
Comput Geosci (2013) 17:739–755
DOI 10.1007/s10596-013-9353-3

ORIGINAL PAPER

Probabilistic slope stability analysis by a copula-based
sampling method

Xing Zheng Wu

Received: 26 August 2012 / Accepted: 17 April 2013 / Published online: 23 May 2013
© Springer Science+Business Media Dordrecht 2013

Abstract In probabilistic slope stability analysis, the influ-
ence of cross correlation of the soil strength parameters,
cohesion and internal friction angle, on the reliability index
has not been investigated fully. In this paper, an expedi-
ent technique is presented for probabilistic slope stability
analysis that involves sampling a series of combinations of
soil strength parameters through a copula as input to an
existing conventional deterministic slope stability program.
The approach organises the individual marginal probabil-
ity density distributions of componential shear strength as
a bivariate joint distribution by the copula function to char-
acterise the dependence between shear strengths. The tech-
nique can be used to generate an arbitrarily large sample of
soil strength parameters. Examples are provided to illustrate
the use of the copula-based sampling method to estimate the
reliability index of given slopes, and the computed results
are compared with the first-order reliability method, consid-
ering the correlated random variables. A sensitivity study
was conducted to assess the influence of correlational mea-
surements on the reliability index. The approach is simple
and can be applied in practice with little effort beyond what
is necessary in a conventional analysis.
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1 Introduction

Slope stability analysis is a traditional problem in geotech-
nical engineering that is highly amenable to probabilis-
tic treatment and that has received considerable attention
recently [19, 52]. Uncertainties in soil properties, envi-
ronmental conditions and theoretical models are the most
important sources of lack of confidence in deterministic
analysis [1, 5]. There have been numerous attempts to use
a probabilistic approach complementary to the conventional
approach to analyse the safety of slopes and especially to
explore the effect of variabilities in soil shear strengths. A
common approach to determine the reliability of a slope is
based on calculating the reliability index corresponding to a
surface with the minimum factor of safety (referred to as the
critical deterministic surface, defined by a limit equilibrium
approach of slices), as described by [12] and [15]. How-
ever, critical slip surfaces may not necessarily be those with
the lowest conventional factors of safety [30] but rather are
determined by a combination of the mean factor of safety
and uncertainty [6, 14].

It is therefore imperative that greater use is made of prob-
abilistic assessments of slope stability and that capabilities
for considering the statistical variation of input properties
are enhanced [19]. These reliability model approaches do
provide a better basis for making engineering judgments
in a more transparent way. However, correlations between
the cohesion c and the internal friction angle ϕ (referred
to as the friction angle hereinafter) are commonly ignored
in probabilistic slope stability analysis [15, 33, 38, 46, 58,
60]. A number of recent studies have been oriented toward
careful consideration of the complicated nature of these cor-
relations [10, 21, 23, 28, 39]. Most of these investigators
believe that the cross correlation is negative, with a value
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between −0.24 and −0.70. However, several researchers
have reported a positive correlation [39, 62].

Dependencies among the uncertainties in the estimates
of these parameters can be critical to obtaining correct
numerical results from reliability analyses in geotechnical
engineering (see, e.g., [48]). Cho and Park [11] reported
their findings on stochastic behaviour in a bearing capacity
problem. The assumption of independence between cohe-
sion and friction angle gives conservative results if the
actual correlation is negative, but slightly unconservative
results are obtained if the actual correlation is positive. Lü
and Low [40] investigated the probability of failure with
respect to the plastic zone criterion of underground rock
excavations, and they concluded that assuming uncorrelated
friction angle and cohesion will generate a higher prob-
ability of failure than assuming that these shear strength
parameters are negatively correlated.

The influence of the correlation between strength param-
eters on slope stability analyses is often not well understood.
Some researchers have shown that the probability of fail-
ure in slope stability analysis is insensitive to the correlation
coefficient between the strength parameters [31]. How-
ever, the influence of cross correlation between the strength
parameters on the reliability index of slope stability has been
reported by some others [13, 62]. Interestingly, an accu-
rate and reliable statistical description should be required to
reproduce the multivariate joint characteristics of all the rel-
evant marginal laws (the joint probability distribution of c

and ϕ), considering the dependent relationships (their cross
correlation) effectively in slope stability analysis. Recent
advances in mathematics show how copulas [34, 45, 54]
may be very useful in modelling dependence between corre-
lated random variables. The detailed theoretical background
and descriptions of copulas can be found in the literature.

Copulas represent an efficient tool for investigating the
statistical behaviour of dependent variables. Specifically,
copulas are operators on the family of one-dimensional
probability distributions of random variables that yield
multivariate laws with well-defined properties [55]. Their
efficiency lies in the possibility of studying marginal
behaviours and global dependence separately. In fact, it is
precisely the copula that captures many of the features of a
joint distribution: it is possible to prescribe the properties of
a multivariate law simply by working on the structure of the
corresponding copula. The flexibility offered by copulas for
constructing joint distributions is evident from related stud-
ies in civil engineering (for a thorough review, see [54]) and
in finance [20].

In addition, the concept of a copula is relatively simple;
the construction does not constrain the choice of marginal
distributions, and it provides a good way to impose a
dependence structure on predetermined marginal distribu-
tions [16, 37]. Particularly when the normality assumption

for data usually does not provide an adequate approxima-
tion to data sets with heavy-tail, non-normal multivariate
distributions are used in practice (see [36]). Thus, a non-
normal multivariate distribution is particularly useful when
a geotechnical engineering problem involves the depen-
dence properties of the random variables.

To obtain accurate quantitative predictions of the prob-
ability of failure of a slope system, the joint probabil-
ity characteristics of multivariate random soil parameters,
incorporating the dependence structure among parameters
through a copula, should be implemented in a conventional
slope stability approach. Then, a parametric study on the
calculated reliability index should be carried out for a range
of dependence properties to explore the influence of correla-
tion extremes on reliability assessment. To achieve this goal,
a methodology was developed within a probabilistic frame-
work for analysing slope stability using random samplings
to represent the various cross correlations of soil strength
properties. A joint probability distribution of the strength
parameters is derived through a copula for the probabilis-
tic slope stability analysis to obtain the desired reliability
index. The reliability indices obtained by this copula-based
sampling technique are compared with the results obtained
by the first-order reliability method (FORM).

This paper presents a description of cross correlation
between cohesion and friction angle as determined by shear
strength tests and definitions of their correlation measure-
ments in Section 2. The copula theory, including the con-
struction of the joint description of cross-correlated shear
strength parameters and the forecasting of dependent ran-
dom variates through copula, is presented in Section 3. Full
details of the methodologies for calculating the reliability
index of slope stability by copula-based random sampling
are discussed in Section 4, and several examples are pre-
sented to demonstrate the effects of correlations between
shear strength parameters on reliability indices by para-
metric sensitivity analysis. Discussion and conclusions are
presented in Sections 5 and 6, respectively.

2 Marginal distributions and cross correlation
characteristics of soil shear strength parameters

2.1 Marginal distributions of soil strength variables

An issue in the applicability of measured values of soil
shear strength parameters is the consideration of whether
soil properties follow normal distributions. The applicability
of the normal distribution to soil properties is supported by
[39, 60], and [5]. Brejda et al. [9] and Fenton and Griffiths
[21] found it difficult to fit a normal distribution to sampled
soil properties, but a log-normal distribution showed a better
fit to their data. Other distributions, such as the triangular,
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the versatile beta, and the generalised gamma distributions,
are gaining popularity [5]. The best-fit criteria for marginal
distributions are identified by the Anderson–Darling (AD)
[3] test initially with pm (AD statistic). However, because
it does not account for the estimated number of parameters,
the Akaike information criterion (AIC) [2] values should be
considered. The smaller the AIC value, the better the fit is.
The AIC is defined as follows:

AIC = −2 × Ln (maximized likelihood for the model)
+2 × number of fitted parameters

.

(1)

2.2 Dependency measures

Soil shear strength pairs based on the Mohr–Coulomb cri-
terion are associated with a single observation, so they are
not independent. The dependence between random variables
is best determined using Pearson’s linear correlation coef-
ficient ρp, as reported by some investigators [10, 23, 39].
More extensive discussion of this important subject requires
more data that are realistic, and the development of tech-
niques for reproducing or establishing the correlations while
maintaining the desired accuracy is crucial to probabilistic
assessment.

Let ‘observed’ pairs (z1i , z1j ), . . ., (zni, znj ) be drawn
from a multivariate population of (Zi, Zj), where n is the
number of observations. Pearson’s product–moment cor-
relation coefficient ρp between two random variables Zi

(cohesion) and Zj (friction angle) is usually written as
follows:

ρp
(
Zi, Zj

) = CoV
(
Zi, Zj

)

σ (Zi) σ
(
Zj

) (2)

where CoV(Zi , Zj) is the covariance between Zi and Zj ,
CoV(Zi , Zj) = μ(Zi , Zj)−μ(Zi)μ(Zj ). μ(Zi) and σ(Zj )

denote the mean and standard deviation of Zi , respectively.
ρp is restricted to the interval from -1 to 1. As stated by
[20] and [8], it is not necessarily informative for non-normal
distributions.

Kendall’s tau, which uses concordant or discordant val-
ues, is simply the probability of concordance minus the
probability of discordance for the bivariate random pairs
(Zi, Zj ):

τ
(
Zi, Zj

) = Pr
((

Zi − Z̃i

)(
Zj − Z̃j

)
> 0

)

− Pr
((

Zi − Z̃i

)(
Zj − Z̃j

)
< 0

)
(3)

Obviously, Kendall’s tau is calculated by looking at the
ordering of the sample for each variable of interest rather

than the actual numerical values. Having defined the indi-
cator variable Aij = sign

(
Zti − Z̃si

) (
Ztj − Z̃sj

)
, as in

[42], one notices that an unbiased empirical estimator of
Kendall’s coefficient τ can be written as follows:

τ
(
Zi, Zj

) =
∑

1≤t≤s≤n

Aij (s, t)

1
2n (n − 1)

(4)

where sign is expressed by sign ={
1,

(
Zti − Z̃si

) (
Ztj − Z̃sj

) ≥ 0, concordance
−1,

(
Zti − Z̃si

) (
Ztj − Z̃sj

)
< 0, discordance

, and
(
Z̃i, Z̃j

)
is an independent copy of the vector (Zi , Zj ).

Equation 4 is the empirical approximation of the theoretical
Kendall’s tau in Eq. 3. The range of values of Kendall’s
correlation coefficient is −1 to +1.

3 Understanding the relationships between shear
strength parameters using a copula

As Sklar’s theorem [56] states that for any joint bivariate
distribution function Hzizj (zi ,zj ), say, with marginal distri-
bution functions FZi (zi) and FZj

(
zj

)
, there exists at least

one copula C such that, for all zi ,zj ∈R, Hzizj

(
zi, zj

) =
C

(
Fzi (zi) , Fzj

(
zj

))
. If FZi (zi) and FZj

(
zj

)
are contin-

uous, then C(ui , uj ) is unique; otherwise, C(ui , uj ) is
uniquely determined for the range of FZi (zi), which is
multiplied by the range of FZj

(
zj

)
. Thus, the joint bivari-

ate distribution of (Zi , Zj) is connected with their one-
dimensional marginal probability distributions FZi (zi) and
FZj

(
zj

)
through copula [45]. In applying probability trans-

forms ui = FZi (zi) and uj = FZj

(
zj

)
to Zi and Zj , there

exists a bivariate joint distribution function with standard
uniform marginals C(ui , uj ) [18, 56], such that

C
(
ui, uj

) = HZi,Zj

(
F −1

Zi
(ui), F −1

Zj

(
uj

))
(5)

where 0 ≤ ui ≤ 1 and 0 ≤ uj ≤ 1. If F is strictly increasing,
F −1 is a quasi-inverse (or quantile) of F . Equation 5 gives
an expression for copulas in terms of a joint distribution
function H and the ‘inverse’ of the two margins. Moreover,
Eq. 5 shows how copulas express dependence on a quantile
scale, which provides a means of generating pseudo-random
samples from general classes of multivariate probability dis-
tributions. That is, given a procedure to generate a sample
(ui , uj ) from the copula distribution, the required sample

can be constructed as
(
zi, zj

) =
(
F −1

Zi
(ui) , F −1

Zj

(
uj

))

(which we will return to later).
Copulas are consulted on the assumption that marginal

distributions are known or can be estimated from the data.
The procedure for constructing the joint distribution is flex-
ible because no restrictions are placed on the marginal
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distributions [16, 42]. In other words, marginal distribu-
tions of any form can be knitted together to obtain their
joint distribution, which is the main reason for the pop-
ularity of the copula theory in many areas of research
[20, 37, 67]. Most importantly, this approach can han-
dle arbitrarily complicated dependence between the input
variables. This makes the approach more general than
methods implemented in some risk analysis software pack-
ages that incorporating correlations but not dependence
[22].

There are many different copulas to choose from, varying
in correlation properties such as symmetry, tail dependence
and range of dependence [34, 45]. Considering the corre-
lation characteristics between soil strength parameters, we
can choose the normal copula and Student copula from the
elliptical class of copulas, the Clayton, Frank and Gumbel
copula from the Archimedean class, and the Plackett cop-
ula in a class of its own. These copulas are listed in Table 1,
along with their parameter ranges. Some of these copulas
may not allow negative correlation, but negating the values
of one variable can achieve a positive value for the correla-
tion. For some general comments on the choice and further
details of copulas, the interested reader should consult [34,
45] and [42]. The following is a brief summary of the theory
behind these popular copulas, limited to two-dimensional
copulas for the sake of brevity.

3.1 Elliptical class of copulas

The bivariate normal copula is defined as follows:

CG
ρ

(
ui, uj ; ρp

) = �ρ

(
�−1 (ui) , �−1

(
uj

) ; ρp
)

= ∫ �−1(ui )−∞
∫ �−1(uj )

−∞ 1
2π |�2|1/2 exp

(
− 1

2W T (�2)
−1 W

)
dW

(6)

where �ρ(·) is a joint distribution function of a bivari-
ate normal distribution with zero mean and variance–
covariance matrix �2. �(t) = ∫

z−∞ 1√
2π

e−t2
/

2dt is the

normal distribution, and �−1(t) is the quantile function
of the univariate standard normal distribution. The integral

variable W =
{

ti
tj

}
, and �2 =

[
1 ρ

ij
p

ρ
ij
p 1

]

is a symmet-

rical covariance matrix with the linear Pearson’s correlation
coefficient ρp. ρ

ij
p represents the correlation coefficient

between Zi and Zj .
The Student copula has two parameters, one correspond-

ing to the dependence parameter and the other to the number
of degrees of freedom λ. The number of degrees of freedom
controls the heaviness of the tails, and as it increases, the
copula approaches the normal copula. Both the normal and
Student copulas are symmetric, and the normal copula is a
limiting case of the Student copula when λ becomes infin-
ity (λ is set to 9 in this study). The advantage of the Student
copula is that it can capture lower- and upper-tail depen-
dence in the data (i.e., joint non-exceedance and exceedance
probabilities for rare events; see [42] for details).

3.2 Archimedean class of copulas

The widely used copulas in the Archimedean class [45] are
constructed in a completely different way from the nor-
mal copula. An important component of constructing an
Archimedean copula is an explicit generator function φθ . An
Archimedean copula is usually written as follows:

Cφ

(
ui, uj ; θ

) = φ−1
θ

(
φθ (ui) , φθ

(
uj

) ; θ
)

(7)

where φθ is a convex decreasing function with φθ(1) = 0,

φ−1
θ (·) is the pseudo-inverse of φθ(·), and θ is a cop-

ula dependence parameter or associated parameter. The
definitions of the generator function for this family

Table 1 Summary of the adopted bivariate copula functions and their dependence parameters

Family Copula function Generator function Relationship between θ and τ Range of θ

Normal Nθ

(
�−1 (ui) ,�−1 (u2)

)
/ θ = sin(πτ2) [-1,1]

Student Tθ,λ

(
T −1

λ (u1) , T −1
λ (u2)

)
/ θ = sin(πτ /2) [-1,1]

Clayton
(
u−θ

1 + u−θ
2 − 1

)−1/θ
(t−θ−1)/θ θ = 2 τ / (1–τ) [-1,∞]–{0}

Frank − 1
θ

Ln
(

1 + (exp(−θu1)−1)(exp(−θu2)−1)
exp(−θ)−1

)
−Ln exp(−θt)−1

exp(−θ)−1 τ = 1 − 4
θ

+ 4
θ2

∫
θ
0

t
exp(t)−1 dt (-∞,∞)-{0}

Gumbel exp
(
− [

(−Lnu1)
θ + (−Lnu2)

θ
]1/θ

)
(-lnt)θ θ = 1/(1–τ ) [1,∞)

Plackett

[
1 + (θ − 1) (u1 + u2) − TermA1/2

]/{2 (θ − 1)}
TermA= {1 + (θ − 1) (u1 + u2)}2 − 4u1u2θ (θ − 1)

/ Obtained numerically (0,∞)–{1}

�cumulative distribution function of the standard normal distribution;
Nθ cumulative distribution function of the standard bivariate normal distribution with Pearson correlation θ ;
Tλ cumulative distribution function of the Student with λ degrees of freedom; Tθ ,
λ cumulative distribution function of the bivariate Student distribution with λ degrees of freedom
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of copulas are given in Table 1. The Frank copula
is a symmetric copula; the Clayton and Gumbel cop-
ulas are asymmetric Archimedean copulas. The Clay-
ton copula exhibits greater dependence in the nega-
tive tail than in the positive, but the Gumbel copula
(also known as the Gumbel–Hougard copula) exhibits
greater dependence in the positive tail than in the
negative tail.

3.3 Plackett copula

The Plackett copula is the best known example of an
algebraically constructed copula. The association θ is deter-
mined by the odds ratio, based on observed frequencies in
the four quadrants, rather than on the correlation of random
variables [45].

3.4 Relationship between Kendall’s Tau and the copula’s
parameter

For the elliptical class of copulas, there is a relationship
between the linear correlation ρp and the rank correlation τ

[24]

τ
(
Zi, Zj

) = 2

π
arcsin

(
ρ

ij
p

)
(8)

where arcsin(t) is an inverse trigonometric function such
that sin(arcsin(t)) = t . This expression prompts the alterna-
tive estimation of ρp. The use of Eq. 8 may be more advan-
tageous because τ is rank-dependent and invariant with
respect to strictly monotonic nonlinear transformations.

For the Archimedean class, [25] have shown that τ

depends on the generator φθ(·) and its derivative, according
to the following simple form:

τ
(
Zi, Zj

) = 4
∫ 1

0

∫ 1

0
C

(
ui, uj ; θ

)
dC

(
ui, uj ; θ

) − 1

= 1 + 4
∫ 1

0

φθ(t)

φ
′
θ (t)

dt (9)

The explicit function of this expression for the copulas is
given in Table 1. If Kendall’s tau is known, the correla-
tion parameter of the copula θ can be estimated using this
expression. An illustration of the correlation between ρp or
θ and Kendall’s τ is shown in Fig. 1.

3.5 Identification of the best-fitting copula

The goodness-of-fit for the alternative copulas is usually
assessed using the Cramér–von Mises statistic [27]. The
Cramér–von Mises statistic is based on the empirical pro-
cess of comparing the empirical copula with a parametric
estimate of the copula derived under the null hypothesis
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Fig. 1 Relationships of Pearson’s rho and copula parameter theta with
Kendall’s tau

H0. The Cramér–von Mises function represents a type of
distance between the true and the observed copula:

Sn =
n∑

i=1

{
Cn

(
U

i,n
1 , U

i,n
2

)
− Cθn

(
U

i,n
1 , U

i,n
2

)}2
(10)

where Cn is the empirical copula used as the most objec-
tive benchmark and Cθn is an estimator of C under the
hypothesis that H0: C ∈ {Cθ } holds. Here, θn is an esti-
mator of θ computed from the ranked pseudo-observations(
U

1,n
1 , U

1,n
2

)
, ...,

(
U

n,n
1 , U

n,n
2

)
and could be estimated via

the inversion of Kendall’s τ . Large values of Sn lead to the
rejection of H0. Approximate pc values for the test function
Sn are obtained using a parametric bootstrapping approach
[35]. The pc value represents the level at which the copula
is not rejected, meaning that models with higher pc values
are better in terms of not being rejected.

The best-fitting copula from among the candidate copu-
las for the set of shear strengths is assessed in terms of the
AIC [2]. The copula associated with the smallest AIC value
is considered to be the best-fitting copula.

3.6 Copula-based sampling with correlation

The copula provides a convenient way to fit each variable
to a distribution separately and then joins the marginal dis-
tributions together through their dependence [47]. Thus,
copula-based sampling makes it possible to reconstruct the
dependence structures of these observed data sets by ran-
dom draws from the above copula functions. In particular,
if (ui , uj ) is a random draw from a copula, then

(
zi , zj

) =(
F −1

Zi
(ui) , F −1

Zj

(
uj

))
is a random draw from the joint

distribution HZiZj

(
zi , zj

) = C
(
FZi (ui) , FZj

(
uj

))
.
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Generating random samples from the distributions that
correspond to those copulas are associated with a vari-
ety of algorithms called copula-based sampling methods
(CBSM).

The simulation of copulas can, in principle, be based on
the conditional distribution approach, which is appealing
because only univariate simulations are required. The main
steps of this technique are the following [42]:

1. Generate two independent uniform (0,1) variates ui and
x.

2. Set uj = C−1
ui

(x), where Cui

(
uj

) = ∂
∂ui

C
(
ui, uj

)
is a

conditional copula, and C−1
ui

denotes a quasi-inverse of
Cui .

3. The desired pair of cumulative distribution functions is
(ui , uj ).

4. The desired variates or realisations are zi = F −1
i (ui)

and zj = F −1
j

(
uj

)
, where Fi and Fj are cumula-

tive distribution functions. (zi , zj ) is a quantile pair of
random vectors, i.e., the cohesion and friction angle.

Unfortunately, for most copulas, the function C−1
ui

does
not exist in closed form. In this case, after sampling ui , one
has to use a root-finding routine to obtain uj . The common
way of proceeding is thus based on specific techniques for
various classes of copulas.

For elliptical copulas, the Choleski decomposition pro-
vides an easy solution in the normal and Student cases [42,
64]. For Archimedean copulas, the Laplace transformation

of the inverse of the generator exists in closed form. A gen-
eral simulation procedure exists that uses an approach [42,
64] based on the first derivation by [41]. This approach
requires generating random numbers from a positive ran-
dom variable K , often called frailty: in particular, for the
simulation of Clayton, Frank and Gumbel copulas, K is the
gamma, log-series and positive stable [64]. For the remain-
ing copulas, essentially no method is available except the
conditional distribution approach.

3.7 Application of the CBSM to the soil shear strength
pairs by [39]

Taking data obtained for soils in Class BL-2 by [39] as an
example to illustrate the above procedures, the values of the
cohesion and friction angle obtained from 45 core samples
are shown in Fig. 2. The surface soils in the decomposed
granite area, named clayey coarse sands, were collected as
samples to carry out consolidated undrained triaxial tests.
The strength pairs are dependent variables, as shown in
Table 2, with a correlation coefficient τ of −0.236 (the cor-
responding ρp is −0.382; however, a value of −0.43 was
reported in Lumb’s investigation, which may result from
digital interpretation of the data set in the figures).

Among various possible candidate marginal distributions
for the cohesion and friction angle, the following func-
tions are generally used for goodness-of-fit: the normal,
log-normal, Gumbel, Weibull and gamma distributions. No
detailed explanation of these distributions is given here

Fig. 2 Paired data for cohesion
and internal friction angle
(obtained from [39])
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Table 2 Mean, standard
deviation and correlation
coefficient for soil BL-2

Cohesion (kPa) Friction angle (deg) Correlation

Mean Standard Best Mean Standard Best ρp τ

deviation fitting deviation fitting

64.443 7.358 Weibull (shape = 10.76, 28.531 0.757 Normal −0.382 −0.236

scale = 67.62)

because they are readily available in many standard text-
books [43]. The R package [51] routine ‘fitdistrplus’, which
gathers tools for choosing and fitting a parametric univari-
ate distribution to a given data set [50], was utilised here
to compute the AD statistic pm and AIC values listed in
Table 3. The pm value is greater than the significance lev-
els usually mentioned in the statistical literature [4] for most
of the candidate distributions. The values of AIC provide
an objective way of determining which model among a set
of models is most parsimonious. To obtain further intuitive
knowledge on the distribution of the strengths, quantile–
quantile plots can be developed to compare two distributions
by plotting their quantiles (or percentiles) against each
other. The quantiles of observed distributions of cohesion
and friction angle are plotted against the quantiles of the
standard normal distribution (i.e., the normal distribution
with a mean of 0 and a standard deviation of 1) in Fig. 3a,
b, respectively. If the observed data have a standard normal
distribution, the points on the plot will fall approximately
along the reference line Y = X. The greater the departure
from the reference line, the greater the evidence for the con-
clusion that the data set have come from a population with a
different distribution. Overall, the fit of data to a normal dis-
tribution is good, although the distribution struggles slightly
with the extreme tail of the distributions.

By combining the individual marginal models of soil
shear strengths with the rank correlation estimated from the
observed pairs, any copula can be used to build a multivari-
ate model that is consistent with the available information.
The R package routine ‘copula’ helps to build and study
multivariate modelling for fitting copulas [64, 65]. After a
‘mvdc’ class designed to construct multivariate distributions
with given margins and their dependence using copulas
is imposed, the package easily allows the generation of

random variables through ‘rmvdc’ function or ‘rcop-
ula’. The command ‘gofCopula’, where, by default, the
approximate pc values for the test statistics are obtained
using the parametric bootstrap, makes the goodness-of-fit
test procedure easier to compute. These R packages are
freely available at the Comprehensive R Archive Network
(cran.r-project.org).

The Cramér-von Mises statistic pc values and the AIC
are listed in Table 4. Usually, two or more copulas are not
rejected if their pc values are greater than 0.05. However, the
Clayton copula gives a slightly lower AIC value (−10.99)
than the one (−6.17) given by the normal copula, which
indicates that the Clayton copula is better suited to this set
of observations. Visual scatter plots of realisations from the
best-fitting copula are shown in Fig. 4. Only 200 random
samples are selected for legibility. The confidence region
(CR) is defined in the original physical space of two random
variables to characterise the spread of the sampled data in
different directions. At the 95 % confidence level, the con-
fidence curves for both the observed (enclosed area Io) and
predicted data (enclosed area Ip), determined using a 2D
kernel density estimator (‘kde2d’ of MASS package in R,
see [61]) using 300 grid points in each direction are illus-
trated in this graph. To quantify the differences of these
confidence regions, the percentage form of relative change
darea between the simulated and measured regions can be
expressed by the ratio of the absolute change and divided
by the measured region, i.e., darea = abs(IP−Io)

Io
× 100. Here,

the Io associated with the measured region is taken as a ref-
erence value. If the relative percentage difference darea is
large, the predictions are less valuable than the observations.
The relative percentage area difference darea of predictions
is calculated as 3.18 %. This graphical technique can pro-
vide an alternative tool for understanding the performance

Table 3 AD statistic and AIC
of marginal distributions for
soil BL-2

Type AD statistic pm AIC

Norm Lognorm Gumbel Weibull Gamma Norm Lognorm Gumbel Weibull Gamma

c (kPa) 0.6 0.75 1.13 0.49 0.69 310.32 312.77 319.68 307.54 311.81

ϕ (degree) 0.39 0.46 0.83 0.44 0.45 105.7 106.03 112.69 105.75 105.93
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quantile plots comparing observations of the friction angle of soil BL-2
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of a simulation and preselecting appropriate copulas. Visual
examination suggests that the copula model does an ade-
quate job of mimicking the true distribution and maintaining
the correlation relationships of these observed data.
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Fig. 4 Contour of the best-fitting copula (Clayton) confidence regions
of the simulated and observed data for soil BL-2 [39]

For the BL-2 soil studied by [39], Fig. 5 illustrates a fur-
ther comparison of the density contours for the bivariate pair
of (c, ϕ) for different models. As this figure shows, the level
curves of the empirical density for a bivariate normal distri-
bution model (the values of the mean and standard deviation
are taken from Table 2) are elliptical, whereas the level
curves of the density through copulas with the best-fitting
marginal distributions (listed in Table 2) take a different
shape. The observed data are superimposed on the contour
plots. The Clayton copula with the best-fitting margins pro-
vides a much better fit to the bivariate shear strength pairs
than the traditional bivariate normal distribution model. A
distinct advantage of normal copulas is their ability to cap-
ture dependence behaviours often observed in geotechnical
engineering. The normal copula with the best-fitting mar-
gins provides a distribution that is quite similar, although
not identical, to the one provided by the bivariate Clayton
copula, and this distribution more reasonably represents the
observed data than does the traditional model.

The information obtained from the results of a limited
number of tests can only reflect a small part of the entire
truth. For instance, the 45 observations in this example are
very meagre multivariate data. Nevertheless, in engineer-
ing practice, including geotechnical design and analysis, it
is often necessary to assume that the engineering behaviour
indicated by limited data is true of an entire engineering

Table 4 AIC and pc values of
various copulas for soil BL-2 Type Normal Student (df = 9) Clayton Frank Gumbel Plackett

pc 0.553 0.158 0.059 0.589 0.224 0.179

AIC −6.17 −3.46 −10.99 −5.58 3.71 −4.9
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system. The method provides a complete approximation
to observed data sets. The differences between the con-
fidence regions of the observed data and the confidence
regions of the simulated data are not pronounced, which
suggest that the copula model can provide a good descrip-
tion of the given experimental data. Typically, these models
could then be used in a Monte Carlo risk analysis. Because
the CBSM is obviously prone to model risk, it should be
seen as a form of sensitivity analysis. Varying dependencies
can be chosen to represent the variability of the corre-
lated soil strength properties and to assess the performance
of the existing slope stability analysis program within a
probabilistic framework, as illustrated below.

4 Probabilistic slope stability analyses

4.1 Deterministic analysis

Bishop’s deterministic simplified method [7] is the most
widely used limit equilibrium method and is based on the
effective stress approach. The soil mass is divided into a
number of vertical slices of equal width. The forces between
the slices are neglected; each slice is considered to be an
independent column of soil of unit thickness. Considering
the entire slip surface, the factor of safety against sliding,
Fs , is expressed by the resisting moments against the driving
moments

Fs = 1
∑

W sin α

∑ ({
c′b + tan φ′ (W − ub)

} 1

mα

)
(11)

where mα = cos α + tan φ′ sin α
Fs

, c′ and φ′ are the effective
shear strength parameters, W is the weight of a slice, u is
the pore pressure and b is the width of the slice. Taking one
slice as an example, the weight of slice W is calculated to be
equal to γhab, where γ is the bulk unit weight of the soil,
ha is the average height of the slice and b is its width. This
is called Bishop’s simplified method. Equation 11 includes
the factor of safety Fs on both sides of the equation; there-
fore, the equation has to be solved by an iterative process.
A trial value of Fs is first assumed, and the factor of safety
is computed by iteration until the assumed and computed
values of Fs coincide.

4.2 Reliability index determined by the correlated shear
strength parameters using the CBSM

The reliability index is often used to express the degree of
uncertainty in the calculated factor of safety for an input
set of basic random variables. This type of reliability-based
analysis provides quantification of the safety of a system
by examining the variability of the relevant parameters as
well as their interdependence. Well-established reliability
methods, such as the FORM, the first-order second-moment
(FOSM) method and Monte Carlo simulation, are useful in
determining the reliability of geotechnical designs where
the random variables are correlated [4, 5]. The FOSM
approach provides a computationally efficient way of esti-
mating the probability of failure [4], but the reliability index
estimated using this approach is not ‘invariant’ and gives
several expressions of the performance function [17, 44].
The FORM yields an invariant definition of the reliability
index [46] by transforming basic input variables from the
physical space to the standard normal space. To address cor-
related normal distributions, two techniques may be used
with the FORM to pursue the expression for independent
variables—one based on the Cholesky decomposition of the
correlation matrix ([5], pp. 393–398) and the other based
on orthogonal transformation by solving the eigenvectors
of the covariance matrix ([4], pp. 353–359). For the non-
normal correlated variables, a Rosenblatt transformation
should be adopted. In this study, a transformation algo-
rithm derived by [66] is used, and this algorithm does not
require the user to leave the original space of the correlated
variables. A brief description of the FORM is provided in
Appendix 2.

Fig. 6 Homogeneous slope
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Table 5 Statistical properties of soil parameters for the homogeneous
slope

Random Unit mean Standard Distribution

variable deviation

c kPa 18.0 3.6 Normal

tan φ 0.577 0.058 Normal

The applicability of the commonly used Monte Carlo
simulation method for correlated variables to geotechnical
problems has been described in detail in reference [46]. A
number of algorithms have been developed in the litera-
ture to generate correlated random numbers [57]. Alterna-
tively, the technique based on the copula sampling scheme
imposed on the best-fitting marginal distributions and rank
correlation matrices provides useful reconstructions of the
joint behaviour of shear strengths, and the mean and stan-
dard deviation of the factor of safety can be obtained
through these reconstructions by running the conventional
definition of Fs repeatedly. Therefore, the reliability index
βcb determined by the CBSM can be calculated as follows
[53]:

βcb = μFs − 1

σFs

(12)

Finally, the failure of probability Pf can be estimated by the
ratio of the running sum of the failed cases (Fs < 1) m to the
running sum of the total samples nsim, i.e., Pf = m/

nsim .

This leads to the following computational procedure:

1. Establish the number of realisations to be used, as
discussed in Section 3.6;

2. For each point k, generate a paired value of (c, tanϕ),
with consideration of the dependence;

3. Calculate the factor of safety Fs(c, tanϕ) and count the
number to be added to a running sum m if Fs(c, tanϕ) ≤ 1;

4. After all points have been evaluated, evaluate the esti-
mate of Pf from the running sum nsim, i.e., Pf =
m/nsim, and calculate the reliability index βcb.

When the number of simulations is sufficiently large,
the standard deviation of the estimated values Fs can be
obtained by simulating sample inverses with the square root
of the simulating number. Thus, the accuracy increases as
the number of simulations increases. In general, when the
number of simulations is greater than nsim ≥ 100/Pf, the
accuracy may be satisfactory [33, 60], and the probability
of failure Pf can be calculated to represent a deterministic
solution.

4.3 Illustrative numerical example

To illustrate the influence of the correlation on the reliability
index βcb , a series of analyses by the CBSM and the FORM
are demonstrated in the following typical slope cases.

Example 1: application to a homogeneous slope
Slope stability analyses were performed using the sim-

plified Bishop method, assuming circular slip surfaces.
For instance, a homogeneous slope is shown in Fig. 6
and analysed by the proposed methods (the FORM and
CBSM). The parameters considered as random variables

Fig. 7 Scatter plot of the factor
of safety against cohesion and
friction angle
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Fig. 8 Relation of probability of failure against cohesion and friction
angle

for c, tanϕ, as described previously by [38], are listed in
Table 5. The mean value of the unit weight is assumed to
be a constant 18.0 kN/m3 (the same is true below, unless
otherwise mentioned). The critical slip circle is shown
in Fig. 6, according to a deterministic analysis based on
the mean values of the soil parameters, similar to that
reported by [30].

The τ of shear strengths is taken as −0.43, with a cor-
responding ρp = −0.61 [10]. Their marginals are listed
in Table 2. Some of the sampled data from the CBSM
(100 points) are shown in Fig. 7. The computed results
for the factor of safety relative to the above 100 combined
pairs are summarised in Fig. 7. The graph shows the fac-
tor of safety versus the cohesion and friction angle, using
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Fig. 10 Cross section of two-layer slope

a three-dimensional cube. A regression plane is added to
the plot to support the visual impression. The factor of
safety increases dramatically with the cohesion and fric-
tion angles, although it can be less than 1 for some small
values of the cohesion and friction angle. A critical state
line is defined as the projection line of the regression
plane on the horizontal plane Fs = 1, as illustrated in
Fig. 7. Pairs of (c, tanϕ) values, i.e., (15, 0.3) and (10,
0.36), follow this line. If pairs of (c, tanϕ) values are
sampled with a correlation coefficient close to perfect
(τ ≈ 1), these values will approximately follow a straight
line on the c and tan ϕ plane (in this case, the variance of
the shear strength is reduced in some degree); thus, the
regression problem is reduced to a projection line rather
than a plane.

The probability of failure can be calculated for specific
combinations of the cohesion and friction angle. These
combinations are obtained by sequentially setting one
parameter with the remaining parameter set at its mean
value. The standard deviation of cohesion is assumed
to be 20 % of the mean, and the standard deviation of
friction angle is assumed to be 10 % of the mean. The
computed probability of failure is plotted against cohe-
sion and friction angle in Fig. 8. The probability of failure
increases considerably as the cohesion and friction angle
decrease.

To demonstrate the influence of correlation extremes
on reliability indices, the cross correlation τ is var-
ied from −0.91 to 0.91 (such extreme values cannot
be expected in reality), and the same statistics (includ-
ing the means and standard deviations) for the cohesion
and friction angle are fed into the FORM and CBSM

Table 6 Statistical properties of soil parameters for the stratified slope

Random Unit mean Standard Distribution

variable deviation

c1 kPa 38.31 7.662 Normal

tan φ1 0 0 Normal

c2 kPa 23.94 4.788 Normal

tan φ2 0.209 0.021 Normal

c∗
1 kPa 38.31 7.662 Normal

tan φ∗
1 0.349 0.035 Normal
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Fig. 11 Reliability index versus ranked correlations of soil properties
for the stratified slope

(using the normal copula as an example, as described
below). The reliability indices computed for these cor-
relation coefficients are shown in Fig. 9. The reliability
indices are expected to decrease as the correlation coef-
ficients decrease. This observation arises from the fact
that the variance of shear strength is reduced if there is a
strong negative correlation between cohesion and friction
angle. The results from the CBSM and the FORM show
good agreement, which proves to work well in determin-
ing the reliability index using the computation technique
presented.

In Fig. 9, the means of the factor of safety are also
given by the deterministic limit equilibrium method
through those sampled strength pairs (i.e., 10,000 simu-
lations). The correlation coefficients have little influence
on the means, which are always inferred from their
aggregate behaviour in terms of the mean soil strengths.
[38] determined the value of the reliability index using
Hasofer and Lind’s approximate method. According to

their results, the minimum critical factor of safety in
conventional design is estimated to be 1.5, and the cor-
responding reliability index is 2.63. The results obtained
in this study show some agreement with their results,
although the model input may be slightly different.

The FORM is a powerful tool in probabilistic geotech-
nical analysis, especially in standard normal spaces.
However, partial differential terms of the performance
function have to be derived if a gradient-based optimisa-
tion method is employed when searching for the shortest
distance to the failure state. The CBSM better facilitates
allowing the non-normal distribution and nonlinear fail-
ure state function. Other types of distributions for soil
strength properties, such as the triangular, beta and gener-
alised gamma distributions (suggested by [5, 39, 62]), can
also be implemented in this approach. The CBSM is flex-
ible in the sense that different distributions can be used to
describe each marginal distribution while still being able
to incorporate dependence, i.e., it allows the joint dis-
tribution function type to be different from the marginal
cumulative distribution function types [49].

Example 2: application to a stratified slope
The cross section of a two-layer slope [30] is shown

in Fig. 10. The slope in clay is bounded by a hard layer
below and is parallel to the ground surface. The statistics
of the soil strength parameters are summarised in Table 6.
No water table or external water is considered. The corre-
sponding critical deterministic slip surface, based on the
mean values of the soil properties, is also presented in
Fig. 9. A similar (circular) surface was reported by [30].

A parametric study was performed by specifying vari-
ous correlation coefficients between the cohesion and the
friction angle. The calculated reliability indices obtained
from the FORM and CBSM for various correlation coef-
ficient values are given in Fig. 11. Varying the cross
correlation τ from −0.91 to 0.91 was found to have
only a minor influence on the stochastic behaviour of the
slope stability. This difference was not expected owing
to the sliding circle being mostly through layer one
(its cohesion is assumed to be zero). Notably, when a

Fig. 12 Cross section of the
Cannon Dam
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Table 7 Statistical properties of soil parameters for the Clarence
Cannon Dam

Soil Random Unit Mean Standard Distribution

variable deviation

Phase I c1 kPa 117.79 58.89 Normal

tanφ1 0.15 0.15 Normal

Phase II c2 kPa 143.64 79 Normal

tanφ2 0.268 0.158 Normal

single soil strength parameter is used, consideration of
the uncertainties will fall into a class of Monte Carlo
sampling method. For instance, a granular material has
little or no cohesion, and a clayey material has a very
small or even zero friction angle. There is no difference
between the CBSM and the conventional Monte Carlo
sampling method because no explicit dependence should
be represented.

When the cohesion and friction strength parameters
of the first layer are set with the same means but with
larger standard deviations, as listed in Table 6, c∗

1 and
tan ϕ∗

1 , the computed reliability indices by the CBSM are
shown with symbols ‘+’ in Fig. 11. The reliability indices
decrease as the correlation increases.

Example 3: Application to the Clarence Cannon Dam
The third typical cross section of the Clarence

Cannon Dam previously described by [63] is presented
in Fig. 12. The structure consists of two zones of com-
pacted clay, including phase I fill and phase II fill, over
layers of sand and limestone. The strength parameters of
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Fig. 13 Reliability index versus ranked correlations of soil properties
for the Clarence Cannon Dam

the two clay layers are considered random variables. The
statistics for these parameters, based on unconsolidated
and undrained shear tests of samples from the embank-
ment [62], are shown in Table 7. The critical deterministic
circle is shown in Fig. 12.

A distribution with a high standard deviation, as used
here for phase I and phase II clays, implies negative
values associated with the low-probability tail of the dis-
tribution, which is not admissible for strength parameters.
A similar truncated technique [19] is imposed to provide
reasonable values.

Figure 13 shows the relations of the factor of safety and
the reliability index to the correlation coefficients. The
value of the factor of safety increases slightly as the cor-
relation coefficients increase. The reliability index values
based on both algorithms increase when the correlation
coefficient between c and ϕ decreases from positive to
negative. This is especially evident for the lowest val-
ues of the coefficient of variation for the cohesion and
friction angle.

5 Discussion

In the probabilistic stability analysis described above, the
location of the critical surface is part of the evaluation of
the performance function and depends on the values of
the strength parameters, which are uncertain. As noted by
[30], the difference between the reliability index defined for
the critical deterministic surface and the minimum reliabil-
ity index may be substantial in some cases. Locating this
critical probabilistic surface may require additional com-
putational effort, and not doing so may lead to inaccurate
measures of reliability. The technique suggested by Hassan
and Wolff for locating the surface of the minimum reliabil-
ity index is used in this study, which examines offset values
of each of the random variables while keeping the remaining
parameters at their mean values.

Clearly, variations in the correlation parameters of the
strengths can substantially affect the reliability index, espe-
cially when the correlation approaches negative 1. As deter-
mined by [13], the reliability of a slope increases as the cor-
relation between the cohesion and friction angle decreases.
Thus, when the cohesion and friction angle are negatively
correlated, the reliability index can be much higher than
when the shear strength parameters are positively correlated.
Therefore, neglecting any negative correlation underesti-
mates the reliability index, while neglecting any positive
correlation overestimates the reliability index.

These efforts in the bivariate statistical analysis of soil
strength parameters are encouraging but insufficient to
obtain an accurate description of the soil uncertainty state,
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which sometimes dominates multivariate problems. Some
other parameters, such as the pore water pressure, unit
weight, consolidation coefficient and seepage coefficient
should also be considered.

Care should be taken, however, to ensure that the min-
imum and maximum values of the selected distribution
are consistent with the physical limits of the parameter
being modelled. For example, shear strength parameters
should not imply negative values. If the selected distri-
bution implies negative values in the third case, then the
distribution is truncated at a practical minimum threshold.
Alternatively, a best-fitting distribution, such as the log-
normal, generalised gamma or Weibull distribution, can fit
the observed data and avoid negative samples.

The identified copulas can be wrong if a very small
number of samples are used. Although more fundamental
experiments of shear tests of soils to provide enough data
sets should be encouraged greatly, the sample size with
around 50 can be acceptable [67]. The size of the data set
has been mentioned by some researchers [4, 26] as affecting
the confidence regions or dependence structures.

6 Conclusions

An approach to probabilistic slope stability analysis that
accounts for the statistical correlation of the input soil
strength parameters is presented. A set of reliability indices
for varying correlation coefficients yield an objective
description of the overall evaluation of slope stability and
a better description of the degree of uncertainty. The appli-
cability of the proposed methodology (including the CBSM
and the FORM) described herein is examined for a variety of
slope stability problems from the literature, such as a homo-
geneous slope, a stratified slope and the embankment of the
Cannon hydroelectric project. The method is proven to be a
practical and efficient method for facilitating a probabilistic
slope stability analysis of cohesive frictional soils through
copula-based samplings. The method does not rely on any
assumptions concerning the geometry of the failure surface
and can be applied to any complex clay slope geometry,
layering and pore pressure conditions.

Invoking the CBSM to take into account the interdepen-
dence of soil strength properties, the new method has an
advantage in implementation for inputting a combination of
soil strength parameters. The approach is simple and can
be applied in practice with little effort beyond that needed
in a conventional analysis. The method permits practising
engineers to locate the surface of the reliability index using
existing deterministic slope stability computer programs,
without special software, by making a moderate number of
multiple runs.

The analysis of the results and the examination of the
resulting plots illustrate the importance with respect to
the reliability index of the correlation coefficient between
soil strength properties, i.e., the reliability decreasing as
the correlation increases. Comparing the computed results
and the evaluated ones obtained using the FORM method,
the CBSM tends to open the way for various marginal
distribution types and dependence structure.

Appendix 1

Notation

Symbol Description
A indicator variable
b width of slice
C copula distribution function
c cohesion
c′ effective cohesion
ci outward normal vector to a hyperplane from

the geometry of surfaces, = λ
∂g
∂zi

, where λ is
arbitrary constant

darea relative percentage area difference
Cov covariance of two random variables
F marginal distribution
F −1 quasi-inverse of F
Fs factor of safety (defined with respect to shear

strength)
g performance function
H two-dimensional distribution function
ha average height of slice
Lβ distance in standard deviation units

Lcorr
β Lβ for correlated variables, =

√
2∑

i=1
cT
i Rci

m total number of failed cases
mα term used in the simplified Bishop method, =

cos α + tan ϕ′ sin α
Fs

nsim number of simulations
pc Cramér–von Mises test statistic
pm Anderson–Darling test statistic
Pr probability of failure
Sn Cramér–von Mises function
u pore water pressure
ui ith uniform random variable, =F(Zi)

uj j th uniform random variable, =F(Zj )

W weight of slice, =γhαb

Zi ith random variable
Z∗

i dimensionless variable, reduced variable, or
standard random variable

zi ith realisation of Zi



Comput Geosci (2013) 17:739–755 753

Zj j th random variable
zj j th realisation of Zj

α inclination of the slope or the slope of failure
surface

αi direction cosine, = ci

Lβ

αcorr
i αi for correlated variables, = Rci

Lcorr
β

βHL the Hasofer–Lind reliability index
βcb reliability index by the CBSM
γ bulk unit weight of soil
λ degrees of freedom of the Student copula
μ mean
ρp Pearson’s correlation coefficient
σ standard deviation
�2 variance–covariance matrix
τ Kendall’s correlation coefficient
ϕ inner friction angle
ϕ′ effective inner friction angle
ϕθ generator function
� standard normal distribution
θ copula parameter

Appendix 2

Calculation of the reliability index by the FORM
with correlated variables

For the limit equilibrium analysis of slope stability, two
shear strength variables Zi , Zj are considered, and a perfor-
mance function can be written as g(Zi , Zj ) = Fs–1. The
FORM, commonly called the Hasofer–Lind method [29],
transforms basic input variables from the physical space Z

to the standard normal space Z∗, i.e., it uses dimensionless
variables

Z∗
i = {Zi − μ (Zi)}

/
σ [Zi ] (13)

to explore the numerical approximation of the performance
function. The reliability index βHL defined by this method
is measured by the distance Lβ from the origin to the failure
surface

g
(
Z∗

i , Z∗
j

)
= 0 (14)

in the space of the dimensionless variables. The point on
the failure surface (or curve) is called the ‘design point’.
This method was originally developed for normal-type or
Gaussian-type variables. To extend its application to non-
normal variables, the Rackwitz–Fiessler algorithm [53], is a
straightforward local approximation of the marginal cumu-
lative distribution function of a non-normal variable by a
normal cumulative distribution function that has the same
ordinate and slope at the design point.

Given that the limit state function is zero, the reliability
index βHL can be found from

βHL = min
g
(
Z∗

i ,Z∗
j

)
=0

√
{
Z∗

i

}T
{
Z∗

j

}
(15)

Calculating this value is an iterative optimisation process
in which the minimum value of a matrix calculation is
found, subject to the constraint that the values result in
a system failure. Creating an iterative scheme requires an
expression for successive approximations Z∗

i and Z∗
j . This

can be achieved from a first-order Taylor expansion of

g
(
Z∗+1

i , Z∗+1
j

)
about Z∗

i and Z∗
j

g
(
Z∗+1

i , Z∗+1
j

)
≈ g

(
Z∗

i , Z∗
j

)
+

(
Z∗+1

i − Z∗
i

)

×
∂g

(
Z∗

i , Z∗
j

)

∂Z∗
i

+
(
Z∗+1

j − Z∗
j

)
×

∂g
(
Z∗

i , Z∗
j

)

∂Z∗
j

(16)

where Z∗+1
i represents the value of Z∗

i in the next iterative

step.
∂g

(
Z∗

i ,Z∗
j

)

∂Z∗
j

is the outward normal vector to a hyperplane

(or curve) from the geometry of surfaces, denoted by ci .
Thus, the total length of the outward normal, Lβ , is defined

as Lβ =
√

2∑

i=1
c2
i , which describes the distance between the

most probable set of values and the most probable set of val-
ues that causes a failure. The direction cosines (also called
sensitivity factors by [32]), αi , of the unit outward normal
are defined as αi = ci

Lβ
, i = 1,2. There is an αi value for

each random variable considered in the reliability analysis,
and the α values range from −1 to +1. With a known αi ,
the coordinate of the trial point Z∗

i in the initial step can be
estimated by

Z∗
i = −αiβHL (17)

Then, substituting Eq. 17 into Eq. 16 yields

Z∗+1
i = −αi

⎡

⎣βHL +
g

(
Z∗

i , Z∗
j

)

Lβ

⎤

⎦ (18)

If the basic variables are correlated, the literature ([59],
[5] pp. 393–398; [4] pp. 353–359) recommends transform-
ing the problem into a space of new variables that are
uncorrelated and thereafter minimising βHL in that space.
Interestingly, Chowdhury and Xu [13] presented a transfor-
mation to address the correlated random variables in terms
of original basic random variables, based on a linear algebra
theory. Herein, a transformation algorithm derived by [66]
that does not require the user to leave the original space of
correlated variables is used. The technique is functional for
the combined case of both a nonlinear failure surface and
correlated variables in that it imposes the correlation matrix
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R in existing formulas for independent variables. The corre-
lation matrix is a function of the correlation coefficient ρ

ij
p

for the pair Zi , Zj . For example, the length of the outward

normal is Lcorr
β =

√
2∑

i=1
cT
i Rci and the direction cosines are

αcorr
i = Rci

Lcorr
β

. Readers can refer to [66] for more details on

this numerical algorithm.
The scheme can now be summarised as follows:

1. Standardise the basic random variables Z to the stan-
dardised normal variables Z∗.

2. Compute the derivative ci = ∂g

∂Z∗
i

and the direction

cosines αi = ci

Lβ
(for the independent case) or αcorr

i =
Rci

Lcorr
β

(for the dependent case).

3. Evaluate g
(
Z∗

i , Z∗
j

)
.

4. Compute Z∗+1
i using Eq. 18 and β+1

HL using Eq. 15.
5. Check whether β+1

HL and Z∗+1
i have converged; if not

go to step [2].
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