ρ0g, (1)

where g is the gravitational acceleration. Density and pres-
sure are also linked by an equation of state. Introducing K0

as the bulk modulus in this hydrostatic state, we have

1

ρ0

dρ0

dy
= 1

K0

dp0

dy
. (2)

We next consider perturbations about this hydrostatic
state. The perturbed ocean surface is y = η(x, t) and the
perturbed seafloor lies at y = −H + b(x, t), and we denote
the horizontal and vertical particle velocities as u(x, y, t)

and v(x, y, t), respectively. We also express the pressure,
p(x, y, t), as the sum of the initial hydrostatic pressure,
p0(y), and a perturbation, p′(x, y, t); that is, p = p0 + p′,
with a similar notation for density.

Differentiating the equation of state following a fluid
parcel and linearizing yields

1

ρ0

(
∂ρ′

∂t
+ v

dρ0

dy

)
= 1

K

(
∂p′

∂t
+ v

dp0

dy

)
. (3)

Here, K is the bulk modulus of the fluid at the short
time scales describing wave motions, over which transport
of heat and salinity is negligible. For this reason, K is
potentially different than K0, but in this work, we assume
K0 = K . Then, inserting Eq. 2 in Eq. 3 and integrating in

x

y y = η(x,t)

H

y = −H+b(x,t)

compressible ocean

problem setup

Fig. 1 Geometry for the continuous problem
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time at fixed y, we obtain a simple proportionality between
density and pressure perturbations:

ρ′/ρ0 = p′/K. (4)

The momentum balance equations for an inviscid fluid
linearized about a state of rest satisfying hydrostatic balance
(Eq. 1) are

ρ0
∂u

∂t
+ ∂p′

∂x
= 0, ρ0

∂v

∂t
+ ∂p′

∂y
= −ρ′g. (5)

Using Eq. 4 in Eq. 5 yields

ρ0
∂u

∂t
+ ∂p′

∂x
= 0, ρ0

∂v

∂t
+ ∂p′

∂y
= −ρ0g

K
p′. (6)

The linearized mass balance is

1

ρ0

(
∂ρ′

∂t
+ v

dρ0

dy

)
+ ∂u

∂x
+ ∂v

∂y
= 0. (7)

Using Eqs. 1–3 in Eq. 7 yields

1

K

∂p′

∂t
+ ∂u

∂x
+ ∂v

∂y
= ρ0g

K
v. (8)

Next, we state boundary conditions. The dynamic bound-
ary condition sets pressure to atmospheric pressure pa on
the moving sea surface:

p(x, η(x, t), t) = pa. (9)

Rigorously enforcing (9) would require the introduction of
a time-dependent curvilinear mesh. Doing so would not
only be very difficult, but is unnecessary for the accu-
rate modeling of tsunamis and surface gravity waves where
wave amplitude |η| is much smaller than the horizontal
wavelength or water depth, whichever is smaller; the small
amplitude approximation is well justified away from the
immediate vicinity of the coast. We exploit the small wave
amplitudes to linearize the boundary condition (9), as is
typical for these problems [12]. Our immediate objective
is to enforce this condition on the unperturbed sea surface,
y = 0, since that allows us to use a fixed mesh. Assum-
ing η(x, t) is small, we take the first two terms of a Taylor
expansion of p about y = 0:

p(x, η(x, t), t) ≈ p(x, 0, t) + ∂p

∂y

∣∣∣∣
y=0

η(x, t). (10)

In this linearized analysis, it suffices to evaluate the vertical
pressure gradient in the hydrostatic state (1). Thus, to first-
order accuracy,

p(x, 0, t) = pa + ρ0(0)gη(x, t). (11)

Writing p = p0 + p′ and recognizing that p0(0) = pa in
the hydrostatic state, we obtain

p′(x, 0, t) = ρ0(0)gη(x, t). (12)

The link between sea surface height η and particle velocities
u and v comes from the kinematic condition:

v(x, η(x, t), t) = ∂η

∂t
+ u(x, η(x, t), t)

∂η

∂x
. (13)

Equation 13 can be linearized to

∂η

∂t
= v(x, 0, t), (14)

again using the small amplitude approximation.
In this and the following section, the seafloor displace-

ment b(x, t) is imposed to excite waves in the ocean. The
extension to the more general class of problems involving
coupling between the ocean and underlying solid and to the
case of complex geometries can be done following Kozdon
et al. [9] and will not be repeated here. For imposed motion
of an initially horizontal seafloor, the kinematic condition
relating b, u, and v at the seafloor can also be linearized:

∂b

∂t
= v(x, −H, t). (15)

In this work, we neglect the slight depth dependence
of density (and possibly also of bulk modulus and sound
speed). We work with u, v, p′, and η as our unknown fields,
and in the remainder of this work, to simplify notation,
we now use p to refer to pressure perturbations and ρ to
refer to the (constant) density. The governing equations are
summarized, in this new notation, as

ρ
∂u

∂t
+ ∂p

∂x
= 0, (16)

ρ
∂v

∂t
+ ∂p

∂y
= −ρg

K
p, (17)

1

K

∂p

∂t
+ ∂u

∂x
+ ∂v

∂y
= ρg

K
v, (18)

and the boundary conditions as

p(x, 0, t) = ρgη(x, t). (19)

∂η

∂t
= v(x, 0, t), (20)

∂b

∂t
= v(x, −H, t). (21)

The sound speed is defined in terms of the bulk modulus K

and density ρ as c = √
K/ρ.

Note that governing Eqs. 16–18 are identical to those
of classical acoustics when the terms on the right sides of
Eqs. 17 and 18 are set to zero. Those terms are quite small
compared to the other terms in those equations for parame-
ter values appropriate to earth’s oceans. Scaling arguments
show that both terms provide small corrections at most of
order ρgH/K = gH/c2 � 1, and we neglect those terms
in the remainder of this work.



330 Comput Geosci (2015) 19:327–340

2.1 Continuous energy balance

Below, we derive the energy balance for the continuous
problem. We write the momentum balance equations in vec-
tor form, take the dot product of each side with particle
velocity v, and integrate over the total area to get

∫ 0

−H

∫ ∞

−∞
ρv · ∂v

∂t
dxdy = −

∫ 0

−H

∫ ∞

−∞
v · ∇p dxdy. (22)

It suffices to integrate over the unperturbed ocean; integrat-
ing between y = −H + b and y = η would introduce
negligible, higher-order terms. Integrating the right side of
Eq. 22 by parts in both x and y and substituting Eq. 18 yields

∫ 0

−H

∫ ∞

−∞
ρv · ∂v

∂t
dxdy = − 1

K

∫ 0

−H

∫ ∞

−∞
p

∂p

∂t
dxdy

−
∫ ∞

−∞

(
vp

∣∣0
−H

)
dx −

∫ 0

−H

(
up

∣∣∞−∞
)

dy. (23)

We assume that waves have not yet reached x = ±∞ so
that u = 0 and p = 0 at the horizontal boundaries, so we
eliminate the last term of Eq. 23 and rewrite it as

∫ 0

−H

∫ ∞

−∞
ρv · ∂v

∂t
dxdy = − 1

K

∫ 0

−H

∫ ∞

−∞
p

∂p

∂t
dxdy

−
∫ ∞

−∞

(
vp

∣∣
0 − vp

∣∣−H

)
dx

= − 1

K

∫ 0

−H

∫ ∞

−∞
p

∂p

∂t
dxdy

−ρg

∫ ∞

−∞
η

∂η

∂t
dx

+
∫ ∞

−∞
∂b

∂t
p

∣∣∣∣−H

dx, (24)

where for the last step, we used Eqs. 20, 21, and 19.
We rewrite Eq. 24 so that terms in the form of v · ∂v/∂t

appear as (1/2)∂(v2)/∂t :

d

dt

[∫ 0

−H

∫ ∞

−∞
1

2
ρv2 dxdy +

∫ 0

−H

∫ ∞

−∞
1

2K
p2 dxdy

+
∫ ∞

−∞
1

2
ρgη2 dx

]
=

∫ ∞

−∞
∂b

∂t
p

∣∣∣∣−H

dx. (25)

We recognize the first integral of Eq. 25 as the kinetic
energy of the system (KE) and the second integral as acous-
tic energy (AE). The third term represents the change in
gravitational potential energy (GE), which is clear if we
integrate the gravitational potential energy density, ρgy,
over a column of ocean and take the time derivative:

∂

∂t

(
ρg

∫ η

−H

ydy

)
= ρg

2

∂

∂t

(
η2 − H 2

)
= ρg

2

∂

∂t
η2. (26)

We can now identify the bracketed quantity in Eq. 25 as the
energy of the continuous problem,

E = KE + AE + GE

=
∫ 0

−H

∫ ∞

−∞
1

2
ρv2 dxdy +

∫ 0

−H

∫ ∞

−∞
1

2K
p2 dxdy

+
∫ ∞

−∞
1

2
ρgη2 dx. (27)

Simply rewriting Eq. 25 as

dE

dt
=

∫ ∞

−∞
∂b

∂t
p

∣∣∣∣−H

dx, (28)

we see that the total mechanical energy is altered only by
work done by tractions on the lower boundary. When the
seafloor is rigid (∂b/∂t = 0), energy is conserved. This
will prove especially significant later in this work when we
derive an analogous discrete energy balance that will be
used to ensure stability of our numerical method. It is also
worth noting that this energy balance is identical to that
obtained when the small terms on the right sides of Eqs. 17
and 18 are retained.

2.2 Dispersion relation

Here, we briefly derive the dispersion relation for waves
governed by Eqs. 16–18, neglecting the terms on the right
side of Eqs. 17 and 18, in a rigid-bottomed ocean of uni-
form depth H (Fig. 1). Deriving the dispersion relation is
important for characterizing wave modes, verifying that the
approximations we introduced are consistent with standard
treatments based on velocity potential and, for later use,
as an exact solution in performing numerical convergence
tests. We enforce the boundary and kinematic conditions
given by Eqs. 20, 21, and 19, with b(x, t) = 0. We write a
homogeneous solution for pressure as

p(x, y, t) = sin(kx) sin(ωt)
[
A sinh(k̄y) + B cosh(k̄y)

]
,

(29)

for angular frequency ω, horizontal wavenumber k, and
vertical wavenumber k̄ = √

k2 − (ω/c)2. We can use the
vertical momentum balance (17) to write an expression for
vertical velocity:

v(x, y, t)= k̄

ρω
sin(kx) cos(ωt)

[
A cosh(k̄y)+B sinh(k̄y)

]
.

(30)

Imposing Eq. 21, with b = 0, gives us one relationship
between A and B:

A cosh(k̄H) − B sinh(k̄H) = 0. (31)
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Another such relationship comes from time integrating
Eq. 30 at the surface to get

η(x, t) = k̄

ρω2
sin(kx) sin(ωt)A (32)

and then applying Eq. 19, yielding

gk̄

ω2
A = B. (33)

We combine Eqs. 31 and 33 and find that ω and k are related
by the dispersion relation [21, 24]:

ω2 = gk̄ tanh(k̄H). (34)

We are free to select A = 1, and thus, we can write the
complete homogeneous solution as

p(x, y, t) = sin(kx) sin(ωt)

[
sinh(k̄y) + gk̄

ω2
cosh(k̄y)

]
,

v(x, y, t)= k̄

ρω
sin(kx) cos(ωt)

[
cosh(k̄y)+ gk̄

ω2
sinh(k̄y)

]
,

u(x, y, t) = k

ρω
cos(kx)cos(ωt)

[
sinh(k̄y)+ gk̄

ω2
cosh(k̄y)

]
,

η(x, t) = k̄

ρω2
sin(kx) sin(ωt). (35)

There are infinitely many modes that satisfy (35); that
is, for a given k, there are infinitely many allowable ωn.
We identify the smallest value of ωn as ω0, correspond-
ing to mode 0, the surface gravity wave as modified by
compressibility. Higher modes, ω1, ω2, ..., correspond to
ocean acoustic waves as modified by gravity, also known as
acoustic gravity waves.

We first identify limiting values of phase velocity,
vp = ω/k, in the limits of large and small wavelength
surface gravity waves, kH � 1 and kH � 1, respec-
tively. When compressibility effects are negligible, such that
ω/ck � 1, k̄ ≈ k and Eq. 34 reduces to

ω2 = gk tanh(kH), (36)

the well-known dispersion relation for surface gravity waves
in an incompressible ocean of depth H [12]. In this incom-
pressible limit, vp = √

gH for large wavelengths and
vp = √

g/k for small wavelengths. For the compressible
ocean problem with the dispersion relation given by Eq. 34,
phase velocities in the large and small wavelength limits are
approximated by

vp = √
gH

(
1 − 1

2

gH

c2

)
(37)

and

vp =
√

g

k

(
1 − 1

4

g

kc2

)
. (38)

These are modified versions of the phase velocities in the
incompressible limit and include two key dimensionless

parameters. The first, gH/c2, quantifies the influence of
compressibility on long-wavelength surface gravity waves
[21]. For values of g, H , and c representative of the earth’s
oceans, gH/c2 ≈ 0.02. The second, g/kc2, is similar to
the first but more relevant for analysis of short wavelength
waves (kH � 1); similarly, g/kc2 � 1. This analysis
shows that ocean compressibility has only a small effect on
surface gravity waves.

For ocean acoustic waves, we first look at the case where
gravity is neglected (g = 0). Here, the dispersion relation

becomes cos
(√

ω2/c2 − k2H
)

= 0. We see in Fig. 3 that

in the long wavelength limit (k → 0), vp diverges for all
modes n ≥ 1 (they become vertically propagating sound
waves), but that there are distinct cutoff frequencies ωn. In
the limit of zero gravity, ωn = (2n − 1)πc/2H . When
gravity is included, this is, to leading order in gH/c2,

ωn = (2n − 1)πc

2H

[
1 +

(
2

(2n − 1)π

)2
gH

c2

]
. (39)

In the short wavelength limit (k → ∞), the phase velocity
of each mode approaches c, but at a different rate for each
n. For zero gravity, this can be quantified as vp = c{1 +
[(2n−1)π/2kH ]2/2} to leading order in 1/kH . When grav-
ity is once again considered, this becomes, to leading order
in the small parameters 1/kH and g/kc2,

vp = c

[
1 + 1

2

(
(2n − 1)π

2kH

)2 (
1 + 2

g/kc2

kH

)]
. (40)

We observe that Eqs. 39 and 40 involve the small dimen-
sionless parameters g/kc2 and gH/c2, indicating that the
effect of gravity on ocean acoustic waves is slight. We
note that the long and short wavelength limit approxima-
tions of the dispersion relation in this section should be
slightly different from those predicted from the dispersion
relation associated with the full treatment of the governing
equations.

3 Discretized problem

Our aim is to numerically solve the governing equations in
a provably stable and accurate way. Here, we consider the
equivalent problem in only the vertical spatial dimension
because this allows us to intuitively follow the develop-
ment of the continuous problem. However, the analysis
extends straightforwardly to two or three dimensions, and
we present the 2-D case in the Appendix. We also neglect
the terms on the right sides of Eqs. 17 and 18, though
these terms can be included, if desired, without altering the
discrete energy balance and stability proof presented below.
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A field, say p(y, t), is uniformly discretized on the
interval −H ≤ y ≤ 0 by:

pi(t) = p(yi, t), yi = −H + ih, i = 0, ..., N, (41)

where h = H/N is the grid spacing, y0 is on the lower
boundary, and yN is on the upper boundary. We approximate
the first derivative with an SBP difference operator D as
follows [11, 22]:

∂p

∂y
≈ Dp, D = H−1Q. (42)

Grid data is contained in the vector p, H is a symmetric pos-
itive definite matrix, and Q is an almost skew-symmetric
matrix such that QT + Q = diag [−1 0 · · · 0 1]. The
second-order accurate SBP operator, for example, is given
by

H = h diag
[

1

2
1 1 · · · 1

1

2

]
,

Q = 1

2

⎡
⎢⎢⎢⎢⎢⎣

−1 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 1

⎤
⎥⎥⎥⎥⎥⎦

, (43)

though we use higher order methods in this work. The value
of summation by parts methods is that they are analogous to
integration by parts. If we define the discrete and continuous
inner products as

(u, v) =
∫ 0

−H

u(y)v(y) dy and (u, v)h = uT Hv, (44)

we observe that(
p,

∂p

∂y

)
=

∫ 0

−H

p
∂p

∂y
dy = 1

2

[
(p

∣∣
0)

2 − (p
∣∣−H

)2
]
, (45)

(
p, H−1Qp

)
h

= pT Qp = 1

2
pT

(
Q + QT

)
p

= 1

2

(
p2

N − p2
0

)
. (46)

We use the SAT method [1] to weakly enforce boundary
conditions. With SAT, boundary conditions are not enforced
directly via injection (i.e., overwriting the grid data with
the boundary data); instead, a penalty term is included in
the semi-discrete equations to penalize the discrete equa-
tions for not satisfying the boundary conditions. With SBP
and SAT, one can construct a discrete energy balance. For
homogeneous boundary conditions, if the discrete energy
can be shown to stay constant in time (or decrease due to a
small numerical dissipation that vanishes as h → 0), then
the method is strictly stable [4]. Stability requires proper
formulation of the penalty terms and choice of the penalty
weights.

Time derivatives are discretized using a 4th-order low-
storage Runge-Kutta method [2]. These methods are
straightforward to apply, so in this paper, we focus solely on
the semi-discrete problem.

Using the SBP operators described above, we discretize
the governing Eqs. 16–18 in space without incorporating
penalty terms at first:

ρ
dv

dt
= −Dp = −H−1Qp,

1

K

dp

dt
= −Dv = −H−1Qv. (47)

Multiplying the upper and lower equations of Eq. 47
by vT H and pT H , respectively, and recognizing that
d(vT Hv)/dt = vT H (dv/dt) + (dvT /dt)Hv, we have

d

dt

(
ρvT Hv

)
= ρ

dvT

dt
Hv − vT Qp,

d

dt

(
1

K
pT Hp

)
= 1

K

dpT

dt
Hp − pT Qv. (48)

We take the transpose of Eq. 47,

ρ
dvT

dt
= −pT QT H−1,

1

K

dpT

dt
= −vT QT H−1, (49)

and insert them into Eq. 48:

d

dt

(
ρvT Hv

)
= −pT QT v − vT Qp,

d

dt

(
1

K
pT Hp

)
= vT QT p − pT Qv. (50)

Adding Eq. 50 to one another, dividing by two, and using
the summation by parts property, we have

d

dt

(ρ

2
vT Hv + 1

2K
pT Hp

)

= −1

2

[
pT (QT +Q)v + vT (QT + Q)T p

]
= p0v0 − pNvN . (51)

We recognize the left side of Eq. 51 as the discrete equiva-
lent of the time derivative of the sum of KE and AE.

We define a discrete energy analogous to the continuous
energy in Eq. 27:

Eh = 1

2

(
ρvT Hv + 1

K
pT Hp + ρgη2

)
. (52)

The discrete energy is not only a convenient mimic of the
mechanical energy in the system, but it is also a posi-
tive definite functional of the solution at a given time. By
introducing the correct penalty terms to Eq. 47 to enforce
boundary conditions and repeating the preceding analy-
sis, we can ensure that Eh is a nonincreasing function of
time (and that any extra numerical dissipation vanishes as
h → 0). This will establish that our method is stable.

We now discuss boundary conditions in the discrete for-
mulation of the problem. Since the governing Eqs. 16–18



Comput Geosci (2015) 19:327–340 333

are hyperbolic, we specify a number of boundary condi-
tions equal to the number of characteristics propagating into
the problem domain. The number of boundary conditions
can be derived from a characteristic decomposition in the
local coordinate system [10]. In one dimension, there is
one characteristic that propagates upward and another that
propagates downward. The characteristic variables associ-
ated with these waves, w+ and w−, respectively, are defined
in terms of the pressure and velocity fields as

w± = p ± ρcv. (53)

These characteristics are simply sound waves with acoustic
impedance ρc.

On the lower boundary, for example, we must set w−
to be equal to some value ŵ− determined by the physi-
cal boundary condition without modifying w+. Here, and
in what follows, the hat refers to variables that satisfy the
boundary condition exactly. We focus on the homogeneous
rigid bottom condition v = 0 here, although it is straightfor-
ward to extend the analysis to nonzero b as we considered
in the continuous problem. We determine ŵ− from the
following system of equations:

p0 − ρcv0 = p̂0 − ρcv̂0, v̂0 = 0, (54)

where v0 and p0 are the current grid values of velocity
and pressure (which do not necessarily satisfy the boundary
condition exactly). Similarly, we write the upper boundary
condition as

pN + ρcvN = p̂N + ρcv̂N , p̂N = ρgη. (55)

We now rewrite the discrete governing Eq. 47, this time
including penalty terms to enforce the boundary conditions:

ρ
dv

dt
= −H−1Qp − τρcH−1 [(

v0 − v̂0
)
e0

+ (
vN − v̂N

)
eN

)]
,

1

K

dp

dt
= −H−1Qv − τ

c

K
H−1 [(

p0 − p̂0
)
e0

+ (
pN − p̂N

)
eN

)]
,(56)

where τ is the dimensionless penalty parameter and ei

denotes an otherwise empty length-(N + 1) vector with
a 1 in row i. This approach penalizes the incoming char-
acteristic variable at each boundary by including specific
forcing terms in the governing equations. We will see that by
including penalty parameters of this form and selecting an
appropriate value for τ , we arrive at an energy balance sim-
ilar to Eq. 51 that conserves energy in the limit that h → 0.

Following the procedure laid out in Eqs. 47–51, we arrive
at

1

2

d

dt
(ρvT Hv + 1

K
pT Hp) = −pNvN

−τ [ρcvN(vN − v̂N ) + 1

ρc
pN(pN − p̂N )]

+p0v0 − τ [ρcv0(v0 − v̂0) + 1

ρc
p0(p0 − p̂0)]. (57)

From Eq. 54 and 55, we see that

pN − p̂N = pN − ρgη, vN − v̂N = −pN − ρgη

ρc
,

p0 − p̂0 = ρcv0, v0 − v̂0 = v0. (58)

The right-hand sides of Eq. 58 contain known quantities that
can be evaluated to obtain the penalty terms in Eq. 56. Those
penalty terms are added to the semi-discrete system of equa-
tions, but only at points on the boundaries of the domain.
Selecting τ = 1 and using Eq. 58, Eq. 57 becomes

1

2

d

dt
(ρvT Hv + 1

K
pT Hp)

= −pNvN − [−vN(pN − ρgη) + pN

ρc
(pN − ρgη)]

+p0v0 − [ρcv2
0 − p0v0]

= −p2
N

ρc
− ρgη(vN − pN

ρc
) − ρcv2

0 . (59)

Writing the discrete version of the ocean surface bound-
ary condition from Eq. 20 as

dη

dt
= v̂N , (60)

and multiplying both sides of Eq. 60 by ρgη, we can
recognize the third term of Eh defined in Eq. 52:

ρgηv̂N = ρgη
dη

dt
= d

dt

(
1

2
ρgη2

)
. (61)

We make use of Eq. 55 to rewrite Eq. 61 as

ρgη(vN + pN − ρgη

ρc
) = d

dt

(
1

2
ρgη2

)
. (62)

Combining Eqs. 62 and 59, we obtain an expression for the
time rate of change of the discrete energy:

dEh

dt
= ρgη

(
vN + pN − ρgη

ρc

)
− p2

N

ρc

−ρgη

(
vN − pN

ρc

)
− ρcv2

0

= − 1

ρc

[
p2

N − 2ρgηpN + (ρgη)2
]

− ρcv2
0

= − (pN − ρgη)2

ρc
− ρcv2

0 . (63)

We observe that Eh is a strictly decreasing function because
the right side of Eq. 63 is nonpositive, and that dEh/dt = 0
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in the limit that the boundary conditions are exactly satis-
fied, i.e., pN = ρgη and v0 = 0. Thus, we have developed
a method that has all the desirable stability and accu-
racy properties and can be used to model problems of
interest.

The application of SBP and SAT extends to multiple
dimensions in a straightforward manner because derivatives
and boundary conditions in each direction are handled inde-
pendently of each other. A general derivation for the 2-D
elastic wave equation is presented by Kozdon et al. [8,
9], along with details on how to couple multiple blocks
together along interfaces (both welded interfaces and fric-
tional faults). In the remainder of this paper, we focus on
2-D problems.

4 Verification tests

Here, we describe two problems that we used to verify
the stability and accuracy of the method and the linearized
free surface boundary condition. For both problems, we
neglect the terms on the right sides of Eqs. 17 and 18, so
the predictions of our approximate model will have minor
differences from the full treatment of the governing equa-
tions due to the neglect of those extra terms. The first test
utilizes the analytical modal solution for a rigid-bottomed
ocean presented earlier. Through convergence tests, we ver-
ify that the method provides solutions for both the tsunami
and ocean acoustic modes with the expected order of accu-
racy. The second problem is more complex, featuring an
ocean overlying an elastic solid, with a full seismic, acous-
tic, and tsunami wavefield generated by a prescribed slip
distribution on a thrust fault. We verify that the seafloor
uplift, in the long time limit, matches the known static
elasticity solution for a buried dislocation. We also com-
pare the evolution of surface gravity waves in our model
to that predicted by a semi-analytical tsunami solution
that assumes instantaneous tsunami excitation and propaga-
tion in an incompressible ocean. This allows us to isolate
the effects of ocean compressibility and the finite rupture
duration.

4.1 Uncoupled ocean problem

We consider the problem pictured in Fig. 2, a compress-
ible ocean with height H = 5 km and width L = 100
km and the origin located on the upper left corner of
the block. We enforce the following boundary conditions:
p(x, 0, t) = ρgη(x, t), v(x, −H, t) = 0, and p(0, y, t) =
p(L, y, t) = 0. A homogeneous solution to Eqs. 16–18 (not
including terms on the right side) with this homogeneous
set of boundary conditions is given by Eq. 35, with ω and
k̄ related by dispersion relation (34). Because the ocean has

100 km

5 
km

free surface with gravity, p = ρgη

rigid, v = 0fr
ee

, p
 =

 0

free, p = 0

Fig. 2 Problem setup for Section 4.1, an uncoupled ocean with a free
surface on top, a rigid seafloor, and zero pressure boundary conditions
on the sides

a finite width, the horizontal wavenumber, k, must assume
one of the following discrete values

k = π

L
n, n = 1, 2, ... . (64)

In Fig. 3, we plot the discrete dispersion relation for the sur-
face gravity mode in red and for the first five ocean sound
wave modes in blue.

To test the numerical accuracy of the method, we ran
this problem for various wavenumbers and modes. For each
case, we ran the code for various grid spacings and com-
pared the numerical solution with the exact solution after
a set time. Error, ε, is measured in the discrete energy
norm, defined as the square root of the energy-like quantity
in Eq. 79 in the Appendix, but replacing fields with their
difference from the exact solution (e.g., replacing p with
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Fig. 3 Dispersion relation for discrete values of k in the uncoupled
ocean problem plotted for modes 0 through 5. At small wavenumbers,
the phase velocity, ω/k, of the tsunami mode approaches the shallow-
water limit,

√
gH . At large wavenumbers, the phase velocity of the

ocean acoustic modes approaches the sound speed, c = √
K/ρ
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Table 1 Error and rate estimates for the first two acoustic modes of
the uncoupled ocean problem, for k = π/(100 km)

Mode 1 Mode 2

h (m) Error Rate Error Rate

250 7.75 × 10−5 1.18 × 10−2

125 3.61 × 10−6 4.4 4.21 × 10−4 4.8

62.5 1.71 × 10−7 4.4 1.70 × 10−5 4.6

31.25 8.37 × 10−9 4.4 7.64 × 10−7 4.5

pnumerical − pexact). In order to quantify the order of accu-
racy, we define the error rate between two discretizations
with grid spacings h1 and h2 and errors ε1 and ε2 as

Rate = log(ε1/ε2)

log(h1/h2)
. (65)

We display error and rate estimates for modes 0, 1, and 2
for k = π/(100 km) in Tables 1 and 2. Our method uses
SBP operators that have interior accuracy q = 6 and bound-
ary accuracy r = q/2 = 3, leading to a global accuracy of
p = r + 1 = 4 [3]. The low-storage Runge-Kutta method
we use is also accurate to order 4. We thus expect to cal-
culate fourth-order rates in our convergence tests. Indeed,
in Tables 1 and 2, we observe rates close to, and actually
slightly greater than, four.

4.2 Coupled ocean and earth problem

We next present a coupled compressible ocean and elastic
solid problem to demonstrate our ability to simultaneously
model the full seismic, ocean acoustic, and surface gravity
wavefield. The geometry and kinematic rupture parameter
values appear in Fig. 4. A rectangular ocean with height
H = 5 km and width L = 400 km overlays an elastic
solid of the same width and height 100 km. A thrust fault
of length l = 50 km intersects the center of the seafloor at
point (x = 0, y = −H) and at a dip angle of δ = 30◦. In the
solid, we have P-wave speed cp = 8.0 km/s, S-wave speed

Table 2 Error and rate estimates for the surface gravity mode of the
uncoupled ocean problem, for k = π/(100 km)

Mode 0

h (m) Error Rate

250 2.44 × 10−7

166.7 4.30 × 10−8 4.3

125 1.27 × 10−8 4.2

100 4.98 × 10−9 4.2

83.3 2.33 × 10−9 4.2

5 
km

200 km200 km

50 km

p = ρgη

Prescribed rupture:
slip = 10 m 
slip velocity = 10 m/s
rupture velocity = 0.8 cs
g = 9.8 m/s2

30

10
0 

km

compressible ocean

elastic earth

Fig. 4 Problem geometry and rupture parameters for the coupled
ocean-earth problem in Section 4.2

cs = 4.6 km/s, and ρ = 3.2 g/cm3, while in the ocean, we
have ρ = 1.0 g/cm3, c = 1.5 km/s, and g = 9.8m/s2.

On all external boundaries, we implement absorb-
ing boundary conditions by setting the amplitude of the
incoming characteristic variables to zero. For example,
on the left boundary, we set ŵ+ = p̂ + ρcû = 0
while maintaining the value of the outgoing characteristic,
ŵ− = p̂ − ρcû = p − ρcu. We see that we can achieve
this by assigning

p̂ = 1

2
(p − ρcu), û = 1

2

(
u − 1

ρc
p

)
. (66)

More details are given in the Appendix.
The earthquake rupture begins at the lower edge of the

fault and propagates up to the seafloor at a constant rup-
ture velocity, leaving behind it a uniform amount of slip.
The prescribed slip velocity time function is described in
[23]. The numerical method for enforcing the fault interface
condition is described in detail in [9]. Fault slip generates
seismic waves, ocean acoustic waves, and surface gravity
waves. In Fig. 5, we plot the evolution of the sea surface η in
space and time, noting some of the most prominent waves.
For a more thorough discussion of these waves, see Kozdon
and Dunham [7].

Next, we verify the seafloor displacement solution by
comparison to the analytical solution for an edge disloca-
tion that breaks the surface of an elastic half space. We
expect this to be nearly an exact solution that our numerical
solution should match as t → ∞, except for very small dif-
ferences due to the overlying ocean layer. Vertical seafloor
displacement, b(x), is given by [20]

b(x) = s

π

{
sin δ

[
tan−1(ζ ) − (π/2)sgn(x)

]

+cos δ + ζ sin δ

1 + ζ 2

}
,

ζ = x − l cos δ

l sin δ
, (67)

where s is constant slip on the fault. This seafloor displace-
ment profile is simpler than that observed in our numerical
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Fig. 5 Space-time plot of sea
surface height η, illustrating the
variety of waves generated by an
earthquake on a thrust fault
beneath the ocean. The black
lines are drawn at the tsunami
speed in the shallow water limit,√

gH ; the fluid sound speed,
c = √

K/ρ; and the Rayleigh
wave speed, 0.919 cs . After
about 300 s, the bulk of the
seismic and ocean acoustic
waves have propagated out of
the domain and only
slower-traveling surface gravity
waves remain. Note the
dispersive tail to the tsunami
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solution for multiple reasons. First, it is a static displace-
ment, meaning that it is not caused by a time-dependent
rupture, whereas our numerical problem ruptures over a
number of seconds with a finite slip velocity. Second, the
analytic solution assumes a half-space representation of the
earth, subject to a free surface boundary condition, while
the numerical problem is finite in both height and width

and is overlaid by an ocean layer. Furthermore, inertial
effects associated with the deformable solid and compress-
ible ocean cause waves to ripple along the interface, causing
the seafloor profile to change in time. Nevertheless, after the
waves have propagated away, our predicted final seafloor
displacement matches the analytical model remarkably well
(Fig. 6).

Fig. 6 Seafloor uplift snapshots
from the static elasticity solution
for a surface-breaking edge
dislocation (dashed green) and
the numerical solution (solid
blue). After the seismic and
ocean acoustic waves propagate
out the domain, the models
match very closely, as expected.
Note the dynamic overshoot in
the upper left panel
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Fig. 7 Evolution of ocean
surface, η(x, t), in our
simulation (solid blue) and as
predicted by semi-analytical
solution (dashed green) for
tsunamis in an incompressible
ocean generated by
instantaneous uplift of the
seafloor. Numerical solution
curves are constant-time
cross-sections of the space-time
plot in Fig. 5. After the
large-amplitude seismic and
ocean acoustic waves propagate
out of the domain, the dispersive
surface gravity waves generally
match. However, there are
noticeable differences in the
amplitude of the leading
tsunami waves traveling both
landward and seaward, which
we attribute to the finite
duration of the rupture and/or
the compressibility of the ocean
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We next examine the waves on the sea surface in more
detail. In particular, we are interested in how the finite
duration of the rupture and the compressibility of the
ocean influence tsunami generation and propagation. The
standard approach to tsunami modeling imposes seafloor
uplift instantaneously beneath an incompressible ocean. The
seafloor uplift translates directly into an initial condition on
the sea surface η, but with short wavelength variations effec-
tively filtered out due to nonhydrostatic response at length
scales less than the ocean depth [5, 19].

This initial disturbance splits into two dispersive wave
trains that we advance according to the dispersion relation
for surface gravity waves in an incompressible ocean [12]
using a semi-analytic Fourier spectral method. Because this
incompressible ocean solution does not include compress-
ibility effects or a finite, time-dependent rupture process, we
do not expect perfect agreement. However, we anticipate the
sea surface profile to match reasonably well once the seis-
mic and ocean acoustic waves propagate out of the domain,
leaving behind surface gravity waves at periods greater than
those for which compressibility matters. We find that the
numerical solution generally does match both the amplitude
and wavelength content of the dispersive tsunami signal
(Fig. 7). The largest difference is in the amplitude of the
leading landward-traveling tsunami peak, though there is
also a subtle difference in the seaward-traveling tsunami.
Additional tests will need to be performed in order to better
understand the source of these discrepancies, but they must
arise from the compressibility of the ocean and/or the finite

duration of the rupture process. This result could prove to
be important, as the greatest discrepancy occurs in the most
damaging part of the tsunami wavefield.

5 Conclusions

We have shown that by adopting a linearized dynamic free
surface boundary condition in a finite difference framework,
we can model the full seismic, ocean acoustic, and sur-
face gravity wavefield all at once. We now have a powerful
tool for better understanding tsunami generation and prop-
agation in a compressible ocean with realistic geometries
and rupture processes. Initial work is already being done to
extend this method to three dimensions. A 3-D code would
be of great use in solving tsunami problems for specific
seafloor geometries because reflections and refractions of
tsunami waves play a major role in determining hazard in
many locales.

One component of our research effort involves look-
ing for seismic and ocean acoustic signals that might help
constrain the size of tsunami waves. Such signals could
be recorded by ocean bottom pressure sensor networks
and used to improve local tsunami early warning systems.
With our simulation method, we can develop quantitative
correlations between tsunami wave heights and the ampli-
tudes, periods, and other features of seismic and acoustic
waves. This preliminary study also establishes that, at least
in some cases, the standard procedure for tsunami genera-



338 Comput Geosci (2015) 19:327–340

tion and propagation might incorrectly predict tsunami wave
heights. Further work is required to determine if such differ-
ences arise in more realistic situations, but if they do, there
would be obvious practical implications for tsunami hazard
analysis.

Appendix

Discrete problem in two spatial dimensions

In Section 3, we discretize our problem and derive a numer-
ical energy balance in the vertical spatial dimension. Here,
we carry out the equivalent analysis in two dimensions. For
some finite domain length L, we discretize the domain over
0 ≤ x ≤ L and −H ≤ y ≤ 0 and define the points

xi = ihx, yj = −H + jhy, (68)

where i = 0, ..., Nx , j = 0, ..., Ny , hx = L/Nx , and
hy = H/Ny . Field values are stacked in the vectors p, u,
and v and ordered as

p =
[
p00 p01 · · · pNxNy

]T

. (69)

We write the governing Eqs. 16–18, not including the small
terms on the right sides of Eqs. 17 and 18, in semi-discrete
form using the SBP operators defined in Section 3:

dp

dt
= −K(Dxu + Dyv) + P

p
T + P

p
B + P

p
L + P

p
R, (70)

du

dt
= − 1

ρ
Dxp + P u

L + P u
R, (71)

dv

dt
= − 1

ρ
Dyp + P v

T + P v
B, (72)

Dx = H−1
x Qx ⊗ I y, Dy = I x ⊗ H−1

y Qy, (73)

where H−1
x Qx is the 1-D SBP operator in the x-direction,

I x is the (Nx + 1) × (Nx + 1) identity matrix, and so on for
H−1

y Qy and I y . The Kronecker product of two matrices, ⊗,
for matrix A of size m × n and matrix B of any size is

A ⊗ B =
⎡
⎢⎣

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤
⎥⎦ . (74)

Penalty terms P are chosen to properly enforce boundary
conditions while allowing us to prove stability, where the
superscripts p, u, and v refer to the penalized field and the
subscripts T , B, L, and R refer to the top, bottom, left, and
right edges of the domain. The penalty terms for the top
boundary condition are

P
p
T = −(I x ⊗ cH−1

y )[(pT − p̂T ) ⊗ eT ], (75)

P v
T = −(I x ⊗ cH−1

y )[(vT − v̂T ) ⊗ eT ]. (76)

Here, pT and vT are length (Nx + 1) vectors containing
the fields at grid points along the top boundary, p̂T and v̂T

are length-(Nx + 1) vectors of fields that exactly satisfy the
top boundary condition, and eT = [0 · · · 0 1]T is a vector
of length (Ny + 1). The hat variables are set in exactly the
same manner as in the 1-D problem using Eq. 55 at each
point on the boundary. No penalty term is applied to the
u equation because characteristic variables associated with
wave propagation normal to the top boundary involve only
p and v.

As a second example, the penalty terms for the left
boundary condition are

P
p
L = −(cH−1

x ⊗ I y)[eL ⊗ (pL − p̂L)], (77)

P u
L = −(cH−1

x ⊗ I y)[eL ⊗ (uL − ûL)], (78)

where the notation is similar to that for the top bound-
ary. Note that for this boundary, the characteristic variables
associated with wave propagation normal to the boundary
involve p and u, rather than p and v, so penalties are applied
to the p and u equations in this case. Similar penalty terms
are introduced for the bottom and right boundaries.

We define a discrete 2-D energy similar to the 1-D energy
in Eq. 52 and mirroring that of the continuous problem in
Eq. 27:

Eh = 1

2

[
ρuT Hu + ρvT Hv

+ 1

K
pT Hp + ρgηT H xη

]
, (79)

where η is a vector of length (Nx + 1) and H = H x ⊗ H y .
Left multiplying Eq. 70 by pT H/K , Eq. 71 by ρuT H , and
Eq. 72 by ρvT H and adding them together yields a discrete
energy balance:

1

K
pT H

dp

dt
+ ρuT H

du

dt
+ ρvT H

dv

dt

= d

dt

(
1

2K
pT Hp + ρ

2
uT Hu + ρ

2
vT Hv

)

= PT + PB + PL + PR, (80)

where the boundary work rates (PT , PB , PL, and PR) asso-
ciated with the penalty terms can be obtained using the SBP
property. By comparison to the energy balance for the con-
tinuous problem in Eq. 25, we anticipate that the right side
of Eq. 81 must contain the gravitational potential energy
rate,

d

dt

1

2

∫ L

0
ρgη2dx ≈ d

dt

1

2
ρgηT H xη. (81)

There will also be dissipation associated with the absorbing
boundary conditions used on the left and right sides, as well
as additional numerical dissipation that vanishes with mesh
refinement. We now prove this, again providing details for
the top and left boundaries.
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The contribution from the top boundary is

PT = −pT
T H xvT − 1

ρc
pT

T H x

(
pT − p̂T

)

−ρcvT
T H x

(
vT − v̂T

)
. (82)

We preserve the value of the upward-propagating character-
istic variable using pT +ρcvT = p̂T +ρcv̂T (see Section 3)
to yield

PT = −p̂
T
T H x v̂T − 1

ρc
(pT − p̂T )T H x(pT − p̂T ). (83)

We then enforce the boundary condition p̂T = ρgη, where
η evolves according to dη/dt = v̂T . Now, the first term of
Eq. 83 can be written

−ρgηT H x

dη

dt
= −1

2
ρg

d

dt

(
ηT H xη

)
, (84)

which is the desired gravitational potential energy rate. We
rewrite Eq. 81 as

dEh

dt
= P ′

T + PB + PL + PR (85)

where P ′
T , the second term of Eq. 83, is negative semi-

definite and goes to zero in the limit that the top boundary
condition is exactly satisfied.

We next consider the left boundary term, which can be
written as

PL = pT
LH yuL− 1

ρc
pT

LH y(pL−p̂L)−ρcuT
LH y(uL−ûL).

(86)

Using pL − ρcuL = p̂L − ρcûL, (86) becomes

PL = p̂
T
LH y ûL − 1

ρc
(pL − p̂L)T H y(pL − p̂L). (87)

Once again, the second term of Eq. 87 is negative semi-
definite and vanishes with mesh refinement (i.e., when the
boundary condition is exactly satisfied). The first term of
Eq. 87 corresponds to the physical work rate on the bound-
ary, which vanishes for either a free surface (p̂L = 0)
or rigid (ûL = 0) boundary. For our application simula-
tions, we use an absorbing boundary condition constructed
by setting the amplitude of the characteristic variable enter-
ing the domain to zero; that is, we set p̂L + ρcûL =
0. It follows that ûL = −p̂L/ρc and the first term of
Eq. 87 becomes −p̂

T
LH yp̂L/ρc, which maximally dissi-

pates energy as waves exit the domain through the left
boundary. By performing similar analyses on PB and PR ,
we find that (85) dissipates energy slightly faster than the
continuous problem, but exactly matches the energy balance
of the continuous problem in the limit of mesh refinement.
Thus, our 2-D numerical method is strictly stable.
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