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Abstract This paper develops a general abstract framework
for a posteriori estimates for immiscible incompressible
two-phase flows in porous media. We measure the error
by the dual norm of the residual and, for mathematical
correctness, employ the concept of global and comple-
mentary pressures in the analysis. Our estimators allow to
estimate separately the different error components, namely,
the spatial discretization error, the temporal discretization
error, the linearization error, the iterative coupling error, and
the algebraic solver error. We propose an adaptive algo-
rithm wherein the different iterative procedures (iterative
linearization, iterative coupling, iterative solution of lin-
ear systems) are stopped when the corresponding errors do
not affect significantly the overall error and wherein the
spatial and temporal errors are equilibrated. Consequently,
important computational savings can be achieved while
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guaranteeing a user-given precision. The developed frame-
work covers fully implicit, implicit pressure–explicit satura-
tion, or iterative coupling formulations; conforming spatial
discretization schemes such as the vertex-centered finite
volume method or the finite element method and noncon-
forming spatial discretization schemes such as the cell-
centered finite volume method, the mixed finite element
method, or the discontinuous Galerkin method; lineariza-
tions such as the Newton or the fixed-point one; and general
linear solvers. Numerical experiments for a model problem
are presented to illustrate the theoretical results. Only by
stopping timely the linear and nonlinear solvers, speedups
by a factor between 10 and 20 in terms of the number of
total linear solver iterations are achieved.

Keywords Two-phase flow · A posteriori error estimate ·
General framework · Discretization error · Linearization
error · Iterative coupling error · Algebraic solver error

1 Introduction

Let an open bounded polygonal (polyhedral) domain � ⊂
R

d , d = 2, 3, and a time interval (0, T ), T > 0, be
given and set Q := � × (0, T ). We consider the immisci-
ble incompressible two-phase flow in porous media in the
space–time cylinder Q in the form

∂t (φsα) − ∇·
(

kr,α(sw)

μα

K(∇pα + ραg∇z)

)
= qα, (1.1a)

sn + sw = 1, (1.1b)

pn − pw = pc(sw).

(1.1c)
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Here, the unknowns are sα , the phase saturations, and pα ,
the phase pressures, α ∈ {n, w}. The subscripts n, w stand
for nonwetting and wetting, respectively. Typically, the non-
wetting phase is oil and the wetting one is water. For the
sake of simplicity, we suppose that the porosity φ, as well
as the phase viscosities μα and the phase densities ρα , are
constant. The permeability tensor K and the phase sources
qα , α ∈ {n, w}, are only supposed to depend on the space
coordinate x and on the time t . For the sake of simplicity,
we suppose qα piecewise constant in time on time mesh
defined below. In (1.1a)–(1.1c), z stands for the vertical
coordinate and g for the gravitation acceleration constant.
The system (1.1a)–(1.1c) is nonlinear and coupled because
of the presence of pc, the capillary pressure, and of kr,α ,
the phase relative permeabilities, which are all given func-
tions of the wetting phase saturation sw. For example, in the
Brooks–Corey [16] model,

kr,w(sw) = s4
e , kr,n(sw) = (1 − se)

2
(

1 − s2
e

)

and

pc(sw) = pds
− 1

2
e ,

where

se := sw − srw

1 − srw − srn
.

Here, pd is the entry pressure and srw and srn are respec-
tively the wetting and nonwetting residual saturations.
System (1.1a)–(1.1c) is degenerate as the phase relative
permeabilities kr,α can become zero.

Define the phase Darcy velocities uα , α ∈ {n, w}, by

uα := −kr,α(sw)

μα

K(∇pα + ραg∇z). (1.2)

The initial condition is imposed through

sw(·, 0) = s0
w in �. (1.3)

For the sake of simplicity, we suppose homogeneous
Neumann and Dirichlet boundary conditions:

uα·n� = 0 on �N × (0, T ), α ∈ {n, w}, (1.4a)

sw = pw = 0 on �D × (0, T ). (1.4b)

Here, ∂� = �N ∪ �D, �N ∩ �D = ∅; both �N and
�D are simply connected, and �D is of nonzero measure.
Conditions (1.4) can be replaced by more realistic ones.

Problem (1.1a)–(1.4b) is of fundamental importance in
petroleum engineering. Many results on this problem and
on its numerical approximation have been derived in the
past. The analysis of (1.1a)–(1.4b) including the existence,
uniqueness, and well-posedness results has been carried out
in [4, 6, 7, 18, 21, 23–25, 51, 54] (see also [3, 34, 60]
and the references therein for degenerate problems). For
the use and analysis of mixed finite element methods for
the numerical approximation of (1.1a)–(1.4b), we refer to,

e.g., [9, 33, 73] and the references therein; for discontinu-
ous Galerkin methods to, e.g., [8, 38–40] and the references
therein; for cell-centered finite volume methods to, e.g., [45]
and the references therein; and for vertex-centered finite
volume methods to, e.g., [48] and the references therein.
Multiscale and mortar techniques, efficient parallelization,
and multinumerics and multiphysics formulations have been
investigated in [63]. First adaptive mesh refinement strate-
gies were prosed and tested in, e.g., [22, 26, 27, 53, 66].
Linearization, linear solver techniques, and stopping criteria
for multiphase flows are discussed in, e.g., [55, 56, 72].

The purpose of the present paper is to derive a poste-
riori estimates for numerical approximations of the prob-
lem (1.1a)–(1.4b). Our estimates give a guaranteed and
fully and easily computable upper bound on the selected
error measure, the dual norm of the residual augmented
by the distance of the approximate global and complemen-
tary pressures to proper function spaces. Recall that such
error measure leads to the energy error for linear prob-
lems (cf., e.g., [42]), and it is shown in [19] that this is an
upper bound on the error between the exact and approximate
saturations, global pressures, and complementary pressures
for conforming discretizations. Our estimates also allow
to distinguish, estimate separately, and compare different
error components. The principal error component is the dis-
cretization error, due to the numerical scheme chosen, the
local space mesh size, and the local time mesh size. This
can be decomposed into space discretization error and time
discretization error. The subsidiary error component is the
error due to various iterative procedures involved in the
calculation. This includes linearization error, iterative cou-
pling error, or linear solver error. We next devise adaptive
algorithms where all the iterative procedures on a given time
level are stopped whenever the individual errors drop to
the level at which they do not affect significantly the over-
all error. Simultaneously, the space and time discretization
errors are adjusted so that they are of similar size.

The benefits of such a procedure are twofold. Firstly,
the overall error is controlled and strategies for obtaining
a user-given final precision at the end of the simulation
can be devised. Secondly, it is likely to lead to important
computational savings, as performing an excessive number
of unnecessary linearization/iterative coupling/linear solver
iterations and using too fine (with respect to the other com-
ponents of the error) space or time meshes can be avoided.
These concepts have been known for long time in the engi-
neering practice, but only recently, rigorous mathematical
analysis has been started in model cases. In particular, lin-
ear solver error estimation and linear solver stopping criteria
have been developed in, e.g., [10, 13, 61]; nonlinear solver
error estimation and nonlinear solver stopping criteria are
treated in, e.g., [20, 46]; and spatial and temporal errors are
estimated and balanced in, e.g., [58, 64, 65, 68]. Inexact
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Newton methods have been studied in, e.g., [11, 17, 29, 30,
35, 36, 59]. Herein, we build upon the results of [37, 42,
43, 47, 49] which give guaranteed and robust a posteriori
estimates with error components distinction.

The present paper gives a posteriori error estimates in
a general setting without a specification of the underlying
numerical treatment. Examples of the application of this
abstract framework to different discrete formulations, spa-
tial and temporal discretizations, linearizations, and linear
solvers are given in Section 6, with some further examples
in [19, 31]. In order to unify the presentation, we have cho-
sen once and for all as the primary unknowns the saturation
and pressure of the wetting phase. Adjustments to all other
choices are easily possible.

2 Preliminaries

We specify here the notation and function spaces used, char-
acterize the weak solution, give our assumptions on the
approximate solutions, and define the error measure.

2.1 Function spaces and space and time meshes

We denote by H 1(�) the Sobolev space of functions from
L2(�) which admit a weak gradient in [L2(�)]d . The sub-
space H 1

D(�) of H 1(�) contains functions with zero trace
on �D. H 1(�) and H 1

D(�) functions are continuous in the
sense of traces. Let H(div, �) be the space of vector-valued
functions from [L2(�)]d which admit a weak divergence
in L2(�). H(div, �) functions have a continuous normal
trace, so that H(div, �) is appropriate for representing
mass-conservative vectors. Denote

X := L2
(
(0, T ) ; H 1

D(�)
)

; (2.1)

for v ∈ X, we set

‖v‖X :=
{∫ T

0
‖∇v‖2dt

} 1
2

and observe that X is the usual energy space for parabo-
lic problems and that ‖v‖X is the associated energy norm.
Below, (·, ·) stands for the L2(�) scalar product and 〈·, ·〉
for the duality pairing of

(
H 1

D(�)
)′

and
(
H 1

D(�)
)
.

We consider a strictly increasing sequence of discrete
times {tn}0≤n≤N such that t0 = 0 and tN = T , together
with a set of meshes {T n

h }0≤n≤N . For all 1 ≤ n ≤ N , we
define the time interval In := (tn−1, tn] and the time step
τn := tn − tn−1. For all 0 ≤ n ≤ N , we assume that
T n

h covers exactly �. The meshes T n
h can be composed of

general polygonal (polyhedral) elements. For all K ∈ T n
h ,

hK denotes the diameter of the mesh element K . The dis-
crete times and meshes can be constructed by a space–time

adaptive time-marching algorithm such as those of
Sections 4.1, 4.3, 5.1, 5.2, and 5.4 below.

Let 0 ≤ n ≤ N . We first define the broken Sobolev space
H 1(T n

h ) as the space of all functions v ∈ L2(�) such that
v|K ∈ H 1(K) for all K ∈ T n

h . The symbol ∇ denotes the
corresponding broken gradient, i.e., a gradient of the func-
tion restricted to a mesh element K . We define P 1

τ

(
H 1(T )

)
as the space of functions v continuous and piecewise affine
in time, given by vn ∈ H 1(T n

h ) for every discrete time tn,
0 ≤ n ≤ N , i.e., {vn = v(·, tn)}0≤n≤N in H 1(T n

h ). We will
use a similar notation P 1

τ

(
H 1

D(�)
)

for functions continu-
ous and piecewise affine in time with values in H 1

D(�) and
denote

∂n
t v := ∂tv|In = 1

τn

(
vn − vn−1

)
. (2.2)

Similarly, P 0
τ (H(div, �)) stands for functions piecewise

constant in time with values in H(div, �); for v ∈
P 0

τ (H(div, �)), we set vn := v(·, t)|In .

2.2 Weak solution definition via the global
and complementary pressures

In order to characterize the error in an approximate solution
to (1.1a)–(1.4b), we first need to define the weak solution
of (1.1a)–(1.4b). Following [4, 6, 7, 23–25], we introduce
the global and complementary pressures. We would like
to stress that these mathematical quantities only appear in
order to describe the weak solution and to measure errors
but are not applied in the numerical schemes.

Let the phase mobilities be denoted by

λα(a) := kr,α(a)

μα

α ∈ {n, w}. (2.3)

We define the global pressure

p(sw, pw) := pw +
∫ sw

0

λn(a)

λw(a) + λn(a)
p′

c(a)da (2.4a)

and the complementary pressure

q(sw) := −
∫ sw

0

λw(a)λn(a)

λw(a) + λn(a)
p′

c(a)da. (2.4b)

Next, in order to simplify the arguments below, we define
the functions vα, α ∈ {n, w}, of wetting saturation and
pressure (sw, pw) by

vw(sw, pw) := − K (λw(sw)∇p(sw, pw) + ∇q(sw)

+λw(sw)ρwg∇z) , (2.5a)

vn(sw, pw) := − K (λn(sw)∇p(sw, pw) − ∇q(sw)

+λn(sw)ρng∇z) . (2.5b)

Note that vα(sw, pw) are formally equivalent to the phase
velocities uα given by (1.2) and are always well defined.

We suppose that the data are regular enough so that the
weak solution (sw, pw) to (1.1a)–(1.4b), setting sn := 1 −
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sw, can be characterized by

sw ∈ C
(
[0, T ]; L2(�)

)
, sw(·, 0) = s0

w,

∂t sw ∈ L2
(
(0, T ); (H 1

D(�))′
)

, (2.6a)

p(sw, pw) ∈ X, (2.6b)

q(sw) ∈ X, (2.6c)

∫ T

0
{〈∂t (φsα), ϕ〉 − (vα(sw, pw), ∇ϕ) − (qα, ϕ)} d t = 0

∀ϕ ∈ X, α ∈ {n, w}. (2.6d)

We refer to [19, 23, 45] for details.

2.3 Approximate saturations and pressures

Our a posteriori error estimates will be given for gen-
eral approximate wetting saturations sw,hτ and general
approximate wetting pressures pw,hτ , not linked to any
particular numerical scheme. More precisely, recalling the
definition of the space P 1

τ

(
H 1(T )

)
from Section 2.1, we

merely require sw,hτ , pw,hτ ∈ P 1
τ

(
H 1(T )

)
. Thus, cases

where sw,hτ and pw,hτ are nonconforming in the sense that
p(sw,hτ , pw,hτ ) �∈ X and q(sw,hτ ) �∈ X are included. In
general, the notation vhτ stands for a space–time function
continuous and piecewise affine in time and piecewise poly-
nomial in space on the meshes T n

h and vn
h := vhτ (·, tn),

0 ≤ n ≤ N , for the piecewise polynomial in space. We also
assume for simplicity that the initial and Dirichlet bound-
ary conditions are satisfied exactly, i.e., s0

w,h = s0
w and

sw,hτ = pw,hτ = 0 on �D×(0, T ).

2.4 Error measure

The first question in a posteriori error estimates is that of
the error “measure”. In linear problems, one usually chooses
the energy norm for a global error measure. In nonlinear
problems, the situation is more difficult. One approach con-
sists in taking the dual norm of the residual, i.e., of the
difference of the nonlinear operator applied to the exact and
approximate solutions (cf. [20, 32, 37, 43]). We also refer
to [5, 69] for the use of dual norms in singularly perturbed
linear problems. The advantage is that such a measure is dic-
tated by the problem at hand; it simplifies the analysis and
leads to sharper (and possibly robust, as in [32, 37, 43, 71])
estimates.

Let sw, pw and sw,hτ , pw,hτ be respectively the exact and
approximate wetting saturations and pressures as described
in Sections 2.2 and 2.3. Let sn := 1 − sw and sn,hτ := 1 −

sw,hτ . We define the error measure by

|||(sw − sw,hτ , pw − pw,hτ )|||

:=
⎧⎨
⎩
∑

α∈{n,w}

{
sup

ϕ∈X, ‖ϕ‖X=1

∫ T

0

{〈∂t (φsα) − ∂t (φsα,hτ ), ϕ〉
− (vα(sw, pw) − vα(sw,hτ , pw,hτ ),

∇ϕ
) }

dt

}2
⎫⎬
⎭

1
2

+
{

inf
p̂∈X

∫ T

0
‖K(λw(sw,hτ ) + λn(sw,hτ ))

∇(p(sw,hτ , pw,hτ ) − p̂)‖2dt

} 1
2

+
{

inf
q̂∈X

∫ T

0

∥∥K∇(q(sw,hτ ) − q̂)
∥∥2 dt

} 1
2

. (2.7)

For 1 ≤ n ≤ N , a local-in-time version on the time
interval In, consisting in replacing in (2.7) the time inte-
grals

∫ T

0 by
∫
In

and the space X by X|In , is denoted by
|||(sw − sw,hτ , pw − pw,hτ )|||In .

The first term of the error measure (2.7) represents the
dual norm of the residual; for p(sw,hτ , pw,hτ ) ∈ X and
q(sw,hτ ) ∈ X, it equals to zero if and only if sw,hτ coincides
with sw and pw,hτ with pw, whenever the weak solution is
unique. The second and third terms measure the nonconfor-
mity; the terms K(λw(sw,hτ ) + λn(sw,hτ )) and K in front
of the broken gradients represent weights with appropriate
physical units and are deduced from (2.5a)–(2.5b).

3 A general a posteriori error estimate

We present here a general a posteriori error estimate giving
a guaranteed and fully computable upper bound on the error
measure (2.7).

3.1 Pressure and velocity reconstructions

In order to proceed generally, without any specification of
the numerical treatment used, we now make the following
assumption:

Assumption 1 (Reconstructions) We assume that there
exist scalar functions p̂hτ and q̂hτ and vector functions
uα,hτ , α ∈ {n, w}, such that p̂hτ , q̂hτ ∈ X, uα,hτ ∈
P 0

τ (H(div, �)), and uα,hτ ·n� = 0 on �N × (0, T ), α ∈
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{n, w}. Moreover, we suppose that uα,hτ satisfy

(qn
α − ∂n

t (φsα,hτ ) − ∇·un
α,h, 1)K = 0

∀K ∈ T n
h , ∀1 ≤ n ≤ N, α ∈ {n, w}. (3.1)

We will call p̂hτ the global pressure reconstruction, q̂hτ

the complementary pressure reconstruction, and uα,hτ , α ∈
{n, w}, the phase velocity reconstructions.

Remark 1 (Pressure and velocity reconstructions) In the
continuous setting, the global pressure p(sw, pw) and the
complementary pressure q(sw) belong to the space X (see
(2.6b)–(2.6c)). Furthermore, the normal traces of the phase
velocities vα(sw, pw) (or uα), α ∈ {n, w}, are continuous
and the equilibrium condition

∂t (φsα) + ∇·uα = qα (3.2)

holds (cf. (1.1a) and (1.2)), which expresses the mass bal-
ance and local conservativity for the phase fluxes. These
properties are not necessarily satisfied at a discrete level.
The pressure reconstructions p̂hτ , q̂hτ and the velocity
reconstructions uα,hτ , α ∈ {n, w}, of Assumption 1 restore
the properties of the continuous level at the discrete one.

3.2 A posteriori error estimate

We now describe our estimators. Let a time step n, 1 ≤ n ≤
N , and a mesh element K ∈ T n

h be given. Recall first the
Poincaré inequality:

‖ϕ − ϕK‖K ≤ CP,KhK‖∇ϕ‖K ∀ϕ ∈ H 1(K), (3.3)

where ϕK is the mean value of the function ϕ on the element
K and CP,K = 1/π whenever the element K is convex [12,
62]. For α ∈ {n, w}, define the residual estimators

ηn
R,K,α := CP,KhK‖qn

α − ∂n
t (φsα,hτ ) − ∇·un

α,h‖K (3.4a)

and the flux estimators

ηn
F,K,α(t) := ‖un

α,h − vα(sw,hτ , pw,hτ )(t)‖K . (3.4b)

The nonconformity estimators are given by

ηn
NC,K,1(t) := ‖K(λw(sw,hτ ) + λn(sw,hτ ))

∇(p(sw,hτ , pw,hτ ) − p̂hτ )‖K(t), (3.4c)

ηn
NC,K,2(t) := ‖K∇(q(sw,hτ ) − q̂hτ )‖K(t). (3.4d)

We then have the following result:

Theorem 1 (A posteriori estimate of the overall error)
Let (sw, pw) be the weak wetting saturation and pres-
sure characterized by (2.6a)–(2.6d). Let (sw,hτ , pw,hτ ) ∈[
P 1

τ (H 1(T ))
]2

be the approximate wetting saturation and
pressure. Let the pressure and velocity reconstructions p̂hτ ,
q̂hτ , and uα,hτ , α ∈ {n, w}, satisfy Assumption 1. Let the

estimators be given by (3.4a)–(3.4d). Then,

|||(sw − sw,hτ , pw − pw,hτ )|||

≤
⎧⎨
⎩
∑

α∈{n,w}

N∑
n=1

∫
In

∑
K∈T n

h

(
ηn

R,K,α + ηn
F,K,α(t)

)2
dt

⎫⎬
⎭

1
2

+
⎧⎨
⎩

N∑
n=1

∫
In

∑
K∈T n

h

(
ηn

NC,K,1(t)
)2 dt

⎫⎬
⎭

1
2

+
⎧⎨
⎩

N∑
n=1

∫
In

∑
K∈T n

h

(
ηn

NC,K,2(t)
)2 dt

⎫⎬
⎭

1
2

. (3.5)

Proof The proof is straightforward using the definition of
the error measure (2.7) and Assumption 1. The second and
third terms in (3.5) follow immediately from (2.7). We thus
only have to establish that the first term is an upper bound on
the corresponding term in (2.7). Let α ∈ {n, w} and ϕ ∈ X

with ‖ϕ‖X = 1 be given. Then, (2.6d) implies that
∫ T

0

{〈∂t (φsα) − ∂t (φsα,hτ ), ϕ〉
−(vα(sw, pw) − vα(sw,hτ , pw,hτ ), ∇ϕ)

}
dt

=
∫ T

0

{
(qα − ∂t (φsα,hτ ), ϕ) + (vα(sw,hτ , pw,hτ ), ∇ϕ)

}
dt.

Let now 1 ≤ n ≤ N be given. Adding and subtracting
(un

α,h, ∇ϕ) and applying the Green theorem, the assump-
tion (3.1), the Poincaré inequality (3.3), and the Cauchy–
Schwarz inequality,

(qn
α − ∂n

t (φsα,hτ ), ϕ) + (vα(sw,hτ , pw,hτ ), ∇ϕ)

= (qn
α − ∂n

t (φsα,hτ ) − ∇·un
α,h, ϕ)

+(vα(sw,hτ , pw,hτ ) − un
α,h, ∇ϕ)

=
∑

K∈T n
h

{
(qn

α − ∂n
t (φsα,hτ ) − ∇·un

α,h, ϕ − ϕK)K

+ (vα(sw,hτ , pw,hτ ) − un
α,h, ∇ϕ)K

}
≤
∑

K∈T n
h

{
(ηn

R,K,α + ηn
F,K,α(t))‖∇ϕ‖K

}
.

Thus,

N∑
n=1

∫
In

{〈∂t (φsα) − ∂n
t (φsα,hτ ), ϕ〉

−(vα(sw, pw) − vα(sw,hτ , pw,hτ ), ∇ϕ)
}

dt

≤
N∑

n=1

∫
In

∑
K∈T n

h

{
(ηn

R,K,α + ηn
F,K,α(t))‖∇ϕ‖K

}
dt.

The theorem follows by the Cauchy–Schwarz inequality and
using ‖ϕ‖X = 1.
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3.3 Concept of application to different numerical methods

For the theoretical analysis of this paper, we only need
Assumption 1. The practical application of the present
framework to different numerical methods consists in spec-
ifying the construction of p̂hτ , q̂hτ , and uα,hτ , α ∈ {n, w},
that we outline now.

In conforming methods, one obtains p(sw,hτ , pw,hτ ) ∈
X and q(sw,hτ ) ∈ X, so that we can immediately
set p̂hτ := p(sw,hτ , pw,hτ ) and q̂hτ := q(sw,hτ ). In
nonconforming numerical methods, we typically choose
p̂hτ ∈ P 1

τ (H 1
D(�)), p̂n

h := Iav(p(s
n
w,h, pn

w,h)), 0 ≤
n ≤ N , and q̂hτ ∈ P 1

τ (H 1
D(�)), q̂n

h := Iav(q(s
n
w,h)),

0 ≤ n ≤ N . Here, Iav is a postprocessing aver-
aging operator which sets the Lagrangian degrees of
freedom inside � to the average of the values from
the different elements sharing this degree of freedom
(see [1, 50]).

The choice of uα,hτ , α ∈ {n, w}, is more involved. In
mixed finite element methods, in addition to the approxi-
mate wetting saturation sw,hτ and pressure pw,hτ described
in Section 2.3, one also directly obtains phase velocity
approximations uα,hτ ∈ P 0

τ (H(div, �)), α ∈ {n, w}, sat-
isfying (3.1). More precisely, for every time interval In,
1 ≤ n ≤ N , typically un

α,h ∈ RTN(T n
h ), where RTN(T n

h ) is
the Raviart–Thomas–Nédélec finite-dimensional subspace
of H(div, �) (cf. [15]). In other numerical methods, obtain-
ing uα,hτ ∈ P 0

τ (H(div, �)) satisfying (3.1) is possible
by means of local postprocessing. In the context of lin-
ear elliptic equations, we refer the reader to [44, 70] for
cell-centered finite volume methods, to [2, 41, 52] for
discontinuous Galerkin methods, and to [14, 28, 57, 71]
for vertex-centered finite volume and finite element meth-
ods. For nonlinear elliptic equations, such constructions are
unified for different numerical methods in [43]. In the con-
text of two-phase flows, the constructions of uα,hτ , α ∈
{n, w}, can be found in [31] for cell-centered finite vol-
ume methods, in [19] for vertex-centered finite volume
methods, and in [8, 39, 40] for the discontinuous Galerkin
method.

4 Stopping criteria and adaptivity for fully implicit
discretizations

In this section, we show how the abstract a posteriori error
estimate of Section 3 can be adopted to fully implicit
discretizations of (1.1a)–(1.4b). We also describe how to
take into account the additional error from iterative lin-
earization and iterative solution of algebraic linear systems
and distinguish the different error components. We finally
propose stopping criteria for the various iterations and
design a fully adaptive algorithm.

4.1 A fully implicit formulation

Keeping pw and sw as unknowns and expressing sn as a
function of sw from (1.1b) and pn as a function of pw and
sw from (1.1c), we arrive at the following equivalent form
of (1.1a)–(1.1c):

∂t (φsw) − ∇· (λr,w(sw)K(∇pw + ρwg∇z)
) = qw,

(4.1a)

−∂t (φsw) − ∇· (λr,n(sw)K (∇(pw + pc(sw))

+ρng∇z)
) = qn. (4.1b)

Let us now suppose some discretization of the above sys-
tem in both space and time, starting from s0

w,h ∈ H 1(T 0
h ).

We suppose implicit (backward Euler) discretization in
time. This leads, on a time level n, 1 ≤ n ≤ N , to a system
of nonlinear algebraic equations that can be schematically
written in the form
(
SS

n
w SP

n
w

SS
n
n SP

n
n

)(
Sn

w
P n

w

)
=
(

Dn
w

Dn
n

)
, (4.2)

where Sn
w is the algebraic vector of discrete unknowns cor-

responding to the wetting saturation sn
w,h and P n

w is the
algebraic vector of discrete unknowns corresponding to the
wetting pressure pn

w,h. In practice, (4.2) is solved using an
iterative linearization such as the Newton–Raphson method
combined with an iterative algebraic solver, by means of the
following algorithm:

1. Let the initial wetting saturation S0
w (and pressure P 0

w)
be given. Set n = 1.

2. Set up the system of nonlinear algebraic equations
leading to (4.2).

3. (a) Choose some initial wetting saturation S
n,0
w

and pressure P
n,0
w . Typically, these are the sat-

uration and pressure from the last time step,
Sn−1

w and P n−1
w . Set k := 1.

(b) Set up the following linear system: find S
n,k
w

and P
n,k
w , the solutions to

(
SS

n,k−1
w SP

n,k−1
w

SS
n,k−1
n SP

n,k−1
n

)(
S

n,k
w

P
n,k
w

)
=
(

D
n,k−1
w

D
n,k−1
n

)
.

(4.3)

Here, SSn,k−1
w , SPn,k−1

w , SSn,k−1
n , and SP

n,k−1
n

are matrices formed from S
n,k−1
w and P

n,k−1
w ,

and D
n,k−1
w and D

n,k−1
n are vectors likewise

formed from S
n,k−1
w and P

n,k−1
w .

(c) (i) Choose some initial saturation
S

n,k,0
w and pressure P

n,k,0
w . Typ-

ically, S
n,k,0
w = S

n,k−1
w and

P
n,k,0
w = P

n,k−1
w . Set i := 1.
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(ii) Perform a step of a chosen iterative
algebraic solver for the linear sys-
tem (4.3), starting from S

n,k,i−1
w and

P
n,k,i−1
w . This gives approximations

S
n,k,i
w and P

n,k,i
w .

(iii) Build piecewise polynomial repre-
sentations of the wetting saturations
and pressures s

n,k,i
w,h ∈ H 1(T n

h ) and

p
n,k,i
w,h ∈ H 1(T n

h ) from S
n,k,i
w and

P
n,k,i
w , according to the given numer-

ical method. Define the space–time
functions s

n,k,i
w,hτ and p

n,k,i
w,hτ ; these are

affine in time on the time interval In,
given by sn−1

w,h and pn−1
w,h at time tn−1

and by s
n,k,i
w,h and p

n,k,i
w,h at time tn. We

use this refined notation in place of
sw,hτ , pw,hτ of Section 2.3.

(iv) This step only concerns noncon-
forming methods. From s

n,k,i
w,h and

p
n,k,i
w,h , prescribe the reconstructions

p̂n,k,i
h := Iav

(
p
(
s
n,k,i
w,h , p

n,k,i
w,h

))
and

q̂n,k,i
h := Iav

(
q
(
s
n,k,i
w,h

))
. Define the

global pressure reconstruction p̂n,k,i
hτ

and the complementary pressure
reconstruction q̂n,k,i

hτ (cf. Assumption
1) affine in time on the time inter-
val In by p̂n−1

h and q̂n−1
h at time tn−1

(constructed from s0
w,h, p0

w,h for n =
1) and by p̂n,k,i

h and q̂n,k,i
h at time tn.

(v) From the discretization, build the
phase velocity reconstructions
un,k,i

α,h ∈ RTN(T n
h ), α ∈ {n, w} (cf.

Assumption 1). More precisely, the
goal is to obtain the decompositions,
α ∈ {n, w},

un,k,i
α,h = dn,k,i

α,h + ln,k,i
α,h + an,k,i

α,h ,

(4.4a)

dn,k,i
α,h , ln,k,i

α,h , an,k,i
α,h ∈ RTN(T n

h ).

(4.4b)

Herein, an,k,i
α,h will be used to monitor

the error in the solution of the lin-
ear algebraic system (4.3), ln,k,i

α,h will
be used to monitor the error in the
linearization of (4.2) by (4.3), and
dn,k,i

α,h will be used to monitor the

discretization error. Structurally, this
can be achieved as follows:

(A) From the given numeri-
cal method, reconstruct
locally dn,k,i

α,h , α ∈ {n, w}.
Typically, the degrees
of freedom of dn,k,i

α,h are
directly prescribed using
the available functions
vα(s

n,k,i
w,h , p

n,k,i
w,h ); in any

case, this construction
should be independent of
the linearization used to
obtain (4.3) and of the iter-
ative algebraic solver used
to solve (4.3).

(B) From S
n,k,i
w and P

n,k,i
w ,

compute the algebraic
residual vectors R

n,k,i
w and

R
n,k,i
n of (4.3):

(
R

n,k,i
w

R
n,k,i
n

)

:= −
(
SS

n,k−1
w SP

n,k−1
w

SS
n,k−1
n SP

n,k−1
n

)

×
(

S
n,k,i
w

P
n,k,i
w

)

+
(

D
n,k−1
w

D
n,k−1
n

)
. (4.5)

(C) For simplicity, in this
and in the next step, we
suppose s

n,k,i
w,h and p

n,k,i
w,h

piecewise constant on
T n

h . Generalizations fol-
low as in [43]. From the
given numerical method,
define implicitly ln,k,i

α,h ,
α ∈ {n, w}, such that

(
qn

α − ∂n
t

(
φs

n,k,i
α,hτ

)

−∇·
(

dn,k,i
α,h + ln,k,i

α,h

)
, 1
)

K

= Rn,k,i
α |K ∀K ∈ T n

h ,

α ∈ {n, w}. (4.6)

It is crucial to ensure that∥∥∥ln,k,i
α,h

∥∥∥ go to zero when

S
n,k
w , P

n,k
w , the solutions of

(4.3), converge to Sn
w, P n

w,
the solution of (4.2).
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(D) Construct locally an,k,i
α,h ,

α ∈ {n, w}, such that

(
∇·an,k,i

α,h , 1
)

K
= Rn,k,i

α |K
∀K ∈ T n

h , α ∈ {n, w},
(4.7)

using, for instance, the
algorithm of [49, Sec-
tion 7.3] or the
simplification of [43, Sec-
tion 4]. It is crucial to

ensure that
∥∥∥an,k,i

α,h

∥∥∥ go to

zero when Rn,k,i
α go to

zero.

(vi) Check the convergence criterion for
the linear solver (see (4.13a) below);
if this criterion is reached, set S

n,k
w :=

S
n,k,i
w and P

n,k
w := P

n,k,i
w . If not, set

i := i + 1 and go back to step 3(c)ii.
(d) Check the convergence criterion for the non-

linear solver (see (4.13b) below); if this cri-
terion is reached, set Sn

w := S
n,k
w , P n

w :=
P

n,k
w , and, for nonconforming methods, p̂n

h :=
p̂n,k,i
h , q̂n

h := q̂n,k,i
h . If not, k := k + 1 and go

back to step 3(b).
4. Check whether the spatial and temporal errors are com-

parable (see (4.13c) below), whether the spatial errors
are equally distributed in the computational domain (see
(4.13d) below), and whether the total error is small
enough (see (4.13e) below); if this is the case and tn <

T , set n := n+1 and go to step 2. If not, refine the time
step τn and/or the space mesh T n

h and go to step 2.

4.2 An a posteriori error estimate distinguishing the space,
time, linearization, and algebraic errors

We now further develop the framework of Section 3 in order
to distinguish the space, time, linearization, and algebraic
errors.

Fix α ∈ {n, w} and consider the algorithm of Section 4.1
on the nth time step, linearization step k, and iterative alge-
braic solver step i. Observe from (4.4a), (4.6), and (4.7) that
un,k,i

α,h satisfies

(
qn
α − ∂n

t

(
φs

n,k,i
α,hτ

)
− ∇·un,k,i

α,h , 1
)

K
= 0 ∀K ∈ T n

h ,

(4.8)

i.e., un,k,i
α,h satisfies assumption (3.1). Rewriting (3.4a)–

(3.4d) with these notations, we pose, for K ∈ T n
h ,

η
n,k,i
R,K,α := CP,KhK

∥∥∥qn
α − ∂n

t

(
φs

n,k,i
α,hτ

)
− ∇·un,k,i

α,h

∥∥∥
K

,

(4.9a)

η
n,k,i
F,K,α(t) :=

∥∥∥un,k,i
α,h − vα

(
s
n,k,i
w,hτ , p

n,k,i
w,hτ

)
(t)

∥∥∥
K

, (4.9b)

η
n,k,i
NC,K,1(t) :=

∥∥∥K
(
λw

(
s
n,k,i
w,hτ

)
+ λn

(
s
n,k,i
w,hτ

))

∇
(
p
(
s
n,k,i
w,hτ , p

n,k,i
w,hτ

)
− p̂n,k,i

hτ

)∥∥∥
K

(t),

(4.9c)

η
n,k,i
NC,K,2(t) :=

∥∥∥K∇
(
q
(
s
n,k,i
w,hτ

)
− q̂n,k,i

hτ

)∥∥∥
K

(t). (4.9d)

We then have, as in Section 3.2, the local-in-time iterative-
algorithms-running version of Theorem 1:

Corollary 1 (Local-in-time estimate for linearization and
algebraic iterates) Let (sw, pw) be the weak wetting satura-
tion and pressure characterized by (2.6a)–(2.6d). Consider
the nth time step, kth linearization step, and ith alge-
braic solver step of the algorithm in Section 4.1. Let s

n,k,i
w,hτ

and p
n,k,i
w,hτ , p̂n,k,i

hτ and q̂n,k,i
hτ , and un,k,i

α,h be as specified in
Section 4.1. Let the estimators be given by (4.9a)–(4.9d).
Then,
∣∣∣∣∣∣∣∣∣(sw − s

n,k,i
w,hτ , pw − p

n,k,i
w,hτ

)∣∣∣∣∣∣∣∣∣
In

≤ ηn :=
⎧⎨
⎩
∑

α∈{n,w}

∫
In

∑
K∈T n

h

(
η

n,k,i
R,K,α+η

n,k,i
F,K,α(t)

)2
dt

⎫⎬
⎭

1
2

+
⎧⎨
⎩
∫

In

∑
K∈T n

h

(
η

n,k,i
NC,K,1(t)

)2
dt

⎫⎬
⎭

1
2

+
⎧⎨
⎩
∫

In

∑
K∈T n

h

(
η

n,k,i
NC,K,2(t)

)2
dt

⎫⎬
⎭

1
2

. (4.10)

We now distinguish the different error components.
Define the spatial estimator

η
n,k,i
sp,K (t) :=

⎧⎨
⎩
∑

α∈{n,w}

(∥∥∥dn,k,i
α,h − vα

(
s
n,k,i
w,h , p

n,k,i
w,h

)∥∥∥
K

+ η
n,k,i
R,K,α

)2 +
(
η

n,k,i
NC,K,1(t)

)2

+
(
η

n,k,i
NC,K,2(t)

)2

⎫⎬
⎭

1
2

(4.11a)
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and, for α ∈ {n, w}, the temporal estimators

η
n,k,i
tm,K,α(t) :=

∥∥∥vα

(
s
n,k,i
w,hτ , p

n,k,i
w,hτ

)
(t)−vα

(
s
n,k,i
w,h , p

n,k,i
w,h

)∥∥∥
K

,

(4.11b)

the linearization estimators

η
n,k,i
lin,K,α :=

∥∥∥ln,k,i
α,h

∥∥∥
K

, (4.11c)

and the algebraic estimators

η
n,k,i
alg,K,α :=

∥∥∥an,k,i
α,h

∥∥∥
K

. (4.11d)

Define also global versions of these estimators as

ηn,k,i
sp :=

⎧⎨
⎩3
∫

In

∑
K∈T n

h

(
η

n,k,i
sp,K (t)

)2
dt

⎫⎬
⎭

1
2

, (4.12a)

η
n,k,i
tm :=

⎧⎨
⎩
∑

α∈{n,w}

∫
In

∑
K∈T n

h

(
η

n,k,i
tm,K,α(t)

)2
dt

⎫⎬
⎭

1
2

, (4.12b)

η
n,k,i
lin :=

⎧⎨
⎩
∑

α∈{n,w}
τn
∑

K∈T n
h

(
η

n,k,i
lin,K,α

)2

⎫⎬
⎭

1
2

, (4.12c)

η
n,k,i
alg :=

⎧⎨
⎩
∑

α∈{n,w}
τn
∑

K∈T n
h

(
η

n,k,i
alg,K,α

)2

⎫⎬
⎭

1
2

. (4.12d)

Corollary 1 and the triangle and Cauchy–Schwarz
inequalities yield:

Corollary 2 (An a posteriori error estimate distinguishing
the space, time, linearization, and algebraic errors) Let the
assumptions of Corollary 1 be satisfied. Let the estimators
be given by (4.12a)–(4.12d). Then,∣∣∣∣∣∣∣∣∣(sw − s

n,k,i
w,hτ , pw − p

n,k,i
w,hτ

)∣∣∣∣∣∣∣∣∣
In

≤ ηn,k,i
sp + η

n,k,i
tm + η

n,k,i
lin + η

n,k,i
alg .

4.3 Stopping criteria and optimal balancing of the different
error components

We now discuss how to balance the error components of
Corollary 2.

In step 3(c)vi of the algorithm in Section 4.1, we evaluate
η

n,k,i
sp , η

n,k,i
tm , η

n,k,i
lin , and η

n,k,i
alg and apply

η
n,k,i
alg ≤ γalg

(
ηn,k,i

sp + η
n,k,i
tm + η

n,k,i
lin

)
(4.13a)

as the stopping criterion for the iterative solution of the lin-
ear system (4.3). Here 0 < γalg ≤ 1 is a user-specified
weight. Criterion (4.13a) expresses that there is no need to
continue with the linear solver iterations if the overall error
is dominated by the other components.

Similarly, in step 3(d), we evaluate η
n,k,i
sp , η

n,k,i
tm , and

η
n,k,i
lin and stop the iterative linearization of (4.2) whenever

η
n,k,i
lin ≤ γlin

(
ηn,k,i

sp + η
n,k,i
tm

)
, (4.13b)

where 0 < γlin ≤ 1 is a user-specified weight. Criterion
(4.13b) expresses that there is no need to continue with the
linearization iterations if the overall error is dominated by
the other components.

Finally, in step 4, we evaluate η
n,k,i
sp , η

n,k,i
tm , and η

n,k,i
sp,K for

all K ∈ T n
h . The purpose is to achieve

ηn,k,i
sp ≈ η

n,k,i
tm , (4.13c)

{∫
In

(
η

n,k,i
sp,K (t)

)2
dt

} 1
2

are comparable for all K ∈ T n
h ,

(4.13d)

and

ηn ≤ εn. (4.13e)

Here, ηn is given by (4.10) and εn is a user-specified cri-

terion for the maximal error allowed on the time interval
In.

Remark 2 (Local stopping criteria) Following [37, 43,
and 49], versions of (4.13a) and (4.13b) localized on each
element of the mesh T n

h should be used whenever one
intends to refine adaptively the meshes T n

h .

Remark 3 (Evaluation cost) The evaluation of the different
estimators of Corollaries 1 and 2 and of the stopping crite-
ria (4.13a)–(4.13e) has linear cost in terms of the number
of the elements of the meshes T n

h . Moreover, it can be done
completely in parallel. In practice, the estimators may be
only evaluated always after several iterations and various
computational simplifications may be devised. Examples
are given in Section 6 below.

5 Stopping criteria and adaptivity for implicit
pressure–explicit saturation-type discretizations

We describe here our a posteriori error estimates and stop-
ping criteria for implicit pressure–explicit saturations-type
discretizations.

5.1 Iterative coupling for the pressure–saturation
formulation

We first proceed as in Section 4 to obtain (4.1a)–(4.1b).
We keep the wetting phase saturation equation (4.1a), and
we replace the nonwetting phase saturation equation (4.1b)
by the sum of (4.1a) and (4.1b). We thus arrive at the
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following equivalent “pressure–saturation” formulation of
(1.1a)–(1.1c):

−∇·((λr,w(sw)+λr,n(sw))K(∇pw+ρwg∇z)

+λr,n(sw)K(∇pc(sw)+ρng∇z−ρwg∇z))=qw + qn,

(5.1a)

∂t (φsw) − ∇·(λr,w(sw)K(∇pw+ρwg∇z))=qw. (5.1b)

This formulation leads to the following solution algo-
rithm:

1. Let the initial wetting saturation s0
w,h ∈ H 1

(
T 0

h

) (
and

pressure p0
w,h ∈ H 1

(
T 0

h

))
be given. Set n = 1.

2. (a) Choose some initial wetting saturation s
n,0
w,h

(Sn,0
w is the corresponding algebraic vector).

Typically, this is the approximate saturation
from the last time step, sn−1

w,h . Similarly, for the

pressure, typically define p
n,0
w,h := pn−1

w,h . Set
k := 1.

(b) Set up the following linear elliptic problem,
arising from (5.1a), with pw as the unknown:

− ∇·
((

λr,w

(
s
n,k−1
w,h

)
+ λr,n

(
s
n,k−1
w,h

))

× K (∇pw + ρwg∇z) + λr,n

(
s
n,k−1
w,h

)

×K
(
∇pc

(
s
n,k−1
w,h

)
+ρng∇z−ρwg∇z

))
=qw + qn.

(5.2)

After a spatial discretization, this problem cor-
responds to, in matrix form,

P
n,k−1
wn P n,k

w = Dn,k−1
wn , (5.3)

where the matrix P
n,k−1
wn and the right-hand

side vector D
n,k−1
wn depend on S

n,k−1
w .

(c) (i) Choose some initial pressure P
n,k,0
w ;

typically, P
n,k,0
w = P

n,k−1
w . Set i :=

1.
(ii) Perform a step of a chosen iterative

algebraic solver for the solution of
(5.3), starting from P

n,k,i−1
w . At the

present stage, we have approxima-
tions S

n,k−1
w and P

n,k,i
w .

(iii) Build piecewise polynomial repre-
sentations of the wetting saturations
s
n,k−1
w,h ∈ H 1(T n

h ) and pressures

p
n,k,i
w,h ∈ H 1(T n

h ) from S
n,k−1
w and

P
n,k,i
w , according to the given numer-

ical method. Define the space–time

function p
n,k,i
w,hτ ; it is affine in time on

the time interval In, given by pn−1
w,h at

time tn−1 and by p
n,k,i
w,h at time tn.

(iv) Set up the following problem which
arises from (5.1b): find sw such that

− ∇·
(
λr,w

(
s
n,k−1
w,h

)

K
(
∇p

n,k,i
w,h + ρwg∇z

))
= qw − ∂t (φsw).

(5.4)

Discretize (5.4) in space and in
time. The temporal discretization
is explicit. This gives the vector
S

n,k,i
w . Build s

n,k,i
w,h ∈ H 1(T n

h ) and

the space–time approximation s
n,k,i
w,hτ ,

given by sn−1
w,h at tn−1 and by s

n,k,i
w,h at

tn.
(v) This step only concerns noncon-

forming methods. From s
n,k,i
w,h and

p
n,k,i
w,h , prescribe the reconstructions

p̂n,k,i
h := Iav

(
p
(
s
n,k,i
w,h , p

n,k,i
w,h

))
and

q̂n,k,i
h := Iav

(
q
(
s
n,k,i
w,h

))
. Define the

global pressure reconstruction p̂n,k,i
hτ

and the complementary pressure
reconstruction q̂n,k,i

hτ (cf. Assumption
1) affine in time on the time interval
In by p̂n−1

h and q̂n−1
h at time tn−1 and

by p̂n,k,i
h and q̂n,k,i

h at time tn.
(vi) From the given discretization, recon-

struct the phase velocities un,k,i
α,h ∈

RTN(T n
h ), α ∈ {n, w} (cf. Assump-

tion 1). More precisely, we need
to obtain the decompositions (4.4a)–
(4.4b). Here, an,k,i

α,h , ln,k,i
α,h , and dn,k,i

α,h

are used to monitor the algebraic,
iterative coupling, and discretization
error, respectively. Structurally, this
can be achieved as follows:

A From the given numerical
method, reconstruct locally
the fluxes dn,k,i

α,h , α ∈
{n, w}, as in step 3(c)vA
of the algorithm in Sec-
tion 4.1, using the func-

tions vα

(
s
n,k,i
w,h , p

n,k,i
w,h

)
.
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B From S
n,k−1
w and P

n,k,i
w ,

compute the algebraic
residual vector R

n,k,i
wn :

Rn,k,i
wn := −P

n,k−1
wn P n,k,i

w

+Dn,k−1
wn . (5.5)

C From the given method,
define a vector field ln,k,i

w,h +
ln,k,i
n,h ∈ RTN(T n

h ) such that

(
qn

w+qn
n−∇·

(
dn,k,i

n,h + dn,k,i
w,h

+ ln,k,i
w,h + ln,k,i

n,h

)
,1
)

K

=R
n,k,i
wn

∣∣∣
K

∀K∈T n
h .

(5.6)

In contrast to Section 4,
where ln,k,i

α,h is readily
obtained for each indi-
vidual phase α ∈ {n, w},
we have the sum of the
total “iterative coupling
error”. In order to obtain
ln,k,i
w,h ∈ RTN(T n

h ), we
apply local mass balance
from (5.4):

(
qn

w − ∂t

(
φs

n,k,i
w,hτ

)

−∇·
(

dn,k,i
w,h +ln,k,i

w,h

)
, 1
)

K

= 0 ∀K ∈ T n
h .

(5.7)

Combined with (5.6), this
also sets ln,k,i

n,h .

D Construct a vector an,k,i
n ∈

RTN(T n
h ) such that

(
∇·an,k,i

n , 1
)

K

= Rn,k,i
wn |K ∀K ∈ T n

h ,

(5.8)

using, for instance, the
algorithm of [49, Sec-
tion 7.3] or the
simplification of [43, Sec-
tion 4]. We set an,k,i

w equal
to zero, in view of the fact
that there is no algebraic

error associated with the
saturation equation (5.4).

(vii) Check the convergence criterion for
the linear solver (see (4.13a)); if the
criterion is reached, set P

n,k
w :=

P
n,k,i
w . If not, set i := i + 1 and go

back to step 2(c)ii.
(d) Check the convergence criterion for the itera-

tive coupling (see (4.13b)); if this criterion is
reached, set Sn

w := S
n,k,i
w , P n

w := P
n,k
w and,

for nonconforming methods, p̂n
h := p̂n,k,i

h , q̂n
h

:= q̂n,k,i
h . If not, set S

n,k
w := S

n,k,i
w , k := k + 1,

and go back to step 2(b).
3. Check whether the spatial and temporal errors are com-

parable (see (4.13c)), whether the spatial errors are
equally distributed in the computational domain (see
(4.13d)), and whether the total error is small enough
(see (4.13e)); if this is the case and tn < T , set
n := n + 1 and go to step 2(a). If not, refine the
time step τn and/or the space mesh T n

h and go to step
2(a).

5.2 Implicit pressure–explicit saturation formulation

Implicit pressure–explicit saturation discretization cor-
responds to the iterative coupling algorithm in Sec-
tion 5.1 where only one step in k (k = 1) is
done.

5.3 An a posteriori error estimate distinguishing the space,
time, iterative coupling, and algebraic errors

We now use the framework of Section 3, or more pre-
cisely that developed in Section 4.2, in order to distin-
guish the space, time, iterative coupling, and algebraic
errors.

Fix α ∈ {n, w} and consider the algorithm in Section 5.1
on the nth time step, iterative coupling step k, and alge-
braic solver step i. The approximate wetting saturation
and pressure at our disposal at the present stage are thus(
s
n,k,i
w,hτ , p

n,k,i
w,hτ

)
. Define

un,k,i
α,h := dn,k,i

α,h + ln,k,i
α,h + an,k,i

α,h , α ∈ {n, w}.

It follows from (5.6)–(5.8) that the reconstructions of the
phases fluxes un,k,i

α,h satisfy (4.8).
Replacing the terminology “kth linearization step” by

“kth iterative coupling step”, Corollary 1 holds true
for this case. Analogously, from the definitions (4.11a)–
(4.12d) (ηn,k,i

lin,K,α and η
n,k,i
lin represent the iterative cou-

pling errors), Corollary 2 also holds true for this
case.
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5.4 Stopping criteria and optimal balancing of the different
error components

Stopping criteria to be used in steps 2(c)vii, 2(d), and 3 of
the algorithm in Section 5.1 for optimal balancing of the dif-
ferent error components and overall error control are exactly
the same as in Section 4.3.

6 Applications to finite volumes and numerical
experiments

We present here the application of our theoretical results
and numerical experiments for two finite volume discretiza-
tions of (1.1a)–(1.4b). We neglect the gravity terms (set
z := 0), use the Brooks–Corey relations (see Section 1), and
consider a two-dimensional test case from [53] with

� = (0, 300)m × (0, 300)m, T = 4·106s,

φ = 0.2, K = 10−11I m2, qw = qn = 0 s−1,

μw = 5·10−4kg m−1s−1, μn = 2·10−3kg m−1s−1,

srw = srn = 0, pd = 5·103kg m−1s−2,

s0
w = 0.2 on all K ∈ T 0

h , K �∈ K̃,

s0
w = 0.95 on K ∈ T 0

h , K ∈ K̃,

where I is the identity tensor and K̃ the 18m × 18m block
in the lower left corner. Let K̂ be the 18m × 18m block in
the upper right corner. We assume homogeneous Neumann
boundary conditions (1.4a) everywhere except ∂K̃ ∩ ∂�

and ∂K̂ ∩ ∂�, representing respectively the injection and
production wells. Here, we impose the (inhomogeneous)
Dirichlet conditions (1.4b) for the wetting phase saturation
and pressure sw, pw. These are respectively equal to 0.95
and 3.45·106 kg m−1 s−2 in the lower left corner and to 0.2
and 2.41·106 kg m−1 s−2 in the upper right corner. This is a
classical setting for the quarter five-spot problem, where the
flow is driven by the pressure gradient from the injection to
the production well. Contrarily to [53], we use the wetting
residual saturation srw equal to 0 and not to 0.15, in order to
treat a possibly degenerate problem.

We consider two classical discretization approaches.
First, we test fully implicit cell-centered finite volumes on
uniform meshes consisting of rectangles. Here, the approx-
imations of the phase velocities uα in (1.2) are H(div, �)-
conforming but the approximations of the global and com-
plementary pressures p(sw, pw) and q(sw) in (2.4a) and
(2.4b), respectively, are not H 1

D(�)-conforming. The second
scheme employs a vertex-centered finite volume method.
Here, the phase velocities are not H(div, �)-conforming but
the global and complementary pressure approximations are
H 1

D(�)-conforming. In this latter case, we employ iterative
coupling and use adaptive meshing.

6.1 Fully implicit cell-centered finite volumes on regular
rectangular parallelepipeds

We consider here one fixed mesh Th, consisting of rectan-
gles, and focus on adaptive stopping of the linear solver
using (4.13a) and adaptive stopping of the nonlinear solver
using (4.13b) in the context of Section 4.

6.1.1 Scheme definition

Let E int
K stand for the faces e of an element K ∈ Th not lying

on ∂�. We consider the following cell-centered finite vol-
ume discretization of (4.1a)–(4.1b): for all K ∈ Th, define
s0

w,K := s0
w|K . Then, for all 1 ≤ n ≤ N , look for sn

w,h, p̄n
w,h,

piecewise constant on Th, such that

φ
sn

w,K − sn−1
w,K

τn
|K| +

∑
eKL∈E int

K

Fw,eKL

(
sn

w,h, p̄n
w,h

) = 0,

(6.1a)

−φ
sn

w,K − sn−1
w,K

τn
|K| +

∑
eKL∈E int

K

Fn,eKL

(
sn

w,h, p̄n
w,h

) = 0,

(6.1b)

for all elements K ∈ Th not contained in K̂ and K̃; in K̂

and K̃ , the Dirichlet boundary values are imposed. The face
fluxes are defined as

Fw,eKL

(
sn

w,h, p̄n
w,h

) := −
λr,w

(
sn

w,K

)
+ λr,w

(
sn

w,L

)
2

|K|

× p̄n
w,L − p̄n

w,K

|xK − xL| |eKL|, (6.2a)

Fn,eKL

(
sn

w,h, p̄n
w,h

) := −
λr,n

(
sn

w,K

)
+ λr,n

(
sn

w,L

)
2

|K|

×
p̄n

w,L + pc

(
sn

w,L

)
−
(
p̄n

w,K + pc

(
sn

w,K

))
|xK − xL| |eKL|.

(6.2b)

Above, |K| stands for the measure of K ∈ Th, |eKL| for the
measure of eKL, |xK − xL| for the distance of the barycen-
ters xK and xL of K, L ∈ Th, and |K| for the absolute
value of K. (6.1a)–(6.1b) represents the system of nonlinear
algebraic equations (4.2).

6.1.2 Linearization and linear system solution

Following Section 4, we obtain on the Newton–Raphson
linearization step k and algebraic solver step i applied to
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(6.1a)–(6.1b)

φ
s
n,k,i
w,K −sn−1

w,K

τn
|K| +

∑
eKL∈E int

K

F k−1
w,eKL

(
s
n,k,i
w,h , p̄

n,k,i
w,h

)
=−R

n,k,i
w,K ,

(6.3a)

−φ
s
n,k,i
w,K −sn−1

w,K

τn
|K| +

∑
eKL∈E int

K

F k−1
n,eKL

(
s
n,k,i
w,h , p̄

n,k,i
w,h

)
=−R

n,k,i
n,K ,

(6.3b)

where the linearized face fluxes take the analytical form, for
α ∈ {n, w},

F k−1
α,eKL

(
s
n,k,i
w,h , p̄

n,k,i
w,h

)

:=Fα,eKL

(
s
n,k−1
w,h , p̄

n,k−1
w,h

)

+
∑

M∈{K,L}

∂Fα,eKL

∂sw,M

(
s
n,k−1
w,h ,p̄

n,k−1
w,h

)
·
(
s
n,k,i
w,M −s

n,k−1
w,M

)

+
∑

M∈{K,L}

∂Fα,eKL

∂p̄w,M

(
s
n,k−1
w,h ,p̄

n,k−1
w,h

)
·
(
p̄

n,k,i
w,M −p̄

n,k−1
w,M

)
.

(6.4)

System (6.3a)–(6.3b) represents a cell-centered finite vol-
ume realization of the system (4.5). We initialize p̄0

w,h =
2.41·106 kg m−1 s−2 everywhere except K̃ , where we set
p̄0

w,h := 3.45·106 kg m−1 s−2.

6.1.3 Flux reconstructions and evaluation of the estimators

We now identify the error estimators of Section 4.2. We
begin by identifying the fluxes dn,k,i

α,h , ln,k,i
α,h , and an,k,i

α,h of
(4.4a). We construct them in the lowest order Raviart–
Thomas–Nédélec space RTN0(Th), cf. [15]. As in [31, 43],
following [44] in the linear case, the degrees of freedom of
dn,k,i

α,h and ln,k,i
α,h are simply fixed by the finite volume fluxes

of (6.2a)–(6.2b) and (6.4): for all K ∈ Th not contained in
K̃, K̂ and for all eKL ∈ E int

K , set

((
dn,k,i

α,h + ln,k,i
α,h

)
·nK, 1

)
eKL

:= F k−1
α,eKL

(
s
n,k,i
w,h , p̄

n,k,i
w,h

)
(6.5)

and

(
dn,k,i

α,h ·nK, 1
)

eKL

:= Fα,eKL

(
s
n,k,i
w,h , p̄

n,k,i
w,h

)
, (6.6)

α ∈ {n, w}. On the boundary faces of K , the value is
set to zero in accordance with the homogeneous Neumann
boundary condition (1.4a).

We now identify an,k,i
α,h . These are obtained, follow-

ing [43, Section 4], by performing ν additional iterations of
the algebraic solver:

an,k,i
α,h := dn,k,i+ν

α,h + ln,k,i+ν
α,h −

(
dn,k,i

α,h + ln,k,i
α,h

)
, (6.7)

where dn,k,i+ν
α,h + ln,k,i+ν

α,h are given by (6.5) with i replaced
by i + ν. This definition does not give exactly (4.7) but is
simple and sufficiently precise in practice for large enough
ν (set to 15 in the present numerical experiments). Setting
un,k,i

α,h := dn,k,i
α,h + ln,k,i

α,h + an,k,i
α,h , we obtain (3.1), up to the

neglected misfit from the construction (6.7) of an,k,i
α,h . By

this construction, the residual estimators of (4.9a) take very
small values and are neglected henceforth.

In a cell-centered finite volume discretization, the piece-
wise constant pressure p̄

n,k,i
w,h does not have sufficient

smoothness required by our framework. Thus, follow-
ing [70, Section 3.2.2], we introduce a postprocessed wet-
ting phase pressure p

n,k,i
w,h , quadratic on all K ∈ Th:

−λr,w

(
s
n,k,i
w,K

)
K∇

(
p

n,k,i
w,h

∣∣∣K
)

= dn,k,i
w,h

∣∣∣
K

, (6.8a)

p
n,k,i
w,h (xK) = p̄

n,k,i
w,K . (6.8b)

This postprocessing links the pressure p
n,k,i
w,h to the recon-

structed flux dn,k,i
w,h by an equivalent of the Darcy law (1.2),

whereas p
n,k,i
w,h takes the value of the original finite volume

pressure p̄
n,k,i
w,K at the barycenters. One particular conse-

quence of (6.8a) is that

vw

(
s
n,k,i
w,h , p

n,k,i
w,h

) ∣∣
K

= dn,k,i
w,h

∣∣
K

(6.9)

on all K ∈ Th, so that the first terms in (4.11a) disappear
for the wetting phase. Repeating the same procedure for
the nonwetting phase, we are lead to define the piecewise
quadratic postprocessing p

n,k,i
n,h :

−λr,n

(
s
n,k,i
w,K

)
K∇

(
p

n,k,i
n,h

∣∣∣K
)

= dn,k,i
n,h

∣∣∣
K

, (6.10a)

p
n,k,i
n,h (xK) = p̄

n,k,i
w,K + pc

(
s
n,k,i
w,K

)
.

(6.10b)

In the nonwetting case, since we only have (6.10b) and

not p
n,k,i
n,h

∣∣
K

= pc

(
s
n,k,i
w,K

)
+ p

n,k,i
w,h

∣∣
K

which would match

fully with (1.1c), we do not have a complete equivalent of
the link of phase velocities (6.9). We, however, consider

the difference of vn

(
s
n,k,i
w,h , p

n,k,i
w,h

)
and dn,k,i

n,h as negligible.
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Consequently, the nonwetting phase first terms in (4.11a)
disappear as well. Moreover,

η
n,k,i
tm ≈

⎧⎨
⎩
∑

α∈{n,w}

τn

3

∑
K∈Th

‖dn,k,i
α,h − dn−1

α,h ‖2
K

⎫⎬
⎭

1
2

(6.11)

in a simplification of (4.12b), exploiting the piecewise
affine behavior in time. Thus, reconstructions (6.8a)–(6.8b)
and (6.10a)–(6.10b) of p

n,k,i
α,h need not be constructed in

practice.
We are now left with evaluating/approximating the

nonconformity estimators η
n,k,i
NC,K,1(t) and η

n,k,i
NC,K,2(t) of

(4.9c)–(4.9d). We want to avoid the difficult construc-

tions p
(
s
n,k,i
w,hτ , p

n,k,i
w,hτ

)
and q

(
s
n,k,i
w,hτ

)
according to (2.4a)–

(2.4b). We thus, following (2.5a)–(2.5b), define a piecewise
quadratic p̃n,k,i

h by

−
(
λw

(
s
n,k,i
w,K

)
+ λn

(
s
n,k,i
w,K

))

×K∇
(
p̃n,k,i
h

∣∣∣K
)

=
(

dn,k,i
w,h + dn,k,i

n,h

)∣∣∣
K

,

(6.12a)

p̃n,k,i
h (xK) = p

(
s
n,k,i
w,K , p̄

n,k,i
w,K

)
,

(6.12b)

and a piecewise quadratic q̃n,k,i
h by

K∇
(
q̃n,k,i
h

∣∣∣K
)

= λn

(
s
n,k,i
w,K

)
K∇

(
p̃n,k,i
h

∣∣∣K
)

+ dn,k,i
n,h

∣∣∣
K

,

(6.13a)

q̃n,k,i
h (xK) = q

(
s
n,k,i
w,K

)
. (6.13b)

In practice, we approximate the integrals in (6.12b) and
(6.13b) by a quadrature formula. As usual, we define p̃n,k,i

hτ

and q̃n,k,i
hτ affine in time on the time interval In, given by

p̃n−1
h and q̃n−1

h at time tn−1 and by p̃n,k,i
h and q̃n,k,i

h at

time tn. Following Section 4.1, we also define p̂n,k,i
h :=

Iav

(
p̃n,k,i
h

)
and q̂n,k,i

h := Iav

(
q̃n,k,i
h

)
. We then approximate

the space–time integrals:∫
In

η
n,k,i
NC,K,1(t)

2 dt

≈ τn

3

(∥∥∥K
(
λw

(
s
n,k,i
w,K

)
+ λn

(
s
n,k,i
w,K

))

×∇
(
p̃n,k,i
h − p̂n,k,i

h

)∥∥∥2

K

+
∥∥∥K
(
λw

(
sn−1

w,K

)
+ λn

(
sn−1

w,K

))
∇
(
p̃n−1
h − p̂n−1

h

)∥∥∥2

K

+
(

K
(
λw

(
s
n,k,i
w,K

)
+ λn

(
s
n,k,i
w,K

))
∇
(
p̃n,k,i
h − p̂n,k,i

h

)
,

K
(
λw

(
sn−1

w,K

)
+ λn

(
sn−1

w,K

))
∇
(
p̃n−1
h − p̂n−1

h

))
K

)
(6.14a)

and∫
In

η
n,k,i
NC,K,2(t)

2 dt

≈ τn

3

(∥∥∥K∇
(
q̃n,k,i
h − q̂n,k,i

h

)∥∥∥2

K

+
∥∥∥K∇

(
q̃n−1
h − q̂n−1

h

)∥∥∥2

K

+
(

K∇
(
q̃n,k,i
h − q̂n,k,i

h

)
,

K∇
(
q̃n−1
h − q̂n−1

h

))
K

)
, (6.14b)

cf. [42, proof of Lemma 6.1].
Summarizing the above developments of estimators:

1. Identify the fluxes dn,k,i
α,h , ln,k,i

α,h , and an,k,i
α,h by (6.5)–(6.7).

2. Construct the pressures p̃n,k,i
h by (6.12a)–(6.12b) and

q̃n,k,i
h by (6.13a)–(6.13b) and set up p̂n,k,i

h and q̂n,k,i
h by

the postprocessing averaging operator Iav.
3. Evaluate η

n,k,i
lin from (4.11c), (4.12c) and η

n,k,i
alg from

(4.11d) and (4.12d).
4. Approximate η

n,k,i
tm by (6.11).

5. Approximate η
n,k,i
sp of (4.12a) while omitting the first

two terms in (4.11a) and using (6.14a)–(6.14b).

6.1.4 A further simplification of the estimators

The key for our a posteriori error estimates is the flux recon-
structions dn,k,i

α,h , ln,k,i
α,h , and an,k,i

α,h . It is crucial to observe that

in order to evaluate our estimators, we only need the [L2]d
norms involving these reconstructions. These can, however,
be evaluated or approximated by quadrature formulas on
each mesh element, so that it is not physically necessary to
construct the reconstructions; knowledge of their values at
quadrature points is sufficient. One can proceed similarly
for the pressures p̃n,k,i

h , q̃n,k,i
h and their averagings p̂n,k,i

h and

q̂n,k,i
h ; typically, the quadrature points can be chosen equal

to the localization of the Lagrange degrees of freedom, so
that we can only compute the coefficients in the Lagrange
bases. In Section 6.2.3 below, we give a concrete example of
such a simplification in the context of vertex-centered finite
volumes.

6.1.5 Computational performances

We evaluate here the computational performance of the
above cell-centered finite volume approach. We consider
a uniform 50 × 50 spatial mesh, fixed in time. The ini-
tial time step τ 1 was chosen as τ 1 = 105s and was
not changed by the criterion (4.13c). In order to improve
the numerical treatment, we have employed a scaling of
all the length units by 103, i.e., we express all length
units in millimeters instead of meters. The values of the
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wetting pressure were in particular range between 2, 410
and 3, 450, instead of 2.41·106 and 3.45·106 in the orig-
inal units. We have approximated the differentiation in
(6.4) numerically with a parameter ε = 10−12. The
system (6.3a)–(6.3b) arises here from an exemplary alge-
braic solver, the generalized minimum residual method
(GMRes) [67] without restarts, with the Jacobi (diagonal)
preconditioning.

We compare two computational approaches. In the
classical one, the GMRes iteration in (6.3a)–(6.3b) is
continued until the relative algebraic residual becomes
smaller than 10−13, and the Newton linearization is only
stopped when

∥∥∥∥∥
(

S
n,k
w − S

n,k−1
w

P
n,k
w − P

n,k−1
w

)∥∥∥∥∥
w,∞

≤ 10−11. (6.15)

Here, ‖·‖w,∞ stands for the weighted ‖·‖∞ norm, where the
weights for the saturation unknowns are 1 and the weights
for the pressure unknowns are 10−3. Together with the scal-
ing of the length units, all the quantities in (6.15) are of
order 1. In the adaptive approach proposed in this paper,
we rely instead on the stopping criteria (4.13a) and (4.13b)
with γalg = γlin = 0.001. In order to evaluate the algebraic
error fluxes, we choose ν = 15 in (6.7), i.e., we perform
15 additional GMRes steps. If (4.13a) is not satisfied, then
we directly set i := i + ν. Thus, we only evaluate (4.13a)
each 15 GMRes steps and the additional steps are not
wasted.

In Fig. 1, we illustrate the evolution of wetting satura-
tion and pressure during the simulation. Tiny oscillations
can be remarked, since no upwinding or other stabiliza-
tion has been used. We also plot in Fig. 1 the evolution of
the spatial a posteriori error estimators η

n,k,i
sp,K (t) of (4.11a)

approximated using (6.14a)–(6.14b) (divided by τn). We
can see that they nicely follow the saturation front while
also detecting errors at the inflow and outflow. The results
of Fig. 1 come from the case where the adaptive stopping
criteria (4.13a) and (4.13b) have been used, but practically
undistinguishable results are obtained using the classical
stopping criteria.

We next investigate the behavior of the estimators of the
different error components. In order to present the results,
we fix one time, 2.6·106 s. At the left part of Fig. 2, we track
the dependence of the different estimators on the GMRes
iterations for the first Newton step on this time. The classical
approach requires 1530 iterations until the relative algebraic
residual becomes smaller than 10−13, whereas the adaptive
criterion (4.13a) only requires 435 GMRes iterations. At the
right part of Fig. 2, we plot the different estimators as func-
tion of the Newton iteration. Eleven iterations are necessary

to reach (6.15), whereas only three iterations are sufficient
to arrive at (4.13b).

Figures 3 and 4 then assess the overall computational
performances of the two approaches. In Fig. 3, we plot
the GMRes relative algebraic residual on each time and
Newton step (left) and the number of Newton iterations
on each time step (right). We can see that much higher
(lower, respectively) numbers are sufficient with adaptive
stopping criteria. We note that in particular much fewer
Jacobian matrix assemblies are necessary in our approach.
Figure 4 then gives the number of GMRes iterations for each
linear system solved (left) and the cumulative number of
GMRes iterations as a function of time (right). From the last
graph, we can conclude that in the adaptive approach, the
number of cumulative GMRes iterations is approximately
12 times smaller compared to that in the classical one. In
addition, this ratio is growing with the number of time
steps.

Finally, Fig. 5 gives an example of the reconstructed
pressures which are at the heart of our spatial estima-
tors: the global pressure p̃n,k,i

h of (6.12a)–(6.12b) and the

complementary one q̃n,k,i
h of (6.13a)–(6.13b), as well

as their averagings p̂n,k,i
h = Iav(p̃

n,k,i
h ) and q̂n,k,i

h =
Iav(q̃

n,k,i
h ). The plots are given on an example of a rough

10 × 10 mesh at time 1.3·106 s.

6.2 Iteratively coupled implicit pressure–explicit saturation
vertex-centered finite volumes on adaptively refined
meshes with hanging nodes

Here, following Section 5.1, we consider adaptive stopping
of the linear solver (4.13a), adaptive stopping of the iterative
coupling (4.13b), adaptive choice of the time step (4.13c),
and adaptive mesh refinement (4.13d).

6.2.1 Scheme definition

In addition to the simplicial meshes T n
h , let Dn

h, 0 ≤ n ≤ N ,
be the dual meshes with dual volumes D formed around the
vertices of T n

h . In our setting, the dual meshes Dn
h consist

of squares and the vertices of T n
h are given by the square

barycenters (see Fig. 6, left and middle). We let V n
h stand for

the space of continuous piecewise affine functions on T n
h .

In the wetting saturation space V n
h,sw

⊂ V n
h , the values in the

vertices of T n
h lying in K̃ are fixed to 0.95 and in those lying

in K̂ to 0.2. Similarly, in the wetting pressure space V n
h,pw

⊂
V n

h , the vertex values in K̃ are fixed to 3.45·106 kg m−1 s−2

and in K̂ to 2.41·106 kg m−1 s−2. Finally, Dint,n
h stands for

all the elements of Dn
h not contained in K̃ and K̂ .

The vertex-centered finite volume scheme reads as fol-
lows: Define s0

w,h ∈ V 0
h,sw

by the values of s0
w at the vertices
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Fig. 1 Wetting saturation (top), spatial a posteriori error estimates η
n,k,i
sp,K (t) (middle), and wetting pressure (bottom) at times 1.3·106, 2.6·106, and

4·106 s

of T 0
h . Then, for all 1 ≤ n ≤ N and on a given iterative

coupling step k ≥ 1, with given s
n,k−1
w,h ∈ V n

h,sw
, we look for

p
n,k
w,h ∈ V n

h,pw
, discretizing the pressure equation (5.2) and

realizing (5.3):

−
((

λr,w

(
s
n,k−1
w,h

)
+ λr,n

(
s
n,k−1
w,h

))
K∇p

n,k
w,h·nD

+λr,n

(
s
n,k−1
w,h

)
K∇pc

(
s
n,k−1
w,h

)
·nD, 1

)
∂D\∂�

= 0 ∀D ∈ Dint,n
h . (6.16a)

Here, pc

(
s
n,k−1
w,h

)
stands for the function in V n

h given by

the values pc

(
s
n,k−1
w,D

)
, where s

n,k−1
w,D is the vertex value of

s
n,k−1
w,h . The discretization of the saturation equation then

consists in explicitly computing s
n,k
w,h ∈ V n

h,sw
by

s
n,k
w,D := τn

φ|D|
(
λr,w

(
s
n,k−1
w,h

)
K∇p

n,k
w,h·nD,1

)
∂D\∂�

+sn−1
w,D, D ∈ Dint,n

h . (6.16b)

On ith step of an iterative algebraic solver applied to
(6.16a), we then obtain the realization of (5.5) in the form

−
((

λr,w

(
s
n,k−1
w,h

)
+ λr,n

(
s
n,k−1
w,h

))
K∇p

n,k,i
w,h ·nD

+λr,n

(
s
n,k−1
w,h

)
K∇pc

(
s
n,k−1
w,h

)
·nD, 1

)
∂D\∂�

= −R
n,k,i
wn,D ∀D ∈ Dint,n

h , (6.17a)
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Fig. 2 Estimators η
n,k,i
sp /τn, η

n,k,i
tm /τn, η

n,k,i
lin /τn, η

n,k,i
alg /τn, and their sum as a function of the GMRes iterations on the first Newton iteration

(left) and as a function of the Newton iterations (right) at time 2.6·106 s

whereas (6.16b) becomes the realization of (5.4):

s
n,k,i
w,D := τn

φ|D|
(
λr,w

(
s
n,k−1
w,h

)
K∇p

n,k,i
w,h ·nD,1

)
∂D\∂�

+sn−1
w,D, D ∈ Dint,n

h . (6.17b)

6.2.2 Flux reconstructions and evaluation of the estimators

Let Sn−1,n
h , 1 ≤ n ≤ N , be a simplicial mesh, a conform-

ing refinement of all Dn−1
h , Dn

h, T n−1
h , and T n

h (see Fig. 6,
right). For D ∈ Dn

h, we denote by SD the restriction of

Sn−1,n
h to D. All the flux reconstructions will be constructed

on RTN0

(
Sn−1,n

h

)
.

Following Section 5, proceeding in an equivalent but
slightly different way, we first construct the fluxes dn,k,i

wn,h,

ln,k,i
wn,h, and an,k,i

wn , the sums of the individual phase fluxes. Let

1 ≤ n ≤ N , k ≥ 1, and i ≥ 1. For D ∈ Dint,n
h and any face

e of Sn−1,n
h included in ∂D but not in ∂�, we set, following

(6.17a),((
dn,k,i

wn,h + ln,k,i
wn,h

)
·nD, 1

)
e

:= −
((

λr,w

(
s
n,k−1
w,h

)
+ λr,n

(
s
n,k−1
w,h

))
K∇p

n,k,i
w,h ·nD

+λr,n

(
s
n,k−1
w,h

)
K∇pc

(
s
n,k−1
w,h

)
·nD, 1

)
e

and, similarly but evaluating the saturation terms on the
saturation s

n,k,i
w,h obtained from (6.17b),

(
dn,k,i

wn,h·nD, 1
)

e

:= −
((

λr,w

(
s
n,k,i
w,h

)
+ λr,n

(
s
n,k,i
w,h

))
K∇p

n,k,i
w,h ·nD

+λr,n

(
s
n,k,i
w,h

)
K∇pc

(
s
n,k,i
w,h

)
·nD, 1

)
e
.

The fluxes through ∂D ∩ ∂� are set to zero, in accordance
with the Neumann boundary condition (1.4a). This fixes the
face normal fluxes over the boundaries of all D ∈ Dint,n

h but
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Fig. 3 GMRes relative algebraic residual on each time and Newton step (left) and number of Newton iterations on each time step (right)
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Fig. 4 Number of GMRes iterations on each time and Newton step (left) and cumulative number of GMRes iterations as a function of time (right)

not those in the interior of D ∈ Dint,n
h . For this purpose, we

follow the equilibration of [71] (see the construction of t2 in
Section 4.3.3 in this reference). This gives

−
(
∇·
(

dn,k,i
wn,h + ln,k,i

wn,h

)
, 1
)

K
= 1

|D|
(
R

n,k,i
wn,D, 1

)
K

(6.18)

and

−
(
∇·dn,k,i

wn,h, 1
)

K
= 1

|D|
(
R

n,k,i

wn,D, 1
)

K
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Fig. 5 Reconstructed global pressure p̃n,k,i
h of (6.12a)–(6.12b) (top left), reconstructed complementary pressure q̃n,k,i

h of (6.13a)–(6.13b) (bottom

left), and their averaged versions p̂n,k,i
h = Iav(p̃

n,k,i
h ) (top right) and q̂n,k,i

h = Iav(q̃
n,k,i
h ) (bottom right) at time 1.3·106 s
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Fig. 6 A dual square mesh Dn
h

(left), the triangular mesh T n
h (in

red, middle), and the fine
triangular mesh Sn−1,n

h (in blue,
right)

for all subsimplices K ∈ SD , where we set R
n,k,i

wn,D :=
−
(

dn,k,i
wn,h·nD, 1

)
∂D\∂�

. This corresponds to the localization

of the mass balance equation (6.17a) over the individual
elements K ∈ SD and simultaneously ensures that ‖ln,k,i

wn,h‖
converges to zero as the iterative coupling converges. In
particular, (5.6) follows. Similar to (6.7), we finally define

an,k,i
wn,h := dn,k,i+ν

wn,h + ln,k,i+ν
wn,h −

(
dn,k,i

wn,h + ln,k,i
wn,h

)
.

We now split the total fluxes to the phase fluxes: dn,k,i
α,h ,

ln,k,i
α,h , and an,k,i

α,h , α ∈ {n, w}. We employ the satura-
tion/wetting phase balance equation (6.17b). As above, we
first prescribe dn,k,i

w,h + ln,k,i
w,h . For D ∈ Dint,n

h and any face e

of Sn−1,n
h included in ∂D but not in ∂�, we set

((
dn,k,i

w,h + ln,k,i
w,h

)
·nD, 1

)
e

:= −
(
λr,w

(
s
n,k−1
w,h

)
K∇p

n,k,i
w,h ·nD, 1

)
e

and(
dn,k,i

w,h ·nD, 1
)

e
:= −

(
λr,w

(
s
n,k,i
w,h

)
K∇p

n,k,i
w,h ·nD, 1

)
e
.

We then once again following [71, construction of t2 in
Section 4.3.3] equilibrate the remaining degrees of freedom

of
(

dn,k,i
w,h + ln,k,i

w,h

)
|D and dn,k,i

w,h |D in such a way that

(
−φ

s
n,k,i
w,D − sn−1

w,D

τn
− ∇·

(
dn,k,i

w,h + ln,k,i
w,h

)
, 1

)
K

= 0 (6.19)

and that

(
−φ

s
n,k,i
w,D − sn−1

w,D

τn
− ∇·dn,k,i

w,h , 1

)
K

= 1

|D| (R
n,k,i

w,D , 1)K

for all K ∈ SD , where R
n,k,i

w,D := −
(

φ
s
n,k,i
w,D −sn−1

w,D

τn , 1

)
D

−(
dn,k,i

w,h ·nD, 1
)

∂D\∂�
. As for an,k,i

w,h , we simply set it to 0, as

there is no algebraic error associated with the computation
of the wetting phase approximations. The nonwetting phase
fluxes are then fixed by

un,k,i
n,h := un,k,i

wn,h − un,k,i
w,h (6.20)

and similarly for all d, l, and a.
We are now ready to evaluate/approximate the estima-

tors. We use directly (4.11d) and (4.11c). We next approx-

imate vα

(
s
n,k,i
w,h , p

n,k,i
w,h

)
by −λr,α

(
s
n,k,i
w,h

)
K∇p

n,k,i
α,h , with
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Fig. 8 GMRes relative algebraic residual on each time and iterative coupling step (left, part of the time interval) and number of iterative coupling
iterations on each time step (right)

p
n,k,i
n,h := p

n,k,i
w,h + pc

(
s
n,k,i
w,h

)
. Then, similar to (6.11), we

approximate the time integral

η
n,k,i
tm ≈

⎧⎨
⎩
∑

α∈{n,w}

τn

3

∑
K∈T n

h

‖λr,α

(
s
n,k,i
w,h

)
K∇p

n,k,i
α,h

− λr,α

(
sn−1

w,h

)
K∇pn−1

α,h

∥∥2
K

⎫⎬
⎭

1
2

. (6.21)

Finally, as there is no nonconformity, both η
n,k,i
NC,K,1 and

η
n,k,i
NC,K,2 are zero, whereas it follows from the equilibrations

(6.18) and (6.19) that η
n,k,i
R,K,α is close to zero. Thus, we can

approximate

ηn,k,i
sp ≈

⎧⎨
⎩3

∑
α∈{n,w}

τn
∑

K∈T n
h

∥∥dn,k,i
α,h

+ λr,α

(
s
n,k,i
w,h

)
K∇p

n,k,i
α,h

∥∥2
K

⎫⎬
⎭

1
2

. (6.22)

It is to be noted that these estimators take the same form as
those obtained in [19] (therein, no simplifications have been
made).

6.2.3 A simplified evaluation of the estimators

The above evaluation of our estimators relies on the
flux reconstructions dn,k,i

α,h , ln,k,i
α,h , and an,k,i

α,h , where α ∈
{n, w}. As in Section 6.1.4, but here still in a more
direct way, the physical constructions of these fluxes can
be completely avoided. All these flux reconstructions are
in the RTN0(Sn−1,n

h ) space. Let us likewise approximate(
λr,α

(
s
n,k,i
w,h

)
K∇p

n,k,i
α,h

)
|K and

(
λr,α

(
sn−1

w,h

)
K∇pn−1

α,h

)
|K

in the space RTN0(K), for all K ∈ Sn−1,n
h . We do so by

preserving the normal fluxes over all faces of every K (these
are the degrees of freedom in RTN0(K)). Then, all we need
to evaluate are the L2(K) norms of vectors from RTN0(K),
K ∈ Sn−1,n

h . Let vh ∈ RTN0(K), vh = ∑e∈EK
βeve. Here,

βe are the degrees of freedom, the face fluxes (vh·nK, 1)e,
and ve are the basis functions, ve = 1

2|K|(x − ae), where
ae = (ae, be)

t is the vertex of K opposite to the face e. Let
xf = (xf , yf )t stand for the barycenter of a face e. Then, it
easily follows that

‖vh‖2
K = 1

12|K|
∑

f ∈EK

⎧⎪⎨
⎪⎩
⎛
⎝∑

e∈EK

βe(xf − ae)

⎞
⎠

2

+
⎛
⎝∑

e∈EK

βe(yf − be)

⎞
⎠

2
⎫⎪⎬
⎪⎭ , (6.23)

relying on the fact that the three-point face-barycentric
formula is exact for polynomials of order 2. Thus, it is
enough to obtain the degrees of freedom (face normal
fluxes) for all the concerned fluxes, which is straightfor-
ward, and then to use (6.23) in order to evaluate all the
estimators.

6.2.4 Computational performances, uniform meshes

We test here the computational performances of our iterative
coupling approach. We start by a setting similar to Sec-
tion 6.1.5. The spatial mesh is thus fixed, uniform 50 × 50,
and the time steps likewise fixed and of size 104s; bigger
time steps seem to block the convergence of the iterative
coupling. The unrestarted GMRes with Jacobi precondi-
tioning is employed. The adaptive approach, with adaptive
stopping criteria with γalg = γlin = 0.001 and this time
ν = 5, is compared with the classical one, where the
GMRes iteration in (6.17a) is continued until the rela-
tive algebraic residual becomes smaller than 10−13, and
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Fig. 9 Number of GMRes iterations on each time and iterative coupling step (left, part of the time interval) and cumulative number of GMRes
iterations as a function of time (right)

the iterative coupling is only stopped when (6.15) is satis-
fied. We use the simplified evaluation of the estimators of
Section 6.2.3.

At the left part of Fig. 7, we track the dependence of the
different estimators on the GMRes iterations for the second
iterative coupling step at time 2.6·106 s; 215 iterations are
necessary in the classical case versus 20 in the adaptive one.
At the right part of Fig. 7, the different estimators are then
plotted as function of the iterative coupling iteration. Only
three iterations are needed in the adaptive case, versus ten
in the classical one.

Figures 8 and 9 then assess the overall computational
performances of the two approaches. Figure 8 plots the
GMRes relative algebraic residual on each time and itera-
tive coupling step (left) and the number of iterative coupling
iterations on each time step (right). We can see that much
higher (lower, respectively) numbers are sufficient in the
adaptive case. Figure 9 then gives the number of GMRes
iterations for each linear system solved (left) and the cumu-
lative number of GMRes iterations as a function of time
(right). Overall, 18 times less total GMRes iterations are
needed in the tested case.

6.2.5 Computational performances, adaptive meshes

We finally test the iterative coupling vertex-centered finite
volume approach in the fully adaptive case, relying on all
(4.13a)–(4.13d). In fact, the local version of the stopping cri-
teria (4.13a)–(4.13b) of Remark 2, with γalg = γlin = 0.01,
was used. As before, the unrestarted GMRes with Jacobi
preconditioning was employed. The initial time step was
τ 1 = 5 · 103s; after 20 time steps, it has been brought to
104 s. The time error is not dominating; these time steps
are chosen as they ensure the convergence of the iterative
coupling. The initial spatial mesh was uniform 15 × 15
and was refined and derefined at each time step in order
to achieve (4.13d). More precisely, it turns out that bet-
ter results are achieved when the adaptivity is driven by
the water phase components only, α = w in (6.22). At
most two levels of refinement, where each square can be
refined into nine subsquares, are allowed for this test case.
Examples of the resulting adaptive meshes are given in
Fig. 10. We can see that they follow very nicely the sat-
uration front. More importantly, the final result matches
in quality the one with the finest meshes employed

Fig. 10 Wetting saturation on adaptively refined meshes at times 1.3·106, 2.6·106, and 4·106 s
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uniformly over the whole space–time domain, for a
several times smaller computational price. A detailed study
of the adaptive mesh refinement case will be presented
elsewhere.

7 Conclusions

In the present paper, we have developed a comprehensive
framework for a posteriori error control and adaptivity for
the immiscible incompressible two-phase flow in porous
media. This framework covers various formulations, numer-
ical methods, linearizations, and linear algebraic solvers.
An important use of our results is in adequate stopping
of the iterative algebraic solvers and iterative lineariza-
tions. Still relying on fixed spatial and temporal meshes,
speedups by factors of tens can be achieved. Unlike the
usual stopping criteria employing the L2-norm of the rel-
ative algebraic residual or the L∞-norm of the differences
of the nonlinear iterates, our estimates and criteria are
expressed in a unified way relying on the common lan-
guage of the phase fluxes. With spatial and temporal meshes
adaptivity, where error localization plays a crucial role,
still more important computational savings can be achieved
through a wise usage of the computer resources while con-
trolling the overall error. Applications to more complex
settings, elaborate solution strategies, and further model
problems such as compositional flows will be presented
in forthcoming works.
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14. Braess, D., Schöberl, J.: Equilibrated residual error estima-
tor for edge elements. Math. Comp. 77(262), 651–672 (2008).
doi:10.1090/S0025-5718-07-02080-7

15. Brezzi, F., Fortin, M.: Mixed and hybrid finite element meth-
ods. In: Springer Series in Computational Mathematics, vol. 15.
Springer, New York. (1991). doi:10.1007/978-1-4612-3172-1

16. Brooks, R.J., Corey, A.T.: Hydraulic properties of porous media.
In: Hydrology Paper, vol. 3. Colorado State University, Fort
Collins (1964)

17. Brown, P.N., Saad, Y.: Convergence theory of nonlinear Newton–
Krylov algorithms. SIAM J. Optim. 4(2), 297–330 (1994).
doi:10.1137/0804017
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for convex domains. Arch. Rational Mech. Anal. 5, 286–292
(1960)
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