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Abstract Model calibration and history matching are
important techniques to adapt simulation tools to real-
world systems. When prediction uncertainty needs to be
quantified, one has to use the respective statistical counter-
parts, e.g., Bayesian updating of model parameters and data
assimilation. For complex and large-scale systems, however,
even single forward deterministic simulations may require
parallel high-performance computing. This often makes
accurate brute-force and nonlinear statistical approaches
infeasible. We propose an advanced framework for param-
eter inference or history matching based on the arbitrary
polynomial chaos expansion (aPC) and strict Bayesian prin-
ciples. Our framework consists of two main steps. In step 1,
the original model is projected onto a mathematically opti-
mal response surface via the aPC technique. The resulting
response surface can be viewed as a reduced (surrogate)
model. It captures the model’s dependence on all param-
eters relevant for history matching at high-order accuracy.
Step 2 consists of matching the reduced model from step 1
to observation data via bootstrap filtering. Bootstrap filter-
ing is a fully nonlinear and Bayesian statistical approach to
the inverse problem in history matching. It allows to quan-
tify post-calibration parameter and prediction uncertainty
and is more accurate than ensemble Kalman filtering or lin-
earized methods. Through this combination, we obtain a
statistical method for history matching that is accurate, yet
has a computational speed that is more than sufficient to be
developed towards real-time application. We motivate and
demonstrate our method on the problem of CO2 storage
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in geological formations, using a low-parametric homoge-
neous 3D benchmark problem. In a synthetic case study, we
update the parameters of a CO2/brine multiphase model on
monitored pressure data during CO2 injection.
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1 Introduction

1.1 Modeling carbon dioxide storage

We would like to motivate our work on the example of
modeling CO2 storage in geological formations. CO2 stor-
age is currently being discussed intensively as an interim
technology with a high potential for mitigating CO2 emis-
sions (e.g., [32]). In recent years, great research efforts
have been directed towards understanding the processes
in CO2 storage. The multiphase flow and transport pro-
cesses involved are strongly nonlinear. They include phase
changes in the region of the critical point and effects such
as gravity-induced fingering and convective mixing as well
as geochemical and geomechanical processes, etc.

In order to describe the space–time evolution of injected
CO2 plumes, to analyze the influence of potentially leaky
abandoned wells, and to investigate possible geomechanical
failure of reservoirs, (semi-) analytical solutions have been
derived by Nordbotten et al. and others [53, 54]. A com-
parison study of various simplifying semi-analytical models
with complex numerical simulation tools was performed by
Ebigbo et al. [12]. The analysis in [4] focused on the effects
of large-scale CO2 leakage through low-permeability lay-
ers. Various optimization strategies for monitoring surface
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leakage using near-surface measurement approaches were
developed in [9]. These studies are cited here merely to pro-
vide a few examples. More detailed reviews are provided in,
e.g., [32], [7], and [12].

Modeling underground CO2 storage involves many con-
ceptual and quantitative uncertainties [29]. Class et al. [7]
published a benchmark study that compares a number of
mathematical and numerical models of varying complexity.
However, the lack of information on subsurface proper-
ties (porosity, permeability, etc.) may lead, depending on
the specific question at hand, to parameter uncertainties up
to a level where parameter uncertainties dominate or even
override the influence of secondary physical processes. In
[57, 60], the authors of the current study pointed out that
the efforts invested in improved physical conceptualization,
numerical codes, and stochastic modeling can easily be
overwhelmed by error through human subjectivity in data
interpretation at a very early stage of modeling, and they
proposed a purely data-driven approach to overcome this
problem.

In the development of CO2 injection as a large-scale
interim solution, our ability to quantify its uncertainties
and risks will play a key role. Sensitivity analyses (e.g.,
[4], [35]) for CCS have been applied up to the present.
Fault-tree analyses have been used to identify risks through
different factors [89], but have not yielded quantitative risk
information. A significant part of the applied and scientific
community still refrains from explicitly considering uncer-
tainty in modeling, although the corresponding arguments
are discussed and rejected one by one in [68]. A key hin-
drance to quantitative risk assessment is that current numer-
ical simulation models are often inadequate for stochastic
simulation techniques based on brute-force Monte Carlo
simulation and related approaches (e.g., [47], [69]), because
even single deterministic simulations may require parallel
high-performance computing.

This triggered an urgent need to develop reasonably
fast stochastic approaches for probabilistic risk assessment
of CO2 sequestration. In [58], the authors of the current
study have pioneered the application of massive stochastic
model reductions based on the polynomial chaos expansion
(PCE) to CO2 storage and developed a novel approach to
join robust design ideas with the PCE technique. Statisti-
cal uncertainty has been combined with scenario uncertainty
in the recent work [84] to estimate the risk related to the
brine migration resulting from CO2 injection into saline
aquifers. In the current paper, we suggest a history match-
ing (or model calibration, parameter inference) framework
based on Bayesian updating, which is both accurate and suf-
ficiently fast to be applied to complex large-scale models.
Putting history matching into the Bayesian updating context
allows to combine available data with prior expert judgment
and to quantify parametric uncertainty after calibration. In

this context, our approach will help to override the sub-
jectivity of prior assumptions on parameter distribution by
incorporating observed data.

1.2 Inverse modeling and history matching

Inverse modeling and history matching to past production
data are extremely important issues in order to improve the
quality of prediction. When cast into a stochastic/statistical
framework, the results also provide information on the
remaining parameter and prediction uncertainty (e.g., [43]).
Also, the statistical framework allows to assess the worth
of monitoring data and then to optimize future monitor-
ing strategies (e.g., [38]). This would help to raise studies
on CO2 plume monitoring (e.g., [9]) to the level of formal
optimization.

The accuracy of inversion or history matching depends
on the quality of the established physical model (including,
e.g., seismic, geological, and hydrodynamic characteristics;
fluid properties; etc.) and on the accuracy of the involved
parameter calibration, stochastic inversion, or data assimi-
lation techniques. The quality will also depend on the com-
putational efficiency of all involved methods [63], because
too large computational time would have to be mitigated by
compromises in numerical or inversion accuracy.

The principal challenge of history matching is that the
full reservoir behavior has to be reproduced from local
measurements [22]. The reliability of history matching is
increasing with the number of available observations. More-
over, besides the proper definition of the involved geological
and physical models, the list of uncertain parameters has to
be defined adequately for further investigation [36]. Com-
promises in this task are indispensable. On the one hand,
a too short list of parameters leads to a very parsimonious
model that allows robust parameter inference, but simply
cannot accurately reproduce the observation data. On the
other hand, a too long list of parameters leads to a very com-
plex task which cannot be afforded, computationally, and
one can run into under-determined or otherwise ill-posed
problems [15]. In this stage, an expert opinion on relevant
parameters that are useful for calibration, probably com-
bined with sensitivity analyses (see, e.g., [8, 59, 72]) or
regularization choices, is very important.

History matching is very well known in the field of
reservoir engineering [46]. Traditionally, an iterative man-
ual process of trial and error (see, e.g., [90]) is applied to
adjust the reservoir geological model in order to reproduce
past observations of oil or gas production. Such a man-
ual approach is very popular among experts in reservoir
engineering and demands a very strong understanding of
geology and processes. However, the nontrivial and nonlin-
ear interaction of the matched parameters can complicate
the history matching procedure a lot [64]. Instead of the
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manual technique, formal optimization methods such as
gradient search or the adjoint method (see [20, 42, 70])
can be applied. Unfortunately, the mentioned optimization
approaches often lead to high computational costs and can-
not be easily applied for complex real-world tasks. The state
of the art and its recent progress for history matching are
presented in detail in the review paper [63].

Another important point about history matching tech-
niques is that they can produce nonunique solutions [62],
which means that several virtual models and parame-
ter sets can match the observation data equally well. In
fact, this problem is common to most inverse problems
[80, 81]. Stochastic approaches can handle such type of
uncertainty occurring during the matching procedure with-
out the need to introduce regularization or to artificially
restrict the parameter space. Their result is a probabil-
ity distribution of possible parameter sets instead of a
single best estimation. As an improvement of classical opti-
mization, several successful stochastic approximation meth-
ods have been adapted for the history matching problem
[3, 21, 40].

However, stochastic approaches are more expensive
than classical optimization-based (deterministic) calibration
techniques, because they need to explore the full range of
possible model outcomes with many model runs. In par-
ticular, this requires to draw samples from the conditional
distribution of the parameters as equally likely calibrated
parameter sets. This can be done, e.g., via Markov chain
Monte Carlo [27], bootstrap filtering [77], GLUE [38], or
rejection sampling [77]. A particular reason for the high
computational costs is that, when exploring the full range
of possible model outcomes, many model runs are rejected
upon comparison with the data. Therefore, the high compu-
tational costs of forward modeling get multiplied by large
factors in stochastic calibration methods.

The overall efficiency challenge of history matching or
inverse modeling can be subdivided into to two principal
parts. The first part of the challenge consists in the accel-
eration of forward modeling itself, using reduced forward
models (e.g., response surfaces, surrogate models, low-
parametric representation, etc.). The second part of the chal-
lenge consists in developing efficient searching algorithms
or integration rules for inverse modeling.

To accelerate forward modeling, fast streamline forward
simulations have been used in [11]. An optimal represen-
tation of uncertain heterogeneous parameter fields in terms
of a Karhunen–Loève expansion is presented in [74], lead-
ing to a reduced number of parameters to be treated. Later,
a kernel-based principal component analysis was presented
in [73] as an alternative to the standard Karhunen–Loève
expansion. That method is capable to parametrize large-
scale non-Gaussian, nonstationary random fields and to
reproduce complex geological structures. In low-parametric

inverse problems, surrogate models can be constructed with
response surface techniques. For example, experimental
design techniques were applied in the paper [94] to build
an accurate proxy (surrogate) model using polynomials of
second order. So-called proxy functions based on polyno-
mials combined with multidimensional kriging have been
used to approximate the output of a flow simulator in
[65]. Parametric response surfaces have been used in [17]
to approximate the reservoir production forecasts and
obtain their probabilistic distribution by propagating
the remaining posterior uncertainty of input parameters.
Recently, a distance-based stochastic technique has been
presented in [75].

The ensemble Kalman filter (EnKF) method is one of
the simplest yet most successful ways to transfer Bayesian
theory (see, e.g., [77]) to practice for model updating
and forecasting. The EnKF [14] is derived from a first-
order second-moment approximation of error propagation
for Bayesian updating. The special issue in Computational
Geosciences [51] was fully devoted to (ensemble) Kalman
filtering for model updating. As a practically successful
attempt to accelerate inverse modeling, the EnKF recently
received a lot of attention for history matching (e.g., [1,
52]). It is a comparatively cheap method that can gener-
ate reasonable history-matched models for real fields. Due
to its foundation on first-order second-moment analysis, it
is optimal only if all involved model parameters, model
states, and data follow a joint multi-Gaussian distribution
and if the used ensemble is sufficiently large for accu-
rate covariance estimation. For example, the paper [45]
addresses the problem of matching production data by the
EnKF for updating facies delineations in reservoir models.
The recent article [67] offers an alternative way of comput-
ing a linear Bayesian estimator, which allows updating of
non-Gaussian quantities. It has been shown that, although
no formal linearization is involved, the EnKF contains an
implicit form of linearization [55]. Thus, the EnKF has a
theoretical limitation which does not allow it to deal with
strongly nonlinear problems. For example, the papers [87]
and [95] pointed out that the EnKF suffers from nonlinear-
ity and inconsistency in matching. The univariate deviation
from Gaussianity can be removed by empirical data trans-
formation (e.g., [31, 76]), but the multivariate structure still
poses a problem.

Therefore, we believe that further advancements can be
achieved by using more accurate nonlinear approaches to
Bayesian updating, when combined with sufficiently accu-
rate (and more expansive) model reduction techniques. In
fact, techniques based on response surfaces or other surro-
gate models have lately been combined with more accurate
versions of Bayesian updating. In [33] and [48], the poly-
nomial chaos expansion has been applied to accelerate
Bayesian updating via Markov chain Monte Carlo (MCMC)
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methods. Even the EnKF has been combined with polyno-
mial chaos expansion for accelerated and accurate computa-
tion of the required covariance matrices (see [71], [30], and
also related work [67]).

To summarize, we would like to point out that the
methodology for history matching has progressed from
manual procedures to automatic optimization approaches.
During the last years, we see a transition from classical
optimization to statistical inference based on Bayesian prin-
ciples for uncertainty quantification. Also, we can observe
that, due to the high computational demands of reservoir
models especially in the stochastic framework, the use of
surrogate models in history matching received a quickly
increasing attention in the very recent years.

The most promising novel approach seems to be the
combination of PCE-based response surfaces with EnKF
filtering or with more accurate but more expensive imple-
mentations of Bayesian updating, such as MCMC. However,
more accurate Bayesian updating approaches incorporate
higher order stochastic information on the input parameters
(e.g., in the form of high-order statistical moments) [26, 37,
88], which goes beyond the scope of the Gaussian assump-
tion. This leaves the optimality range of the EnKF. Also,
the Gaussian assumption in stochastic inversion typically
goes along with (possibly implicit) linearization of model
dependencies.

Our key motivation is that more accurate Bayesian updat-
ing also requires to work with high-order approximations of
the involved models than linear ones. Using a more accu-
rate updating rule for higher moments would be inadequate
when the involved surrogate model is too inaccurate (e.g.,
by linearizing strongly nonlinear model dependencies). As a
consequence, model reduction techniques also need to retain
the nonlinearity of models at sufficiently high orders.

1.3 Approach and contributions

The goal of this work is to further advance statistical
(Bayesian) model calibration, here working on the example
of history matching. We wish to find an even better compro-
mise between computational efficiency and accuracy of the
inversion. The resulting framework will take into consider-
ation the nonlinearity of the forward model and of inversion
and will provide a cheap but highly accurate tool for reduc-
ing prediction uncertainty. We will also aim at a consistent
use and processing of high-order statistical moments for the
considered uncertain model parameters. Our approach is to
combine fully accurate Bayesian updating via bootstrap fil-
tering (or, alternatively, via MCMC) with a model reduction
based on the arbitrary polynomial chaos expansion (aPC)
technique [57, 60, 61] (see details in Section 2).

The aPC is a so-called data-driven generalization of the
PCE technique (see details in Section 2.1). It provides

the necessary flexibility to handle arbitrary distributions of
model parameters, including high-order statistical moments.
Due to this flexibility, it can also handle the conditional
parameter distributions that occur after Bayesian updating
(see Section 2.2), if one would desire to renew the PCE-
based model reduction after Bayesian updating. A second
advantage of the aPC approach is that it provides improved
convergence with respect to increasing order of expansion
[60] of the surrogate to the original model in comparison to
more classical PCE techniques, when applied to input distri-
butions that fall outside the range of classical PCE. Thus, the
aPC allows efficient allocation of computational resources
for constructing of the surrogate model.

Bootstrap filtering (BF) is the most direct yet simple
numerical implementation of Bayes’ theorem, based on
brute-force Monte-Carlo. It approximates the conditional
probability density function (PDF) by a sufficiently large
ensemble of realizations, and it is exact at the limit of infi-
nite ensemble size. It can account for arbitrary nonlinear
model equations and for arbitrary distribution shapes in
comparison to (ensemble) Kalman filters. Hence, BF is a
perfect match for combination with the aPC technique. This
combination is superior to the previous combinations of the
classical PCE with (ensemle) Kalman filtering, because the
latter two components are both optimal only for (multi-)
Gaussian distributions.

Technically, the conditional ensemble is obtained by
simple rejection sampling [77] applied to an ensemble of
parameter vectors drawn from the prior PDF, i.e., to the
parameter distributions assumed before incorporating the
calibration or history matching data. However, an accurate
representation of conditional statistics for model parameters
and responses demands a sufficiently large size of the simu-
lated conditional sample. This can be a problem if the used
data set is large and accurate, because the acceptance proba-
bility in the rejection sampling approaches to zero. For that
reason, BFs can be feasible for very complex models, only
when extremely fast evaluation techniques for the response
surface are available. For the polynomial response surface
resulting from the aPC, this is fulfilled in cases where small
acceptance probability still poses a problem; BF can simply
be exchanged for more efficient MCMC methods, e.g., [83].

Overall we expect that (1) thanks to the computational
efficiency caused by the improved convergence of the aPC
and (2) due to the accuracy of bootstrap filtering, Bayesian
updating for history matching or more general data assim-
ilation can be developed further towards real time even for
complex or large-scale simulation models. For example, we
demonstrate in Section 4 that, for our computational exam-
ple, it takes only about 20 s of CPU time to perform the
actual Bayesian updating step for history matching.

In Section 4, we demonstrate a straightforward imple-
mentation of aPC-based BF on the benchmark problem of
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CO2 leakage taken form [7] and described in Section 3. We
apply our method to match the model repose to synthetic
pressure data monitored during CO2 injection. However,
the surrogate model may be very inaccurate and may lead
to wrong results, when the prior information is strongly
offset against reality. This is caused by the fundamental
property of all PCE techniques that the error of approxima-
tion is lowest where the (prior) probability density is high,
i.e., large errors may occur in low-probability regions. For
that case, we introduce an advanced iterative approach for
aPC-based BF in Section 5. It allows to perform Bayesian
updating even in the case where the prior assumptions on
model parameters are far from reality, such that the response
surface has to be reiterated in order to be accurate in the
relevant regions of high posterior probability. The iteration
can be seen as an extension of statistical inversion based
on successive linearization to successive high-order expan-
sion. Statistical inversion via successive linearization can
be found, e.g., in extended Kalman filtering, in iterative
ensemble Kalman filters, or in the quasi-linear geostatistical
approach [14, 28, 34, 55].

2 Bootstrap filtering on the polynomial chaos expansion

As outlined in Section 1.3, we propose an advanced stochas-
tic inversion framework for history matching based on
a recent generalization of the PCE and bootstrap filter-
ing. Hence, our framework consists of two main steps: a
massive but high-order accurate stochastic model reduc-
tion via the aPC (Section 2.1) and accurate numeri-
cal Bayesian updating of the reduced model via BF
(Section 2.2).

2.1 Response surface based on the arbitrary polynomial
chaos expansion

PCE techniques can be seen as an efficient and mathemat-
ically optimal approach to construct the response surface
of a model with uncertain parameters. A response surface
can be constructed in different ways. The most straightfor-
ward way is to construct it directly on a dense Cartesian
grid of input parameters together with an adequate inter-
polation rule. Due to the curse of dimension [2] for tensor
grids, this approach has an extremely high computational
effort if more than a single parameter is of interest. Alterna-
tively, conceptually straightforward numerical Monte Carlo
(MC) simulation techniques can be used to screen the
parameter space. Their convergence is independent of the
number of uncertain parameters. However, they are also
computationally demanding since the statistical accuracy of
their predictions increases only with the square root of the
number of realizations used.

The PCE introduced by Wiener [88], generally, can be
viewed as an efficient approximation to full-blown stochas-
tic modeling (e.g., exhaustive MC). The basic idea is to
approximate the response surface of a model with the help
of an orthonormal polynomial basis in the parameter space
[26, 37]. In simple words, the dependence of model output
on all relevant input parameters is approximated by pro-
jection onto a high-dimensional polynomial. This projec-
tion can be interpreted as an advanced approach to statis-
tical regression. Alternatively, PCE can be interpreted as
a smart and polynomial-based interpolation and extrapo-
lation rule of model output between and beyond different
parameter sets.

The key attractive features of all PCE techniques are the
high-order approximation of the model [16, 19, 25, 26, 96]
combined with its computational speed when compared to
alternatives such as MC [58]. This advantage holds mostly
for low-parametric problems. The exact break-even point
against Monte Carlo, however, depends on model nonlin-
earity, on the dimension of the parameter space, and on the
chaos expansion order, so it varies from problem to problem.

Formally, let ω = {ω1, ..., ωN } represent the vector of
N input parameters for some model � = f (ω). The model
�(ω) may be an explicit or implicit expression (e.g., a par-
tial or ordinary differential equation or a coupled system).
We wish to investigate the influence of all parameters ω on
the model output �. That the model output may be time and
space dependent, � = f (ω, t, x), where x = (x1, x2, x3).
According to polynomial chaos theory [88], the model
output � can be approximated by polynomials �j(ω):

�(x, t; ω) ≈
M∑

j=0

cj (x, t)�j (ω) = �̃(x, t; ω). (1)

The number M of polynomials �j and corresponding coef-
ficients cj depends on the total number of analyzed input
parameters (N) and on the order d of the polynomial rep-
resentation as discussed below. The coefficients cj (x, t) in
Eq. 1 quantify the dependence of the model output � on
the input parameters ω for each desired point in space x and
time t , resulting in a surrogate model �̃.

Assuming that the input parameters within ω are sta-
tistically independent, the multidimensional basis �k can
be constructed as a simple product of the corresponding
univariate polynomials ¶j (e.g., [26]):

�k(ω) =
N∏

j=1

P
(αk

j )

j (ωj ),

N∑

j=1

αk
j ≤ M, k = 1 . . . N. (2)

Here, αk
j is a multivariate index that contains the combina-

toric information on how to enumerate all possible products
of individual univariate basis functions. In other words, the
index α can be seen as M × N matrix, which contains
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the corresponding degree (e.g., 0, 1, 2, etc.) for parame-
ter number j in expansion term k. The set of polynomials
{P (0)

j , . . . , P
(d)
j } forms an an orthogonal basis of degree d

in the space of parameter ωj . For example, the polynomi-

als P
(k)
j (ωj ) are Hermite polynomials, if the parameters ωj

are Gaussian-distributed (e.g., [88]). Generally, the polyno-
mial P

(k)
j (ωj ) of degree k in an individual parameter ωj can

be written as a simple linear combination of the different
powers i of ωj :

P
(k)
j (ωj ) =

k∑

i=0

p
(k)
i,j ωi

j , k = 0 . . . d, j = 0 . . . N, (3)

where p
(k)
i,j is the coefficient for the power i = 0 . . . k within

the polynomial P
(k)
j (ωj ).

Up to the present, all implementations of PCE require
the random variables in which one expands to be statisti-
cally independent. However, PCE can also be applied to
correlated variables, if correlation can be removed (or mini-
mized) by adequate linear or nonlinear transformation. Only
in a few specific cases (including linear correlation), ade-
quate linear (or nonlinear) transformations allow expanding
statistical by dependent variables in independent random
variables. The advantages of using an expansion basis that
is orthonormal directly in the physical random variables
without further need for transformation are manifold. They
include direct accessibility of the moments of � from the
expansion coefficients cj in Eq. 1, better performance of
integration rules, and the fact that additional transforma-
tion would include new nonlinear terms in the expansion
[60]. In particular, the technique presented can be extended
to many classes of heterogeneous systems, where spatially
correlated heterogeneous parameter fields can be decom-
posed into their uncorrelated principal components using a
truncated Karhunen–Loève (KL) expansion (e.g., [41]), if
heterogeneity does not span over too many scales.

In the current paper, we will apply a most recent gener-
alization of the PCE technique known as the aPC (see [57,
60, 61]). Highly similar ideas can be found in [23, 78, 91,
92]. Compared to earlier PCE techniques, the aPC adapts to
arbitrary probability distribution shapes of input parameters
and, in addition, can even work with unknown distribution
shapes when only a few statistical moments can be inferred
from limited data or from expert elicitation. The arbitrary
distributions for the framework can be either discrete, con-
tinuous, or discretized continuous. They can be specified
either analytically (as probability density/cumulative distri-
bution functions), numerically as histogram or as raw data
sets. Thus, exact probability density functions do not have to
be known and do not even have to exist. The available infor-
mation can directly and most purely be used in stochastic
analysis, when using our data-driven formulation of aPC.

The aPC approach provides improved convergence with
respect to increasing order of expansion (e.g., [60]) in com-
parison to classical PCE techniques, when applied to input
distributions that fall outside the range of classical [88]
or generalized version [93] of the PCE. aPC deals with a
highly parsimonic and yet purely data-driven description of
uncertainty. The new freedom opens the path to accessing
with the chaos expansion technique even those applications
where data samples of limited size merely allow the infer-
ence of a few moments, and one would not be able to
construct a probability density function without introduc-
ing subjective assumptions and hence dangerous sources
of bias. The necessity to adapt to arbitrary distributions in
practical tasks is discussed in more detail in [57]. A future
incentive to work with the aPC is that, during sequential
Bayesian updating for nonlinear problems, parameter distri-
butions generally change their shapes from updating step to
updating step. Thus, they will almost surely fall out of the
optimality range of many previous PCE techniques.

According to [60], an orthogonal polynomial basis up to
order d can be constructively defined for any arbitrary prob-
ability measure, given that ωj has finite statistical moments
(e.g., mean, variance, skewness, etc) up to order 2d −1. The
coefficients p

(k)
i,j within the basis polynomial in Eq. 3 can be

defined from the following matrix equation:

⎡

⎢⎢⎢⎢⎣

μ0,j μ1,j . . . μk,j

μ1,j μ2,j . . . μk+1,j

. . . . . . . . . . . .

μk−1,j μk,j . . . μ2k−1,j

0 0 . . . 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

p
(k)
0,j

p
(k)
1,j

. . .

p
(k)
k−1,j

p
(k)
k,j

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

0
0
. . .

0
1

⎤

⎥⎥⎥⎥⎦
. (4)

Here, μi,j are the ith noncentral (raw) statistical moments
of the random variable ωj . It becomes evident from Eq. 4
that statistical moments are the only form of information
required on the input distributions. Other possible contribu-
tion methods are discussed in [23, 78, 91, 92]. If the matrix
in Eq. 4 has a poor condition for high-order expansions,
adequate problem scaling will be helpful.

The above orthogonal polynomial basis can be used
directly for analysis. However, a normalized basis has fur-
ther useful properties and can be obtained as

P̂
(k)
j = P

(k)
j∥∥∥P
(k)
j

∥∥∥
,

∥∥∥P
(k)
j

∥∥∥
2 =

∫

ωj ∈�

[
P

(k)
j (ω)

]2
d�(ωj ), (5)

where ‖P k
j ‖ is the normalizing constant of the polynomial

P k
j for space of events � (where ωj ∈ �) with probability

measure �. In practical applications of the aPC, the integra-
tion in Eq. 5 is performed analytically based in the moments
of ω up to order 2d , which avoids (like Eq. 4) the necessity
to know exactly the probability measure [60].
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To determine the unknown coefficients cj (x, t) of the
expansion in Eq. 1, many different methods exist. We
choose to apply the nonintrusive probabilistic collocation
method (PCM for short, see, e.g., [41, 58]). Non-intrusive
methods do not require modifications in the system of
governing equations. Thus, they require no correspond-
ing changes in simulation codes, which is very valuable
for modeling complex flow or transport processes with
commercially available software. The PCM is based on a
minimal and optimally chosen set of model evaluations,
each with a defined set of model parameters (called collo-
cation points) that is related to the roots of the polynomial
basis via the optimal integration theory [82].

From the practical point of view, the computational costs
of our framework are dominated by the model calls required
in construction of the surrogate model, i.e., by aPC com-
bined with PCM. In the PCM technique, the number M of
model evaluations is equal to the number M of coefficients,
which can be obtained from the following equation:

M = (N + d)!/(N !d!) − 1. (6)

The order d of expansion is typically found as a compro-
mise between the accuracy required by the application, the
number of parameters N included in the analysis, the com-
putational costs of individual model evaluations and the
available computer power.

The challenge here is to find a compromise between
computational effort and a reasonable approximation of the
physical processes. Sometimes, a much smaller number M

can be found by a sparse selection [5] of the relevant terms
in Eq. 1. Also, an initial sensitivity analysis can be applied to
keep the number of analyzed parameters and their respective
degree of expansion at a low and efficient level (see, e.g.,
[59, 72]). Because the number M quickly increases with the
degree d of expansion when the number of parameters N

is large, the framework is most efficient for low-parametric
systems. In order to translate these advantages to spatially
heterogeneous systems, a combination with the KL expan-
sion (e.g., [41]) to truncate the representation of spatial
heterogeneity can be very useful.

2.2 Bootstrap filter

The aPC method in Section 2.1 reduces the original simu-
lation model �(ω) to a response surface (surrogate model)
�̃(ω) that approximates the original model. Because the
reduced model is merely a polynomial and has exploitable
properties due to the orthogonal basis, it is vastly faster than
the original one and offers a large playground for stochastic
analysis [24, 57, 85], risk assessment [58, 84], and global
sensitivity analysis [10, 57, 79]. In this Section, we will
apply Bayesian updating (see, e.g., [77]) to match the surro-
gate model �̃(ω) to available measurements in a data vector

y of state variables or to other past or real-time observations
of system behavior. In this context, Bayes’ theorem is

f (ω|y) = f (y|ω)f (ω)

f (y)
, (7)

where f (ω) is the joint prior PDF for the vector of model
parameters ω, f (y) is the prior probability of y used as nor-
malization constant, f (y|ω) is the conditional PDF of y for
given ω, i.e., the likelihood of the parameters, and f (ω|y)

is the conditional PDF of ω for given y, which we seek to
approximate swiftly and accurately.

Under the common assumption that the measurement
errors are independent and Gaussian, i.e., y = �(ω)+ε, ε ∼
N(0, R), the likelihood function becomes

f (y|ω) ∝ exp
[
−0.5 (y − �(ω))T R−1 (y − �(ω))

]
, (8)

where R is the diagonal (co)variance matrix of measurement
errors. We will adapt this assumption for the remainder of
this study, although other arbitrary error models could be
considered as well.

The most direct numerical implementation of Bayes’ the-
orem (Eq. 7) is known as bootstrap filtering (e.g., [77]).
Formally, we draw a number Np of realizations of parameter
vectors ωi from the prior PDF f (ω):

ω ∼ f (ω), i = 1, Np (9)

where Np is a sufficiently large number. The correction
form f (ω) to f (ω|y) in Eq. 7 is represented by assigning
importance weights wi to each realization ωi :

wi = f (y|ωi))

max(f (y|ωi))
. (10)

Then, realization ωi is accepted as a legitimate ensemble
member of the posterior distribution, if wi ≥ ui is fulfilled
for a random number ui drawn from the uniform distribu-
tion u(0, 1). max(f (y|ωi)) is the largest individual values
f (y|ωi) appearing across all realizations i = 1, Np. The
convergence for a given value Np can be assessed, e.g, via
weighted Jackknife of bootstrapping techniques [13, 39].

3 Scenario definition for history matching: problem
of CO2 leakage

We will consider a relatively simple benchmark model to
illustrate and thoroughly test the concept presented in the
current paper. We use the benchmark leakage problem of
injected CO2 into overlying formations through a leaky well
defined by Class et al. [7] as described in Section 3.1. Within
our approach, the physical complexity of the problem can
be increased to an arbitrary extent because of the nonintru-
sive black-box conception of the proposed framework. How
the approach scales with larger numbers of uncertain param-
eters has already been discussed in Section 2.1. Statistical
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assumptions, generation of the synthetic data sets, and the
test cases are defined in Section 3.2

3.1 Physical and numerical setup of the CO2 leakage problem

Figure 1 illustrates a 2D section of the 3D domain under
consideration. The top of the figure is not the ground sur-
face, but the transition to yet another aquitard. CO2 is
injected into a deep aquifer, spreads within the aquifer, and,
upon reaching a leaky abandoned well, rises to a shallower
aquifer. CO2 is injected at a constant rate of 8.87 kg/s, which
corresponds to 1,600 m3/d at reservoir conditions. The leaky
well is at the center of the domain, and the injection well is
100 m away. Both aquifers are 30 m thick and the separat-
ing aquitard has a thickness of 100 m. The initial conditions
in the fully saturated domain include a hydrostatic pres-
sure distribution which is dependent on the brine density.
The aquifers are initially filled with brine. The initial pres-
sure at the bottom of the domain (at a 3,000-m depth) is
3.086 × 107 Pa.

The benchmark problem assumes that fluid properties
such as density and viscosity are constant; all processes
are isothermal; CO2 and brine are two separate and immis-
cible phases; mutual dissolution is neglected; the pressure
conditions at the lateral boundaries are constant over time;
the formation is isotropic, rigid, and chemically inert; and
capillary pressure is negligible. More details and modeling
parameters can be found in [7].

Mass balances of the two phases and the multiphase ver-
sion of Darcy’s law give the following system of differential
equations:

−φ
∂Sw

∂t
− ∇ ·

{
krw

μw
K · (∇p − ρwg)

}
− qw = 0,

φ
∂Sg

∂t
− ∇ ·

{
krg

μg
K · (∇p − ρgg)

}
− qg = 0,

(11)

which is constrained by the equation

Sw + Sg = 1. (12)

The subscripts w and g stand for the brine (water) phase and
the CO2-rich (gas) phase, respectively. The primary vari-
ables in Eq. 11 are the gas-phase saturation Sg and pressure
p. Sw is the brine-phase saturation. The relative permeabili-
ties krw and krg are secondary variables and linear functions
of Sw and Sg (krw = Sw = 1−Sg, krg = Sg), g is the gravity
vector, K is the absolute permeability tensor, φ is porosity,
and qw and qg are sources/sinks.

The CO2 leakage rate is defined in the benchmark study
as the total CO2 mass flux integrated over a horizontal
control plane midway between the top and bottom aquifer,
divided by the injection rate, in percent. In the current study,
the benchmark problem is simulated using DuMuX, a mul-
tiscale, multiphysics toolbox for the simulation of flow and
transport processes in porous media [18]. The goal of the
simulation is to quantify the leakage rate which depends on
the pressure buildup in the aquifer due to injection, on the
proprieties of formation and the leakage well, and on the
plume evolution.

3.2 Setup for the history matching task

In our study, we will consider three uncertain parameters:
reservoir absolute permeability, reservoir porosity, and per-
meability of the well. For simplicity, we feature here only
a scalar permeability, homogeneous within the entire reser-
voir. The prior assumptions on the parameters (see section
below) will be updated using our framework, such that
model predictions match a synthetic time series of pressure
monitored daily at the top of the well (Fig. 1) during the
100 days of injection.

Fig. 1 Benchmark problem for
CO2 leakage through an
abandoned well, taken from [7]
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Fig. 2 Prior distribution of model parameters: absolute permeability, porosity, and leakage well permeability

We assume prior distributions of the uncertain model
parameters as illustrated in Fig. 2. For reservoir permeabil-
ity and porosity, these distributions are represented by raw
data sets taken from the US National Petroleum Council
public database (which includes 1,270 reservoirs, see also
[35]). For the well, we assume as expert knowledge a log-
normal PDF with the location parameter μ = −27.7 and the
scale parameter σ = 0.4. The presented aPC-based frame-
work does not have any restrictions on the shapes of prior
distributions; thus, it can handle the statistical information
provided here without further modification.

As a specific example, the positivity of permeability
and the (0,1)-boundedness of porosity are directly enforced
through their assigned probability distributions, without any
additional necessary action. In our test case, we use a third-
order aPC expansion, because it demonstrates the advan-
tages of nonlinear information and expert opinion process-
ing over linear methods (e.g., the entire family of Kalman
filters). Typically, a third-order expansion has the freedom
to handle nontrivial and possibly nonmonotonic behaviors
of model output. However, a second-order analysis has been
shown to be a reasonable approximation for aPC applied to
this benchmark problem in [57]. In general, the degree of
expansion can be chosen according to the specific needs and
available computer resources in any specific application,
and it can also be increased adaptively during the match-
ing procedure (see details in Section 5). We prefer here a
third-order expansion, because most parameter-state rela-
tions in the featured model are monotonic, and second-order
polynomials do not offer the possibility to approximate
monotonic behavior over large parameter ranges.

To illustrate the proposed method, we will generate
two reference simulations (case 1 and case 2), which pro-
vide synthetic reference time series of pressure data at the

monitoring well. In case 1, the parameter values (Table 1)
used in the reference simulation are reasonably probable
within the assumed prior distributions (see Fig. 2). In con-
trast to case 1, case 2 will use parameter reference values
(see porosity in Table 1) in a pressure response which is
extremely improbable according to the prior. The resulting
reference pressure time series and how they compare to the
prior distribution of pressure can be seen in Fig. 3 (case 1)
and Fig. 9 (case 2). Test case 1 is treated in Section 4, and
test case 2 is treated in Section 5.

We will consider a random synthetic measurement error
(i.e., standard deviation) of 1 bar. Thus, in our case stud-
ies, the original model can never reproduce exactly the data,
even when the “true” parameter set used in data generation
is applied, which is typical in real-world applications. Please
note that, due to the overdetermined and stochastic problem
character, the individual data points will not be matched pre-
cisely, but the solution will be a best compromise between
prior information and a best fit of the physical model to the
cloud of data points.

4 Straightforward aPC-based bootstrap filtering

We will now apply the straightforward aPC-based BF
described in Section 2 to case 1 of the benchmark prob-
lem of CO2 leakage described in Section 3. That means,
we will perform history matching to the synthetic pressure
data marked as squares in the right plot of Fig. 3. First,
we construct a surrogate model by projecting the original
model (Eq. 11) onto a polynomial response surface via the
aPC at third order (see details in Section 2.1). Then, we
apply the BF as described in Section 2.2. Figure 3 illus-
trates the unmatched pressure histogram after 100 days of

Table 1 Reference values:
case 1 and case 2 Reservoir absolute permeability Reservoir porosity Leaky well permeability

Case 1 1.43 · 10−13 m2 0.023 [–] 1.09 · 10−12 m2

Case 2 1.43 · 10−13 m2 0.259 [–] 1.09 · 10−12 m2



680 Comput Geosci (2013) 17:671–687

308 309 310 311 312
0

200

400

600

800

1000

Pressure, [bar]

F
re

qu
en

cy

Prior Pressure on Monitoring Well

Prior solution
Observation (with error)
Reference (no error)

0 20 40 60 80 100
305

310

315

320

Time,[days]

P
re

ss
ur

e,
[b

ar
]

Pressure on Monitoring Well

Observation (with error)
Reference (no error)
Prior Mean  2*Std

Fig. 3 Prior pressure at monitoring well: pressure histogram after 100 days of injection (left plot) and correspondence to observation values
during 100 days (right plot), for case 1

injection (left plot) and the correspondence of predicted val-
ues (mean±2 standard deviations) to the synthetic observed
values during the first 100 days (right plot).

We draw a number of Np = 100,000 particles from the
prior distributions. This number was assured to be suffi-
ciently large to yield stable posterior statistics upon filtering.
Because the data base we use for defining the prior distri-
butions in not as large as 100,000 data sets, we use a PDF
estimation technique based on Kernel smoothing (see, e.g.,
[86]) with minimal Kernel width to obtain Np = 100,000
particles. Then, the obtained surrogate model is evaluated
for each particle, and each particle is reweighed according
to its correspondence to observation values (see 7 and 8).

At first, we are interested in the statistical distribution of
the uncertain parameters and of the pressure at the monitor-
ing well before and after matching, in order to assess the
accuracy of the inversion. The resulting posterior distribu-
tions of model parameters are presented in Figs. 4 and 5
against the reference values. The quality of matching the
pressure data is shown as PDF in Fig. 6. Figure 6 also shows
how the quality of matching can be improved when increas-
ing the number of available observation values. Overall, we

observe very satisfactory and consistent results: increasing
the degree of expansion helps to better catch nonlinearity
of the original model and shows convergence of distribu-
tion peaks and mean values to reference values in Fig. 4, as
much as allowed by the data considered for history match-
ing. The peaks of the posterior parameter PDFs in Fig. 6
(for third order) and for the posterior pressure values in Fig.
5 (also third order) are close to the reference values, with
improved accuracy for an increasing number of considered
data values. The posterior pressure PDF at the monitoring
well converges to the noise-free reference value. In Fig. 6,
the time-dependent posterior mean of pressure at the mon-
itoring well converges, already with just few data values,
to a best-fit curve through the noisy data, almost coincid-
ing completely with the nose-free reference curve. Finally,
the noisy data points fall into the 95 % confidence interval
of the posterior pressure distribution (see Fig. 6), indicating
reasonable error bounds.

In addition, the multivariate posterior probability density
function can be constructed from the posterior ensemble
for the model parameters (see the left plot in Fig. 7). Here,
we used the multivariate kernel density estimation based on
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permeability (left), porosity (center), and leakage well permeability (right) in case 1
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FIGTree algorithm [49]. The black point in the left plot of
Fig. 7 indicates the peak of the posterior multivariate PDF.
As a final convergence check, the original model has been
simulated within the corresponding parameter values. The
root square error of the obtained pressure from the refer-
ence is presented in the right plot of Fig. 7. It shows an
acceptable approximation error that is small compared to
the 95 % confidence interval of the data noise (±2 bars for
95 % confidence interval). It can be improved even further
by adjustment of the response surface in the domain of high
posterior probability density, as it will be discussed in the
next section.

Once the virtual model is matched to observation val-
ues, the forecast of storage behaviors can be investigated.
Diverse physical quantities, such as saturation, pressure dis-
tribution within the overall domain and the CO2 leakage
rate can be predicted. We will illustrate the reservoir behav-
ior after 1,000 days by the cumulative probability function
(CDF) of the CO2 leakage rate, which is an integrative
and very important characteristic of the overall benchmark

problem for probabilistic risk assessment. The CDF repre-
sents the probability that the CO2 leakage after 1,000 days
is less than or equal to a particular value. Figure 8 shows
the corresponding prior and posterior CDFs. It also illus-
trates how the matching with more and more data improves
the prediction. This illustrates how the proposed framework
could be used within worth-of-data and information analysis
(e.g., [38, 56]).

In order to illustrate the efficiency of the presented his-
tory matching framework, we will provide some details
regarding the involved CPU time. Here, we considered a
simple benchmark model which demands approximately
10 min of CPU time without parallelization on a contempo-
rary PC. To obtain the response surface (N = 3 and d = 3),
we performed 20 runs of the original benchmark model,
resulting in an overall simulation time of 200 min. One
evaluation of the obtained response surface for history
matching demands approximately 0.2 ms. In this example,
we used Np = 100,000 particles for bootstrap filtering.
Hence, for the overall procedure of history matching, we
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Fig. 7 Multivariate posterior
probability density function
based on 100 measurements (left
plot) and deviation of posterior
peak PDF pressure from the
reference (right plot) for case 1.
The large values for probability
density on the color scale in the
left plot are caused by the small
magnitudes of permeability
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used about 3.34 h (20 × 600 s +100,000 × 0.0002 s, i.e.,
it takes only about 20 s only to perform the actual Bayesian
updating step) of CPU time. Alternatively, direct applica-
tion of bootstrap filtering to the original benchmark model
would demand approximately 695 days (100,000×600 s) of
CPU time. It is evident that such direct application of boot-
strap filtering (or similar methods) seems to be not feasible
even when involving parallelization, especially for realis-
tic and complex models. Thus, the presented framework
provides an extremely efficient way for handling the task
of history matching, with very accurate statistical methods.
Without the PCE-based response surface, nobody would
ever even consider applying an approach like bootstrap
filtering on this type of model.

5 Iterative aPC-based bootstrap filtering

In this section, we will reconsider the problem of history
matching for the case where the true properties of the system
are very far from the prior (case 2 defined in Section 3.2,
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Fig. 8 Cumulative density function of CO2 leakage: prior and pos-
terior prediction after 1,000 days of injection using 1, 5, 10, and 100
measurements for case 1

see Fig. 9). This is a very challenging problem for updat-
ing, because the assumed prior distribution does not ade-
quately cover the domain of interest in hindsight. Thus, the
aPC-based response surface used in BF is fitted to a distant
and poorly chosen region within the parameter space. That
means, it represents an expansion around a point or distribu-
tion far away from the region of interest and hence cannot
be expected to be accurate. Theoretically, the approxima-
tion could be improved significantly using a higher degree
of expansion, leading to a very high number of model
evaluations. Unfortunately, this would ask for a very high
computational power, as can be seen from Eq. 6. As an alter-
native, we will reiterate the response surface, keeping it at
third order.

We will initially perform the same steps as in Section
4, i.e., we will project the original model (Eq. 11) onto a
response surface via aPC and then apply BF on the obtained
surrogate model. Let us denote this initial step as zeroth
iteration. The corresponding results are presented by green
lines in Fig. 10 for the posterior distribution of model
parameters and for the updated pressure at the monitoring
well in Fig. 11.

We will improve this initial zeroth prediction by apply-
ing an iterative approach. The idea we will pursue here is
to improve the response surface in the parameter domain
where the respective previous step indicated a high pos-
terior probability density, because this is the alleged (best
current guess for the) parameter region of interest. For that,
in each iteration, we will include new integration points for
the projection onto the orthonormal basis. These additional
integration points for projection are located in the space of
uncertain parameters, where the current iteration of the pos-
terior density is largest. For all new integration points, we
will run the original model (Eq. 11) to obtain the corre-
sponding model outputs �. Then, we will perform a new
projection of the model onto the orthonormal basis (see
Section 2.1) using all cumulatively available collocation
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Fig. 9 Prior pressure at monitoring well: pressure histogram after 100 days of injection (left plot) and correspondence to observation values
during 100 days (right plot) for case 2

points within the least-squares collocation method (e.g., [6,
50]) instead of simple collocation. The extension of the
original probabilistic collocation method by least-squares
collocation during the iterations is very useful for complex
applied tasks, because it keeps the black-box property. Also,
the initial PCM in the zeroth iteration can be understood as
the special case of least squares at the limit of a determined
problem.

The residual of the least-squares collocation method in
each integration point is not equal to zero in comparison
to the classical probabilistic collocation technique, where
the residuals are zero at all collocation points. However,
it provides an integration rule which minimizes the over-
all residuals [44] in all collocation points. In that way, we
can cumulatively incorporate all available (i.e., original and
additional) integration points. Thus, the updated response
surface contains more accurate information about the sys-
tem behavior in all alleged regions of interest. In practice,
it is improved in the region where the posterior distribu-
tions during iteration assign a strong weighting. This bears
some conceptual similarity to approaches like the shifted
Hermite chaos (e.g., [66]) for evaluation of failure probabil-
ities. The proposed iteration scheme can be very useful for
history matching because it can help to avoid the dangerous

consequences of specifying a misleading prior distribution.
Our method does not change the meaning or importance
of such prior information in Bayesian updating, but merely
protects the response surface from being expanded in an
inappropriate alleged region of interest.

In each iteration step, the number of new integration
points can vary from 1 up to any desired number of such
points. In our concept, the modeler can specify the order of
local refinement (zeroth, first, second, etc.). According to
that order, a new polynomial basis can be constructed using
the posterior distribution obtained from the previous itera-
tion. Then, a new full tensor set of optimal integration points
can be computed from the respective roots of the new poly-
nomial basis, again based on the optimal integration theory
[82].

Obviously, using the full-tensor grid would be very
costly, especially when the number of parameters and the
order of local refinement are high. To reduce the number
of model evaluations, we suggest again using the principles
behind the PCM method. This means to add just a limited
number of points from the suggested tensor grid, selected
to cover the high probability region of the current posterior.
Thus, the modeler has some freedom to choose the num-
ber of evaluations of the original model according to the
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Fig. 11 Posterior pressure at monitoring well: pressure distribution after 100 days of injection (left plot) and corresponding matching of pressure
(mean ± 2 standard deviations) to observation values during 100 days (right plot)

available computational resources. Evidently, a large num-
ber of additional integration points will lead to a more robust
projection in the region of the possible posterior. However,
it is not guaranteed that a large effort for local refinement
will immediately lead to final results, because the refine-
ment can be placed poorly in the parameter space at early
iteration steps. Thus, we suggest to use a moderate number
of new integration points in each iteration step.

Once the response surface is improved by adding new
collocation points, the history matching using bootstrap fil-
tering is applied again. This procedure is repeated until
the matched model matches the observation values with
a desired precision or until no significant changes can be
observed between the iterations anymore. Overall, the itera-
tive accumulation of collocation points leads to an efficient
estimation of the posterior distribution. This refinement
idea could also be extended to different methods which
use response surfaces for inverse modeling (e.g., EnKF or
MCMC combined with PCE, etc.).

In case study 2, we choose a first-order refinement for
three parameters and add four highly probable integration
points out of the eight available ones in each iteration step.
The results of our iterations are presented in Figs. 10 and
11 by green, blue, brown, and red lines for the zeroth, first,
third, and fifth iterations, respectively. According to our
observations, the posterior improves quite fast (with only a
few iterations). In our case study, we stopped at the fifth iter-
ation, because all posterior distributions were stabilized, i.e.,
the posterior distributions in the ith iteration did not differ
significantly from the posteriors in the (i − 1)th iteration.

After matching the model via the iterative version of
aPC-based bootstrap filtering, we perform a forecast. As in
Section 4, we predict the CDF of the CO2 leakage rate after
1,000 days. The posterior CDF (after the fifth iteration) is
significantly different from the prior CDF (see Fig. 12) and

also differs strongly from the results after the zeroth and first
iterations.

The question on how to optimize the overall projec-
tion in the iteration approach and, in more general, under
the changing probability measure from prior to posterior
is a more general and wider challenge than what can be
addressed within the scope of the study. Such a procedure
should find a balance between the number of iterations and
the number of new integration points per iteration. If the
prior assumption is a strong offset against the posterior,
then the computational effort for a very accurate expansion
according to the prior distribution would be spent almost in
vain. To overcome this drawback, the iterative framework
presented here could first perform a cheap expansion using a
low order. Then, using the flexibility of aPC, one could con-
struct expansions of higher orders during the iterations, as
the knowledge on the posterior improves and the increasing
set of collocation points becomes more trustworthy to pro-
vide an accurate high-order response surface in the current
alleged posterior region. Altogether, this poses significant
challenges for future research.
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Fig. 12 Cumulative density function of CO2 leakage: prior and
posterior prediction during iterations after 1,000 days
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6 Summary and conclusions

The present paper deals with history matching of mathemat-
ical models to observation values. We propose an advanced
framework for history matching based on response surface
attained via the PCE and strict Bayesian principles. The
reduced model represented by the response surface captures
the model’s dependence on its three physically most relevant
parameters. For constructing the response surface, we used
the aPC, a recent generalization of PCE theory, because it
has very good convergence properties and tends to represent
efficiently the underlying model according to the available
statistical information. The aPC allows accommodating for
a wide range of prior distributions of model parameters.
The applied technique for projection onto the polynomial
basis is totally nonintrusive, i.e., it is black-box compati-
ble with arbitrary commercial simulation codes. Then, we
perform Bayesian updating via bootstrap filtering in order
to match the obtained reduced polynomial model to past or
real-time observations of system behavior. Basically, with
bootstrap filtering, we follow a direct implementation of
Bayes’ theorem.

The combination of high-order expansion and boot-
strap filtering accounts for the nonlinearity of both the
forward model and of the inversion. It takes into consid-
eration higher order statistical moments in comparison to
(ensemble) Kalman filters. Hence, our method is more accu-
rate than linearized inversion rules or related second-order
moment approaches based on implicit lineralizations or on
multi-Gaussian assumptions. The usually high computa-
tional costs of accurate filtering become very feasible in
our suggested method by combining it with a response sur-
face framework. Thanks to the computational efficiency of
the aPC, Bayesian updating for history matching becomes
an interactive task and could even be applied to real-time
problems with complex large-scale, real-world models in
future works. The key contribution of our approach is that
the response surface can be prepared in expansive offline
computation and can serve for Bayesian updating to new
incoming data within seconds.

The efficiency and power of Bayesian updating strongly
depend on the accuracy of prior information. In our aPC-
based methodology, the model parameter distributions can
be determined from arbitrary available information (mod-
eler’s experience, expert opinion, general prior information,
or field data) and reflect the uncertainty or expected range
of variation of input parameters. The polynomial basis of
the aPC is able to adapt to arbitrary shapes of these parame-
ter distributions. The presented methodology approximates
the original model best where the prior probability density
of the parameters is highest. In the case where the prior
guess is highly inaccurate and strongly offsets against the
posterior, we suggest to use an iterative procedure, which

helps to overcome this drawback even with small costs. We
propose to account for the posterior on each iteration step
and increase the precision of expansion around the current
iteration of the posterior distribution.

A direct and straightforward application example of the
proposed methodology is illustrated using a CO2 bench-
mark problem. In this example, we found highly satisfy-
ing accuracy and computational efficiency. However, our
methodology is not restricted to this example, as both the
polynomial chaos expansion and bootstrap filtering require
no specific properties for the forward model or the inversion
task. The only restriction is that the forward model has to be
approximated well by the aPC.
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