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Abstract The simulation of non-point source pollution in
agricultural basins is a computationally demanding process
due to the large number of individual sources and poten-
tial pollution receptors (e.g., drinking water wells). In this
study, we present an efficient computational framework
for parallel simulation of diffuse pollution in such ground-
water basins. To derive a highly detailed velocity field,
we employed algebraic multigrid (AMG) preconditioners
to solve the groundwater flow equation. We compare two
variants of AMG implementations, the multilevel precondi-
tioning provided by Trilinos and the BoomerAMG provided
by HYPRE. We also perform a sensitivity analysis on the
configuration of AMG methods to evaluate the application
of these libraries to groundwater flow problems. For the
transport simulation of diffuse contamination, we use the
streamline approach, which decomposes the 3D transport
problem into a large number of 1D problems that can be
executed in parallel. The proposed framework is applied to a
2,600-km2 groundwater basin in California discretized into
a grid with over 11 million degrees of freedom. Using a
Monte Carlo approach with 200 nitrate loading realizations
at the aquifer surface, we perform a stochastic analysis to
quantify nitrate breakthrough prediction uncertainty at over
1,500 wells due to random, temporally distributed nitrate
loading. The results show that there is a significant time
lag between loading and aquifer response at production
wells. Generally, typical production wells respond after 5–
50 years depending on well depth and screen length, while
the prediction uncertainty for nitrate in individual wells is
very large—approximately twice the drinking water limit
for nitrate.
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1 Introduction

Groundwater is a major resource of drinking water, particu-
larly in semiarid areas associated with agricultural activities.
Yet, in such areas, due to intensive use of industrial and
animal fertilizers, groundwater has been susceptible to spa-
tially and temporally continuous pollution for nearly half
a century [37]. Most agricultural contamination falls into
the category of non-point source (NPS) or diffuse pollution.
Numerous studies [18, 26, 43, 46, 47, 54, 60, 65, 72, 76] and
reports [37, 75, 78] highlight the worldwide extent of the
problem and stress the imperative need for more enhanced
management practices [20, 41, 57].

Sustainable management of agricultural diffuse pollu-
tion is a vital issue, and the development of suitable tools
to evaluate the impact of proposed management scenarios
remains an active arena for research [11]. In addition, it is
very important to further our understanding regarding the
transport and fate of pollutants, the range of travel times,
and the impact of uncertainty, and identify links between
sources and receptors [54], where receptors here include
wells, springs, and streams receiving groundwater.

For several decades, groundwater flow and transport
models have been invaluable tools for understanding flow
and transport mechanisms and also for supporting deci-
sion making processes. However, methods to assess NPS
pollution of groundwater are quite limited and can gener-
ally be grouped into three categories [62]: index, statisti-
cal, and physically based methods. For example, DRAS-
TIC [2] is a widely used index-based tool that aggregates
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information such as soil type, topography, recharge, etc.
using expert-assigned indexing levels and returns a compos-
ite vulnerability assessment map. Similarly, statistical meth-
ods such as multivariate statistics [48], regression analysis
[64], artificial neural networks [3, 50, 82] etc. are employed
to extract relationships between control variables (potential
sources, environmental conditions) and water quality data in
receptors to provide a tool to assess potential groundwater
quality impacts.

Physically based methods explicitly capture the flow and
transport dynamics that govern the contamination processes.
These methods are based on the solution of partial dif-
ferential equations of groundwater flow and contaminant
transport. Physical or process-based approaches provide
better insights into flow and transport dynamics than index-
ing or statistical methods and allow for a wide range of
analyses and assessments, including sensitivity, scenario,
and stochastic analyses. A major drawback of physically
based models is that their implementation is computation-
ally demanding. NPS pollution often takes place in large
agricultural basins that extend several hundreds or thou-
sands of square kilometers, while individual sources such
as crop fields, dairy lagoons/corrals, septic systems, etc.
vary in extent from less than a few hectares to few hun-
dreds of hectares. Groundwater and pollutant discharge to
streams or to a large array of irrigation wells (in semiarid
and arid basins) forces highly localized flow and transport
systems. Therefore, the simulation of very large agricultural
basins with sufficiently detailed discretization to account
for the proper transport dynamics between the large assem-
bly of relatively small but heterogeneous sources and the
affected array of spatially distributed groundwater discharge
locations (receptors) would potentially require systems with
many millions of degrees of freedom. The large contrast
between the extent of groundwater basins and the size
and number of contributing sources and affected receptors
makes the simulation of NPS pollution a challenging prob-
lem, despite current software and hardware developments.

Researchers have utilized process-based models to simu-
late diffuse pollution mostly in relatively small catchments
[28, 56, 59, 80]. Bonton et al. [13] used the numerical
model HydroGeoSphere to simulate nitrate transport within
a well capture zone using a model with 92,000 degrees of
freedom (dof), while [29] discretized a small catchment of
0.12 km2 into about 28,000 grid cells and simulated the fate
of nitrate using MODFLOW, MODPATH, and MT3D. In
many studies, researchers simulate the diffuse pollution in
large-scale basins at the expense of model resolution, using
coarse discretization. Refsgaarda et al. [69] simulated two
large groundwater basins in Denmark using 1–5-km reso-
lution grid, while [53] simulated NPS contamination in a
95,560-km2 agricultural basin using multiscale grid cells
that vary between 1 and 8 km2. Flipo et al. [27] simulated

the fate of nitrate in a 1,200-km2 groundwater basin using a
discretization of 8,513 elements (e.g., each element covered
0.14 km2 approximately). Jiang and Somers [46] combined
MODFLOW and MT3D to model a 112-km2 basin using
approximately 15,000 dofs. Almasri and Kaluarachchi [4]
and [23] simulated a 388 and 550-km2 catchments, respec-
tively, using a single layer in the vertical discretization.

In process-based methods, the major computational lim-
itation of fully 3D approaches stems from the simulation
of transport. To alleviate this, researchers have adopted the
streamline approach, which simplifies a fully 3D transport
problem into multiple 1D transport problems that are triv-
ial to solve [7, 19, 24, 33, 39, 45, 66]. The streamline
approach has found broad applicability in petroleum engi-
neering [8, 10, 12, 17]. The majority of studies that have
adopted this approach to NPS pollution have employed
variants of particle-tracking methods to calculate resi-
dent time distributions and well capture zone delineation
[58, 71, 74, 79]

Recently, [51] and [52] developed a NPS assessment tool
(NPSAT) that employs the streamline transport approach
on a highly resolved steady-state groundwater flow field to
derive an ensemble of unit response functions (URF) for
each discharge point of interest (e.g., wells, streams etc.,).
The URFs are stored in a GIS database and can be used
for predictions by convolution with actual spatiotemporally
distributed pollutant loading functions to rapidly calculate
breakthrough curves (BTCs). The approach has two dis-
tinct advantages. First, based on the premise of steady-state
flow (see [51] for full justification of the assumptions), the
transport problem can be separated from the flow problem
and second, using the URF concept, the transport prob-
lem becomes independent of the loading history. However,
the NPSAT requires a highly detailed resolution around
the receptors to avoid the weak sink problem [73] during
backward particle tracking. In addition, the scale of the dis-
cretization at the aquifer surface needs to be on the same
order as the scale of the individual contributing recharge and
pollution sources. Therefore, the simulation of large agri-
cultural groundwater basins leads to a very large system of
linear equations.

Typically, large systems are solved using Krylov sub-
space methods (e.g., preconditioned conjugate gradient
(PCG), generalized minimal residual method (GMRES),
ORTHOMIN, BiCGSTAB, etc), yet the convergence of
these methods tends to slow down considerably as the sys-
tems become larger [70]. Moreover, as systems become
larger, the increased time of each operation (e.g., matrix
vector multiplication per iteration) results in severe loss of
efficiency. To alleviate the shortcomings of the Krylov sub-
space methods, many researchers use multigrid methods for
which, in theory, the convergence rates are independent of
the mesh size.
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The multigrid methods are divided into two categories,
geometric and algebraic multigrid methods. Geometric
multigrid methods are suitable for systems discretized into
regular grids, while algebraic multigrid (AMG) methods
are suitable for irregularly discretized systems. AMG meth-
ods are algorithmically more complex methods compared to
Krylov subspace methods. Libraries are now available that
can be used as an interface to AMG methods, but these are
not frequently used in groundwater flow simulations [6, 9,
55, 61] due to the fact that the typical groundwater flow
simulation packages such as MODFLOW, IWFM, Sutra,
HydroGeoSphere do not provide an interface to multigrid
solvers [36].

In this paper, we demonstrate the use of the AMG method
in a modified parallel version of the NPSAT toolbox [52] to
derive a highly detailed, steady-state groundwater flow field
for a simulation domain with millions of dofs. We employed
two C++ libraries, Trilinos [40] and HYPRE [25], which
implement variants of AMG methods, to perform a sensitiv-
ity analyses over the configuration parameters of the AMG
solvers and provide guidelines for similar problems.

The highly resolved groundwater velocity field is subse-
quently used in a streamline transport model to simulate the
fate of nitrate in large groundwater basins. The method is
applied to investigate 200 years of nitrate transport from a
2,600-km2 source area to 1,500 individual large production
wells and 65-km gaining streams in the Modesto subbasin
of the Central Valley aquifer, California.

The next section provides a brief description of the gov-
erning equations and outlines the fundamental parts of the
simulated approach. The third and fourth sections outline
the algebraic multigrid methods and the parallelization of
the NPSAT toolbox. We then apply the proposed methods to
a large-scale simulation of nitrate transport in the Modesto
aquifer, California, to quantify uncertainty about pollutant
transport time and concentration variability among wells
and streams.

2 Overview of the non-point source modeling
framework

2.1 Construction phase

The NPS assessment tool is based on three critical assump-
tions: (1) groundwater flow is steady state, (2) transverse
dispersion is negligible, and (3) reactions may include
first-order degradation/decay and instantaneous adsorption
[51]. The NPSAT consists of two phases, the construc-
tion phase and the implementation phase. During the con-
struction phase, groundwater flow is simulated with suf-
ficiently detailed discretization around wells, streams, or
other sources or receptors of interest. Due to the highly

non-uniform distribution of boundary stresses, we apply
the finite element method (FEM), which allows for locally
variable size discretization. The groundwater flow field pro-
vides the basis for the streamline transport simulation. Note
that this method was specifically developed for diffuse pol-
lution problems where all or most recharge sources are
associated with an identifiable and relevant level of pol-
lutant concentration and where a large number of discrete
receptors or compliance discharge surfaces (CDS) exist
(e.g., wells, stream reaches).

To identify the pathways of contaminants that are
associated with each particular CDS, a large number of
particles are released in the immediate vicinity of the
CDS. The particles are tracked backwards until they exit
the aquifer, thus defining streamlines. Streamlines con-
sist of a set of positional vectors X= {

x0,x1, . . . ,xn,
}

that hold the coordinates of the streamline and a set
of velocity norms V={v0,v1, . . . ,vn}, which contain the
velocities at the points of the positional vectors. Note
that we are using backward particle tracking that asso-
ciates each streamline with a contamination source, thus
identifying contributing land uses within the source area
of a CDS.

For each streamline, we solve the 1D transport problem:

R
∂c

∂t
= ∂

∂x

(
D
∂x

∂x
− vc

)
− λRc

subject to:

c(x)t=0 = 0 ∀x ∈ [0, L]
c(xn)t>0 = 1

(
∂c

∂t

)

x=xo
= 0

(1)

where c (x,t) is the solute concentration at point x and time
t , v is the pore velocity, D is the dispersion coefficient, λ
is the first-order degradation (or decay) constant, and R is
the retardation factor. Dispersion D=α̃Lv is a function of
the effective macrodispersivity, α̃L. The latter, α̃L=f (L),
is typically scaled relative to the length of the streamline L

[31, 34]. In the formulation of the transport problem (1), we
do not require any knowledge of loading. Instead, a continu-
ous unit loading is applied at the source side xn. Solving the
transport problem (1) we calculate the unit response func-
tion (URF) at the CDS side x0 by shifting the solution to
(1) by the basic time unit defining the temporal discretiza-
tion of the NPS loading function (e.g., 1 year for annually
varying loading) and subtracting it, for a given time, from
the original solution. The URFs are subsequently archived
into a geodatabase and can be used during the imple-
mentation phase. In addition to URFs, archives are also
established for the coordinates of point xn, and the velocity
v0 (see below).
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2.2 Implementation phase

In the implementation phase, actual BTCs for each CDS are
computed as a response to actual pollutant loading func-
tions. The typical form of a loading function is a time
series of spatially variable loading rates, varying, e.g., by
field, possibly grouped into land-use or crop type categories.
Therefore, the first step during the implementation phase is
to associate the points xn with the associated field or land-
use types that have a known loading function. Next, the
loading functions are convolved with the URFs to derive
the streamline BTCs. The convolution operator is a fast
operator that involves only analytical calculations and the
execution time is practically negligible. Let fL(t) be a load-
ing function, which is associated with the URF g

j

i (t) where
the indices i and j correspond to the ID of the streamline
and the ID of the CDS, respectively. The discrete form of
convolution operator is expressed as follows:

G
j
i (t) =f

L
∗gji =

t∑

ζ=0

fL (t−ζ ) g
j
i (ζ ) (2)

Where G
j

i (t) is the actual BTC in response to the loading
function fL(t) for the streamline i, ζ is a free variable that
increases in the summation at time step intervals, and t is
the total simulation time.

Finally, the actual BTC for the j CDS Ḡj (t) is the
weighted average of the individual streamline BTCs Gj

i (t),

e.g., Ḡj (t)=∑Ns
i=1 v

i
0·Gj

i (t)
/∑Ns

i=1 v
i
0, where the weights

are taken equal to the amount of flow that each streamline
contributes to the CDS.

Most of the NPSAT processes can be executed with cur-
rent commodity personal computers. But the first step of
the construction phase, the computation of the steady-state
flow field, can be highly demanding in terms of memory and
CPU requirements. In the next section, we outline the basics
of the algebraic multigrid method, which is used to alleviate
this shortcoming.

3 Algebraic multigrid methods

Multigrid methods are becoming standard parallel process-
ing tools for solving linear system of equations arising from
discretization of partial differential equations and are con-
sidered among the fastest solvers available [1]. Multigrid
methods are based on the observation that the error of a
linear system can be split into rough and smooth error
components. Iterative methods, such as Krylov subspace
methods, can effectively reduce rough errors on the fine
grid while the smooth errors can be eliminated on coarser

grids. Therefore, the fundamental idea of multigrid meth-
ods is to solve the linear system on a hierarchy of grids.
Details regarding the rationale of the algorithm can be found
in many textbooks [15, 16, 70]. Here, an outline of the basic
algebraic multigrid cycle is provided.

First, the simulation domain is discretized and the solu-
tion of the partial differential equation is reduced to a
system of linear equations of the form A0x0=b0. In the
case of steady groundwater flow, the matrix A corresponds
to the conductance terms, the vector x corresponds to
unknown hydraulic head, and the vector b represents the
sources/receptors and boundary conditions. The superscript
is used here to denote that the system corresponds to the fine
discretization level.

AMG methods involve a setup phase, where the grids are
constructed along with operators that transfer information
between the grids. The construction of grid hierarchy is a
recursive process, starting from the finest level. The coarser
grid is constructed by aggregating nodes of the finer level. In
addition, during the setup phase, the interpolation I n+1

n and
restriction I nn+1 operators are computed for each level such

that An=I nn+1A
n+1I n+1

n and I n+1
n = I nn+1

T . These operators
are used to transfer information between grids.

After completing the setup phase, the algorithm starts by
performing a user-defined number of iterations (“sweeps”
in AMG terminology) of an iterative solution method on the
finest level A0x0=b0. The values of the starting vector are
defined by the user. In multigrid terminology, this is variably
known as either smoothing or relaxation. Next, the resid-
ual is computed and restricted (transferred) onto the next
coarser level r1=I 1

0

(
b0−A0x0

)
. A smoothing step is again

performed on this coarser grid for the system A1c1=r1,
using zero starting values c1 = 0. A new residual is com-
puted on the current level and restricted onto the next level
r2=I 2

1

(
r1−A1c1

)
. This process of smoothing and restrict-

ing residuals continues until the coarsest level is reached
where a direct solve is performed, cc=Ac−1rc, instead of
smoothing. The calculated vector cc is interpolated into the
next finer level using the interpolation operator and used
to correct the residuals at the current level cn=cn+I nc c

c.
The system Ancn=rn is smoothed one more time on this
level using the corrected vector cn as starting values. The
smoothed residual is then interpolated into the next finer
level and used for correction and smoothing. The process
is repeated until the finest level is reached. A graphical
illustration of the process is given in Fig. 1. The above algo-
rithm is known as V-cycle. However, there are other options
available such as W-cycle and F-cycle [16].

While multigrid (MG) methods can be used as solvers,
they can also be used as efficient preconditioners for
Krylov subspace methods: After the setup phase in the
MG method, an iterative solver is chosen to solve the
system, such as PCG or GMRES, and the MG method
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Fig. 1 Schematic of the
multigrid V-cycle in the AMG
solver

is applied in every iteration as preconditioner to improve
the convergence of the solver. For symmetric positive
definite systems such as the steady-state groundwater
flow equation, the conjugate gradient method is com-
monly used with MG as preconditioning operator for the
residual.

Multigrid methods are not simple to implement while
their algorithmic complexity increases significantly in par-
allel implementation. A few libraries exist, mostly written
in C/C++, that offer an object-oriented interface, where
users do not deal with many of the algorithmic imple-
mentation issues. In this paper, we used two well-known
libraries, HYPRE [25] and Trilinos [40]. Both libraries
provide interfaces to a variety of numerical tools. In this
paper, we apply the multilevel preconditioning package [30]
of Trilinos and the BoomerAMG solver [38] provided by
HYPRE.

Unlike Krylov subspace methods, MG have many
parameters to adjust to achieve optimal performance
such as the aggregation method, number of grid levels,
type of smoother, type of coarse solver (few smooth-
ing steps may also be used instead of direct solve),
and the number of smoothing sweeps. In addition, each
of these steps, e.g., each smoother and aggregation,
has its own parameter set to configure, e.g., dumping
factor, number of sweeps, etc. Overall, the configura-
tion of a multigrid remains a complex task. Although
there are default parameter sets for certain problems,
proper configuration of AMG methods can increase the
efficiency.

The next section provides an outline of a parallel
implementation of the NPSAT problem, the application
of which is used for a sensitivity analysis of AMG
parameters with respect to solving the groundwater flow
problem.

4 Parallel implementation of NPSAT

Generally, the construction phase of NPSAT is time-
consuming and involves several sequential steps (Fig. 2).
However, the memory requirements are relatively small
even for large problems and more importantly, the individ-
ual processes are embarrassingly parallel, i.e., little or no
effort is required to separate the problem into separate tasks
and almost no communication between tasks is needed.

The first step in numerical simulation is the discretiza-
tion of the domain. Because of the complexity of parallel
mesh generation and the lack of readily available libraries,
in our framework, we choose to construct a 2D mesh using
standard methods which can be executed on a single pro-
cessor. For parallel processing, the 2D mesh is subsequently
split into subdomains and the mesh is extruded in the
Z direction on each process individually. To allow inde-
pendent assembly on each processor without the need to
exchange information besides the locally owned elements,
each subdomain owns a number of ghost elements, which
are elements locally owned by another processor. The next
step is the matrix assembly where the conductance terms
and source/receptor vectors are assembled. The distributed
system is solved by the AMG method. Initially, the grids
and the restriction and interpolation operators on each level
are constructed. The system is then solved iteratively using
an appropriate Krylov subspace method with the AMG
as preconditioner. In cases where the partial differential
equations are non-linear (e.g., unconfined flow), an addi-
tional loop is needed which iterates through all steps of
the flow problem until the non-linear problem converges.
In unconfined groundwater flow simulations, for each non-
linear iteration, the elevation of the top layer of the grid
becomes equal with the hydraulic head of the previous iter-
ation. This results in a change of the entire conductance
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Fig. 2 Flow chart of parallel
implementation of the NPS
Assessment Tool (NPSAT)

matrix and source/receptors vector. Therefore, the system is
reassembled and solved iteratively until the change in the
head between two consecutive iterations is smaller than a
specified threshold.

The computed head distribution is subsequently used
for particle tracking. The streamline tracking simulation is
an embarrassingly parallel process. However, it is possi-
ble that a single streamline may span multiple subdomains
and, hence, multiple processors. In cases where the avail-
able memory is able to support the entire 3D mesh, it is
advantageous to join the subdomains as streamline track-
ing becomes easy to implement. When the problem is
too large to be stored on a single processor, additional
algorithmic effort is needed to transfer particles between
processors [67]. The solution of the 1D transport problem
along each streamline is an independent process even on
very large problems and therefore can easily be parallelized.
The implementation phase, which involves convolution of
loading functions with the URF computed at the transport
simulation, can be parallelized seamlessly although even the
serial execution time is typically very small despite a very
large number of CDS.

5 Application

5.1 Simulation setup

We apply the parallel implementation of NPSAT to a study
area located in the northeastern San Joaquin Valley, Cali-
fornia. A coarse steady-state model has been developed by

[68] who simulated groundwater flow based on the finite
difference method (MODFLOW) using a uniform grid with
400-m cell size and 16 layers for the vertical discretization.
The location of the model area is shown in Fig. 3 (thick
red line). For our application, necessary input data such as
hydraulic conductivity, stresses, boundary conditions, etc.
are based on the model of [68]. However, individual well
locations are considered vertical lines (points in horizon-
tal cross sections) rather than 400 m × 400 m cell blocks,
which yielded a highly resolved finite element version of the
Modesto aquifer. The aquifer is approximately 2,600 km2.
The eastern and bottom boundaries are set to have no flow
while the top boundary is subject to specified recharge
fluxes (Neumann type). General head boundary conditions
(Cauchy type) are assigned to the north, south, and west
boundaries (Fig. 3). In addition, general head boundary
conditions are assigned to the western part of three rivers
traversing the modeling domain (Fig. 3, green river seg-
ments). The hydraulic conductivity was estimated based on
sediment texture analysis and the values span from 0 to
80 m/day (see details in [68]). There is also a confining unit
known as Corcoran Clay layer that extends eastward from
the western boundary of the aquifer across approximately
half of the aquifer (see the red layer in Fig. 4).

The aquifer was discretized using linear prism elements.
The element size in the horizontal plane varies between
20 m near wells and rivers and a maximum element length
of 300 m. The aquifer contains 1,501 wells distributed
across most of the flow domain. This resulted in a very
fine unstructured grid with only few areas (e.g., the eastern
portions of the aquifer) where finite element size actually



Comput Geosci (2014) 18:851–867 857

Fig. 3 Location of the Modesto
study area in the Central Valley
of California. The red box
corresponds the boundary of the
aquifer simulation domain.
Orange dots identify 1501
pumping wells distributed
across the study area

reaches the maximum length size. Vertically, the aquifer
was divided into 32 layers, non-uniformly distributed, by
increasing the vertical discretization from few meters near
the top to several tens of meters toward the bottom. This
discretization scheme resulted in a model of 11,514,688
degrees of freedom and approximately 20 million elements.

The NPSAT method first discretizes the domain on a
single processor into a 2D triangular mesh consisting of
359,834 nodes using the Gmsh mesh generator package

Fig. 4 Hydraulic conductivity field and discretization of the aquifer.
Aquifer properties, stresses, and boundary condition data were
obtained from Phillips et al. [68]

[32]. Next, the 2D mesh was divided into a number of sub-
domains using the Metis mesh partitioning library [49]. This
method attempts to divide the domain into subdomains with
equal number of unknowns per subdomain.

5.2 AMG comparison and configuration

For the sensitivity analysis of the AMG method, we split
the domain into 8, 16, 32, and 64 subdomains, while we
assign one processor per subdomain during the solution
of linear system with AMG. After the domain partition-
ing, each processor owns a portion of the 2D triangular
mesh. Each processor extrudes its 2D mesh and assem-
bles the system matrix and vectors. The average assembly
time per processor is shown in Fig. 5. All runs were
executed on a Linux cluster with 2.4 GHz processors
and 8 GB RAM per core. For the matrix assembly, we
used the NPSAT-based parallel mSim toolbox [52], which
solves the groundwater flow equation using continuous
Galerkin finite element method. The use of ghost ele-
ments circumvents the need for communication between
processors during the assembly. Hence, assembly time
decreases linearly as the number of processors increases
(Fig. 5 red line).

We employed the multilevel preconditioning package
(MLPP) by Trilinos (version 11.0.2) and compared it with
the BoomerAMG by HYPRE (version 2.9.0). MLPP offers
five default AMG configurations targeting different types of
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Fig. 5 Comparison of the execution time with various Trilinos and
HYPRE Algebraic multigrid configurations for different number of
parallel processors

systems of equations. For symmetric positive definite sys-
tems, the most suitable configuration is the smooth aggre-
gation (SA) configuration. The SA configuration uses a
V-cycle with Gauss–Seidel smoother for all levels, the KLU
direct solver [22] for the coarsest level, and an uncoupled
followed by a maximal independent set (MIS) technique
[77] for the coarsening scheme. Using the default config-
uration, we solved the 11 million dofs system on eight
processors in approximately 6 min. Solver execution time
scales linearly with the number of processors resulting in

a solution time of about 30 s when 64 processors are used
(Fig. 5).

We tested all available smoothers provided by the Trili-
nos package. Trilinos provides the possibility to also use
external solvers as smoothers such as MUMPS [5], UMF-
PACK [21], or SuperLU [81] which were not tested here. We
found that the Chebyshev polynomial smoother [1] signifi-
cantly improves solver execution time—about twice as fast
as in the default configuration. The Chebyshev smoother in
MLPP requires two parameters: a polynomial degree and an
alpha parameter. We found that the MLPP default values 2
and 20, respectively, gave the minimum solution times. In
addition, we examined a number of other parameters and
configurations such as the number of sweeps, the number of
levels, the type of smoother on the coarsest level, the aggre-
gation method, and the cycle type (i.e., W and F). We found
no additional improvements when changing any of those
parameters.

When using HYPRE, the default approach is a V-cycle
with Falgout coarsening scheme [38] and a hybrid variant of
the Gauss–Seidel method. The default HYPRE configura-
tion scales linearly with the number of processors; however,
the execution time is approximately 5 times slower com-
pared to the execution time of the default MLPP SA config-
uration. HYPRE provides 13 types of smoothers (see [44],
Section 1 relaxation schemes) and 11 coarsening methods
([44], Section 4). Using 32 processors, we test the effi-
ciency of each method, while keeping the remaining default
parameters intact (Fig. 6). Note that some of the methods

Fig. 6 Efficiency of the coarsening and relaxation methods of
HYPRE based on 32 processors. The description of coarsening meth-
ods can be found in Griebel et al. [35]. (CLJP: ClearyLubyJone-
sPlassman, RS: RugeStben,FALG: Falgout, PMIS:Parallel maximal
independent set, HMIS: hybrid MIS, CGC:Coarse Grid Classification,

CGC-E: CGC with empty coarse grid). The description of relax-
ation methods is given in HYPRE 2008 (HGSf: Hybrid Gauss-Seidel
with forward solve, HGSb: hybrid Gauss-Seidel with backward solve,
HCGS: hybrid chaotic Gauss-Seidel, GS: scaled hybrid symmetric
Gauss-Seidel, CHEB: Chebyshev, JAC: -scaled Jacobi)
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exist for debugging purposes only and those were not tested.
Coarsening methods based on variants of the MIS meth-
ods significantly improve performance, while other methods
are not useful for our application. Relaxation (smooth-
ing) methods based on Gauss–Seidel, the default option,
compared favorably in execution time. Interestingly, the
Chebyshev smoother, which provided significant improve-
ment in Trilinos, does not appear to reduce the execution
time in HYPRE. Varying other parameters in HYPRE, such
as type of cycle, number of sweeps, and number of levels,
did not further improve execution times.

Both solvers scale linearly with the number of proces-
sors. In this particular application, Trilinos appears more
efficient compared to HYPRE. Besides the computational
efficiency, we note that both libraries require very little pro-
graming effort, with 10–20 lines of C++ code sufficient for
the AMG implementation.

5.3 NPSAT construction phase

The upper portion of the Modesto subbasin, like most of the
Central Valley aquifer, is unconfined. To accurately simu-
late the water table solution for the unconfined aquifer, we
used an outer iteration scheme, for each of which we solve
the 11.5 million dof flow problems. At each iteration step,
the mesh is deformed according to the previous iteration’s
head elevation in the top layer. Iterations continue until
changes in mesh deformation become insignificant. With
mean deformation 5 cm as the convergence criterion for
this outer iteration loop, the non-linear water table problem
converged after 10 iterations.

The flow simulation results in a highly detailed dis-
tribution of the water table surface and of the 3D head
potential distribution within the simulation domain (Fig. 7).
The water table surface clearly identifies the complex and
sharp recharge surface near the meandering streams as they
flow from the eastern edge of the groundwater basin toward
the San Joaquin River on the western edge of the simula-
tion domain. Approximately halfway across the subbasin
and toward the western boundary of the simulation domain,
streams submerge below the regional water table and cre-
ate a relatively sharp, complexly shaped incision within
the regional water table, receiving groundwater discharge.
Large regional cones of depression within the water table
surface (and aquifer) are created through subregional differ-
ences in the allocation of surface water to service irrigation
and municipal water needs, which yields subregionally
varying groundwater pumping stresses. The fine-structured
variations in the water table surface (Fig. 7) demonstrate the
more localized effects of individual groundwater pumping
at varying rates and within varying aquifer materials.

For the streamline transport simulation, we distribute 100
particles around each well screen (four particles at each of

Fig. 7 Shaded three-dimensional representation of the hydraulic head
field of the Modesto sub-basin of the Central Valley aquifer. Streams
emanate from the Sierra Nevada mountain block in the east (right side)
and flow towards the San Joaquin River on the western edge (left side)
of the simulation domain. Streams appear as ridges in the eastern and
central portion of the simulation domain, indicating losing conditions
(recharge to groundwater). They appear as incised valleys within the
water table surface near the San Joaquin River in the western area of
the sub-basin, where groundwater is discharging back to the streams. A
large cone of depression (appearing as a blue-colored crater) is located
in the southeastern portion of the sub-basin, where irrigation water
is predominantly from wells and surface water rights limit diversions
from streams

25 layers). Using backward particle tracking, we compute
150,100 streamlines with their distributed groundwater age
(Fig. 8). For the computation, we used the Runge–Kutta–
Fehlberg method with adaptive step [52]. The velocity field
is computed on the fly during particle tracking for each ele-
ment based on the head gradient. Figure 8 is a top view
of the aquifer; therefore, most of the streamlines depicted
there correspond to relatively short, young (near surface)
streamlines. Histograms of the age of groundwater enter-
ing a well, the depth of the streamline below the water
table at the CDS, and the streamline length are shown in
Fig. 9. The depth of a streamline below the water table,
at its exit point into a CDS, is normally distributed. Yet,
the distribution of groundwater age and streamline length
are lognormally distributed with relatively long and flat
right tails.

At any given time, groundwater of a wide range of
age, and of potentially highly varying water quality, enters
each well. In large production or agricultural wells with
relatively long screen lengths (see Fig. 8 right), the age
of the youngest water, entering a well near the top
of the screen, varies from 1 to 10 years old. In con-
trast, depending on the screen length, the age of ground-
water entering near the bottom of a production well
screen can vary between 100 and more than 1,000 years
old.
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Fig. 8 Three-dimensional spatial distribution of groundwater age
along streamlines delivering groundwater to wells (groundwater dis-
charged to streams not shown here). Dark blue represents very
young water (less than a decade), intermediate blue represents water
recharged within the last few decades, light blue represents water
recharged nearly a century ago or longer. Pink and red colors represent
water recharged during pre-Columbian times. Uncertainty about exact
water age increases with age due to the focus of the steady state model
on average modern-day hydrologic conditions. Left: Top view of simu-
lated streamlines showing predominantly the uppermost, shortest and
therefore predominantly younger - streamlines. The southeastern area

with the cone of depression in the water table (Fig. 7) here shows as
an area attracting many of the surrounding streamlines toward the cen-
ter of the cone. Right: Example of the three-dimensional distribution
of groundwater ages along streamlines delivering groundwater to pro-
duction wells (well screens represented as red vertical tubes; not all
modeled wells in the view area are shown). The surface at the top rep-
resents the water table surface, the surface at the bottom represents the
bottom of the aquifer system. Older water enters deeper along the well
screen. Younger water is recharged near the well, older water may have
been recharged a large distance away and/or may have been upwelling
from the depth of the aquifer

The measured pollutant concentration is a flux-weighted
average of the concentrations measured along the well
screen. To prepare for computing such concentrations, the
last step in the construction phase is the computation of unit
response functions. Each streamline is discretized into 5-m
linear line elements with varying velocity interpolated from
the head field via particle tracking. The effective longitu-
dinal dispersivity was set equal to 1/10 of the streamline
length to account for aquifer heterogeneity [63]. For the
simulation of 1D advection dispersion equation, we used the
MATLAB/Octave solvers as the size of each 1D transport
problem is small, from 200 to 4,000 degrees of freedom.
Similar to the streamline computation, the computation of
the URFs for each streamline is executed in parallel.

The transport model can also be used for the simula-
tion of groundwater pollutant contribution to rivers. In

our example, three gaining river segments receive
groundwater that partly originates from diffuse pollu-
tion areas. To identify their source areas, we distribute
13,136 particles around the gaining stream segments
(four particles every 20 m, Fig. 10). The majority of
streamlines to rivers are less than 3-km long, signif-
icantly shorter than streamlines to wells, indicating
that rivers receive relatively young water from nearby
sources. The water age in discharge to rivers is lognormally
distributed with a mean age of 9 years and a maximum
age of 170 years. The large difference between river
and well streamlines is due to diffuse recharge in the
vicinity of a river being the largest contributor to baseflow
(groundwater discharge to rivers). It is therefore expected
that water quality in discharge into rivers responds to non-
point source pollution in the source area similar to shallow

Fig. 9 Histogram of various streamline characteristics; (left) depth to water table where the streamline intersects with a well (CDS); (center)
travel time to the CDS; (right) streamline length from source to CDS
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Fig. 10 Groundwater age along streamlines originating from streams.
The green and blue stream segments correspond to gaining and losing
streams respectively. Green-grey color shading across the study area
represents water table height

domestic wells, which also receive relatively younger
groundwater.

5.4 Prediction phase

Nitrate transport to groundwater receptors is computed by
convoluting nitrate loading functions with the URFs. This
second step can be repeated at low computational cost and

independent of the construction phase for multiple loading
scenarios. These may include actual, projected, hypothet-
ical, or stochastic scenarios, or those defined by various
decision-makers, and may or may not account for vadose
zone travel times. Here, we choose a representative spatially
uniform loading function suggested by [34]. From a set
of 200 hydraulic conductivity realizations of the Modesto
aquifer, they choose six representative realizations to cali-
brate the transport parameters, which resulted in six repre-
sentative nitrate input loading functions to the water table
(Fig. 11). In this paper, we extended their 1900–2005 tran-
sient loading function by assuming a constant reduction of
nitrate loading to about 50% of current loading by the year
2100.

The 150,100 URFs were convolved with the loading
function, then integrated via a flux-weighted mean com-
putation to obtain the breakthrough curves for each of the
1,501 wells (thin light gray lines in Fig. 12). Based on
the individual breakthrough curves, we computed the per-
centiles (thick gray lines) across all wells in the subbasin.
About 10–20 % of the simulated wells are relatively shal-
low and closely follow the pattern of the loading function
(black dashed line) with a time lag that varies between 5
and 10 years. On the other hand, about 10 % of the deep-
est wells respond very slowly to the loading function with
time lags between 20 and 50 years, where the response is
dominated by changes in concentration in the shallow-most
water intersected by these wells. Changes in the concentra-
tion in deeper sections of these wells occur so slowly that
they do not significantly contribute to the dynamics of the
breakthrough curve other than significantly dampening the
impact of the recent increase in nitrate loading.

Fig. 11 Representative loading function of nitrate NO3 to the water
table in the Modesto study area. Loading functions are given as prob-
ability distribution functions, here showing the minimum, mean, and

maximum, varying over time. The solid lines are derived from Green
et al. [34]. The dashed lines correspond to a hypothetical future scenario
with continually reduced nitrate loading throughout the 21st century
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Fig. 12 Nitrate NO3 breakthrough curves (BTCs) in 1,501 wells (thin
grey), mean breakthrough (red), and percentile concentration distribu-
tion (thick grey), in steps of (10%) across all wells and gaining rivers
(bluish lines) in the Modesto sub basin, predicted by the hypothetical

loading function (mean loading shown in black dashed line). High-
est concentrations of nitrate are measured in wells with fast response
times, typically shallower wells with relatively short screens

The average BTC (across all production wells) closely
follows the loading function, but with several decades delay.
The abrupt reduction of loading that occurs in the mid-
1990s does not reverse the mean groundwater nitrate until
approximately 2025, 30 years later.

In contrast to wells, the river response is significantly
faster. The Stanislaus and Merced Rivers respond very sim-
ilarly with a time lag of approximately 5 years. Only the
Tuolomne River has a larger time lag of about 10 years
which can be attributed to the fact that groundwater stream
lines to the Tuolomne River have a mean length of 1.6 km,
significantly longer than the Stanislaus River (0.7 km) and
Merced River (0.9 km).

The concept of URFs as a tool for predicting con-
centration breakthrough curves allows us to run a large
number of scenarios using different loading functions
with minimal CPU time. This is illustrated here by
computing confidence limits to our predictions obtained
with the mean loading function. We generate 200 ran-
dom, first-order auto correlated time-series realizations
of spatially uniform, temporally varying nitrate loading
functions:

L(t) =L(t−1)ϕ+N(μ(t), σ (t))(1−ϕ) (3)

where ϕ expresses the correlation between the years.
Here, we choose ϕ= 0.7. μ(t) and σ(t) are the transient
mean and standard deviation at annual time step t . We
assume that loading is normally distributed. We compute
a transient standard deviation from the temporally vary-
ing reported minimum and maximum values (Fig. 11),
σ=√

n
(
CI+−CI−

)
/α, where n= 6 is the number of sam-

ples, CI+and CI− are the upper and lower limits of the
confidence intervals, and α is the normalized confidence
interval [42]. Due to the small number of samples, the con-
fidence interval α is calculated from the t distribution with
upper and lower limits equal to 0.99.

The 200 realizations were convolved with the well URFs
to generate 200 BTCs for each well (Fig. 13). The time to
convolute 100 URFs with the loading functions, i.e., to com-
pute one well BTC is 6 ms, and the time to compute 1,501
well BTCs is on the order of 9 s; therefore, the time for
the stochastic simulation was on the order of 30 min on a
serial implementation. When executed in parallel, using a
workstation with eight cores, the stochastic simulation time
reduces to ∼3 min.

The variability at an individual well due to uncertain
loading can be quite significant. Figure 13 (right) shows the
mean response (solid lines) for five selected wells which
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Fig. 13 (Left) Stochastic realizations of loading functions. The black line correspond to mean loading. (Right) Response of five representative
wells to stochastic loading scenarios. Solid lines represent the mean, dashed lines the minimum and maximum values across all realizations

span the entire spectrum of well responses of the Modesto
aquifer and the minimum and maximum limits (dashed
lines). Shallow wells with short travel times (red, green
lines) exhibit greater variability compared to deeper wells
associated with large travel times (magenta, orange lines),
which can be attributed to the mixing effects that take place
in the deep wells. We also see that the yearly temporal vari-
ability is smoothed out in the deep wells mainly due to
dispersion along the streamlines.

To better understand well response, we group the wells
into four categories according to their depth and screen
length. Clusters are determined using the k-means method,
which attempts to minimize the sums of points-to-cluster-
centroid distances (Fig. 14). The first group (green) includes
the very shallow wells with depth less than 50 m and screen
lengths that vary from a few meters to about 50 m. The
screen lengths for the next group of wells (blue) spans from

25 to 75 m and their depths vary between 50 and 90 m.
The majority of the screen lengths of the third group spans
between 40 and 90 m, yet there are four rather deep wells
(about 120 m) with relatively short screen lengths of about
30 m. The well depth for the third group spans from 70 m to
130 m. The last group contains very deep wells with more
than 100 m depth and screen lengths greater than 80 m.

For each group of wells, we calculate the median BTC
concentration in a given year. For comparison, we also
compute a median group BTC obtained by applying the
annual mean of the loading realizations to the URFs (Fig. 14
(right)). The time lags from the shallowest to the deepest
group vary from 13, 19, and 26 to 38 years, respectively. The
stochasticity of the load forcing has practically no impact on
the time lag, i.e., the time lag between realizations is very
similar. On the other hand, we observe that the maximum
range of mean concentration is on the same order (∼23mg/L)

Fig. 14 (Left) Well cluster categories based on the screen length and
well depth. (Right) Mean response of each well group to stochastic
forcing. The solid colored line corresponds to the mean (from 200
loading realizations) of the median well concentration across 1501
wells. The indicated range is bounded by the annual minimum and

maximum median well concentration (from 200 loading realizations).
The dotted line is the mean stochastic nitrate loading concentration.
The dashed lines correspond to the median BTC of each group of wells
obtained by applying the respective group mean loading function to
the URF
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for all groups, except the shallowest group which is slightly
higher (∼26 mg/L).

By comparing each group’s median BTC based on the
mean loading function with annual median concentration
obtained from the stochastic simulation, we observe that
there is very good agreement. But, the stochastic simulation
of nitrate loading has the advantage of providing confidence
intervals to the estimations, without significantly increas-
ing the computational burden relative to the deterministic
simulation.

6 Conclusion

The paper proposes and demonstrates a parallel computa-
tional framework for the simulation of non-point source
pollution in large groundwater basins, which requires a
high-resolution groundwater flow and transport simulation
approach. We employed an algebraic multigrid method
which was efficiently used as preconditioner to a conjugate
gradient method to solve a large groundwater flow problem
with ∼11.5 million dofs.

In our study, we compared two AMG implementations,
namely, multilevel preconditioning provided by the Trilinos
library and Boomer AMG provided by the HYPRE library.
Sensitivity analysis of the solver execution time with respect
to solver parameters showed that optimal implementation
in each library is achieved by quite different configura-
tions. Optimal configuration of AMG is therefore found not
only problem-dependent but also library-dependent. With
either libraries, in default configuration, the application
problem was solved on a single computer with eight pro-
cessors. Both libraries are shown to scale linearly with
the number of processors. Optimizing appropriate coars-
ening and smoothing methods reduced execution time by
2–5 times. For the solution of the steady-state groundwa-
ter flow equation of our application, changing multigrid
cycle types or the number of levels did not result in
further reduction of the execution time. Sensitivity anal-
ysis over the parameters related to the coarsening and
smoothing methods indicates that default values are care-
fully chosen in both libraries as no further improvement
was achieved. In our example, Trilinos appears more effi-
cient compared to HYPRE. From implementation point
of view, both libraries provide a relatively easy-to-use
interface.

We couple the high-resolution groundwater flow solution
(less than 20 m near flow receptors and sources) of a 2,600-
km2 groundwater basin to a parallel version of a streamline
transport simulator and compute 150,100 URFs to simulate
pollutant transport to 1,501 wells and 13,136 URFs to simu-
late non-point source pollutant transport via groundwater to
nearly 65 km of gaining stream segments. The URFs were

convolved with a loading function derived from field esti-
mates [34] to simulate 200 years of nitrate transport, from
1900 to 2100. We demonstrate that there is a significant
time lag between the time of nitrate loading and response in
groundwater wells. The mean aquifer response time varies
between 5 and 50 years depending on well depth and screen
length. In contrast, the gaining stream segments of the study
area respond more rapidly with average time lags of 5 to
10 years.

The efficiency of the URF-based transport simulator
lends itself for stochastic simulations of nitrate loading.
Here, stochastic transport of nitrate is demonstrated via
Monte Carlo simulation of 200 realizations of spatiotempo-
rally distributed nitrate loading across the entire 2,600-km2

groundwater basin. Two hundred realizations of two cen-
turies of nitrate breakthrough across the 1,501 basin wells
are obtained with a total CPU time on the order of 3 min
on a standard desktop PC. The BTCs based on mean nitrate
loading are similar to the median of BTCs obtained from the
stochastic simulation, indicating the usefulness of the mean
nitrate loading approach. However, the Monte Carlo simu-
lation also provides a statistical concentration distribution
to quantify uncertainty about well (or stream) pollution as a
function of time and (arbitrary) geographic subregion.

While the present paper utilizes spatially uniform loading
functions for demonstration purposes, the extension to spa-
tially variable loading function due to land-use heterogene-
ity does not pose an added computational burden. Future
work will evaluate the impact of spatial heterogeneity in
nitrate loading. Importantly, with these short CPU times,
the transport simulation tool can be employed for agro-
nomic systems optimization, as a planning tool, or as part of
Bayesian statistical or other Monte Carlo simulation-based
inverse modeling approaches.
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