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Abstract The application of the ensemble Kalman
filter (EnKF) for history matching petroleum reservoir
models has been the subject of intense investigation
during the past 10 years. Unfortunately, EnKF often
fails to provide reasonable data matches for highly non-
linear problems. This fact motivated the development
of several iterative ensemble-based methods in the last
few years. However, there exists no study comparing
the performance of these methods in the literature, es-
pecially in terms of their ability to quantify uncertainty
correctly. In this paper, we compare the performance
of nine ensemble-based methods in terms of the qual-
ity of the data matches, quantification of uncertainty,
and computational cost. For this purpose, we use a
small but highly nonlinear reservoir model so that we
can generate the reference posterior distribution of
reservoir properties using a very long chain generated
by a Markov chain Monte Carlo sampling algorithm.
We also consider one adjoint-based implementation of
the randomized maximum likelihood method in the
comparisons.
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1 Introduction

Reservoir simulation is a valuable tool for the decision-
making process involved in the development and man-
agement of petroleum reservoir exploitation projects.
However, because simulation models are constructed
with poorly known reservoir properties, it is essential
to properly characterize the uncertainty in their pre-
dictions to manage risk. Bayesian statistics provides
an adequate framework for quantifying uncertainty.
The starting point is the Bayes’ theorem, which al-
lows us to construct the conditional probability den-
sity function (PDF) of a set of poorly known model
parameters conditional to noisy measurements. Then,
the problem of quantifying uncertainty can be replaced
by the conceptually simpler problem of sampling this
PDF. However, rigorously sampling this PDF can be
complex and computationally expensive; thus, only
approximate sampling methods are practical. Markov
chain Monte Carlo (MCMC) is known to be a rigorous
sampling procedure; however, its direct application to
realistic reservoir problems is not feasible with the
computational power currently available [3, 31, 37].
Randomized maximum likelihood (RML) [23, 38, 41]
is an approximate sampling method which has been
successfully applied to reservoir history-matching prob-
lems [16, 31, 51, 59]. RML requires solving one min-
imization problem for each sample, which seems to
be computationally feasible only with a gradient-based
optimization method. However, efficient calculation of
gradients requires the implementation of the adjoint
method [5, 6, 28, 58], which, unfortunately, is not
commonly available in commercial reservoir simula-
tors. Recently, the ensemble Kalman filter (EnKF)
[4, 12, 20] and related methods have emerged as very
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attractive alternatives for reservoir history-matching
problems. The main advantages of these methods in-
clude their computational efficiency and the ease of im-
plementation. In fact, because ensemble-based meth-
ods typically do not require adjoint code, they can be
coupled with virtually any commercial reservoir simu-
lator. Moreover, they can be easily adapted to different
types of data and model variables.

In this paper, we compare the sampling performance
of one adjoint-based and nine ensemble-based methods
for a small, but highly nonlinear, reservoir history-
matching problem. This paper was inspired by the early
work of Liu and Oliver [31], in which the results of
a very long Markov chain were used as the reference
results to compare the performances of the following
methods: linearization about the MAP, RML, and the
pilot point method [8, 25, 26]. Liu [30] included the
gradual deformation method [22, 45] in this compara-
tive study. The authors concluded that RML was the
only approximate sampling method which gave an ac-
ceptable quantification of uncertainty.

This paper is organized as follows: in the next sec-
tion, we formulate the uncertainty quantification prob-
lem in terms of sampling a posterior PDF. Next, we
introduce our test problem, which consists of a one-
dimensional reservoir with two-phase flow. Then, we
present a separate section for each sampling method.
Each section contains a short description of the meth-
od, followed by the corresponding sampling results.
We first present MCMC, which serves as reference
for the comparisons, followed by RML, EnKF, de-
terministic EnKF (DEnKF) [47], half-iteration EnKF
(HI-EnKF) [56], Lorentzen–Nævdal iterative EnKF
(LN-IEnKF) [32], Krymskaya–Hanea–Verlaan itera-
tive EnKF (KHV-IEnKF) [24], EnKF-MCMC [9],
ensemble smoother (ES) [55], ES with multiple data as-
similation (ES-MDA) [10] and the ensemble random-
ized maximum likelihood (EnRML) [18]. After that,
we present a section with a discussion of the overall
performance of these methods. The last section of the
paper presents the conclusions.

2 Posterior PDF and objective function

For the purpose of quantifying uncertainty, it suffices
to sample the posterior PDF of reservoir model para-
meters conditional to the observations. For a Gaussian
prior and Gaussian measurement errors, it can be
shown that the posterior PDF, f (m|dobs), has the fol-
lowing form [39, Chap. 8]:

π(m) ≡ f (m|dobs) = a exp (−O(m)) , (1)

where a is a normalizing constant and O(m) is the
objective function given by

O(m) = 1

2

(
m − mpr

)T
C−1

M

(
m − mpr

)

+1

2
(d − dobs)

T C−1
D (d − dobs) . (2)

In the above equations, m is the Nm-dimensional vector
of model parameters, mpr is the prior mean, CM is
the Nm × Nm prior covariance matrix, d is the Nd-
dimensional vector of predicted data, and dobs is the
corresponding vector of observed data. CD is the Nd ×
Nd covariance matrix of the measurement errors.

According to Oliver et al. [39, Chap. 8], the objec-
tive function normalized by the number of data points
evaluated at samples of the posterior PDF should ap-
proximately satisfy the following condition:

ON ≡ O(m)

Nd
≤ 1 + 5

√
2

Nd
. (3)

3 Test problem

The test problem is a one-dimensional reservoir model
under waterflooding (Fig. 1). The number of gridblocks
is 31 and the dimensions of all gridblocks are 50 ft
× 50 ft × 50 ft. The model parameters are gridblock
log-permeabilities, ln(k). The “true” permeability field
(Fig. 2a) was generated using an exponential covari-
ance function with a practical range corresponding to
the size of ten gridblocks. The prior mean of ln(k)

is 5.0 and the prior variance is equal to 1.0 for all
gridblocks. The porosity is constant and equal to 0.25;
the oil viscosity is 2 cP and the water viscosity 1 cP.
The initial reservoir pressure is 3,500 psi and the com-
pressibility of oil, water, and rock is 10−5, 10−6, and
5 × 10−6 psi−1, respectively. In this synthetic reservoir,
there is a water injection well in the first gridblock
which is operated at a constant bottomhole pressure
of 4,000 psi. In the last gridblock, there is a producing
well operated at a constant bottomhole pressure of
3,000 psi. The observations correspond to gridblock
pressures at a monitor well located in the center of the
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Fig. 1 Gridblocks and well locations
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Fig. 2 a Permeability of the true model. b Water saturation at the
end of the historical period (in blue) and at the end of the forecast
period (in red). The vertical dashed line indicates the position of
the monitor well

reservoir (gridblock number 16). The historical period
corresponds to 360 days, with one pressure measure-
ment every 30 days, which results in 12 data points.
We added random Gaussian noise with mean equal to
zero and standard deviation equal to 1 psi to the data
predicted by the true model to define the “measure-
ments.” The historical period was defined such that we
have water breakthrough at the monitor well but not
at the producing well. Figure 2b shows the water satu-
ration distribution at the end of the history (360 days)
and at the end of a forecast period (750 days). Our
objective was to create a reservoir history-matching
problem that was challenging for data assimilation yet
was also small enough so one could afford to generate
the correct posterior distribution of the vector of model
parameters and performance predictions using MCMC.
Thus, we made the test problem highly nonlinear by

assimilating only pressure data with a small noise level
and predicting the water production rate.

Using the same covariance function and the same
prior mean to construct the true model, we generated
ten different prior ensembles of ln(k) with 100 models
each. These ensembles were used in all ensemble-based
methods presented in the following sections. It is not
the objective of this paper, however, to investigate the
effect of the ensemble size in the performance of the
methods. Note that with an ensemble consisting of 100
realizations, the number of ensemble members is more
than three times larger than the number of model pa-
rameters. Therefore, an ensemble size of 100 should be
sufficiently large for data assimilation without resorting
to standard ad hoc fixes such as covariance inflation
[2, 14] and covariance localization [20, 21, 46], which
are designed to control the negative consequences of
sampling error and low rank covariance matrices when
the number of model parameters is far greater than the
number of ensemble members. The study of such ad
hoc fixes is not the focus in this paper.

4 Markov chain Monte Carlo

Here, we apply the Metropolis–Hastings MCMC algo-
rithm [19, 34] to sample the posterior PDF, π(m), given
by Eq. 1. The steps of this MCMC algorithm follow:

1. Set k = 0, where k is the proposal index of the
Markov chain. Select the initial model of the chain,
mk = m0.

2. Propose a new model, m̂k+1, by sampling the PDF
q(mk, m̂k+1), which represents the “probability” of
proposing a transition from the model mk to m̂k+1.

3. Compute the probability of accepting the pro-
posal as

α (mk, m̂k+1) = min

{
1,

q (m̂k+1, mk) π (m̂k+1)

q (mk, m̂k+1) π(mk)

}
.

(4)

4. Sample u from a uniform distribution on [0, 1].
If u ≤ α(mk, m̂k+1), accept the proposal, i.e., set
mk+1 = m̂k+1. Otherwise, repeat the old model in
the chain, i.e., set mk+1 = mk.

5. Set k = k + 1 and return to step 2.

In this paper, we use a proposal mechanism based
on local perturbations around the current model of
the chain [17]. In this procedure, we write the transi-
tion probability, q(mk, m̂k+1), as a Gaussian centered
at the current model, mk, with the scaled covariance,
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σ 2CM, where σ < 1 is a scaling factor. In this case, each
proposal can be written as

m̂k+1 = mk + C1/2
M δz, (5)

where δz is a sample from the Gaussian N (0, σ 2 INm),
with INm denoting the Nm-dimensional identity matrix.
This procedure leads to a symmetric transition proba-
bility, i.e., q(mk, m̂k+1) = q(m̂k+1, mk). Therefore, the
probability of accepting the proposal (Eq. 4) sim-
plifies to

α (mk, m̂k+1) = min

{
1,

π (m̂k+1)

π(mk)

}
. (6)

The scaling factor, σ , controls the performance of the
chain. Small values of σ lead to high acceptance rates
but poor mixing. High values of σ , on the other hand,
lead to low acceptance rates. Although the optimal
choice of σ depends on the target PDF, several papers
(e.g., Gelman et al. [17], Roberts et al. [43], Roberts and
Rosenthal [44]) have provided theoretical and empiri-
cal results showing that in high dimensions, it is optimal
to choose σ such that the acceptance rate of the chain
is approximately 0.234.

For the test problem, we generate a long Markov
chain with 20 million proposals. Note that each pro-
posal requires one reservoir simulation, but because we
have an extremely small problem, where each reservoir
simulation takes approximately 0.2 s, it is feasible to
generate a very long chain. Here, we assume that this
chain is long enough to provide a reasonable sampling
of the posterior PDF, which serves as the reference for
our comparisons. Figure 3 presents the values ON for
the accepted models in the chain after a transitional
period (burn-in). The total number of accepted models
is 458,648. This gives an acceptance rate of 0.229, which
is close to the “optimal” acceptance rate of 0.234. In
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Fig. 3 Normalized objective function of every 100th accepted
model in the Markov chain

MCMC, we used a scaling factor σ = 0.05. This scaling
factor was chosen after some experimentation.

Figure 4a presents the distribution of permeability
(percentiles P2, P25, P50, P75, and P98) obtained from
MCMC. The results in this figure show a narrow distrib-
ution of permeability for the gridblocks to the left of the
monitor well. The spread increases for the gridblocks
to the right of the monitor well. Figure 4b shows the
distributions (percentiles P2, P25, P50, P75, and P98)
of predicted water rate at the producing well (qw). This
figure indicates that there is a relatively small uncer-
tainty in qw. Also, qw obtained with the true model is
above the percentile P75 obtained with MCMC.
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Fig. 4 Distributions of permeability (a) and water production
rate (b) obtained from MCMC. In a, the red curve with solid
squares is the true permeability field, the solid black curve is the
median, the gray-shaded area corresponds to the region between
the percentiles P25 and P75, and the external bounding curves are
the percentiles P2 and P98. In b, the red curve is the prediction
obtained with the true model, the dashed curve is the median,
and the gray-shaded area corresponds to the region between the
percentiles P25 and P75. The external bounding curves are the
percentiles P2 and P98
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5 Randomized maximum likelihood

RML was independently introduced by Kitanidis [23]
and Oliver et al. [38] as an approximate sampling meth-
od. To obtain the jth sample, mc, j, of the posterior PDF
using RML, we solve the minimization problem

mc, j = arg min
m

O j(m), (7)

where

O j(m) = 1

2

(
m − muc, j

)T
C−1

M

(
m − muc, j

)

+1

2

(
d − duc, j

)T
C−1

D

(
d − duc, j

)
.

(8)

In Eq. 8, muc, j is a sample from N (mpr, CM) and duc, j is
a sample from N (dobs, CD); the remaining terms were
defined before.

In our implementation, we solve this minimization
problem using the LBFGS algorithm [15, 36, 60] with
scaling [29, 60] and bracketing cubic line search [39,
Chap. 8]. We control possible overcorrection in the
model by restricting the step size at early iterations.
Specifically, we limit the maximum step size normalized
by the 2-norm of the search direction to 0.25 until
we obtain ON < 1,000. We also apply damping to the
objective function [15, 28] by artificially multiplying the
standard deviation of the measurement errors by three
until the minimization reduces ON to 5.0. After that,
we remove the damping and continue the minimization
with the actual standard deviations of the measurement
errors. The gradients are computed using the adjoint
method [5, 6, 28, 58]. For convergence, we require both
the change in the objective function and the change in
the vector of model parameters over an iteration to be
small, i.e.,

|O (
m�+1

) − O
(
m�

) |
O

(
m�

) < 10−4 (9)

and

max
1≤i≤Nm

∣∣
∣
∣∣
m�+1

i − m�
i

m�
i

∣∣
∣
∣∣
< 10−3, (10)

where the superscript � denotes the iteration index.
Using RML, we sampled the posterior PDF by gen-

erating ten ensembles of 100 conditional realizations
each. Figure 5a presents the permeabilities of the first
ensemble, and Fig. 5b shows the distributions of perme-
ability obtained by combining the ten ensembles. The
results in Fig. 5 indicate that RML obtains a distribution
of permeability reasonably close to the distribution
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Fig. 5 Permeability after RML. a First ensemble. The solid black
curve is the ensemble mean and the gray curves are the ensemble
members. b All ensembles. The solid black curve is the median,
the gray-shaded area corresponds to the region between the
percentiles P25 and P75, and the external bounding curves are the
percentiles P2 and P98. The true permeability field is included in
both plots (red curve with solid squares)

obtained from MCMC. Figure 6a presents the box plots
of cumulative water production (Wp) after 750 days
obtained from each of the ten RML ensembles. In
this figure, we also present the box plot obtained from
MCMC. Figure 6a shows that RML results in distri-
butions of Wp very close to the distribution obtained
with MCMC. It is important to note that Fig. 6a also
indicates that distributions obtained by the ten different
RML runs are mutually consistent, i.e., there are no
significant differences between these ten distributions.
Although we did not present the results for all ten
ensembles individually, the same conclusion about con-
sistency applies to the resulting permeability fields. This
consistency indicates that one ensemble of 100 models
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Fig. 6 Water production after RML. a Box plot of cumulative
water production, Wp, for each ensemble. The horizontal dashed
line indicates the water production obtained with the true model.
The red line within each box corresponds to the median, and the
bottom and top of each box correspond to the percentiles P25
and P75. The ending points of the box plots correspond to the
percentiles P2 and P75. The blue dots correspond to the mean and
the crosses correspond to the minimum and maximum values. b
Water production rate, qw, distributions obtained by combining
the ten ensembles. The solid red curve is the prediction obtained
with the true model, the dashed curve is the median, and the gray-
shaded area corresponds to the region between the percentiles
P25 and P75. The external bounding curves are the percentiles P2
and P98

suffices for the purpose of quantifying uncertainty with
RML for this test problem. Figure 6b presents the
distribution of qw obtained by combining the ten RML
ensembles. This figure shows that RML also results in
a distribution of qw that is in good agreement with the
distribution obtained from MCMC.

6 Ensemble Kalman filter

EnKF was introduced by Evensen [12] and later
clarified in [4] and [20]. A convenient way to present
EnKF analysis equation is by defining the Ny-dimen-

sional state vector at the nth data assimilation time step,
yn, as

yn =
[

mn

pn

]
, (11)

where mn is the Nm-dimensional vector of model para-
meters and pn is the Np-dimensional vector represent-
ing the state of the dynamical system (primary variables
of the reservoir simulator). The EnKF analysis equa-
tion can be written as

yn,a
j = yn,f

j + C̃n,f
YD

(
C̃n,f

DD + Cn
D

)−1 (
dn

uc, j − dn,f
j

)
, (12)

for j = 1, 2, · · · , Ne, with Ne denoting the number of
realizations in the ensemble.

In the above equation, C̃n,f
YD is the Ny × Nn cross-

covariance matrix between the forecast state vector and
predicted data; C̃n,f

DD is the Nn × Nn auto-covariance
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Fig. 7 Permeability after EnKF. a First ensemble. b All ensem-
bles. The curves in this figure have the same meaning as in Fig. 5
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matrix of predicted data. We introduced the tilde in
C̃n,f

YD and C̃n,f
DD to emphasize that these matrices are es-

timated using the ensemble. Cn
D is the Nn × Nn covari-

ance matrix of observed data measurement errors; Nn

is the number of data points assimilated at the nth data
assimilation time step; dn

uc is a vector of “perturbed”
observations, i.e., dn

uc ∼ N (dn
obs, Cn

D) with dn
obs denoting

the Nn-dimensional vector of observed data at the nth
data assimilation time step; and dn,f is the correspond-
ing vector of predicted data. The superscripts a and f
denote analysis and forecast, respectively.

We assimilated data using EnKF with the ten ini-
tial ensembles of 100 models described in Section 3.
Figure 7 presents the permeabilities obtained for the
first ensemble and the distributions obtained by com-
bining the ten ensembles. Compared to MCMC and
RML, EnKF resulted in an unreasonably large spread
in the permeability distributions. Figure 8 shows the
EnKF results in terms of the predicted water produc-
tion obtained by running reservoir simulations from
time zero with the final ensembles. According to the
results in this figure, EnKF also resulted in an un-
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Fig. 8 Water production after EnKF. a Cumulative water pro-
duction, Wp. b Water production rate, qw. The colors in this
figure have the same meaning as in Fig. 6

reasonably large uncertainty in Wp (Fig. 8a) and qw

(Fig. 8b).
We also observed that the distributions of Wp are

not mutually consistent, i.e., each ensemble resulted
in significantly different distributions. This particular
EnKF consistency problem is well known [9, 33, 53]
and is related to the dependence on the prior ensemble.
In fact, each EnKF run “searches for solutions” in
the specific subspace spanned by the members of the
particular initial ensemble for that EnKF run.

7 Deterministic ensemble Kalman filter

In the data assimilation literature, the ensemble-
based methods are often separated into two cate-
gories: “deterministic schemes” such as the square root
filters (see [48, 54] and the references therein) and
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Fig. 9 Permeability after DEnKF. a First ensemble. b All ensem-
bles. The curves in this figure have the same meaning as in Fig. 5
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“perturbed-observation schemes” such as the EnKF.
The main motivation for deterministic schemes is to
avoid additional sampling errors caused by the process
of perturbing the observations which is necessary when
using the EnKF. Although deterministic schemes are
very popular in the numerical weather prediction liter-
ature, these filters have seldom been used for reservoir
history-matching problems. Sun et al. [50] presented
a comparison of results obtained by applying four de-
terministic ensemble-based filters to estimate the hy-
draulic conductivity in two simple groundwater models.
They concluded that DEnKF [47] is the most robust
filter among the four studied. Thus, for the sake of
brevity, we consider only DEnKF. Similar to square
root filters, the DEnKF algorithm first updates the
ensemble mean using the standard EnKF analysis, i.e.,

yn,a = yn,f + C̃n,f
YD

(
C̃n,f

DD + Cn
D

)−1 (
dn

obs − d
n,f

)
, (13)

where the bar over the vectors y and d indicates the
ensemble mean. The remaining terms were defined
before. We define the Ny × Ne matrix �Yn with each
column corresponding to each ensemble member sub-
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Fig. 10 Water production after DEnKF. a Cumulative water
production, Wp. b Water production rate, qw. The colors in this
figure have the same meaning as in Fig. 6

tracted by the ensemble mean, i.e.,

�Yn = [
yn

1 − yn, . . . , yn
Ne

− yn] . (14)

Then, the matrix �Yn is updated using

�Yn,a = �Yn,f − 1

2
K̃�Dn,f, (15)

where

K̃ = C̃n,f
YD

(
C̃n,f

DD + Cn
D

)−1
(16)

is the Kalman gain and

�Dn,f =
[
dn,f

1 − d
n,f

, . . . , dn,f
Ne

− d
n,f

]
, (17)

is the Nn × Ne matrix with columns corresponding to
the predicted data obtained by each ensemble member
subtracted by the mean.

We assimilated data using DEnKF and the results
are presented in Figs. 9 and 10. Note that for our test
problem, the overall results obtained with DEnKF are
no better than those obtained with EnKF.

8 Half-iteration EnKF

The sequential data assimilation characteristic of EnKF
requires modifying the traditional history-matching
problem from a parameter-estimation problem to a
parameter-state-estimation problem. Specifically, when
applying EnKF for history matching, it is necessary to
update a combined parameter-state vector, which in-
cludes the reservoir model parameters (uncertain reser-
voir rock properties) and the primary variables of the
reservoir simulator (typically gridblock pressure, fluid
saturations, and bubble-point pressure in a standard
black-oil reservoir simulator). The reason for updating
primary variables, which represent the state of the
dynamical system, is to avoid running the reservoir
simulations from time zero after every data assimila-
tion time step. The underlying assumption is that the
updated primary variables are statistically consistent
with the ones that would be obtained by running the
reservoir simulator with the updated set of model para-
meters from time zero. However, this consistency can
be proved only for problems with Gaussian statistics,
a linear relation between the vector of model para-
meters and predicted data and negligible model error
[52]. As the reservoir simulator equations are highly
nonlinear, the assumption of consistency is invalid,
and any significant inconsistency between model and
simulator primary variables may cause a deterioration
in the performance of the data assimilation [52, 56].
Moreover, the update of pressures and saturations may
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Fig. 12 Permeability after HI-EnKF. a First ensemble. b All
ensembles. The curves in this figure have the same meaning as
in Fig. 5

lead to nonphysical values and/or values which violate
the historical material balance of the field. For example,
Fig. 11 presents the analyzed ensemble of water satura-
tion (Sw) at 360 days (last data assimilation time step)
obtained from EnKF for the first of the ten ensembles
considered in this paper. This figure shows that even
though the mean Sw curve is in reasonable agreement
with the Sw profile obtained with the true model, some
ensemble members will be restarted with nonphysical
values of Sw, e.g., Sw less than 0.2, which corresponds
to the irreducible water saturation, and greater than
0.75, which corresponds to one minus the residual oil
saturation.

Wen and Chen [57] introduced the “confirming
step,” which consists of rerunning the simulator start-
ing from the previous data assimilation time step
with the updated set of model parameters obtained
at the current data assimilation time step in order to
obtain physically plausible state variables. However,
Zafari and Reynolds [59] showed that this procedure is
inconsistent for the linear case, where “consistency”
is defined in [52]. Perhaps, the simplest procedure to
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Fig. 13 Water production after HI-EnKF. a Cumulative water
production, Wp. b Water production rate, qw. The colors in this
figure have the same meaning as in Fig. 6
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overcome problems with inconsistency between up-
dated model parameters and primary variables is to
rerun the reservoir simulator with the latest ensem-
ble of model parameters from time zero after each
data assimilation. Wang et al. [56] refers to this pro-
cedure as half-iteration EnKF (HI-EnKF). For the
example considered by [56] where both initial fluid
contacts and rock property fields were updated during
data assimilation, the estimates of reservoir parame-
ters obtained with HI-EnKF were significantly better
than the estimates obtained with EnKF. However, for
the example considered here, the results of Figs. 12
and 13 indicate that the final history matching and
uncertainty quantification results from HI-EnKF are
not significantly better than those obtained with the
standard EnKF. Thus, the rather poor performance
of EnKF for our test problem is not primarily due to
inconsistency between reservoir parameters and state
variables.

9 Lorentzen–Nævdal iterative EnKF

Lorentzen and Nævdal [32] introduced an iterative pro-
cedure to improve the estimates obtained by EnKF
for highly nonlinear problems. Here, we refer to this
method as LN-IEnKF. The LN-IEnKF procedure used
here follows:

1. At the nth data assimilation time step, update the
forecast state vector, yn,f

j , using the standard EnKF
equation (Eq. 12).

2. Set � = 1 and yn,1
j = yn,a

j , for j = 1, 2, . . . , Ne.
3. Repeat

(a) For j = 1 to Ne:
– Compute the predicted data: dn,�

j = g(yn,�
j ).

– Compute yn,�+1
j using Eq. 18 (given

bellow).
– Compute On,�+1

j using Eq. 19 (given
bellow).

– If (On,�+1
j ≥ On,�

j ) set yn,�+1
j = yn,�

j , i.e., do
not update the state.

end (for).
(b) Set � = � + 1.

until (On,�+1
j ≥ On,�

j , for j = 1, 2, . . . , Ne), i.e., no
states are updated; or (� > 100), where 100 is the
maximum number of iterations.

In this procedure, the state vector at the �th iteration
is updated using

yn,�+1
j = yn,�

j + C̃n,�
YD

(
C̃n,�

DD + Cn
D

)−1 (
dn

uc, j − dn,�
j

)
,

(18)

which corresponds to the EnKF analysis (Eq. 12) with
dn,f

j replaced by dn,�
j , and C̃n,�

YD and C̃n,�
DD computed based

on dn,�
j .

According to Lorentzen and Nævdal [32], the objec-
tive function, On,�+1

j , is evaluated using

On,�+1
j =

(
yn,�+1

j − yn,f
j

)T
(Cn,f

Y )−1
(

yn,�+1
j − yn,f

j

)

+
(

g(yn,�+1
j ) − dn

uc, j

)T (
Cn

D

)−1

(
g(yn,�+1

j ) − dn
uc, j

)
, (19)

which corresponds to the RML objective function in
terms of the state vector yn

j . The motivation for using
the RML objective function comes from the fact that
the minimization of Eq. 19 for the linear case leads
to the EnKF analysis equation [42]. In this equation,
(Cn,f

Y )−1 is the inverse of the forecast state covariance
matrix, which is fixed during the iterations. Lorentzen
and Nævdal [32] do not mention how they compute
(Cn,f

Y )−1. Here, we approximate Cn,f
Y based on the fore-

cast ensemble and compute its inverse using singular
value decomposition (SVD).

The LN-IEnKF method requires one to compute the
predicted data vector, dn,�

j , for a given updated state

vector, yn,�
j , i.e., dn,�

j = g(yn,�
j ). For a typical reservoir

history-matching problem, the observations correspond
to data at wells, e.g., well water-cut or bottomhole pres-
sure data. In this case, g(yn,�

j ) can be computed using
Peaceman’s equation [40]. However, for the test case
considered in this paper, the observations correspond
to the pressure at the 16th gridblock. Hence, dn,�

j =
g(yn,�

j ) is simply an entry of the vector yn,�
j .

Figures 14 and 15 present the results obtained after
data assimilation with LN-IEnKF. These figures show
that LN-IEnKF did not improve the results obtained
with the standard EnKF. The failure of LN-IEnKF to
improve results can be explained as follows: (1) the first
step of the LN-IEnKF method is the analysis of the
forecast state vector using the standard EnKF, (2) the
predicted data correspond to a component of the state
vector yn,�

j , and (3) the measurement errors are small so
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Fig. 14 Permeability after LN-IEnKF. a First ensemble. b All
ensembles. The curves in this figure have the same meaning as
in Fig. 5

that C̃n,f
DD + Cn

D ≈ C̃n,f
DD. In this case, it is straightforward

to show that after EnKF analysis, we have

dn,a
j = dn,f

j + C̃n,f
DD

(
C̃n,f

DD + Cn
D

)−1 (
dn

uc, j − dn,f
j

)

≈ dn,f
j + C̃n,f

DD

(
C̃n,f

DD

)−1 (
dn

uc, j − dn,f
j

)

≈ dn
uc, j (20)

provided that C̃n,f
DD is nonsingular, which is true for

the test case because C̃n,f
DD is a 1 × 1 nonzero matrix

at each data assimilation time step. Hence, at the first
iteration of LN-IEnKF, we have dn,1

j = g(yn,a
j ) = dn,a

j ≈
dn

uc, j. This makes the subsequent updates with Eq. 18
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Fig. 15 Water production after LN-IEnKF. a Cumulative water
production, Wp. b Water production rate, qw. The colors in this
figure have the same meaning as in Fig. 6

very small because dn
uc, j − dn,�

j ≈ 0. Consequently, LN-
IEnKF gives results close to those obtained with EnKF.

10 Krymskaya–Hanea–Verlaan iterative EnKF

Krymskaya et al. [24] also proposed an iterative form of
EnKF for reservoir history-matching problems. Here,
we refer to this method as KHV-IEnKF. In this meth-
od, we assimilate data with standard EnKF and use
the final ensemble mean of the vectors of model pa-
rameters as the “prior mean” for a subsequent data
assimilation. The KHV-IEnKF procedure used here
follows:

1. Initialize m0 = mpr and � = 0.
2. Generate the ensemble of model parameters by

sampling m�
j ∼ N (m�, CM), for j = 1, 2, · · · , Ne.

3. Assimilate data using EnKF and set m�+1
j = ma

j , for
j = 1, 2, · · · , Ne, where ma

j is the analyzed vector of
model parameters.
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4. Rerun the ensemble from time zero and compute
the average objective function:

O
�+1 = 1

Ne

Ne∑

j=1

O
(

m�+1
j

)
,

where O(m�+1
j ) is computed using Eq. 2.

5. If
(∣
∣∣ O

�+1−O
�

O
�+10−8

∣
∣∣ < 10−3

)
or (� = 10), then:

– Stop data assimilation.

Else,

– Compute the ensemble mean:

m�+1 = 1

Ne

Ne∑

j=1

m�+1
j .

– Set � = � + 1.
– Return to step 2.

end (if).

In the above procedure, we chose the maximum
number of iterations equal to ten. In [24], the authors
use the “confirming step” [57] procedure to avoid non-
physical values of pressure and fluids saturation when
restarting the reservoir simulations, but as mentioned
previously, this procedure is inconsistent for the linear-
Gaussian case [59] so it is not used here. Unfortunately,
the KHV-IEnKF is also inconsistent for the linear-
Gaussian case. By simple inspection of the algorithm,
we can conclude that KHV-IEnKF will not provide a
correct sampling of the posterior PDF for the linear-
Gaussian case because we use the posterior mean
from the previous iteration as the prior mean for the
next iteration, which is clearly statistically incorrect.
Nevertheless, we assimilate data using KHV-IEnKF.
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Fig. 16 Box plots of the normalized objective function after each
iteration of KHV-IEnKF (first ensemble). The numbers next to
the boxes correspond to the median of ON

Figure 16 presents the box plots of ON after each of the
ten iterations where the first iteration of KHV-IEnKF
is identical to EnKF. The results show that the KHV-
IEnKF data match is only slightly better than the EnKF
data match; also note that ON is not a monotonically
decreasing function of the iteration number.

Figure 17a presents the permeability obtained with
KHV-IEnKF for the first of the ten ensembles. This
figure shows that the mean permeability is overly
rough, indicating possible overcorrections to the per-
meability field caused by the iterations. Figure 17b
presents the permeability distribution obtained by com-
bining the ten ensembles. As shown, the KHV-IEnKF
results in a distribution very different from the ref-
erence distribution obtained with MCMC. Figure 18
shows that distributions of predicted water production
generated with KHV-IEnKF results in a large overesti-
mation of uncertainty in the predicted water rate.
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Fig. 18 Water production after KHV-IEnKF. a Cumulative wa-
ter production, Wp. b Water production rate, qw. The colors in
this figure have the same meaning as in Fig. 6

11 EnKF-MCMC

EnKF-MCMC was proposed by Emerick and Reynolds
[9] as an approximate method to improve the sampling
results of EnKF. In this method, we first assimilate data
with EnKF. Then, we use the final ensemble to propose
transitions for a MCMC procedure. During MCMC, we
avoid reservoir simulations by proposing a combined
parameter-state vector, ŷ, which is used to approximate
the likelihood part of the posterior PDF. Specifically,
after data assimilation with EnKF, we run the resulting
ensemble from time zero and build the matrix

�Y = Y − Y =

⎡

⎢⎢
⎢
⎢⎢
⎣

�M
�P1

�P2

...

�PNt

⎤

⎥⎥
⎥
⎥⎥
⎦

. (21)

Here, �M = M − M, where M is the Nm × Ne matrix
with the jth column equal to the jth realization of the
vector of model parameters obtained by data assimila-
tion with EnKF and M is the Nm × Ne matrix with all

columns equal to m, which represents the average of
all columns of M, i.e., the ensemble mean. Similarly,
�Pn = Pn − P

n
, where Pn is the Np × Ne matrix with

its jth column equal to the jth vector of reservoir
simulator primary variables at the nth data assimilation
time step. Each column of P

n
is equal to pn, the average

of the columns of Pn. Nt denotes the total number of
data assimilation time steps. In [9], we included in Y
the primary variables required to compute well data
with Peaceman’s equation [40]. Here, because our ob-
servations correspond to the pressure at the gridblock
of the monitor well, we do not need to use Peaceman’s
equation. In fact, the only primary variables we need
to include in Y are the predicted pressures at the 16th
gridblock for the 12 data assimilation time steps. After
building the matrix �Y, we apply SVD and approx-
imate the square root of the covariance of the state
vector using

C̃1/2
Y = Ur�rUT

r√
Ne − 1

, (22)

where Ur is the Ny × Nr matrix with the left sin-
gular vectors of �Y corresponding to the nonzero
singular values and �r is the Nr × Nr diagonal ma-
trix containing the nonzero singular values �Y. Nr =
min

{
Ny, Ne − 1

}
. We use C̃1/2

Y to propose states in the
Markov chain with local perturbations using

ŷ = y + C̃1/2
Y δz, (23)

where y is the current state in the chain and δz is a
sample from N (0, σ 2 INy). Besides gridblock log-perme-
abilities, ŷ contains the estimated values of pressure
at the gridblock containing the monitor well for the
12 data assimilation time steps. These values of grid-
block pressure are used as predicted data to compute
the objective function (Eq. 2) required to evaluate
the acceptance probability in the Metropolis–Hastings
algorithm. With this procedure, we propose states for
Markov chains without reservoir simulation runs. How-
ever, because the acceptance probability is based on an
approximate likelihood, MCMC will not exactly sam-
ple the posterior PDF. Because of this, Emerick and
Reynolds [9] applied EnKF-MCMC iteratively, where
the final ensemble after MCMC is used to propose
states for new Markov chains. The EnKF-MCMC al-
gorithm used here can be summarized as follows:

1. Perform data assimilation using EnKF.
2. For � = 1 to 10 (where 10 is the total number of

iterations):

(a) Run the ensemble from time zero.
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(b) Build the matrix �Y (Eq. 21) and compute the
matrices Ur and �r using SVD. These matrices
are used to estimate C̃1/2

Y (Eq. 22).
(c) Build Ne = 100 Markov chains to generate the

new ensemble. For each Markov chain:
– Start the jth chain with the jth model of

the ensemble at the previous iteration.
– Propose 5,000 states using local perturba-

tions (Eq. 23) with σ = 0.05.
– Keep the last accepted state as one

sample.

end (for).

The setup of the Markov chains with 5,000 proposals
and σ = 0.05 was obtained from a small number of
experiments. The objective is to run each chain long
enough to pass through the transitional (burn-in) pe-
riod and choose a single model as a sample. Figure 19
presents the box plots of ON after each of the ten itera-
tions of EnKF-MCMC. This figure indicates that ON

is a continuously decreasing function of the iteration
number, but after five iterations, the rate of decrease
is very slow.

In [9], we applied EnKF-MCMC with ten different
initial ensembles and resampled the final models based
on the value of ON. In this procedure, we compute an
important weight for each model using

w j = exp(−ON(m j))
∑Ns

k=1 exp(−ON(mk))
, for j = 1, 2, · · · , Ns, (24)

where Ns is the total number of samples resulting
from the multiple EnKF-MCMC runs. Here, Ns =
10 × 100 = 1,000. Figure 20 presents the permeabili-
ties obtained for the first of the ten initial ensembles
after EnKF-MCMC (Fig. 20a) and the permeability
distributions obtained by combining the ten ensem-
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Fig. 19 Box plots of the normalized objective function after each
iteration of EnKF-MCMC (first ensemble). The numbers next to
the boxes correspond to the median of ON
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Fig. 20 Permeability after EnKF-MCMC. a First ensemble (no
resampling). b All ensembles (no resampling). c All ensembles
(after resampling). The curves in this figure have the same mean-
ing as in Fig. 5

bles before (Fig. 20b) and after (Fig. 20c) resampling
with Eq. 24. Compared to MCMC, the spreads in the
permeability distributions obtained with EnKF-MCMC
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are slightly overestimated although the results can be
considered acceptable. Resampling based on ON did
not change appreciably the permeability distributions.
Figure 21 shows the results in terms of water produc-
tion. Figure 21a shows that each ensemble resulted in
significantly different distributions of Wp, and the vari-
ance of each distribution is overestimated compared
to MCMC. Figure 21b shows that before resampling,
EnKF-MCMC greatly overestimates the uncertainty
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Fig. 21 Water production after EnKF-MCMC. a Cumulative wa-
ter production, Wp, (no resampling). b Water production rate, qw
(no resampling). c Water production rate, qw (after resampling).
The colors in this figure have the same meaning as in Fig. 6

in the predicted water production. After resampling
(Fig. 21c), the distribution of qw is in reasonable agree-
ment with MCMC although some overestimation of the
spread is still observed.

12 Ensemble smoother

ES was introduced by van Leeuwen and Evensen [55].
Unlike EnKF, ES does not assimilate data sequentially
in time. Instead, ES computes a global update including
all data available. Other than that, the ES formulation
is similar to EnKF. For ES, we write the analyzed vector
of model parameters, ma, as

ma
j = mf

j + C̃f
MD

(
C̃f

DD + CD
)−1

(
duc, j − df

j

)
, (25)
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Fig. 22 Permeability after ES. a First ensemble. b All ensembles.
The curves in this figure have the same meaning as in Fig. 5
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Fig. 23 Water production after ES. a Cumulative water produc-
tion, Wp. b Water production rate, qw. The colors in this figure
have the same meaning as in Fig. 6

for j = 1, 2, · · · , Ne. The notation is similar to the one
used for EnKF. C̃f

MD is the cross-covariance matrix
between the prior vector of model parameters, mf,
and the vector of predicted data, df; C̃f

DD is the Nd ×
Nd auto-covariance matrix of predicted data; and duc

and CD were defined before when we presented the
RML method. Note that, because we assimilate all data
simultaneously, there is no need to restart reservoir
simulations in ES. For this reason, we wrote Eq. 25 only
in terms of the vector of model parameters.

Figures 22 and 23 present the results obtained after
data assimilation with ES. For ES, the conclusions are
essentially the same as the ones obtained for EnKF, i.e.,
a large overestimation of uncertainty and inconsistent
distributions of Wp. In fact, the overestimation of un-
certainty with ES is greater than with EnKF.

13 Ensemble smoother with multiple data assimilation

Reynolds et al. [42] showed that EnKF is equivalent
to applying the first iteration of the Gauss–Newton
method sequentially, with a full step and replacing the

sensitivity matrix by an ensemble-average sensitivity
matrix. This means that, for ES, a single Gauss–Newton
correction is applied for conditioning the ensemble
to all data available. Therefore, ES may not be able
to provide reasonable data matches when applied to
reservoir problems.

Emerick and Reynolds [10] introduced a procedure
to improve the data matches obtained with ES based
on assimilating the same data multiple times with an
inflated covariance matrix of the measurement errors.
This method is motivated by the equivalence between
single and multiple data assimilations for the linear-
Gaussian case as shown in [10, 11]. This procedure can
be interpreted as an iterative ES, where the number of
“iterations” must be selected a priori. The ES-MDA
method can be summarized as follows:

1. Choose the number of data assimilations, Na, and
the multiplication coefficients of the data covari-
ance matrix, αi, for i = 1, 2, . . . , Na.

2. For i = 1 to Na:

(a) Run the ensemble from time zero.
(b) For each ensemble member, perturb the ob-

servation vector using duc = dobs + √
αiC1/2

D zd,
where zd ∼ N (0, INd).

(c) Update the ensemble using Eq. 25 with CD

replaced by αiCD.

end (for).

The αi coefficients must be selected such that

Na∑

i=1

1

αi
= 1. (26)

The simplest choice for the αi coefficients in αi =
Na for i = 1, 2, . . . , Na. However, the results in [10]
indicate that choosing αi values in a decreasing order
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may improve the data assimilation. The rationale is to
apply smaller corrections in the ensemble for the early
iterations by choosing large αi values and decrease αi

gradually. Figure 24 presents the box plots of ON for
ES with one, four, eight, and ten data assimilations. In
these results, the following values of the αi coefficients
were used:

– 4×: α1 = 9.333, α2 = 7.0, α3 = 4.0, and α4 = 2.0.
– 8×: α1 = 20.719, α2 = 19.0, α3 = 17.0, α4 = 16.0,

α5 = 15.0, α6 = 9.0, α7 = 5.0, and α8 = 2.5.
– 10×: α1 = 57.017, α2 = 35.0, α3 = 25.0, α4 = 20.0,

α5 = 18.0, α6 = 15.0, α7 = 12.0, α8 = 8.0, α9 = 5.0,
and α10 = 3.0.

These coefficients were chosen based on our experi-
ence with other synthetic reservoir cases [10]. We have
experimented with different coefficients, but we did
not obtain any results significantly different from those
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shown here. According to the results in Fig. 24, after ten
data assimilations, the median of ON is reduced from
1,448 to 10.6. Figure 25 presents the permeabilities ob-
tained by ES-MDA (10×). Unlike EnKF and ES, ES-
MDA results in a fairly low spread of permeabilities,
which are in reasonable agreement with the MCMC
results. In terms of Wp (Fig. 26a), each ES-MDA (10×)
ensemble results in distributions with roughly the same
variance obtained from MCMC. However, there is
still variation between the distributions obtained for
different ensembles; compare, for example, the box
plots for the fourth and seventh ensembles in Fig. 26a.
This means that a single ensemble is not enough to ob-
tain a reliable quantification of uncertainty. However,
combining the results of the ten ensembles (Fig. 26b)
results in a distribution of qw that is very close to the
one obtained with MCMC.

14 EnRML

EnRML was introduced by Gu and Oliver [18] as an
iterative EnKF. EnRML uses a Gauss–Newton update
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equation with an “average sensitivity matrix” estimated
from the ensemble. EnRML updates the ensemble
using

m�+1
j = m�

j + β�δm�+1
j , for j = 1, 2, · · · , Ne, (27)

with

δm�+1
j = mf

j − m�
j − C̃f

MG̃T
�

(
G̃�C̃f

MG̃T
� + CD

)−1

×
[
d�

j − duc, j − G̃�

(
m�

j − mf
j

)]
. (28)

In the above equations, � denotes the iteration in-
dex and β� denotes the step size. During the iterative
process, C̃f

M is fixed and estimated based on the forecast
ensemble. The average sensitivity matrix, G̃, is com-
puted using

G̃� = �D�
(
�M�

)+
, (29)

where the superscript “+” denotes the pseudo-inverse
of �M� computed by SVD. �D� = D� − D

�
, where D�

is the matrix with the ensemble of predicted data at
the �th iteration, i.e., the jth column of D� corresponds
to the predicted data from the jth ensemble member.

D
�

is the matrix with all columns equal to d
�
, which

represents the average of all columns of D�. Similarly,
�M� = M� − M

�
, where the jth column of M� contains

the vector of model parameters corresponding to the
jth ensemble member at the �th iteration. M

�
is the

matrix with all columns equal to m�, which represents
the average of all columns of M�.

In the original EnRML method, data are assimilated
sequentially in time. Here, we refer to this method as
EnRML-F, where “F” stands for filter. [7] proposed to
use EnRML as a smoother, in which case, all data are
assimilated simultaneously. We refer to this procedure
as EnRML-S. Unfortunately, Gu and Oliver [18] do not
provide details on how they choose or manage β�. Here,
we use the following implementation of EnRML:

1. Run the ensemble from time zero until the next
data assimilation time step (EnRML-F) or until the
end of the history (EnRML-S).

2. Initialize: � = 0, β0 = 1, and m0
j = mf

j for j =
1, 2, . . . , Ne.

3. Compute G̃� (Eq. 29).
4. For j = 1 to Ne:

(a) Compute m�+1
j (Eqs. 27 and 28).

(b) Rerun ensemble from time zero.

(c) Compute

O�+1
d, j = 0.5

(
d�+1

j − duc, j

)T
C−1

D

(
d�+1

j − duc, j

)
.

end (for).

5. Compute O
�+1
d = 1

Ne

∑Ne
j=1 O�+1

d, j .

6. If O
�+1
d < O

�

d, then:

(a) Accept the step and increase the step size for
the next iteration, β�+1 = 2β�.

(b) If β�+1 > β0, then set β�+1 = β0.
(c) Increase the iteration index, � = � + 1.

Else:

(a) Reduce the step size, β� = β�/2.

(b) Return to step 4.

end (if).
7. Check termination criteria.
8. If any one of the termination criteria is sat-

isfied, then go to the next data assimilation time
step (EnRML-F) or stop the data assimilation
(EnRML-S). Otherwise, return to step 3.

We use the following termination criteria:

– max |m�+1
i, j − m�

i, j| < 10−5 for i = 1, 2, . . . , Nm and
j = 1, 2, . . . , Ne .

–
∣
∣∣
∣

O
�+1
d −O

�

d

O
�

d

∣
∣∣
∣ < 10−4.

– Maximum number of iterations = 10.
– Maximum number of step size cuts = 5.

The first two termination criteria were chosen as the
same as used in [18].

The estimate G̃ of the sensitivity matrix is clearly
the main approximation introduced in the EnRML
method. Figure 27 presents the values of G̃ calculated
for the first of the ten initial ensembles and the actual
sensitivity matrix, G, computed using the adjoint meth-
od evaluated at the prior mean. According to Fig. 27,
G̃ is very noisy. However, if we consider the prod-
uct C̃f

MG̃T (Fig. 28), we observe a smoother behavior
and a qualitative agreement with the actual product,
CMGT, computed with the adjoint method. Note that,
for EnRML, we computed C̃f

MG̃T using the ensemble
approximation for Cf

M, while for the adjoint case, we
used the correct prior covariance matrix CM. Figures 27
and 28 illustrate that while the G̃ estimated from En-
RML using Eq. 29 is highly inaccurate, the resulting
product C̃f

MG̃T is reasonably similar to the true CMGT.
In particular, each entry of C̃f

MG̃T has the same sign as
the corresponding entries of the true CMGT. In essence,
[7] made the same observation, but we provide a simple
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theoretical explanation of why this occurs. In estimating
C̃f

MG̃T, we use

C̃f
M = 1

Ne − 1

Ne∑

j=1

(
mf

j − mf
) (

mf
j − mf

)T

= 1

Ne − 1
�Mf (�Mf)T

, (30)

and from Eq. 29, we have

(
�D�

)T = (
�M�

)T
G̃T

� . (31)

For the first iteration of EnRML, we have �M� =
�Mf and �D� = �Df. Thus, multiplying C̃f

M by G̃T
� , we

obtain

C̃f
MG̃T

� = 1

Ne − 1
�Mf (�Mf)T

G̃T
�

= 1

Ne − 1
�Mf (�Df)T

= C̃f
MD. (32)
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Therefore, the C̃f
MG̃T

� used in the first EnRML itera-
tion is equal to C̃f

MD used in EnKF and ES. Because
Reynolds et al. [42] showed that C̃f

MD can be approx-

imated by Cf
MG

T
� , where G� is the sensitivity matrix

evaluated at mf, it follows that C̃f
MG̃T

� ≈ Cf
MG

T
� so that

the approximation C̃f
MG̃T

� used in Eq. 28 should be
reasonably accurate. Thus, the most unreliable approx-
imation in Eq. 28 is the product G̃�(m�

j − mf
j). However,

the inaccuracy in G̃� (Fig. 27) apparently is not bad
enough to destroy the utility of the method.

In EnRML, all ensemble members are updated us-
ing the same average sensitivity matrix and step size.
Unfortunately, there is no guarantee that the resulting
search direction is downhill or the same step size is
appropriate for all ensemble members. Figure 29 illus-
trates this fact for EnRML-S. In Fig. 29, we present the
values of the normalized data mismatch objective func-
tion (ON,d) for the first iteration considering different
step sizes. Figure 29 shows that a step size β0 = 1 cor-
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Fig. 29 Normalized data mismatch objective function versus step
size for the first iteration of EnRML-S. This figure presents the
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red), and 13th (in green) ensemble members. The vertical dashed
line indicates the full step

responds to a decrease in the average ON,d. Therefore,
this step is accepted and used to update all ensemble
members. However, Fig. 29 indicates that a step size of
unity does not always yield a decrease in ON,d for all
models. For example, ON,d increases for the third and
13th ensemble members. In fact, the search direction
is not even downhill for the 13th ensemble member. A
possible way to ameliorate this problem is to perform
a different line search for each ensemble member as
suggested by Wang et al. [56]. However, here, we tested
only the original EnRML procedure proposed by Gu
and Oliver [18].

We first considered the sequential formulation of
EnRML (EnRML-F). However, we could not obtain
reasonable data matches or estimates of the permeabil-
ity field with this method. In our tests, EnRML-F failed
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Fig. 30 Permeability fields after EnRML-F for the first ensemble

to update model parameters for some consecutive data
assimilation time steps because five cuts in the step

size failed to give a decrease in O
�+1
d . In other data

assimilation time steps, EnRML-F resulted in appar-
ent overcorrections of the permeability field. In most
cases, these overcorrections occur after the eighth data
assimilation time step, which corresponds to the water
breakthrough in the monitor well. We tried different
combinations of step sizes and termination criteria. We
even tried to use a Levenberg–Marquardt update equa-
tion, instead of Gauss–Newton, to control the over-
correction issue. Despite these efforts, we could not
match data with EnRML-F. Figure 30 shows the final
permeability field obtained for the first ensemble with
EnRML-F. This figure illustrates the overcorrections
obtained in the permeability field close to the monitor
well location.
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b All ensembles. The curves in this figure have the same meaning
as in Fig. 5
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For EnRML-S, on the other hand, we obtained
more reasonable estimates of the permeability field. No
overcorrection was observed in this case. Figure 31a
presents the resulting permeability fields obtained by
the first ensemble with EnRML-S while Fig. 31b
presents the distribution of permeabilities obtained by
combining the ten ensembles. Compared to MCMC,
EnRML-S resulted in an acceptable permeability dis-
tribution although some overestimation in the spread
is observed. In terms of predicted water production
(Fig. 32), EnRML-S resulted in significant overestima-
tion of uncertainty. Similar to the other ensemble-based
methods, EnRML-S also obtained inconsistent distrib-
utions of Wp when repeating the data assimilation with
ten different initial ensembles. Among the ten EnRML-
S runs, eight stopped because of the maximum number
of iterations, i.e., after ten iterations. This indicates that
perhaps some improvements in the results of EnRML-
S can be achieved if we allow more iterations. However,
we limited the number of iterations to make the meth-
ods comparable in terms of computational cost. We also
tried EnRML-S with an initial step size β0 = 0.5, but
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Fig. 32 Water production after EnRML-S. a Cumulative water
production, Wp. b Water production rate, qw. The colors in this
figure have the same meaning as in Fig. 6

we did not obtain significantly different results from the
ones presented here, which use β0 = 1.

15 Overall comparison

Figure 33 presents the values of the variance of log-
permeability, var[ln(k)], after data assimilation for all
methods considered in this paper. In order to make
the results clear, we divided the results from the meth-
ods into two plots. We assume that MCMC results
are correct, so we present the MCMC results in both
plots of Fig. 33. According to the results in Fig. 33a,
EnKF, DEnKF, HI-EnKF, LN-IEnKF, KHV-IEnKF,
and ES gave unreasonably high values of var[ln(k)].
There are almost no differences between var[ln(k)]
obtained with EnKF, HI-EnKF, and LN-IEnKF so that
the corresponding curves overlap in Fig. 33a. Among
all methods, KHV-IEnKF resulted in the largest over-
estimation of var[ln(k)]. According to the results in
Fig. 33a, KHV-IEnKF obtained var[ln(k)] values larger
than one for most of the reservoir gridblocks, i.e.,

2.0
EnKF

DEnKF

HI-EnKF

LN-IEnKF

KHV-IEnKF

ES

MCMC

MCMC

RML

ES-MDA

EnRML-S

EnKF-
MCMC

1.6

1.2

0.8

0.4

0.0

0.8

0.6

0.4

0.2

0.0

1 11 21
Gridblock

(a)

(b)

V
ar

ia
nc

e 
of

 In
(k

)
V

ar
ia

nc
e 

of
 In

(k
)

Gridblock

31

1 11 21 31

Fig. 33 Variance of log-permeability. Note that the vertical scale
is different in each plot



346 Comput Geosci (2013) 17:325–350

variances higher than the prior variance. Figure 33b
shows that, compared to each other, EnKF-MCMC and
EnRML-S provided nearly identical values of var[ln(k)]
for the gridblocks to the left of the monitor well and
fairly similar variance values for the gridblocks to the
right of the monitor well. However, EnKF-MCMC
and EnRML-S overestimated the presumably correct
variances obtained from MCMC although to a much
lesser extent than the methods presented in Fig. 33a.
The best results were obtained by ES-MDA and RML
(Fig. 33b). These two methods resulted in values of
var[ln(k)] very close to the ones obtained from MCMC
for all gridblocks.

Figure 34 presents the values of the variance of the
oil production rate, var[qo], after data assimilation for
all methods considered in this paper. We divided the
results into three plots in order to make the figure
clear and included the results from MCMC in all
plots for comparison. EnKF, DEnKF, HI-EnKF, LN-
IEnKF, KHV-IEnKF, and ES resulted in unreasonably
high values of var[qo] (Fig. 34a). EnKF-MCMC and
EnRML-S overestimated the var[qo] obtained from
MCMC (Fig. 34b). However, after resampling, EnKF-
MCMC resulted in var[qo] fairly close to the variance
obtained from MCMC although some overestimation
is still observed for the forecast period. ES-MDA and
RML resulted in values of var[qo] in very good agree-
ment with the results obtained from MCMC (Fig. 34c).

Figure 35 presents the box plots of ON for all meth-
ods sorted in a decreasing order of ON. In this test
problem, we have 12 measurements and according to
the criterion of Eq. 3, the values of ON should be
less than 3.06. However, only the RML and MCMC
results satisfy this criterion. All other ensemble-based
methods result in significantly higher values of the
objective function. High values of the objective func-
tion are associated with poor data matches. More im-
portantly, a model which results in high value of the
objective function gives a small value of the posterior
PDF, which suggests that this model is a sample from
a low-probability region. Among the ensemble-based
methods, ES-MDA obtains the lowest values of ON.
ES-MDA is also the ensemble-based method which
gives the best quantification of uncertainty. In fact,
there is a correlation between the reliability of the
uncertainty quantification and the final values of ON

obtained by the ensemble-based methods. Note that
EnKF, DEnKF, HI-EnKF, LN-IEnKF, KHV-InEnKF,
and ES obtained very high values of ON and resulted
in unreasonably large overestimations of uncertainty.
EnKF-MCMC, EnRML-S, ES-MDA, and RML give
better data matches and a more reliable uncertainty
quantification.
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Table 1 presents the estimated computational cost
to generate an ensemble of 100 realizations with each
method. However, because we have a very small sim-
ulation model, which requires about 0.2 s to run, the
relative cost of writing/reading simulation files and ma-
trix operations during the data assimilations becomes
relatively important. Note that this is not the typical
situation in reservoir history-matching problems where
the CPU time required by the reservoir simulation
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largely dominates the total time of the data assimila-
tion. For this reason, in Table 1, we present the compu-
tational time in terms of the total number of reservoir
simulation runs and in terms of the actual measured
CPU time divided by the measured CPU time of the ES
method, which is the fastest method. Note that in the
results of Table 1, one equivalent simulation run refers
to the simulation of the total historical period; hence,
we count 100 simulation runs for EnKF, even though
these simulations require several restarts. According to
the results in Table 1, ES is the fastest method in terms
of both the number of reservoir simulation runs and
the measured CPU time. Although EnKF also requires
only 100 reservoir simulations, the total CPU time is
7.5 larger than ES mainly because of the simulation
restarts. The same is true for the DEnKF. HI-EnKF re-
quires running each reservoir simulation from time zero
after each data assimilation, which makes the equiva-
lent number of reservoir simulations 6.5 times higher
than the number required by EnKF. For LN-IEnKF,
the iterative process does not require additional reser-
voir simulations, but the total CPU time is longer than

Table 1 Estimated computational cost to generate an ensemble
of 100 realizations

Method Equivalent number Normalized
of simulation runs CPU time

EnKF 100 7.5
DEnKF 100 7.0
HI-EnKF 650 12.9
LN-IEnKF 100 9.9
KHV-IEnKF 2,000 84.9
ES 100 1.0
ES-MDA 1,000 10.0
EnKF-MCMC 1,100 41.9
EnRML-S 2,100 37.8
RML 24,500 350.1
MCMC 2 ×106 –

for EnKF because of the additional matrix operations
required during the iterations. The computational cost
of KHV-IEnKF corresponds to ten data assimilations
with EnKF and ten reruns of the ensemble. For EnKF-
MCMC, the total CPU time includes the time required
for one data assimilation with EnKF, ten reruns of
the ensemble, and the time required to generate the
Markov chains. This makes the computational cost of
EnKF-MCMC approximately 42 times the cost of data
assimilation with ES. ES-MDA with ten data assim-
ilations requires ten times the computational cost of
ES. For EnRML-S, the iterative process often requires
cutting the step size and rerunning the ensemble, which
results in an average of 2,100 reservoir simulations
per data assimilation and a total CPU time 37.8 times
greater than that used with ES. For RML, each sample
of the posterior PDF requires solving one minimization
problem. In our implementation, each minimization
requires, on average, 245 reservoir simulations. With
RML, after each simulation, we also solve an adjoint
problem to compute gradients [28]. Here, each adjoint
solution requires on the order of 50 % of the time
required for a simulation run. Therefore, the final CPU
time for RML is 350 times the CPU time of ES. The
computational cost for RML is very high for this test
problem; however, the final objective function values
obtained with RML are around 700 times lower than
those from ES (the fastest method) or four times lower
than those from ES-MDA (the ensemble-based meth-
od with the best performance). Moreover, RML is the
only method which gives consistent sampling results
between the ensembles, i.e., with RML, it would be
sufficient to generate a single ensemble of 100 re-
alizations instead of ten ensembles. For MCMC, we
ran a very long chain with 20 million proposals. We
did not measure the actual CPU time; however, it is
clear that the direct application of MCMC for any rea-
sonably sized reservoir model is not computationally
feasible.

Because the focus of these work was on sampling the
posterior PDF and the size of the test problem was very
small, we did not include any discussion on the com-
puter storage requirements of the methods. However,
RAM memory can be a relevant aspect especially for
the application of the smoothers in problems with large
amount of data, e.g., history matching of multiple seis-
mic surveys. As the ensemble smoother with or without
MDA requires assimilation of all data simultaneously
and thus requires the inversion of a matrix (Eq. 3) of
greater dimension than the matrix problem that must
be solved with EnKF, i.e., the memory requirement is
an even greater issue for the smoother than it is for
EnKF. One way to reduce the memory requirements
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when the matrix inverse in Eq. 3 is large is to apply a
subspace inversion scheme [11, 13, 49].

16 Discussion and conclusions

In this paper, we compared one adjoint-based and nine
ensemble-based methods in terms of the data matches,
quantification of uncertainty, and computational cost
for a small, but highly nonlinear, reservoir history-
matching problem. The test problem was designed to
be challenging for data assimilation such that the use of
iterative schemes was necessary to achieve acceptable
data matches. Among the ensemble-based methods
considered, three (EnKF, DEnKF, and ES) are not
iterative. Although we believe that conclusions 1–4,
6, and 9 are general, there is no assurance that any
of the conclusions, enumerated below, especially those
related to sampling accuracy, will generalize to larger
more realistic reservoir problems. Nevertheless, based
on the test problem, the following conclusions are
warranted:

1. For strongly nonlinear problems, the noniterative
methods (EnKF, ES, and DEnKF) do not result in
acceptable history matches.

2. For strongly nonlinear problems, the noniterative
methods (EnKF, ES, and DEnKF) do not provide
acceptable approximations of the posterior PDF of
model parameters and the posterior PDF of future
performance predictions.

3. Because EnKF, ES, or DEnKF results in poor
history matches, i.e., the ensemble spread in the
matches obtained for each method is far too large,
the uncertainty in future predicted performance is
significantly overestimated.

4. Although HI-EnKF removes the parameter-state
inconsistency during the data assimilation process,
this desirable attribute is not always sufficient to
significantly improve the history match or uncer-
tainty estimates obtained with EnKF.

5. Although LN-IEnKF is an efficient iterative filter,
for the example problem, it did not yield history
matches and uncertainty estimates significantly
different from those obtained with EnKF, and
overall the performance of LN-IEnKF was slightly
worse than the performance of HI-EnKF.

6. The KHV-IEnKF is based on a formulation which
does not preserve statistical consistency of the
Kalman filter for the linear-Gaussian case.

7. The KHV-IEnKF results in an incorrect posterior
distribution of permeability.

8. Compared to the MCMC results, the history
match and uncertainty quantification obtained with
EnKF-MCMC and EnRML-S are acceptable, but
for the test problem, the results were distinctly in-
ferior to those obtained with ES-MDA. ES-MDA
provided a quantification of uncertainty compara-
ble to the adjoint-based RML if we combine the
results of the ten data assimilations with different
initial ensembles.

9. RML is the only method in the set considered that
gives as good a data match as the one generated
from MCMC.

Conclusion 3 is noteworthy because it is well known
that EnKF can lead to underestimation of uncertainty
in the model parameters and future predictions when
the ensemble size is much smaller than the number of
parameters that are estimated [1].

The data set used in this paper, including the reser-
voir simulator, the true permeability field, the ten initial
ensembles, and the results from the long Markov chain
are available for download at http://www.tuprep.utulsa.
edu/comparative_study.html. The objective of this data
set is to allow other research groups to reproduce the
results in this paper, test their own implementations,
and extend the comparative study to other methods not
included in this paper. Note that one somewhat glaring
omission of this paper is the two previous iteration
methods that were codeveloped by the second author
[27, 42]. These methods were not considered largely
because they use an adjoint gradient and thus could
do no better than RML in terms of estimating the
posterior distributions. We also did not consider the
parameter-state estimation scheme of [35] which has
some remote similarities to HI-EnKF, the confirming
step of [57], and the second iterative scheme of [27].
Also, as noted, we considered only one deterministic
scheme, DEnKF. As ensemble-based methods are an
active area of research, we also expect that more iter-
ative methods will be developed in the near future. In
such an event, we hope that other research groups will
expand the comparison presented in this paper.
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