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Abstract Numerical simulation of gas migration driven
by compressible two-phase partially miscible flow in
porous media is of major importance for safety as-
sessment of deep geological repositories for long-lived
high-level nuclear waste. We present modeling of com-
positional liquid and gas flow for numerical simulations
of hydrogen migration in deep geological radioactive
waste repository based on persistent primary variables.
Two-phase flow is considered, with incompressible
liquid and compressible gas, which includes capillary
effects, gas dissolution, and diffusivity. After discussing
briefly the existing approaches to deal with phase ap-
pearance and disappearance problem, including a per-
sistent set of variables already considered in a previ-
ous paper (Bourgeat et al., Comput Geosci 13(1):29–
42, 2009), we focus on a new variant of the primary
variables: dissolved hydrogen mass concentration and
liquid pressure. This choice leads to a unique and con-
sistent formulation in liquid saturated and unsaturated
regions, which is well adapted to heterogeneous media.
We use this new set of variable for numerical simula-
tions and show computational evidences of its adequacy
to simulate gas phase appearance and disappearance in
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different but typical situations for gas migration in an
underground radioactive waste repository.
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1 Introduction

The simultaneous flow of immiscible fluids in porous
media occurs in a wide variety of applications. The most
concentrated research in the field of multiphase flows
over the past four decades has focused on unsaturated
groundwater flows and flows in underground petro-
leum reservoirs. Most recently, multiphase flows have
generated serious interest among engineers concerned
with deep geological repository for radioactive waste
and for CO2 capture and storage simulations.

The low permeability argillites are considered in
several European countries as possible host rock for the
geological underground storage of radioactive wastes
(see [3, 18, 29, 30, 34, 36, 37, 41]). The storage concepts
are based on series of passive complementary barriers
consisting both of engineered and natural materials,
designed to isolate radionuclides contained in the waste
and to slow down their release into the environment.
These barriers compose a heterogeneous porous media
highly saturated with water, but undergoing several
resaturation–desaturation cycles during the transitory
period of up to hundred thousand years following the
excavation. Due to low porosity and permeability of
the argillaceous host rock (COX for instance) and also
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of some materials used for sealing tunnels (like ben-
tonite), the desaturation is connected with appearance
of strong capillarity effects that affect the flow patterns.
Moreover, in the post-closure period, the excavation-
induced desaturation is enhanced by the production
of hydrogen from the anaerobic corrosion of steel en-
gineered barriers (carbon steel overpacks and stain-
less steel casing). From stochiometric arguments, the
amount of hydrogen generated by corrosion is expected
to be sufficiently substantial and fast to produce a free
gas phase which, due to relatively limited free volume
available within the excavation, can lead to significant
buildup pressure. In some studies, it has been found
that the maximal pressure can exceed several mega-
pascal and then perturb both the engineered barriers
and the EDZ or even the host rock. Moreover, the
gas phase dissipation is slowed down both by the low
permeability of the host rock and the many bentonite
seals along the excavation; such gas buildup pressure
will then produce local gradients of hydraulic charge
and perturb the process of seals’ resaturation. There is
even a growing awareness that the effect of hydrogen
gas generation can affect all the functions allocated to
the canisters, the buffers, and the backfill (see [18, 37,
41]) and even threaten, by overpressurization, the host
rock safety function [8], fracturing the host rock and
inducing groundwater flow and transport of radionu-
clides outside the waste site boundaries. Our ability
to understand and predict underground gas migration
within multimaterial porous system is a key component
in the designing and the performance assessment of any
reliable geological nuclear waste storage.

In nuclear waste management, the migration of gas
through the near-field environment and the host rock
involves two components, water and pure hydrogen H2,
and two phases: “liquid” and “gas.” Due to the inherent
complexity of the physics, equations governing this type
of flow in porous media are nonlinear and coupled.
Moreover, the geometries and material properties char-
acterizing many applications can be quite irregular and
contrasted. As a result of all these difficulties, numer-
ical simulation often offers the only viable approach
to modeling transport and multiphase flows in porous
media.

An important consideration, in the modeling of fluid
flow with mass exchange between phases, is the choice
of the primary variables that define the thermodynamic
state of the system. When a phase appears or disap-
pears, the set of appropriate thermodynamic variables
may change. There are two different approaches to
that problem. The first one, widely used in simulators
such as TOUGH2 [40], relies on a primary variable
substitution algorithm. This algorithm uses in two-

phase conditions the appropriate variables like pres-
sure and saturation, and when a transition to single-
phase conditions occurs, it switches to new variables
adapted to the one-phase conditions, like pressure and
concentration. This variable substitution is done after
each Newton iteration according to some “switching
criteria,” see [13, 21, 38, 43]. A different presentation
of this approach was done recently in [22, 24, 26], where
the solubility conditions are formulated as complemen-
tary conditions which complement the conservation law
equations. The whole system is then solved by a semi-
smooth Newton method, first introduced in this context
in [25], see also [16, 44], which consists in working on
an intermediate active node set (see [26]). The second
possibility is, like in [4, 9], to use a set of primary
“persistent” variables, such as pressure and component
density, which will remain well defined when phase
conditions change, so that they can be used throughout
the single- and two-phase regions.

Like in [9], we address here the problem of the
phase appearance/disappearance through a single set
of persistent variables, well adapted to heterogeneous
porous media, which does not degenerate and hence
could be used, without requiring switching the primary
variables, as a unique formulation for both situations:
liquid saturated and unsaturated. We will demonstrate,
through four numerical tests, the ability of this new for-
mulation to actually cope with the appearance or/and
disappearance of one phase in simple but typical and
challenging situations. Although these simulations are
for demonstration purposes, they are however inspired
from data given by some of the European Agencies
looking at low permeability argillites as possible host
rock for the geological underground storage of radioac-
tive wastes, see [3, 18–20, 29–31, 36, 41]. Although the
application we had in view for this model was the gas
migration in geological radioactive waste repositories,
we are aware that the very same problem of phase
appearance and disappearance is also crucial in model-
ing the recently discussed technology of carbon capture
and storage (see for instance [14, 15]).

2 Modeling physical assumptions

We consider herein a porous medium saturated with a
fluid composed of two phases, liquid and gas, and ac-
cording to the application we have in mind, we consider
the fluid as a mixture of two components: water (only
liquid) and hydrogen (H2, mostly gas) or any gas with
similar thermodynamical properties. In the following,
for the sake of simplicity, we will call hydrogen the



Comput Geosci (2013) 17:287–305 289

nonwater component and use indices w and h for the
water and the hydrogen components.

According to our goal, which was to focus on the
phase appearance and disappearance phenomena, we
have done several simplifying assumptions which are
not essential for understanding our approach. Not do-
ing these assumptions would have affected neither our
choices of primary variables nor the conclusions, but
they would have considerably complicated the present
paper.

– The porous medium is assumed to be in thermal
equilibrium. This hypothesis can be questionable in
the case of application to nuclear waste repository
where heat is generated by the nuclear waste, but,
as argued in [8], the near-field thermal characteris-
tic time is usually smaller than the corrosion time,
so that most of the hydrogen production takes place
when the system is close to thermal equilibrium.
Hence, although thermal flux and energy conserva-
tion could be taken easily in account, for simplicity,
they will not be discussed herein and we will con-
sider only isothermal flows.

– After restoring thermal equilibrium in the reposi-
tory and resaturation of the clay engineered barri-
ers (in several hundred years, [8]), the water pres-
sure far from the waste will be sufficiently high to
prevent vapor formation. Near the waste, the gas
phase will form, composed of the hydrogen and the
water vapor. Since we are concerned with migration
of the gas phase, which can happen only in the
presence of higher pressure gradients, we assume
that the presence of the vapor will not influence
significantly the gas migration and therefore we
neglect it in the modelization.

– Although at the depth of some storages, the wa-
ter density could be affected by the pressure, we
suppose for simplicity in our presentation that the
water component is incompressible. For the very
same reasons, the porous medium is supposed rigid,
meaning that the porosity � is only a function of the
space variable, � = �(x).

– We are assuming that the gas flow can be described
by the generalized two-phase Darcy’s law, and we
are not taking into account the possibility, in clayey
rocks, of having the gas transported by other mech-
anism, see [33].

The two phases are denoted by indices, l for liquid and g
for gas. Associated to each phase α ∈ {l, g}, we have in
the porous medium the phase pressures pα , the phase
saturations Sα , the phase mass densities ρα , and the

phase volumetric fluxes qα . The phase volumetric fluxes
are given by the Darcy–Muskat law (see [5, 39]):

ql = −K(x)λl(Sl)
(∇ pl − ρlg

)
,

qg = −K(x)λg(Sg)
(∇ pg − ρgg

)
, (1)

where K(x) is the absolute permeability tensor, λα(Sα)

is the α-phase relative mobility function, and g is the
gravitational acceleration; Sα is the effective α-phase
saturation and then satisfies

Sl + Sg = 1. (2)

Pressures are connected through a given capillary pres-
sure law (see [6, 27]):

pc(Sg) = pg − pl. (3)

From definition (3), we notice that pc is a strictly in-
creasing function of gas saturation, p′

c(Sg) > 0, leading
to a capillary constraint:

pg > pl + pc(0), (4)

where pc(0) ≥ 0 is the capillary curve entry pressure
(see Fig. 2).

The water component and the gas component which
are naturally in liquid state and in gas state at standard
conditions are also denoted, respectively, as solvent and
solute. We will assume herein, for simplicity, that the
mixture contains only one solvent, the water, and one
gas component, the hydrogen.

Writing all the quantities relative to one component
with the superscript i ∈ {w, h}, we define then Mi as
the molar mass of the i component and ρi

α , ci
α , and Xi

α

as, respectively, the dissolved mass, the dissolved molar
densities, and the molar fraction of the i component in
the α phase, α ∈ {l, g}. All these quantities satisfy

ρi
α = Mici

α, Xi
α = ci

α

cα

,

ρα =
∑

k∈{w,h}
ρk

α, cα =
∑

k∈{w,h}
ck
α . (5)

As said before, in the gas phase, we neglect the water
vaporization and we use the ideal gas law (see [17]):

ρg = Cv pg, (6)

with Cv = Mh/(RT), where T is the temperature and R
is the universal gas constant.

Mass conservation for each component leads to the
following differential equations [2, 12]:

�
∂

∂t

(
Slρ

w
l

) + div
(
ρw

l ql + jw
l

) = F w, (7)

�
∂

∂t

(
Slρ

h
l + Sgρg

) + div
(
ρh

l ql + ρgqg + jh
l

) = F h, (8)
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where the phase flow velocities, ql and qg, are given
by the Darcy–Muskat law (1), F k and jk

l , k ∈ {w, h},
are respectively the k-component source terms and the
diffusive flux in the liquid phase (see (13)).

Assuming water incompressibility and independence
of the liquid volume from the dissolved hydrogen con-
centration, we may assume the water component con-
centration in the liquid phase to be constant, i.e.,

ρw
l = ρstd

w , (9)

where ρstd
w is the standard water mass density. The

assumption of hydrogen thermodynamical equilibrium
in both phases leads to equal chemical potentials in
each phase: μh

g(T, pg, Xh
g ) = μh

l (T, pl, Xh
l ). Assuming

that in the gas phase there is only the hydrogen com-
ponent and no water leads to Xh

g = 1, and then, from
the above chemical potentials equality, we have a re-
lationship pg = F(T, pl, Xh

l ). Assuming that the liquid
pressure influence could be neglected in the pressure
range considered herein and using the hydrogen low
solubility, ρh

l � ρw
l = ρstd

w , we may then linearize the
solubility relation between pg and Xh

l and obtain the
Henry’s law pg = Kh Xh

l , where Kh is a constant specific
to the mixture water/hydrogen and depends on the
temperature T (see [17]). Furthermore, using (9) and
the hydrogen low solubility, the molar fraction, Xh

l ,

reduces to ρh
l Mw

ρstd
w Mh (see (9)–(11) in [9]) and the Henry’s

law can be written as

ρh
l = Ch pg, (10)

where Ch = HMh = ρstd
w Mh/(Mw Kh), where H is the

Henry’s law constant.

Remark 1 On the one hand, the gas pressure obeys the
capillary pressure law (3) with the constraint (4), but on
the other hand, it should also satisfy the local thermo-
dynamical equilibrium and obey a solubility equation
like the Henry’s law (10). More precisely, if there are
two phases, i.e., if the dissolved hydrogen mass density,
ρh

l , is sufficiently high to lead to the appearance of a gas
phase (Sg > 0), we have from (10) and (3)

ρh
l = Ch(pl + pc(Sg)). (11)

Moreover, Sg > 0 with the capillary constraint (4) and
the Henry’s law (10) gives the solubility constraint:

ρh
l > Ch(pl + pc(0)). (12)

But if the dissolved hydrogen mass density, ρh
l , is

smaller than the concentration threshold (see Fig. 1),
then there is only a liquid phase (Sg = 0) and none of

ρh
l

pl

ρ
h

l
=

C h
( p l

+
pc(0

))

Sg = 0

ρh
l ≤ Ch ( pl + pc(0))

Sg > 0

ρh
l = Ch pg

≥ pl + pc(0)

pg = pl + pc( Sg)

Fig. 1 Phase diagram: Henry’s law. Localization of the liquid
saturated Sg = 0 and unsaturated Sg > 0 states

all the relationships (3) or (12), connected to capillary
equilibrium, apply anymore; we have only Sg = 0, with
ρh

l ≤ Ch pg.
The concentration threshold line, ρh

l = Ch(pl +
pc(0)) in the phase diagram, is then separating the
one-phase (liquid saturated) region from the two-phase
(unsaturated) region.

The existence of a concentration threshold line can
also be written as unilateral conditions:

0 ≤ Sg ≤ 1, 0 ≤ ρh
l ≤ Ch pg, Sg(Ch pg − ρh

l ) = 0,

which could be added to the conservation laws (7) and
(8) and solved conjointly at each time step by means
of a semismooth Newton’s method, as explained in
Section 1 and in [22] or [26].

Since hydrogen is highly diffusive, we include the
dissolved hydrogen diffusion in the liquid phase. The
diffusive fluxes in the liquid phase are given by the
Fick’s law applied to Xw

l and to Xh
l , the water compo-

nent and the hydrogen component molar fractions (see
(12) and (13) in [9]). Using the same kind of approx-
imation as in the Henry’s law, based on the hydrogen
low solubility,

we obtain, for the diffusive fluxes in this binary
mixture (see Remarks 2 and 3 in [9] and see [7]),

jh
l = −�Sl D∇ρh

l , jw
l = −jh

l , (13)

where D is the hydrogen molecular diffusion coefficient
in the liquid phase, possibly corrected by the tortuosity
factor of the porous medium (see [23, 40]).
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If both liquid and gas phases exist (Sg �= 0), the
porous medium is said to be unsaturated, then the trans-
port model for the liquid–gas system can be obtained
from (1), (7), and (8), using (5), (6), (9), and (13),

�ρstd
w

∂Sl

∂t
+ div

(
ρstd

w ql − jh
l

) = F w, (14)

�
∂

∂t
(Slρ

h
l +Cv pgSg)+div

(
ρh

l ql +Cv pgqg + jh
l

)
= F h,

(15)

ql = −Kλl(Sl)
(∇ pl − (ρstd

w + ρh
l )g

)
, (16)

qg = −Kλg(Sg)
(∇ pg − Cv pgg

)
, (17)

jh
l = −�Sl D∇ρh

l . (18)

But in the liquid saturated regions, where the gas phase
does not appear, Sl = 1, the system (14)–(18) degener-
ates to

div
(
ρstd

w ql − jh
l

) = F w, (19)

�
∂ρh

l

∂t
+ div

(
ρh

l ql + jh
l

)
= F h, (20)

ql = −Kλl(1)
(∇ pl − (ρstd

w + ρh
l )g

)
, (21)

jh
l = −�D∇ρh

l . (22)

3 Liquid saturated/unsaturated state: a general
formulation

As recalled in Section 1, a traditional choice for the
primary unknowns, in modeling two-phase flow and
transport process, is the saturation and one of the
phases’ pressure, for example, Sg and pl. But as seen
above, in (19)–(22), saturation is no longer a consistent
variable in saturated regions and this set of unknowns
cannot describe the flow in a region where there is only
one phase (see [43]). In this section, we present and
compare two possible choices of primary variables to
circumvent this difficult problem, namely:

– One already presented in [9], using liquid pres-
sure and total hydrogen mass density, well adapted

when the capillary forces are negligible, which is the
case in most enhanced oil recovery simulations;

– A new variant of primary variable, suitable only
if capillary forces are important, compatible at the
same time with phase transitions and computations
in heterogeneous media.

In the following sections, we consider only this new
variant of primary variable (the first one was already
considered in [9]) for numerical applications and dis-
cussion of examples.

3.1 Modeling based on the total hydrogen mass
density, ρh

tot

To solve this problem, instead of using the gas satura-
tion Sg we have proposed, in [9], to use ρh

tot, the total
hydrogen mass density, defined as

ρh
tot = Slρ

h
l + Sgρ

h
g . (23)

Then, defining

a(Sg) = Ch(1 − Sg) + CvSg ∈ [Ch, Cv], (24)

with

a′(Sg) = Cv − Ch = C� > 0, (25)

since Cv > Ch, from the assumption of weak solubility,
we may rewrite the total hydrogen mass density, ρh

tot,
defined in (23), as

ρh
tot =

{
a(Sg)(pl + pc(Sg)) if Sg > 0

ρh
l if Sg = 0.

(26)

As noticed in the previous section in Remark 1, us-
ing the monotonicity of functions pc(Sg) and a(Sg),
we see a concentration threshold corresponding to
Ch(pl + pc(0)) separating the liquid saturated zone,
ρh

tot ≤ Ch(pl + pc(0)), from the unsaturated zone, ρh
tot >

Ch(pl + pc(0)).
With this choice of primary variables, ρh

tot and pl,
the two systems of (14)–(18) and (19)–(22) reduce to
a single system of equations:

�ρstd
w

∂Sl

∂t
− div

(
ρstd

w Kλl(Sl)
(∇ pl − (ρstd

w + ρh
l )g

))

+ div
(
�Sl D∇ρh

l

) = F w, (27)

�
∂ρh

tot

∂t
− div

(
ρh

l Kλl(Sl)
(∇ pl − (ρstd

w + ρh
l )g

) )

− div
(

Cv pgKλg(Sg)
(∇ pl + ∇ pc(Sg) − Cv pgg

) )

− div
(
�Sl D∇ρh

l

)
= F h. (28)
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If we want to study the mathematical properties of the
operators in this system of equations, we should de-
velop the above system of equations using first the de-
pendency of the secondary variables Sg = Sg(pl, ρ

h
tot),

Sl = 1 − Sg = Sl(pl, ρh
tot), and ρh

l = ρh
l (pl, ρ

h
tot) and sec-

ondly computing the derivatives of the saturations,
from (26),

∂Sg

∂pl
= −a(Sg)

21l{ρh
tot>Ch(pl+pc(0))}

C�ρh
tot + a(Sg)2 p′

c(Sg)
, (29)

∂Sg

∂ρh
tot

= a(Sg)1l{ρh
tot>Ch(pl+pc(0))}

C�ρh
tot + a(Sg)2 p′

c(Sg)
, (30)

where 1l{ρh
tot>Ch(pl+pc(0))} is the characteristic function of

the set {ρh
tot > Ch(pl + pc(0))}.

As noted in Section 2.5 in [9], we have ∂Sg/∂pl ≤ 0
and ∂Sg/∂ρ

h
tot > 0, when the gas phase is present. Then,

the system (14) and (15) can be written as

− �ρstd
w

∂Sg

∂pl

∂pl

∂t
− div

(
A

1,1∇ pl + A
1,2∇ρh

tot + B1Kg
)

− �ρstd
w

∂Sg

∂ρh
tot

∂ρh
tot

∂t
= F w (31)

�
∂ρh

tot

∂t
− div

(
A

2,1∇ pl + A
2,2∇ρh

tot + B2Kg
)

= F h,

(32)

where the coefficients are defined by

A
1,1(pl, ρ

h
tot) = λl(Sl)ρ

std
w K − �Sl DCh NI, (33)

A
1,2(pl, ρ

h
tot) = −�Sl

1 − N
a(Sg)

DChI, (34)

A
2,1(pl, ρ

h
tot) = (λl(Sl)ρ

h
l + λg(Sg)Cv pg N)K

+ �Sl DCh NI, (35)

A
2,2(pl, ρ

h
tot) = 1 − N

a(Sg)

{
λg(Sg)Cv pgK+�Sl DChI

}
(36)

B1(pl, ρ
h
tot) = −λl(Sl)ρ

std
w [ρstd

w + ρh
l ], (37)

B2(pl, ρ
h
tot) = −(λl(Sl)ρ

h
l [ρstd

w +ρh
l ]+λg(Sg)C2

v p2
g), (38)

with I denoting the identity matrix and with the auxil-
iary functions

N(pl, ρ
h
tot) = C�ρh

tot

C�ρh
tot + a(Sg)2 p′

c(Sg)
1̃l ∈ [0, 1),

1̃l = 1l{ρh
tot>Ch(pl+pc(0))} (39)

ρh
l (pl, ρ

h
tot) = min(Ch pg(pl, ρ

h
tot), ρ

h
tot), (40)

pg(pl, ρ
h
tot) = pl + pc(Sg(pl, ρ

h
tot)). (41)

We should notice first that (32) is uniformly par-
abolic in the presence of capillarity and diffusion, but if
capillarity and diffusion are neglected, this same equa-
tion becomes a pure hyperbolic transport equation (see
Section 2.6 in [9]). Then, if we sum (31) and (32), we
obtain a uniformly parabolic/elliptic equation, which is
parabolic in the unsaturated (two-phase) region and
elliptic in the liquid saturated (one-phase) region.

Remark 2 Simulations presented in Section 3.2 in [9]
show that this last choice of primary variables, ρh

tot
and pl, could easily handle phase transitions (appear-
ance/disappearance of the gas phase, saturated zones,
etc.) in two-phase partially miscible flows. However,
the discontinuity of the characteristic function with
respect to the main variable ρh

tot, on the concentration
threshold line, 1l{ρh

tot>Ch(pl+pc(0))}, in (29), (30), and (39),
has some effect on the conditioning of the Jacobian
matrix and hence on the number of Newton iterations
and the number of iterations required to solve the
Jacobian system, except if the fraction in front of the
characteristic function in (39) tends to zero as Sg → 0,
which is the case when the van Genuchten’s capillary
curves are used.

Another variant is presented in [1], where using the
total hydrogen concentration,

Ch
tot = (1 − Sg)ρ

h
l + Sgρg

(1 − Sg)ρl + Sgρg
; (42)

an extended saturation can be defined from the inverse
of (42):

Sg = Ch
totρl − ρh

l

Ch
totρl − ρh

l + (1 − C)ρg
. (43)

This saturation which was initially defined in the two-
phase region is then extended outside this region by
doing ρg = ρl in (42), since, no matter in what region
we are, there exists always an “extended“ saturation
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(Sg ≤ 0, outside the two-phase region), which can be
chosen as primary variable. It is then possible to model
both the one-phase flow and the two-phase flow with
the same system of equations written with this extended
saturation as the main unknown, and the gas appear-
ance and disappearance is actually treated through the
total hydrogen concentration Ch

tot expression (see [32]).

3.2 Modeling based on the dissolved hydrogen mass
density in the liquid phase, ρh

l

We have seen that the variables pl and ρh
tot, introduced

in the last section, describe the flow system, both in the
one-phase and in the two-phase regions, independently
of the presence of diffusion or capillary forces. But if
we assume moreover that the effects of the capillary
forces are not negligible, we can choose an other set
of primary variables.

Namely, using the retention curve (inverse of the
capillary pressure curve), we may define the phase
saturation as function of the dissolved hydrogen mass
density in the liquid, ρh

l , and of the liquid pressure,
pl, and hence use them as main unknowns. With these
two variables, ρh

l and pl, the two systems (14)–(18)
and (19)–(22) are transformed in a single system of
equations able to describe both liquid saturated and
unsaturated flows.

Since the capillary pressure curve Sg 
→ pc(Sg) is a
strictly increasing function, we can define an inverse
function (retention curve) f : R → [0, 1] (see Fig. 2), by

f (π) =
{

p−1
c (π) if π ≥ pc(0)

0 otherwise.
(44)

By definition of the retention curve f , using (10) and
(12), we have

f

(
ρh

l

Ch
− pl

)

= Sg, (45)

and it is then possible to compute the gas saturations,
Sg, from pl and ρh

l . With these two variables being well

Sg

pc(Sg)

0 1
0

π =
ρh

l
Ch

− pl

f (π )

1

0

0

Fig. 2 Capillary pressure curve, pc = pg − pl, and inverse
function

defined in both the one- and two-phase regimes, we will
now use them as principal unknowns.

Equations (14)–(18) with unknowns pl and ρh
l can be

written as

− �ρstd
w

∂

∂t

(

f

(
ρh

l

Ch
− pl

))

− div
(
Ã

1,1∇ pl + Ã
1,2∇ρh

l + B1Kg
) = F w, (46)

�
∂

∂t

(

a∗ ◦ f

(
ρh

l

Ch
− pl

)

ρh
l

)

− div
(
Ã

2,1∇ pl + Ã
2,2∇ρh

l + B2Kg
)

= F h, (47)

where the coefficients are given by the following for-
mulas:

Ã
1,1 = λl(Sl)ρ

std
w K, Ã

1,2 = −�Sl DI, (48)

Ã
2,1 = λl(Sl)ρ

h
l K, Ã

2,2 = λg(Sg)
Cv

C2
h

ρh
l K+�Sl DI, (49)

with B1 and B2 defined as in (37), (38), and

a∗(Sg) = a(Sg)

Ch
= 1 +

(
Cv

Ch
− 1

)
Sg. (50)

If we consider first (47), we may write it as

�

(
a∗(Sg) + ρh

l
∂a∗(Sg)

∂ρh
l

)
∂ρh

l

∂t

− div
(
Ã

2,1∇ pl + Ã
2,2∇ρh

l + B2Kg
)

+ �ρh
l
∂a∗(Sg)

∂pl

∂pl

∂t
= F h.

Moreover, from (50) and because f and f ′ are positive,
we have

a∗(Sg) + ρh
l
∂a∗(Sg)

∂ρh
l

= 1+
(

Cv

Ch
−1

)(

f

(
ρh

l

Ch
− pl

)

+ ρh
l

Ch
f ′

(
ρh

l

Ch
− pl

))

≥ 1,

and if the diffusion is not neglected, we have definite
positiveness of the quadratic form Ã

2,2 , in (47), i.e., for
any ξ �= 0,

(Ã2,2ξ · ξ) = λg(Sg)
Cv

C2
h

ρh
l Kξ · ξ + �(1 − Sg)D|ξ |2 > 0,

and therefore (47) is strictly parabolic in ρh
l .
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If we develop (46) as follows

�ρstd
w f ′

(
ρh

l

Ch
− pl

)
∂pl

∂t

− div
(
Ã

1,1∇ pl + Ã
1,2∇ρh

l + B1Kg
)

− ρstd
w

Ch
�f ′

(
ρh

l

Ch
− pl

)
∂ρh

l

∂t
= F w,

we have, for any ξ ,

λl(Sl)ρ
std
w Kξ · ξ ≥ 0,

and then positiveness of (Ã1,1ξ · ξ) and of (Ã2,1ξ · ξ).
Moreover,

�ρstd
w f ′

(
ρh

l

Ch
− pl

)

≥ 0.

However, equations in system (46) and (47) are not
uniformly parabolic/elliptic for the pressure pl, because
the coefficients, Ã

1,1, Ã
2,1, in front of ∇ pl in (46) and

(47) tend to zero as Sg → 1.

Remark 3 It is worth noticing that this system (46) and
(47), with variables pl and ρh

l , has interesting properties
for numerical simulations in strongly heterogeneous
porous media. These two variables are continuous
through interfaces separating different porous media
with different rock types (different absolute permeabil-
ity, different capillary and permeability curves), as we
will see in Section 4.3, which is not the case for the
total hydrogen density ρh

tot. Another advantage is the
continuity, in the neighborhood of the concentration
threshold line, of all the coefficients Ã

i, j, in (46) and
(47) and of f in (47). However, the choice of total
hydrogen mass density, ρh

tot, for the primary variable
does not require capillary effects, making it useful when
the capillary effects are negligible, which is not the case
with the choice of the dissolved hydrogen density, ρh

l , as
the primary variable, which is relying on an invertible
capillary pressure curve (see (45)). Moreover, with this
choice of ρh

l , as the primary variable, steepest or infinite
slope in the capillary curve or in the retention curve has
an effect on the conditioning of the Jacobian and makes
a problem for computing back the secondary variables.

Remark 4 From the solubility equation given by the
Henry’s law (10), it is possible to define an “extended”
gas pressure by p̃g = ρh

l /Ch even inside the liquid sat-
urated region. Obviously, this extended gas pressure
coincides with the true gas pressure pg in the two-phase
region. In [4] and [35], this extended gas pressure and

the liquid pressure are chosen for primary variables
and the gas appearance and disappearance is treated
through the retention curve.

4 Numerical experiments

In this last section, we present four numerical tests
specially designed for illustrating the ability of the
model described by (46) and (47) to deal with gas phase
appearance and disappearance. All the computations
were done using the variables pl and ρh

l ; we are also
displaying, for each test, the saturation and pressure
level curves. These two last quantities are obtained
after a post-processing step using the capillary pressure
law (3), (45), Henry’s law (10), and the constraints (4)
and (12) (see Fig. 1).

The first test focuses on the gas phase appearance
produced by injecting pure hydrogen in a 2-D homoge-
neous porous domain 	 (see Fig. 3), which is initially
liquid-saturated by pure water.

Because the main goal of all these numerical experi-
ments is to test the model efficiency, for describing the
phase appearance or disappearance, the porous domain
geometry does not really matter and we will use a
porous domain with a simple geometry. Consequently,
we choose a simple, quasi-1-D, porous domain (see
Fig. 4) for the following three tests.

The test case number 2 is more complex; it shows
local disappearance of the gas phase created by in-
jecting pure hydrogen in a homogeneous unsaturated
porous medium (initially both phases, liquid and gas,
are present everywhere).

Γimp

Ω

Γout

Γimp

Γimp

Γin

Γimp

Ld

Ld

Ls

Ls

Ls

Ls

Fig. 3 Test case number 1: Geometry a the 2-D porous domain,
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Γimp

Γimp

Γin
Ω1 Γout

Ω2

Lx

L1

Ly

Fig. 4 Test cases number 2, 3, and 4: Geometry of the quasi-1-D
porous domain, 	 = 	1 ∪ 	2

The two last tests’ aim is to focus on the main chal-
lenges in simulating the flow crossing the engineered
barriers, located around the waste packages. In test case
number 3, the porous medium domain is split in two
parts with different and highly contrasted rock types,
and like in the first one, the gas phase appearance
is produced by injecting pure hydrogen in an initially
water-saturated porous domain. Test case number 4
addresses the evolution of the phases, from an initial
phase disequilibrium to a stabilized stationary state, in
a closed porous domain (no-flux boundary conditions).

In all these four test cases, for simplicity, the porous
medium is assumed to be isotropic, such that K = kI

with k as a positive scalar, and the source terms are
assumed to be null: Fw = 0 and Fh = 0. As usual, in
hydrogeology, the van Genuchten–Mualem model for
the capillary pressure law and the relative permeability
functions (see [28, 42]) are used for underground nu-
clear waste modeling, i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pc = Pr

(
S−1/m

le − 1
)1/n

,

λl = 1

μl

√
Sle

(
1 − (1 − S1/m

le )m
)2

and λg = 1

μg

√
1 − Sle

(
1 − S1/m

le

)2m

with Sle = Sl − Sl,res

1 − Sl,res − Sg,res
and m = 1 − 1

n
.

(51)

Table 1 Fluid parameters: phase and component characteristics

Parameter Value

θ 303 K
Dh

l 3 · 10−9 m2/s
μl 1 · 10−3 Pa s
μg 9 · 10−6 Pa s
H(θ = 303 K) 7.65 · 10−6 mol/Pa/m3

Mw 18 g/mol
Mh 2 · 10−3 kg/mol
ρstd

w 103 kg/m3

Table 2 Mesh sizes and time steps used in the different numerical
tests

Mesh size range Time step range

Test number 1 2–6 ma 102–5 · 104 years
Test number 2 1 mb 102–5 · 103 years
Test number 3 1 mb 102–2 · 104 years
Test number 2 · 10−3 mb 0.33–16.7 · 103 s

aUnstructured triangular mesh
bRegular quadrangular mesh

Note that in the van Genuchten–Mualem model, there
is no capillary pressure jump at 0, pc(0) = 0, but the
presence of a jump, like in the Brooks–Corey model
(see [10]), would not lead to any difficulty, neither from
the mathematical point of view nor for the numerical
simulations. Concerning the other fluid characteristics,
the values of the physical parameters specific to the
phases (liquid and gas) and to the components (water
and hydrogen) are given in Table 1. All the simulations,
presented herein, were performed using the modular
code Cast3m [11], with the nonlinear differential equa-
tion system discretized with a full implicit time scheme.
The nonlinearities were treated by a Newton method
with an incomplete Jacobian (some derivatives in Ai, j

and B j were neglected), and the obtained sequences
of linear differential equations were discretized by a
finite-volume scheme. The discretization parameters
(mesh size and time step) are given in Table 2.

4.1 Numerical test number 1

The geometry of this test case is given in Fig. 3, and
the related data are given in Table 3. A constant flux of
hydrogen is imposed on the input boundary, �in, while
Dirichlet conditions pl = pl,out, ρh

l = 0 are given on �out

Table 3 Numerical test case number 1: boundary and initial con-
ditions, porous medium characteristics, and domain geometry; φw

and φh are denoting respectively the water and hydrogen flux

Boundary conditions Porous medium

Initial condition Parameter Value

φw · ν = 0 on �imp k 5 · 10−20 m2

φh · ν = 0 on �imp � 0.15
φw · ν = 0 on �in Pr 2 · 106 Pa
φh · ν = Qh on �in n 1.49
pl = pl,out on �out Sl,res 0.4
ρh

l = 0 on �out Sg,res 0

pl(t = 0) = pl,out in 	 Others

ρh
l (t = 0) = 0 in 	 Parameter Value

pl,out = 106 Pa Ld 200 m
Ls 20 m
Qh 9.28 mg/m2/year
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in order to have only the water component on this part
of the boundary. The initial conditions, pl = pl,out and
ρh

l = 0, are uniform on all the domain and correspond
to a porous domain initially saturated with pure water.

The main steps of the corresponding simulation are
presented in Fig. 5.

We observe in the beginning (see time t =
1,200 years in Fig. 5) that all the injected hydrogen
through �in is totally dissolved in the liquid phase; the
gas saturation stays null on all the domain (there is
no gas phase). During that same period of time, the
increase in liquid pressure is relatively small, the liquid

phase flux originates slowly (they are both hard to see
on the figures), and the hydrogen is transported mainly
by diffusion of the dissolved hydrogen in the liquid
phase.

Later on, the dissolved hydrogen accumulates
around �in until the dissolved hydrogen mass density
ρh

l reaches the threshold ρh
l = Ch pl (according to Fig. 1

and pc(0) = 0 in Remark 1), at time t = 1,600 years,
when the gas phase appears in the vicinity of �in. Then,
this unsaturated region progressively expands. The gas
phase volume expansion creates a gradient of the liq-
uid pressure in the porous domain, causing the liquid

ρ h
l pl Sg

ρ h
l at t = 1200 years pl at t = 1200 years Sg at t = 1200 years

ρ h
l at t = 4 104 years pl at t = 4 104 years Sg at t = 4 104 years

ρ h
l at t = 2 105 years pl at t = 2 105 years Sg at t = 2 105 years

ρ h
l at t = 106 years pl at t = 106 years Sg at t = 106 years

Fig. 5 Numerical test case number 1: Evolution of ρh
l , the hydrogen density in the liquid phase; pl, the liquid phase pressure; and Sg,

the gas saturation at times t = 1,200, 4 · 104, 2 · 105, and 106 years (from the top to bottom)
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Table 4 Numerical test case number 2: boundary and ini-
tial conditions, porous medium characteristics, and domain
geometry

Boundary conditions Porous medium

Initial condition Parameter Value

φw · ν = 0 on �imp k 5 · 10−20 m2

φh · ν = 0 on �imp � 0.15
φw · ν = 0 on �in Pr 2 · 106 Pa
φh · ν = Qh on �in n 1.49
pl = pl,out on �out Sl,res 0.4
ρh

l = Ch pg,out on �out Sg,res 0

pl(t = 0) = pl,out in 	 Others

ρh
l (t = 0) = Ch pg,out in 	 Parameter Value

pl,out = 106 Pa Lx 200 m
pg,out = 1.1 · 106 Pa Ly 20 m
Qh = 55.7 mg/m2/year L1 0 m

φw and φh are denoting respectively the water and hydrogen flux

phase to flow from �in to �out. Consequently, after this
time, t = 1,600 years, the hydrogen is transported by
convection in the gas phase and the dissolved hydrogen
is transported by both convection and diffusion in the
liquid phase. The liquid phase pressure increases glob-
ally in the whole domain until time t = 260,000 years
(see Fig. 5). Then, it starts to decrease in the whole
domain until reaching a uniform and stationary state
at t = 106 years, corresponding everywhere to a null
water component flux. Note that in this stationary state,
ρh

l still slightly varies (not only around the outflow
corner), and because of very small value of the Henry’s
constant Ch in (10), this variation produces by (45) no-
ticeable gas saturation variation, which can be observed
in Fig. 5.
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Fig. 6 Test case number 2; Lx = L2 = 200 m. Time evolution, in years, of the dissolved hydrogen molar density ch
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Fig. 7 Test case number 2; Lx = L2 = 200 m. Time evolution, in years, of the dissolved hydrogen molar density ch
l (top right), pl (top

left), and Sg (bottom) profiles, during the last period of time

4.2 Numerical test number 2

The geometry and the data of this numerical test are
given in Fig. 4 and Table 4. The porous medium is ho-

Table 5 Numerical test case number 3: boundary and initial
conditions and domain geometry

Boundary conditions Other

Initial condition Parameter Value

φw · ν = 0 on �imp Lx 200 m
φh · ν = 0 on �imp Ly 20 m
φw · ν = 0 on �in L1 20 m
φh · ν = Qh on �in pl,out 106 Pa
pl = pl,out on �out Qh 5.57 mg/m2/year
ρh

l = 0 on �out

pl(t = 0) = pl,out on 	

ρh
l (t = 0) = 0 on 	

φw and φh are denoting respectively the water and hydrogen flux

mogeneous and the initial conditions are uniform; there
is no need for defining two parts of the porous domain,
	1 and 	2. The parameter L1 will be considered as null.

In this second test, a constant flux of hydrogen is
imposed on the input boundary �in, while Dirichlet
conditions pl = pl,out and pg = pg,out are chosen, on

Table 6 Numerical test case number 3: porous medium
characteristics

Porous media

Parameter Value on 	1 Value on 	2

k 10−18 m2 5 · 10−20 m2

� 0.3 0.15
Pr 2 · 106 Pa 15 · 106 Pa
n 1.54 1.49
Sl,res 0.01 0.4
Sg,res 0 0
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Sg

pc
p(1)

c (Sg)

p(2)
c (Sg)

p(1)
c (S (1)

g ) = p(2)
c (S (2)

g )

S (1)
g S (2)

g

Fig. 8 Saturation discontinuity at the interface of two materials
with different capillary pressure curves; test case number 3

�out, such that ρh
l > Ch pl, in order to keep the gas

phase (according to the phase diagram in Fig. 1) present
on this part of the boundary. The initial conditions
pl = pl,out and ρh

l = Ch pg,out are uniform and imply the
presence of the gas phase in the whole domain.

The main steps of the corresponding simulation are
presented in Figs. 6 and 7 where we show the liquid
pressure pl, the dissolved hydrogen molar density ch

l
(equal to ρh

l /Mh), and the gas saturation Sg profiles, at
different times.

At the beginning, up to t < 1,400 years, the two
phases are present in the whole domain (see time t =
500 years in Fig. 6). The permanent injection of hydro-
gen increases the gas saturation in the vicinity of �in.
The local gas saturation drop is due to the difference in
relative mobilities λα(Sα) between the two phases: the
lower liquid mobility leads to a bigger liquid pressure
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Fig. 9 Test case number 3; Lx = 200 m, L1 = 20 m. Time evolution, in years, of the dissolved hydrogen molar density ch
l (top right), pl

(top left), and Sg (bottom) profiles, during the first period of time



300 Comput Geosci (2013) 17:287–305

increase, compared to the gas pressure increase, which
is finally producing a capillary pressure drop (according
to definitions (1) and (3), see Fig. 2) and creating a
liquid saturated zone. At time t = 1,400 years, the gas
phase starts to disappear in some region of the porous
domain (see time t = 1,500 years, in Fig. 7).

Then, a saturated liquid region (Sg = 0) will exist
until time t = 17,000 years (see Fig. 6), and during this
period of time, the saturated region is pushed by the
injected hydrogen, from �in to �out.

After the time t = 17,000 years, due to the Dirichlet
conditions imposed on �out, the liquid saturated region
disappears and all together the phases’ pressure and the
gas saturation are growing in the whole domain (see the
time t = 20,000 years in Fig. 7).

Finally, the liquid pressure reaches its maximum at
time t = 20,000 years and then decreases in the whole

domain (see Fig. 7). This is caused, like in the numerical
test case number 1, by the evolution of the system
towards a stationary state which is characterized by a
zero water component flow.

4.3 Numerical test number 3

The geometry and the data of this numerical test are
given in Fig. 4 and Tables 5 and 6. Like in the numerical
test number 2, a constant flux of hydrogen is imposed
on the input boundary, �in, while Dirichlet conditions
pl = pl,out and ρh

l = 0 are given on �out, in order to have
only the liquid phase on this part of the boundary. The
initial conditions, pl = pl,out and ρh

l = 0, are uniform
on all the domain and correspond to a porous domain
initially saturated with pure water. Contrary to the two
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Fig. 10 Test case number 3; Lx = 200 m, L1 = 20 m. Time evolution, in years, of the dissolved hydrogen molar density ch
l (top right),

pl (top left), and Sg (bottom) profiles, during the last period of time



Comput Geosci (2013) 17:287–305 301

first numerical tests, the porous domain is nonhomoge-
neous and there are two different porous subdomains
	1 and 	2; Lx = 200 m, L1 = 20 m, and L2 = 180 m.

The simulation time of this test case is T = 106 years,
the discretization space mesh is 1 m, and the time step is
102 years at the beginning and grows up to 2 · 104 years
in the end of the simulation (see Table 2).

Figures 9 and 10 represent the liquid pressure pl,
the dissolved hydrogen molar density (equal to ρh

l /Mh),
and the gas saturation Sg profiles at different times.

The main difference from the previous simulations
(which were in a homogeneous porous domain) is the
gas saturation discontinuity (Fig. 8), staying on the
porous domain interface x = 20 m. Due to the height
of this saturation jump , we had to use a logarithm scale
for presenting the gas saturation Sg profiles, but as a
consequence, although all the Sg curves go to zero, this
cannot be seen with a logarithmic scale in Figs. 9 and 10.

There are four main steps:

– From 0 to 3.8 · 104 years, the increase of both the
gas saturation and the liquid pressure is small and
slow in the whole domain and hard to see on the
figures, while the hydrogen injection on the left side
�in of the domain increases notably the hydrogen
density level.

– From 3.8 · 104 to 5.4 · 104 years, both the liquid
pressure and the hydrogen density are increasing in
the whole domain. The gas starts to expand from
the left side of the domain �in. The saturation front
moved towards the porous media discontinuity, at
x = 20 m, which is reached at t = 5.4 · 104 years; see
Fig. 9.

– From 5.4 · 104 to 1.3 · 105 years, see Fig. 10, the
saturation front has crossed the medium disconti-
nuity at x = 20 m, and from now, all the saturation
profiles will have a discontinuity at x = 20 m.

– From 1.3 · 105 to 106 years, see Fig. 10, both the hy-
drogen density and the gas saturation keep growing
while the liquid pressure decreases towards zero on
the entire domain. The gas saturation front keeps
moving to the right, pushed by the injected gas, up
to x ≈ 150 m at 106 years.

Until the saturation front reaches the interface be-
tween the two porous media, for (t = 5.4 · 104 years),
appearance and evolution of both the gas phase and the
unsaturated zone are identical to what was happening
in test number 1 (with a homogeneous porous domain)
during the period of gas injection: the dissolved hy-
drogen is accumulating at the entrance until the liquid
phase becomes saturated, at time t > 3.8 · 104 years,
letting the gas phase to appear.

When the saturation front crosses the interface be-
tween the two porous subdomains (at x = 20 m and
t = 5.4 · 104 years), the gas saturation is strictly positive
on both sides of this interface and the capillary pressure
curves is different on each side (see Table 6). The
capillary pressure continuity at the interface imposes
to p(1)

c the capillary pressure in 	1 and to p(2)
c the

capillary pressure in 	2, to be equal on this inter-
face. Then, p(1)

c = p(2)
c is satisfied only if there are two

different saturations, on each interface side S(1)
g and

S(2)
g : p(1)

c (S(1)
g ) = p(2)

c (S(2)
g ), see Fig. 8.

In the same way as in the numerical test number 1,
the system tends to a stationary state.

4.4 Numerical test number 4

This last numerical test is different from all the prece-
dent ones. It intends to be a simplified representation
of what happens when an unsaturated porous block is
placed within a water-saturated porous structure. The
challenge is then how the mechanical balance will be
restored in a homogeneous porous domain, which was
initially out of equilibrium, i.e., with a jump in the initial
phase pressures?

The initial liquid pressure is the same in the entire
porous domain; 	, pl,1 = pl,2, and in the subdomain 	1,
the initial condition, pl,1 = pg,1, in Table 7 correspond
to a liquid fully saturated state with a hydrogen con-
centration reaching the gas appearance concentration
threshold (pg = pl and ρh

l = Ch pg, Fig. 1). In the sub-
domain 	2, the initial condition (pl,2 �= pg,2 and pg,2 �=
pg,1) corresponds to a nonsaturated state (see Table 7).

Table 7 Data of the numerical test number 4: boundary and
initial conditions and domain geometry

Boundary conditions Porous medium

Initial condition Parameter Value

φw · ν = 0 on ∂	 k 10−18 m2

φh · ν = 0 on ∂	 � 0.3
pl(t = 0) = pl,1 on 	1 Pr 2 · 106 Pa
ρh

l (t = 0) = Ch pg,1 on 	1 n 1.54
pl(t = 0) = pl,2 on 	2 Sl,res 0.01
ρh

l (t = 0) = Ch pg,2 on 	2 Sg,res 0

pl,1 = 106 Pa Other

pg,1 = 106 Pa Parameter Value

pl,2 = 106 Pa Lx 1 m
pg,2 = 2.5 · 106 Pa Ly 0.1 m

L1 0.5 m

The porous medium domain 	 is homogeneous. All the porous
medium parameters are the same in the two subdomains 	1 and
	2; φw and φh are denoting respectively the water and hydrogen
flux
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The porous block initial state is said out of equilib-
rium since if this initial state was in equilibrium, in the
two subdomains 	1 and 	2, the local mechanical bal-
ance would have made the pressures, of both the liquid
and the gas phase, continuous in the entire domain 	.

For simplicity, we assume that the porous medium
domain 	 is homogeneous and all the porous medium
characteristics are the same in the two subdomains 	1

and 	2, and corresponding to concrete. The system is
then expected to evolve from this initial out of equilib-
rium state towards a stationary state.

We should notice that, in order to see the final
stationary state appearing, in a reasonable period of
time, we have shortened the domain 	 (Lx = 1 m),
taken the porous media characteristics, and set the final
time of this simulation Tfin at Tfin = 106 s ≈ 11.6 days.

The complete set of data of this test case is given in
Table 7.

The space discretization step was taken constant
equal to 2 · 10−3 m and the time step was variable,
going from 0.33 s in the beginning of the simulation to
16.7 · 103 s at the end of the simulation (see Table 2).
Figures 11 and 12 represent the liquid pressure pl, the
dissolved hydrogen molar concentration ch

l , and the gas
saturation Sg profiles at different times.

There are essentially two steps:

– For 0 < t < 1.92 · 105 s (see Fig. 11), the initial gas
saturation jump moves from x = 0.5 m, at t = 0,
and reaches �in, the left domain boundary, at t =
1.92 · 105 s. During this movement, the saturation
jump height (initially ≈ 0.16) decreases, until ap-
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Fig. 11 Numerical test case number 4, Lx = 1 m, L1 = 0.5 m: time evolution, in seconds, of the dissolved hydrogen molar density ch
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proximately 0.03, when it reaches the left boundary
�in. In front of this discontinuity, there is a liq-
uid saturated zone, Sg = 0, and in this zone, both
the liquid pressure and the hydrogen density are
spatially uniform (see Fig. 11, top). But, while the
hydrogen density remains constant and equal to
its initial value, the liquid pressure becomes imme-
diately continuous and starts growing quickly (for
instance, pl(t = 103 s) ≈ 1.6 · 106 Pa) and then more
slowly until t = 1.3 · 105 s, when it starts to slightly
decrease.
In Fig. 11, located on the gas saturation discontinu-
ity, there are both a high contrast in the dissolved
hydrogen concentration (this concentration stays
however continuous, but with a strong gradient, as
seen in the top right of Fig. 11) and a discontinuity

in the liquid pressure gradient (see the top left of
Fig. 11).

– For 1.92 · 105 s < t < 106 s = Tfin (see Fig. 12), all
the entire domain is now unsaturated (Sg > 0). The
liquid pressure, the hydrogen density, and the gas
saturation profiles are all strictly monotonous and
continuous, going towards a spatially uniform dis-
tribution, corresponding to the stationary state (see
Fig. 12).

As expected, the system initially out of equilibrium
(discontinuity of the gas pressure) comes back imme-
diately to equilibrium (the gas pressure is continuous)
and evolves towards a uniform stationary state (due
to the no mass inflow and outflow boundary condi-
tions). Although the liquid pressure and the dissolved
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hydrogen density are immediately again continuous for
t > 0, the hydrogen density still has a locally very strong
gradient until t = 1.92 · 105 s.

At first, and at the very beginning (≈ 102 s), see
top left of Fig. 11, only the liquid pressure evolves in
the liquid saturated zone. Due to the gas pressure in
the unsaturated zone which is higher than in the liquid
saturated zone (Sg = 0, pg = 2.5 MPa > pl = 1 MPa,
for the initial state in Table 7), and due to the no flow
condition imposed on �in, the liquid in the saturated
zone is compressed by the gas from the unsaturated
zone. Then, a liquid gradient pressure appears around
the saturation front and makes the liquid to flow from
the liquid saturated zone towards the unsaturated one
and then makes the gas saturation front to move in the
opposite direction.

The very strong hydrogen density gradient (until t =
1.92 · 105 s), located on the saturation front, is due to
the competition between the diffusion and the convec-
tive flux of the dissolved hydrogen around the satu-
ration front: the water flow convecting the dissolved
hydrogen, from left to right, cancels the smoothing
effect of the gas diffusion propagation in the opposite
direction. On the one hand, the diffusion is supposed to
reduce the hydrogen concentration contrast, by creat-
ing a flux going from strong concentrations (in the un-
saturated zone) towards the low concentrations (in the
liquid saturated zone), and on the other hand, the flow
of the liquid phase goes in the opposite direction (left to
right, from Sg = 0 to Sg > 0). Once the disequilibrium
has disappeared, the system tends to reach a uniform
stationary state determined by the mass conservation of
each component present in the initial state (the system
is isolated, with no flow on any of the boundaries).

5 Concluding remarks

From balance equations, constitutive relations and
equations of state, assuming thermodynamical equilib-
rium, we have derived a model for describing two-
phase flows in both saturated and unsaturated porous
media, including diffusion of components in phases and
capillary effects.

In the second part, we have presented a group of
numerical test cases synthesizing the main challenges
concerning the gas migration in a deep geological
repository. These numerical simulations are based on
simplified but typical situations in underground nuclear
waste management; they show evidence of the model’s
ability to describe the gas (hydrogen) migration and
to treat the difficult problem of correctly following the
saturated and unsaturated regions created by the gas

generation. The optimal selection of primary variables
depends, in general, on the characteristics of the par-
ticular problem being simulated, and in some circum-
stances, it may have a large effect on the conditioning of
the Jacobian matrix and hence on the number of New-
ton iterations and the number of iterations required to
solve the Jacobian system. Moreover, the evaluation
of secondary variables may require further solving of
nonlinear algebraic equations and then may have a
large impact on efficiency of the chosen set of primary
variables. For instance, the formulation in Section 3.1,
based on the total hydrogen density, is better adapted
to problems with little capillary effects, but the sec-
ondary variable such as the saturation is given implicitly
and has to be calculated by Newton iterations at every
point.

In highly heterogeneous media, it is also important
to choose the primary variables which are continuous
through material interfaces (like the phase pressure and
dissolved hydrogen mass ρh

l as in Section 3.2), than
variables like saturations or total hydrogen mass which
are discontinuous through the interface.

Although the formulation based on total hydro-
gen mass is more suitable when the capillary effects
are negligible, it is shown in the numerical tests pre-
sented herein that the primary variables chosen in Sec-
tion 3.2 can efficiently treat situations of gas appear-
ance/disappearance, in the presence of heterogeneities,
similar to situations appearing in simulating gas migra-
tion in deep geological repository for radioactive waste.
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