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Abstract For the hyperbolic conservation laws with
discontinuous-flux function, there may exist several
consistent notions of entropy solutions; the differ-
ence between them lies in the choice of the coupling
across the flux discontinuity interface. In the context of
Buckley–Leverett equations, each notion of solution is
uniquely determined by the choice of a “connection,”
which is the unique stationary solution that takes the
form of an under-compressive shock at the interface.
To select the appropriate connection, following Kaass-
chieter (Comput Geosci 3(1):23–48, 1999), we use the
parabolic model with small parameter that accounts
for capillary effects. While it has been recognized in
Cancès (Networks Het Media 5(3):635–647, 2010) that
the “optimal” connection and the “barrier” connection
may appear at the vanishing capillarity limit, we show
that the intermediate connections can be relevant and
the right notion of solution depends on the physical
configuration. In particular, we stress the fact that the
“optimal” entropy condition is not always the appro-
priate one (contrarily to the erroneous interpretation
of Kaasschieter’s results which is sometimes encoun-
tered in the literature). We give a simple procedure
that permits to determine the appropriate connection
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in terms of the flux profiles and capillary pressure
profiles present in the model. This information is used
to construct a finite volume numerical method for
the Buckley–Leverett equation with interface coupling
that retains information from the vanishing capillarity
model. We support the theoretical result with numer-
ical examples that illustrate the high efficiency of the
algorithm.
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1 Introduction

The Buckley–Leverett equation is a scalar conservation
law

∂ts + ∂x f (x, s) = 0

with a particular form of the flux function f (x, ·); the
dependence in x describes the medium heterogeneities,
and the whole equation serves as a model for two-
phase immiscible flow in one-dimensional medium with
neglected capillarity effects. The details of the models
(with and without capillarity) are recalled in the sequel.
When the dependence of f on x is regular, the notion
of Kruzhkov entropy solution [41] has been recognized
as the appropriate one; in particular, it is known that,
whatever be the form of the capillary pressure curves,
the “vanishing capillarity limit” yields the Kruzhkov
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solution (e.g., in the autonomous case, one can deduce
this convergence result from the approach of [15]; for
the general case, the result of [47] can be used). The sit-
uation is much more delicate when the medium consists
of two or more geological layers with radically differ-
ent physical properties and a sharp transition between
the layers; mathematically, this means that x �→ f (x, ·)
presents discontinuities. Several works were devoted to
the study of such discontinuous-flux Buckley–Leverett
model; let us mention Gimse and Risebro [37, 38],
Kaasschieter [40], Adimurthi et al. [1, 2], Bürger et
al. [18] (see also [19]), and the works [23–25] of the
second author. These works were mainly considering
the model problem with interface located at x = 0
and piecewise constant in x flux f (x, ·) = fL(·)11x<0 +
fR(·)11x>0; this will also be our framework in this paper.

In particular, Adimurthi et al. [2] have pointed out
the fact that infinitely many notions of solution, all of
them equally consistent from the mathematical point of
view, may coexist for the discontinuous-flux Buckley–
Leverett equation; this fact was illustrated numerically
in [18]. The so-called “optimal entropy solutions” (here
and in the sequel, we follow the terminology of [23–
25]) were recognized as the vanishing capillarity lim-
its (with discontinuous capillarity π(x, ·) = πL(·)11x<0 +
πR(·)11x>0) in some physical situations: see [1, 23, 40].
Let us highlight the fact that in many physical situations,
the “optimal entropy solutions” are not appropriate.
Indeed, in [24] it was shown that the so-called “barrier
entropy solutions” appear in another physical range
of parameters. Roughly speaking, the optimal entropy
solutions correspond to the maximization of the flux of
one phase across the interface while the barrier entropy
solutions correspond to the situation where the flux of
this same phase across the interface is minimized (cf.
[25]). As shown in [24], the occurrence of the barrier en-
tropy solution can be linked to the oil trapping phenom-
enon. In this paper, we show, both theoretically and
numerically, that all intermediate notions of entropy so-
lutions, described by Adimurthi et al. [2] and by Bürger
et al. [19], do appear as vanishing capillarity limits for
some choice of nonlinearities (see Theorem 5 and the
subsequent comment). More importantly, we indicate a
simple procedure that permits to identify the adequate
notion of solution, given the graphs of the flux functions
fL,R and of the capillarity functions πL,R. In Section 3.3
we make clear the relation of the conclusions of our
work to the conclusions of the pioneering work [40] of
Kaasschieter that are sometimes misinterpreted in the
recent literature.

While the starting point of our analysis is exactly
the same as in the work [40], we exploit the theoret-
ical framework of the paper of Karlsen et al. [7] (see

also Bürger et al. [19]) in order to avoid the lengthy
analysis of vanishing capillarity profiles corresponding
to different initial Riemann data. Namely, from the
facts established in [2, 7, 19] and those assessed in
[22, 27], we deduce that only one vanishing capillarity
profile should be constructed explicitly. The choice of
the profile follows a simple geometrical rule (see Fig. 1
and Proposition 2). The main result of the paper, i.e.,
Theorem 5, combines elements of the general approach
to scalar conservation laws with discontinuous flux
(see [7]) with some recent results on two-phase flows
in two-rocks’ media (see [22, 27]).

The paper is organized as follows. In Section 2,
we recall the parabolic model for two-rocks’ porous
medium and the notions of bounded-flux and mild
solutions as introduced in [27]. The key point here is
the so-called Kato inequality, which is a localized L1

contraction principle satisfied by two mild solutions.
In Section 2.3, we point out a particular mild solu-
tion; this is a viscosity profile connecting some states
(sπ

L, sπ
R) defined from transmission conditions across the

interface. This profile gives rise to the particular sta-
tionary solution c(x) = sπ

L11x<0 + sπ
R11x>0 for the hyper-

bolic Buckley–Leverett model in two-rocks’ medium
described in Section 3. Namely, c(·) can be obtained
as a vanishing capillarity limit, therefore it must be
considered as an admissible solution for the hyperbolic
model. Using this fact and the general structure of
entropy solutions to our hyperbolic model, in Theo-
rem 5, we eventually identify the vanishing capillarity
limits as the G(sπ

L,sπ
R)-entropy solutions in the sense of

[7]. Finally, in Section 4, we illustrate numerically the
above theoretical results. For solving the hyperbolic
model obtained as the vanishing capillarity limit, we
use a simple finite volume Godunov scheme designed
in [4] to approximate the discontinuous-flux Buckley–
Leverett equation in a way compatible with the more
precise parabolic model with capillarity. In order to
illustrate the efficiency of the procedure, we compare
the results provided by this Godunov scheme with those
provided by the scheme (analyzed in [22]) that approx-
imates the parabolic problem. In particular, we observe
a remarkable computational gain in considering the
simplified model, as well as a good concordance in the
numerical results.

2 Parabolic model for two-phase flow
in two-rocks’ medium

This section is devoted to the parabolic model of two-
phase flow with discontinuous capillary pressure in one
space dimension. Following the previous work of the
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second author [22, 27, 28] (see also [20, 48]), the frame
of multivalued capillary pressures is introduced in order
to give a extended sense to the continuity of the cap-
illary pressure at the medium’s discontinuity. We will
use the notions of bounded-flux and mild solutions that
have been proven to be well-suited for this problem
in [22, 27]. This model will be rescaled, letting a scaling
parameter appear in front of the capillary diffusion.
Letting the capillarity parameter ε tend to zero will
be the main purpose of this paper and especially of
Section 3.2.

2.1 Immiscible two-phase flows with discontinuous
capillary pressure

We consider a one-dimensional porous medium made
of two different rocks �L = (−∞, 0) and �R =
(0, +∞), separated by an interface � = {x = 0}. The
medium is assumed to be vertical, but we use the sub-
scripts L (“Left”) for the lower rock, and R (“Right”)
for the upper rock in order to comply with the notation
used in the context of conservation laws with discontin-
uous flux. Two immiscible and incompressible phases
a, b are flowing within this medium. Writing the volume
balance of each phase in �i yields

φi∂tsα + ∂xvα = 0 (α ∈ {a, b}, i ∈ {L, R}), (1)

where sα ∈ [0, 1] denotes the saturation of the phase α

and φi ∈ (0, 1) denotes the porosity of the rock �i. The
filtration speed vα of the phase α is prescribed by the
Darcy–Muskat law (see e.g., [13])

vα = −Ki
krα,i(sα)

μα

(∂x pα − ραg)

(α ∈ {a, b}, i ∈ {L, R}), (2)

where Ki is the intrinsic permeability of �i; μα, pα , and
ρα are, respectively, the viscosity, the pressure, and the
density of the phase α; and g is the gravity. Whenever
ρa �= ρb , the presence of gravity induces the buoyancy
force. The relative permeability krα,i of the phase α in
�i is supposed to be Lipschitz continuous, increasing
on [0, 1] and such that krα,i(0) = 0. The pore volume is
supposed to be fully saturated by the fluid, i.e.,

sa + sb = 1, (3)

while the phase pressures are supposed to be linked by
the capillary pressure relation

pa − pb = πi(sa), (i ∈ {L, R}), (4)

where the functions πi are increasing. As noticed by
H. W. Alt et al. [3], the natural topology for the phase
pressure pα stems from the estimate

∑

i

∫

�i

krα,i(sα) (∂x pα)2 dx ≤ C. (5)

Therefore, if sα = 0 (and thus krα,i(sα) = 0), no control
is provided by Eq. 5 on the pressure pα . As suggested
in [28] (see also [16, Brenner et al. 2013, this issue]), we
extend the pressure in the following multivalued way

pa(x, t) = [−∞, pb (x, t)

+ πi(0)] if x ∈ �i and sa(x, t) = 0, (6a)

pb (x, t) = [−∞, pa(x, t))

− πi(1)] if x ∈ �i and sa(x, t) = 1, (6b)

for i = L, R. Therefore, as it was already the case
in [20, 27], the capillary pressure function has to be
extended into the maximal monotone graph π̃i from
[0, 1] to [−∞, +∞] defined by

π̃i(s) =

⎧
⎪⎨

⎪⎩

πi(s) if s ∈ (0, 1),

[−∞, πi(0)] if s = 0,

[πi(1), +∞] if s = 1.

(7)

At the interface �, we require the balance of the phase
fluxes, i.e., (formally)

vα(0−, t) = vα(0+, t) (α ∈ {a, b}), (8)

and the continuity of the extended phase pressures, i.e.,

pα(0−, t) ∩ pα(0+, t) �= ∅. (9)

Here and at the sequel, the values at x = 0± denote the
one-sided traces of different quantities, in some sense
that has to be made precise in each case.

Now, summing Eq. 1 for α = a, b we find that ∂x(va +
vb ) = 0. Thanks to Eq. 8, we can claim that the total
flow rate q := va + vb only depends on time. For the
sake of simplicity, we assume that q is constant in
time. However, our results can be generalized to the
case of time-dependent q by means of an adaptation
of the tools developed in [5, 6, 21]. Without loss of
generality, we assume that q ≥ 0 and that the buoyancy
coefficient (ρa − ρb )g is nonnegative (these conditions
can be enforced by changing x by −x and by exchanging
the role of a and b). The Eq. 1 for the phase a can now
be rewritten under the form

φi∂tsa + ∂x ( fi(sa) − λi(sa)∂xπi(sa)) = 0, (10)
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where, for i = L, R,

λi(s) = Ki
kra,i(s)krb ,i(1 − s)

μb kra,i(s) + μakrb ,i(1 − s)
,

fi(s) = q
kra,i(s)

kra,i(s) + μa
μb

krb ,i(1 − s)
+ (ρa − ρb )gλi(s).

(11)

Since we assumed that kra,i(s), krb ,i(s) are zero if and
only if s = 0, the functions λi verify λi(0) = λi(1) = 0
and λi(s) > 0 if s ∈ (0, 1), while the functions fi are such
that fi(0) = 0 and fi(1) = q. For classical choices of
relative permeabilities kra,i and krb ,i (see e.g., [13]), the
flux functions fi, i = L, R are bell-shaped in the sense
(A1) below.

For the sake of readability, we remove the index a
in sa; thus s stands for the saturation of the phase a.
Denoting by ϕi the Kirchhoff’s transform function
defined by

ϕi(s) =
∫ s

0
λi(z)π ′

i (z)dz,

we convert Eq. 10, valid in �i, into

φi∂ts + ∂x ( fi(s) − ∂xϕi(s)) = 0. (12)

Thus Eq. 8 becomes

lim
x→0− ( fL(s) − ∂xϕL(s)) = lim

x→0+ ( fR(s) − ∂xϕR(s)) ; (13)

the precise sense of equality 13 will be specified later.
Notice that traces at x = 0± of ϕi(s) exist whenever
ϕi(s(t, ·)) ∈ H1(�i). Since each ϕi admits a continuous
inverse function, also the one-sided traces of s on �

exist in the strong L1(0, T) sense. Denote by sL, sR the
traces on � from �L and �R, respectively, it has been
shown in [20, 27, 28] that relation Eq. 9 implies

π̃L(sL) ∩ π̃R(sR) �= ∅. (14)

Note that in this paper, buoyancy is taken into account,
and, as it will be stressed in the sequel, it plays a
major role in the following study. Indeed, it makes the
flux fi defined by Eq. 11 bell-shaped in the sense of
assumption (A1) below. In the case where the gravity
was neglected, existence of traveling wave solutions to
problem 12–14 was investigated in [51], while existence
and uniqueness of (regular) weak solutions was shown
in [14, 27, 48]. The effective equations in a stratified
porous medium were formally derived in [50] and rig-
orously recovered in [48]. Numerical schemes were
proposed in [1, 35, 36, 39] and analyzed in [34]. To our
knowledge, the only results available concerning the
analysis of problem 12–14 in presence of gravity are

found in [40] for the traveling waves and [22] for the ex-
istence and uniqueness of the solutions, existence being
proved by establishing the convergence of a suitable fi-
nite volume scheme. Multidimensional extensions have
been recently performed [16, 28, Brenner et al. 2013,
this issue].

Due to the large dimensions of the sedimentary
basins, and since the time scale involved in the migra-
tion of hydrocarbons is also large, it is natural to rescale
the variables by choosing x := x/ε, t := t/ε for some
small positive ε. The problem 12–14, completed with
the initial condition (Eq. 15d), thus turns into

φi∂tsε + ∂x ( fi(sε) − ε∂xϕi(sε)) = 0

in �i × (0, ∞), (15a)

lim
x→0− ( fL(sε) − ε∂xϕL(sε)) = lim

x→0+ ( fR(sε) − ε∂xϕR(sε))

in (0, T), (15b)

π̃L(sε
L) ∩ π̃R(sε

R) �= ∅ in (0, T), (15c)

sε
|t=0

= s0 in R. (15d)

Here, as usual, i = L, R and sε
L, sε

R denote the traces
of sε at x = 0− and x = 0+, respectively. The flux trans-
mission property Eq. 15b should be understood in the
weak sense, e.g., according to the theory of [32].

Let us now make precise the assumptions on the data
required for our analysis. It is worth noting that all of
them are fulfilled by the model commonly used in oil-
engineering (see [9, 13]).

(A1) The flux functions fi belong to Lip([0, 1]) and
satisfy fi(0) = 0, fi(1) = q ≥ 0. Moreover, fi is
a so-called bell-shaped function, i.e., there exists
si ∈ (0, 1] such that f ′

i (s)(si − s) > 0 for a.e. s ∈
(0, 1).

(A2) The capillary pressure functions πi belong to
Liploc((0, 1)) ∩ L1((0, 1)) and they are strictly
increasing on (0, 1).

(A3) The Kirchhoff transforms ϕi belong to
Lip([0, 1]) and they are strictly increasing
on [0, 1].

(A4) s0 is measurable with 0 ≤ s0 ≤ 1.

Hereinabove, i = L, R; and by Lip and Liploc we de-
note the spaces of Lipschitz and locally Lipschitz con-
tinuous functions, respectively.

2.2 Bounded-flux solutions and mild solutions of Eq. 15

This section is devoted to a brief summary of the state
of the art for the mathematical analysis of the sys-
tem Eq. 15 for fixed ε. Some existence and uniqueness
results can be found in [14, 48], but we focus here on
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the frame developed in [22, 27]. In particular, up to our
knowledge, the result of [22] is the only one that allows
to take non-monotone flux function fi (as it is the case
when buoyancy is taken into account).

The mathematical analysis of the system Eq. 15 for
fixed ε is carried out in [14, 27, 48] in cases where the
gravity (and thus the buoyancy) is neglected, and in [22]
in presence of buoyancy. Let us recall the framework
of bounded-flux solutions introduced in [22, 27] for this
problem.

Definition 1 (Bounded-flux solution) A function sε ∈
L∞(R × R+; [0, 1]) is said to be a bounded-flux solution
of problem Eq. 15 with initial datum s0 if ∂xϕi(sε) ∈
L∞(�i × R+), if π̃L(sε

L(t)) ∩ π̃R(sε
R(t)) �= ∅ for a.e. t ∈

R+, and if, for all ψ ∈ C∞
c (R × R+),

∫ ∫

R×R+
φisε∂tψ +

∫

R

φis0ψ(·, 0)

+
∑

i∈{L,R}

∫ ∫

�i×R+
( fi(sε) − ε∂xϕi(sε)) ∂xψ = 0. (16)

From now on, we use the Kruzhkov and semi-
Kruzhkov (or Serre) entropy fluxes

i(a, b) = sign(a − b)( fi(a) − fi(b)),

±
i (a, b) = sign±(a − b)( fi(a) − fi(b)), (17)

where sign+(a) = 1 if a > 0 and 0 otherwise, and
sign−(a) = −sign+(−a). In the sequel, for a ∈ R, we
denote by a+ (resp. a−) the positive (resp. negative)
part of a, i.e., a± = sign±(a)a.

Proposition 1 Let sε, šε be two bounded-flux solutions
of Eq. 15 in the sense of Definition 1 corresponding to
initial data s0, š0 respectively. Then for all ψ ∈ C∞

c (R ×
R+; R+), the following Kato inequality holds:

∑

i∈{L,R}

∫ ∫

�i×R+
φi(sε − šε)±∂tψ

+
∑

i∈{L,R}

∫

�i

φi(s0 − š0)
±ψ(·, 0)

+
∑

i∈{L,R}

∫ ∫

�i×R+

(
±

i (sε, šε)

− ε∂x
(
ϕi(sε)−ϕi(šε)

)±)
∂xψ ≥0. (18)

Corollary 1 For all initial datum s0 satisfying (A4), there
exists at most one bounded-flux solution sε to Eq. 15.

The proof of Proposition 1 and Corollary 1 is a
straightforward generalization of the results of [22,

Section 4] at least in the case of L1 data with values
in [0, 1], the L1 assumption being used to ensure that
∂xϕL,R(s) → 0 as x → ±∞. For the general case, let
us point out that the L1 assumption is bypassed, e.g.,
by exploiting the Kato inequality in the way of Maliki
and Touré [43]. Thus (A4) is a sufficient assumption in
Corollary 1.

Still in [22], the existence of a bounded-flux solution
is proven; thanks to the convergence of a Finite Volume
scheme under the assumption (A5) that the initial flux
is bounded. Putting this existence result together with
the uniqueness result exposed in Corollary 1 yields to
following theorem.

Theorem 1 Assume that (A1)–(A4) hold. In addition,
let the initial datum be regular in the sense

(A5) for i = L, R, assume ∂xϕi(s0) ∈ L∞(�i). Further-
more, assume that the initial data are connected;
namely, denoting by s0,i the trace of s0 on � from
�i, we suppose that π̃L(s0,L) ∩ π̃R(s0,R) �= ∅.

Then there exists a unique bounded-flux solution sε

of problem Eq. 15 corresponding to s0. Furthermore, sε

belongs to C(R+; L1
loc(R)). Moreover, if š0 also satisfies

(A4) and (A5), if s0 − š0 ∈ L1(R) and if we denote by
šε the unique bounded-flux solution corresponding to š0,
then for all t ≥ 0 we have

∑

i∈{L,R}

∫

�i

φi
(
sε(·, t) − šε(·, t)

)±

≤
∑

i∈{L,R}

∫

�i

φi
(
s0(x) − š0(x)

)±
. (19)

Upon generalizing the notion of solution by a closure
procedure, the above existence and uniqueness frame-
work can be extended to initial data that only satisfy
(A4), but not (A5). This approach is a slightly improved
variant of the technique exploited in [22, 27].

Definition 2 (Mild solution) A function sε ∈ L∞(R ×
R+; [0, 1]) is said to be a mild solution if for i = L, R,
∂xϕi(sε) ∈ L2

loc(�̄i × R+), if π̃L(sε
L(t)) ∩ π̃R(sε

R(t)) �= ∅
for a.e. t ∈ R+, and if there exists a sequence (sν,ε)ν
of bounded-flux solutions tending towards sε in
L1

loc(R × R+).

Theorem 2 Assume that (A1)–(A4) hold, then there ex-
ists a unique mild solution sε of Eq. 15 corresponding
to s0. Furthermore, sε belongs to C(R+; L1

loc(R)). More-
over, if šε is a mild solution corresponding to an initial
datum š0 then the Kato inequality 18 holds.
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Proof Let us start with the case of a compactly sup-
ported initial datum. In this case, smoothing s0 and
modifying it near the origin as proposed in [23, 24], we
can approximate s0 in L1(R) by a sequence

(
sν

0

)
ν∈N

of
initial data that are regular in the sense (A5). Denoting
by sν,ε the unique bounded-flux solution corresponding
to the initial data sν

0, we see from Eq. 19 that the
sequence (sν,ε)ν is a Cauchy sequence in C(R+; L1(R)).
Therefore, it admits a unique limit value sε .

Let us show that sε is a mild solution. Let K be an
arbitrary bounded interval of R, let T > 0, and let χi :
�i → [0, 1] be a smooth function with compact support
such that χi ≡ 1 on �i. Choosing formally

(x, t) �→ π(x, sν,ε(x, t))11(0,T)(t)χi(x)

as test function in the weak formulation Eq. 16 on sν,ε

(this point is thoroughly justified, by means of two steps
of regularization of the problem in [27] — see also [28]
for the multidimensional case) provides that

ε

∫ T

0

∑

i∈{L,R}

∫

Ki

(∂xϕi(sν,ε))
2 ≤ C, (20)

where Ki = K ∩ �i and where C does not depend
on ν nor on ε (but on K). Then ϕi(sν,ε) is uni-
formly bounded in L2((0, T); H1(Ki)) with respect to
ν. Since ϕi(sν,ε) converges strongly towards ϕi(sε) in
C([0, T]; L2(Ki)), by interpolation, it also converges
strongly in L2((0, T); Hs(Ki)) (to the same limit) as
soon as s < 1. Hence, we infer the strong convergence
of the one-sided traces ϕi(s

ν,ε
i ) on the interface in the

L2(0, T) sense towards ϕi(sε
i ). The functions ϕ−1

i being
invertible, we deduce that sν,ε

i tends to sε
i . Since the

set
{
(sL, sR) ∈ [0, 1]2 | π̃L(sL) ∩ π̃R(sR) �= ∅}

is closed,
one recovers at the limit ν → ∞ the property π̃L(sε

L) ∩
π̃R(sε

R) �= ∅ a.e. in (0, T), and then a.e. in R+ since T has
been chosen arbitrary. This ends the existence proof for
compactly supported data.

Next, given a general initial datum s0, we can approx-
imate it by a monotone sequence (sm

0 )m∈N by setting
sm

0 := s011|x|<m. Using the comparison principle con-
tained in Eq. 19, we see that the corresponding se-
quence (sm,ε) of mild solutions is non-decreasing, then it
converges to some limit sε a.e. on R × [0, T]. It follows
that sε is itself a mild solution.

Finally, mild solutions being constructed as L1
loc lim-

its of bounded-flux solutions, the Kato inequality 18
remains true because it is stable by L1

loc convergence. A
mild solution is a weak solution, i.e., it satisfies Eq. 16;
therefore, we deduce from [26] that sε belongs to
C([0, T]; L1

loc(�i)). Since sε ∈ L∞(R × R+), one obtains
that sε ∈ C([0, T]; L1

loc(R)). �

As a consequence of the Kato inequality, the com-
parison and L1-contraction property 19 remains valid
for mild solution instead of bounded-flux solution. Last
but not least, all the equations of system (Eq. 15)
are still fulfilled, in the distributional sense or in the
appropriate trace sense, by the mild solutions, ensuring
that they are effective solutions to the problem. To sum
up, Theorem 2 sets up a well-posedness framework for
Eq. 15, for all ε > 0.

Remark 1 Let us explain the terminology used in this
section. The denomination bounded-flux solutions has
been introduced in [27]; the name is due to the regu-
larity property ∂xϕi(sε) ∈ L∞(�i × R+). Note that this
nontrivial property is derived thanks to a maximum
principle for the flux F ε

i (x, t) = f ε
i (sε) − ε∂xϕi(sε) (re-

call that ε > 0 is fixed). Further, the denomination mild
solution is the usual term used in the theory of nonlin-
ear semigroups generated by accretive operators: is de-
notes the solution obtained by means of implicit semi-
discrete in time approximation. Solution in the sense of
Definition 2 being the limit of bounded-flux solutions,
it is indeed a mild solution in the latter sense. This fact
can be inferred from the arguments of [22], where the
solutions provided by a fully discrete time-implicit finite
volume approximation are shown to converge towards
the mild solution.

2.3 Looking for a stationary profile solution

Clearly, ε in Eq. 15 can be seen as a vanishing capillarity
parameter. In order to understand the limit problem, as
ε → 0, in this paragraph we point out an evident sta-
tionary profile U : R �→ [0, 1] such that for all ε, U(x/ε)

yields a bounded-flux solution to problem Eq. 15. In the
simplest case, U is constant on each side from zero; in
the other case, U is constant on one side only.

Given πL,R and fL,R, we define two curves P and U
in the unit square [0, 1] × [0, 1] (see Fig. 1). Recall that
we have extended πL,R to maximal monotone graphs
π̃L,R from [0, 1] to R̄, thus extending the domain of π−1

L,R

to whole R̄ (the inverse of a maximal monotone graph
is a maximal monotone graph). Define the set

P :=
{

(sL, sR) ∈ [0, 1]2 | π̃L(sL) ∩ π̃R(sR) �= ∅
}
, (21)

then the curve P is the maximal monotone graph from
[0, 1] to [0, 1] defined as the composition π̃−1

R ◦ π̃L of
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Fig. 1 The maximal monotone graph P (in red) is defined
by Eq. 21 from the capillary pressure function πL,R, and the
decreasing curve U (in green) is defined by Eq. 22 from the con-
vective flux functions fL,R. The vanishing capillarity limit is fully
characterized by their intersection, as stated in the “selection
rule” at the end of the section. The segment D (horizontal, in
the case sopt

L = s̄L) is used in the proof of Proposition 2. We refer
to the online version of the article for the colors

two maximal monotone graphs. The curve U is implic-
itly given by

U :=
{

(sL, sR) | fL(sL) = fR(sR),

sL ≥ s̄L and sR ≤ s̄R

}
. (22)

Due to assumption (A1), U is the graph of a strictly
decreasing function on an interval that we denote
[sopt

L , sbar
L ]. More specifically, the extremity (sopt

L , sopt
R ) of

the curve U lies inside (0, 1)2; we have either sopt
L =

s̄L or sopt
R = s̄R according to the order of the val-

ues max[0,1] fL and max[0,1] fR. The other extremity
(sbar

L , sbar
R ) lies either on the part {1} × [0, sopt

R ] or on the
part [sopt

L , 1] × {0} of the boundary of the unit square,
according to the sign of the total flux q.

Proposition 2

(i) Assume that U ∩ P �= ∅, and denote by (sπ
L, sπ

R)

its unique element. Then c(x) = cε(x) := sπ
L11x<0 +

sπ
R11x>0 is a bounded-flux solution of Eq. 15 for

every ε > 0, it is therefore a vanishing capillarity
limit.

(ii) Assume that U ∩ P = ∅. Then c(x) := sopt
L 11x<0 +

sopt
R 11x>0 is a vanishing capillarity limit, i.e., there

exists a sequence cε of stationary bounded-flux
solutions of Eq. 15 that converges to c(·) in L1

loc(R),
as ε → 0.

In the above statement, saying that a function is a so-
lution of Eq. 15 we do not specify the initial condition.

Proof

(i) It is enough to check that the function c(·) fits the
definition of a bounded-flux solution. Indeed, it is
constant on each side of the interface, so that the
equation is verified pointwise away from {x = 0}.
Next, the capillary pressures are connected in the
sense πL(sπ

L) ∩ πR(sπ
R) �= ∅ because (sπ

L, sπ
R) ∈ P .

Finally, because (sπ
L, sπ

R) ∈ U , we have

( fL(c) − ε∂xc)|x=0− = fL(sπ
L) = fR(sπ

R)

= ( fR(c) − ε∂xc)|x=0+ .

(ii) The proof in this case is similar to the proof of [23,
Proposition 2.9], in which a particular choice of
P was done. We consider separately two cases:
either sopt

L = s̄L, or sopt
R = s̄R. In the first case, we

complement U by the horizontal segment D :=
[0, sopt

L ] × {sopt
R } (see Fig. 1); in the second case,

we complement U by the vertical segment D :=
{sopt

L } × [sopt
R , 1]. In each of the cases, there is an in-

tersection point (̃sπ
L, s̃π

R) of the maximal monotone
graph P with the union U ∪ D which is a max-
imal anti-monotone graph. Since U ∩ P = ∅ by
assumption, the point (̃sπ

L, s̃π
R) belongs to D.

Consider the first case: we have s̃π
R = sopt

R , s̃π
L < sopt

L ,
and fL(·) − fL(sopt

L ) ≤ 0 on [0, 1]. We construct the so-
lution of the following Cauchy problem for the ordinary
differential equation:
⎧
⎪⎨

⎪⎩

λL(U(ξ))
[
πL(U(ξ))

]′ = fL(U(ξ)) − fL(sopt
L ),

ξ ∈ (−∞, 0]
U(0) = s̃π

L.

(23)

Existence of a local solution is clear from the
Cauchy-Peano theorem, and it is easily seen that the
solution is non-increasing and it can be continued to a
global on (−∞, 0] solution satisfying limξ→−∞ U(ξ) =
sopt

L .
Set cε(x) := U(x/ε)11x<0 + sopt

R 11x>0; as in (i), we
check that this function is a bounded-flux solution of
Eq. 15 for every ε > 0. Indeed, differentiating Eq. 23
in the weak sense and recalling the definition of ϕL we
see that Eq. 15a is satisfied pointwise for x �= 0. The
capillary pressures are connected at {x = 0} because
(̃sπ

L, sopt
R ) ∈ P ; and the fluxes are connected at {x = 0}

because

( fL(c) − ε∂xc)|x=0− = fL(sopt
L ) = fR(sopt

R )

= ( fR(c) − ε∂xc)|x=0+ .
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The limit of sε(·) being c(x) := sopt
L 11x<0 + sopt

R 11x>0, this
ends the proof for this case.

In the second case, we have s̃π
L = sopt

L , sopt
R < s̃π

R,
and fR(·) − fR(sopt

R ) ≤ 0 on [0, 1]. Analogously to the
first case, we construct a profile cε(x) := sopt

L 11x<0 +
U(x/ε)11x>0. Here, U(·) is a non-increasing function
with limξ→+∞ U(ξ) = sopt

R ; it solves the ODE problem
analogous to Eq. 23 but posed on [0, +∞), with fR, s̃π

R,
sopt

R replacing fL, s̃π
L, sopt

L , respectively. �

With the above proposition in hand, we highlight the
following

Selection Rule: We set (sπ
L, sπ

R) to be the intersection
point of U and P if the two curves cross (see Fig. 1),
and we set it to be (sopt

L , sopt
R ) if U and P do not cross.

3 Buckley–Leverett equation in two-rocks’ medium

Taking the limit ε → 0 in the problem Eq. 15 pro-
vides formally that the limit s of sε satisfies the hyper-
bolic scalar conservation law with discontinuous-flux
function

φ(x)∂ts + ∂x f (x, s) = 0, (24)

that is known to have several mathematically consistent
notions of solution (see [2]). In Section 3.1, we recall
some elements of the theory on the scalar conservation
laws with discontinuous-flux functions detailed in [7],
that will be of great interest to identify the notion of
solution that describes the vanishing capillarity limit.

3.1 The formal discontinuous-flux model, connections,
entropy solutions

Buckley–Leverett equation in two-rocks’ medium is a
particular case of conservation law with discontinuous
flux. When the interface between the media is located
at {x = 0}, this general problem takes the form

∂t

[
(φL11x<0 + φR11x>0) s

]

+ ∂x

[
fL(s)11x<0 + fR(s)11x>0

]
= 0. (25)

Remark 2 In the case φL = φR, problem Eq. 25 has
been much studied in the literature (see the references
in [7]). Let us stress that the introduction of constant
coefficients φL and φR does not change the proper-
ties of problem: namely, the definitions and results
stated below can be reduced to those of [7] and the
other references upon introducing the new unknown

u(x, t) := (φL11x<0 + φR11x>0) s(x, t) and the new fluxes
gL,R : u �→ fL,R(u/φL,R).

The notion of L1-dissipative germ (L1 D germ, for
short) has been formulated in [7] in order to describe
the different semigroups of entropy solutions satisfying
the L1 contraction principle. For fluxes fL,R satisfying
(A1), Eq. 25 can be seen as the formal limit, as ε → 0,
of Eq. 15. We interpret this idea by saying that an
admissible solution s to Eq. 25, in the Buckley–Leverett
context, should be a vanishing capillarity limit, i.e., a
limit of some sequence (sε)ε→0 of solutions of Eq. 15.
Due to Theorems 1 and 2, it is clear that the vanishing
capillarity limits do satisfy the L1 contraction principle;
thus the setting of [7] is suitable for our needs.

Let us give the definitions underlying the theory of
problem Eq. 25.

Definition 3 (Admissibility germs; complete, maximal,
and definite germs)

• Any set G of couples (sL, sR) ∈ [0, 1]2 satisfying the
Rankine–Hugoniot relation

∀(sL, sR) ∈ G fL(sL) = fR(sR) (26)

and the L1-dissipativity relation

∀(sL, sR), (zL, zR) ∈ G L(sL, zL) ≥ R(sR, zR),

(27)

where L,R are defined in Eq. 17, is called an L1 D
admissibility germ (a germ, for short) associated
with the couple of fluxes ( fL, fR) defined on [0, 1].

• A germ G is called complete
if all Riemann problem at x = 0 for Eq. 25 admits a
self-similar solution s such that (sL, sR) ∈ G, where
sL, resp. sR, is the limit of s(t, ·) as x → 0−, resp.as
x → 0+.

• We say that G ′ is an extension of a germ G if G ⊂
G ′ and G ′ still satisfies the L1-dissipativity property
in Eq. 27 and the Rankine–Hugoniot condition in
Eq. 26.

• A germ G is called maximal if it does not admit a
nontrivial extension.

• A germ G is called definite if it admits only one
maximal extension.

In relation with definite and maximal germs, con-
sider one more definition.
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Definition 4 (Dual of a germ) Let G be an L1 D-
admissibility germ. The dual of G is the set

G∗ :=
{
(zL, zR) ∈ [0, 1]2

∣∣ fL (zL) = fR (zR)

and for all (sL, sR) ∈ G, L (sL, zL)

≥ R (sR, zR)
}
.

(28)

It is shown in [7] that, if G is a definite germ, then its
dual G∗ is the unique maximal extension of G.

We are in a position to define different notions of
entropy solution. For simplicity, consider a finite time
horizon T > 0.

Definition 5 Given a couple of continuous functions
( fL, fR) defined on [0, 1] and a definite germ G as-
sociated with this couple, we say that s ∈ L∞(R ×
(0, T); [0, 1]) is a G-entropy solution of Eq. 25 if the
Kruzhkov entropy inequalities hold away from the in-
terface {x = 0}:

∀κ ∈ [0, 1] ∂t
(
φL,R |s − κ|) − ∂xL,R(s, κ) ≤ 0

in D′(�L,R × (0, T)), (29)

and for a.e. t ∈ (0, T), one has
(

sL(t) , sR(t)
) ∈ G∗,

where sL(·) (the trace as x → 0−) and sR(·) (the trace
as x → 0+) are the interface traces of s in the strong
L1(0, T) sense.

We say that s is a G-entropy solution of the Cauchy
problem with s(·, 0) = s0 if the initial condition s0 is
assumed in the sense of strong L1

loc initial trace.

Notice that under assumption (A1), the traces sL,R

and s(·, 0) do exist [26, 45, 46, 52].

Remark 3 According to the results of [26, 45, 52], it is
not a restriction to assume that, up to a redefinition of
s(t, ·) on a set of zero measure of t ∈ [0, T], a G-entropy
solution of Eq. 25 belongs to C([0, T]; L1

loc(R)).

The following result is contained in [7] (see in partic-
ular [7, Theorem 6.4])

Theorem 3 (Well-posedness for G-entropy solutions)
Assume (A1) holds, and G is a definite germ of which
the dual G∗ is complete. Then for all measurable initial
datum s0 with values in [0, 1] there exists a unique G-
entropy solution to problem Eq. 25. Moreover, the finite
volume scheme for Eq. 25 with Godunov flux converges
to the corresponding G-entropy solution, for all initial
datum.

Remark 4 It is required in [7, Theorem 6.4] that fL,R be
defined on R. Nevertheless, let us point out that in our
case, solutions with [0, 1]-valued initial data always take
values in [0, 1]. Indeed, assumptions (A1) contain the
compatibility conditions fL(0) = fR(0), fL(1) = fR(1).
Moreover, it is easily seen that (0, 0) and (1, 1) be-
long to G∗, whatever be the germ G; therefore 0 and
1 are constant G-entropy solutions. This ensures, in
particular, that approximate solutions constructed by
the Godunov scheme lie in between zero and one.

Under assumptions (A1), it is easy to classify all pos-
sible L1 D admissibility germs. According to the analy-
sis of [7, Section 4.8],1 each maximal germ is complete,
and it is entirely determined by a definite germ which
is a singleton. Such singletons are called connections in
the below definition.

Definition 6 [2, 19] For fL,R satisfying (A1), a couple
(A, B) ∈ [0, 1]2 is said to be a connection if A ∈ [s̄L, 1],
B ∈ [0, s̄R], and fL(A) = fR(B).

Being a connection means that u(t, x) := A11x<0 +
B11x>0 is a stationary weak solution of Eq. 25 that
represents an under-compressive shock: the (strict) Lax
condition fails from both sides from the jump.

Notice that the set U of all connections (see Fig. 1)
is given by Eq. 22. Let us describe its extremities. We
define the optimal connection (Aopt, Bopt) by

(Aopt, Bopt) ∈ U, with either Aopt = s̄L or Bopt = s̄R.

and the barrier connection (Abar, Bbar) by

(Abar, Bbar) ∈ U, with either Abar = 1 or Bbar = 0.

The common value F̄ = fL(A) = fR(B) is called the
connection level and denoted by F̄(A,B); when (A, B)

runs over U , F̄(A,B) fills the interval [F̄bar, F̄opt]; here,
F̄bar = max{0, q} = fL(Abar) = fR(Bbar), while F̄opt =
min{max[0,1] fL, max[0,1] fR} = fL(Aopt) = fR(Bopt).

Reciprocally, the connection at level F̄ ∈ [F̄bar, F̄opt]
is denoted by (AF̄, BF̄). Such a connection is indeed
unique, since fL,R are strictly monotone on [0, s̄L,R]
and on [s̄L,R, 1].

Further, set O := G∗
(Aopt,Bopt)

(see Fig. 2). From
the bell-shapedness assumption in (A1), one easily
sees that O \ {(Aopt, Bopt)} is the set of all couples
(a, b) ∈ [0, 1]2 \ U such that fL(a) = fR(b). In contrast
to under-compressive states (A, B) ∈ U , every couple
(a, b) ∈ O will be called an over-compressive state (note

1While this analysis has been carried out under the assumption
q = 0, the general case is completely analogous
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(a) (b)

Fig. 2 a The two flux functions fL,R have been plotted. Given
a value F̄(A,B) ∈ [F̄bar, F̄opt], we construct the unique corre-
sponding connection (A, B) ∈ U . b We have plotted the cor-
responding sets O (green solid line) and U (red dashed line).
For a given flux limitation F̄(A,B), the gray rectangle represents

the open set {(sL, sR) ∈ [0, 1]2 | ( fL(sL) > F̄(A,B))&( fR(sR) >

F̄(A,B))}. So, the maximal germ G∗
(A,B)

is made of the union of
singleton {(A, B)} and of the subset OF̄(A,B)

of O which is outside
of the gray rectangle. We refer to the online version of the article
for the colors

that (Aopt, Bopt) ∈ U ∩ O is both under- and over-
compressive). We have

Proposition 3 (see Section 4.8 in [7], see also [4]) For
every connection (A, B) ∈ U , the singleton G(A,B) :=
{(A, B)} is a definite germ; its dual is given by

G∗
(A,B) = {(A, B)}∪ OF̄(A,B)

, where OF̄(A,B)

:={
(zL, zR)∈ O s.t. fL(zL)= fR(zR) ≤ F̄(A,B)

}
.

(30)

Moreover, every maximal germ contains one and only
one connection (A, B) ∈ U , therefore it can be repre-
sented under the form Eq. 30.

Remark 5 The point of view developed in our note
[4] is that, at least for the purpose of interpretation
of the solutions’ behavior and for their numerical ap-
proximation, it is convenient to characterize different
notions of G-entropy solution by the connection level F̄
rather than by the corresponding connection (AF̄, BF̄).
Indeed, as one can see from the representation Eq. 30,
the possible trace couples (sL, sR) of G(AF̄ ,BF̄ )-entropy
solutions obey the constraint fL,R(sL,R) ≤ F̄. In partic-
ular, the only free parameter required to construct the
Godunov scheme for problem Eq. 25 with fluxes (A1)
is the connection level F̄ (see [4] and Section 4.2 below
for details).

Finally, we recall an equivalent characterization of
G(A,B)-entropy solutions with the help of adapted en-
tropy inequalities introduced by Baiti and Jenssen [11]
and Audusse and Perthame [8].

Theorem 4 (see [7], see also [19]) Given a connection
(A, B) ∈ U , a function s ∈ L∞(R × (0, T)) is a G(A,B)-
entropy solution of Eq. 25 with fluxes (A1) if and only
if it satisfies, away from the interface, the Kruzhkov
entropy inequalities Eq. 29 and moreover, given c(x) =
A11x<0 + B11x>0, it satisfies the global adapted entropy
inequality

∂t
(
φ(x)|s − c(x)|) − ∂x(x; s, c(x)) ≤ 0

in D′(R × (0, T)). (31)

Here, φ(x) = φL11x<0 + φR11x>0; similarly, (x; s, c) =
L(s, c)11x<0 + R(s, c)11x>0.

3.2 Identifying the vanishing capillarity solutions

We have now introduced enough material to be able
to carry out the proof of our main result. The follow-
ing theorem permits to characterize the semigroup of
vanishing capillary limits by identifying it to the appro-
priate G(A,B)-entropy solutions’ semigroup; we see that
the underlying connection (A, B) only depends on the
nonlinearities present in the problem.

Theorem 5 (Main result) Assume we are given nonlin-
earities fL,R and πL,R satisfying (A1), (A2), and (A3).

Let (sπ
L, sπ

R) ∈ U be the connection obtained according
to the Selection Rule of Section 2.3, i.e., it is either the
intersection point of the curves U and P (see Fig. 1) or
the optimal connection (sopt

L , sopt
R ) when U ∩ P = ∅.

Let sε be the unique mild solution of problem Eq. 15,
and let s denote the unique G(sπ

L,sπ
R)-entropy solution of



Comput Geosci (2013) 17:551–572 561

the discontinuous-flux Buckley–Leverett Eq. 25 corre-
sponding to the same initial datum s0, then

sε → s in L1
loc(R × R+).

In particular, any solution of Eq. 25 obtained as van-
ishing capillarity limit obeys the flux limitation constraint
at the interface: fL(s(t, 0−)) = fR(s(t, 0+)) ≤ F̄π where
F̄π = fL,R(sπ

L,R) is the corresponding connection level.

Let us point out that, choosing πL,R appropriately,
we can make any given point of the curve U appear
as the intersection point (sπ

L, sπ
R). Thus it follows from

Theorem 5 that, given a notion of G(A,B)-entropy solu-
tion, this notion corresponds to some choice of vanish-
ing capillarity profiles πL,R.

Proof The proof combines the results of Proposi-
tions 1, 2 and characterization Eq. 31 of G(A,B)-entropy
solutions.

To start with, fix some (not labeled) sequence ε

decreasing to zero. According to Theorem 2, for all ε >

0 fixed, the problem Eq. 15 is well posed in the setting of
mild solutions, i.e., there exists a unique corresponding
mild solution sε . Moreover, the Kato inequality Eq. 18
holds for all couple of solutions sε, šε corresponding to
initial data s0, š0. Assume for a moment that there exists
s ∈ L∞(R × R+; [0, 1]) such that

up to a subsequence, sε tends to s in L1
loc(R × R+)

as ε tends to 0. (32)

First, write the Kato inequality Eq. 18 for a solution
sε of problem Eq. 15 and for the capillarity profile cε

constructed in the proof of Proposition 2. Using the
convergence sε → s, cε → c as ε → 0, c(x) = cπ

L11x<0 +
cπ

R11x>0, we can pass to the limit in this inequality. We
inherit the “hyperbolic Kato inequality”

∑

i∈{L,R}

∫ ∫

�i×R+

(
φi|s − c(x)|∂tψ + i(s, c(x))∂xψ

)

+
∑

i∈{L,R}

∫

�i

φi|s0 − c(x)|ψ(·, 0) ≥ 0

for all ψ ∈ D(R × [0, T)), ψ ≥ 0. Restricting the choice
of test functions to D(R × (0, T)), we find the global
adapted entropy inequality (Eq. 31) with (A, B) =
(sπ

L, sπ
R). Second, it follows from classical arguments

(see e.g., [15, 30]) that s is a Kruzhkov entropy so-
lution away from the interface, in the sense Eq. 29.
Moreover, it assumes the initial datum s0, hence s is
the (unique) G(sπ

L,sπ
R)-entropy solution corresponding to

datum s0. Now, applying Eq. 32 to subsequences of
(sε)ε , from the uniqueness of the accumulation point
we deduce that limε→0 sε exists. Thus, provided Eq. 32
is justified, we prove that the vanishing capillarity limit
exists and it coincides with the unique G(sπ

L,sπ
R)-entropy

solution. This ends the proof of the theorem, except for
the justification of Eq. 32.

If we assume that fL,R are genuinely nonlinear on
every interval, then according to the well-known com-
pactification results of [42, 44, 47], we can extract an
L1

loc convergent subsequence of sε . In the general case,
we can use the framework of G-entropy-process solu-
tions in the way of [5]. Indeed, extracting a nonlinear
weakly-∗ convergent subsequence of (sε)ε , due to the
existence of G-entropy solutions (see Theorem 3), we
can prove that the G(sπ

L,sπ
R)-entropy-process solution co-

incides with the unique G(sπ
L,sπ

R)-entropy solution for the
same initial datum. Let us point out that the proof is not
straightforward, because one global adapted entropy
inequality (as in Theorem 4) is not sufficient in this
argument (see [5] for the case fL ≡ fR). �

Remark 6 Another way to prove Eq. 32 is to restrict
our attention to a dense set of initial data s0, and to
derive additional estimates on the solution, like a BV
estimate on a Temple function [10, 23, 31], or, using
a variant of the technique of Bürger, García, Karlsen
and Towers [17, 19], one can derive a BVloc estimate on
the solution with small capillarity sε . This latter point is
detailed in Appendix A1.

3.3 Comparison of our conclusions with those of
Kaasschieter [41]

Our work builds on the idea of Kaasschieter [40] that
the physically admissible solutions of the Buckley–
Leverett equation with discontinuous flux should be
seen as vanishing capillarity limits. In [40], the author
analyzes solutions of the general Riemann problem;
here, due to the tools borrowed from [7], we reduce the
analysis to a study of one particular stationary solution.

Then we are able to observe the following important
fact. Although the analysis of [40] is fully correct under
a seemingly nonrestrictive assumption of “genericity,”
it follows from our analysis that the assumption made
by Kaasschieter is truly restrictive. Namely, in [40] the
case where a solution u(t, x) = U

( x
t

)
to the Riemann

problem fulfills simultaneously the constraints

fL(U(0−)) = fR(U(0+)) and πL(U(0−)) = πR(U(0+))

(33)
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is eluded because it is considered as “merely coinciden-
tal.” Our analysis shows, in an indirect way, that this
case is realized for many Riemann problems. Namely,
whenever F̄π < F̄opt and whenever the values s± at ±∞
are such that the flux given by

min ( fL(min(s−, s̄L)), fR(max(s+, s̄L)))

exceeds the value F̄π , the situation Eq. 33 does happen
(see formula 42 in the next section), moreover,

f ′
L(U(0−)) ≤ 0 and f ′

R(U(0+)) ≥ 0. (34)

Therefore, our conclusion differs drastically from
the one of [40]. Indeed, the conclusion of [40] should
sound as follows: “the appropriate entropy solution
is the optimal entropy solution, except may be when
Eqs. 33–34 happen.” Yet the case Eq. 33 is not merely
coincidental, and it cannot be seen as exceptional. Thus
one should recast the conclusion of the Kaasschieter
work [40] as follows: “the appropriate solution no-
tion is G(sπ

L,sπ
R)-entropy solution, in particular, the op-

timal entropy solution occurs whenever Eqs. 33–34 is
impossible.”

4 Numerical approximation of the flow
in two-rocks’ medium

The goal of this section is, first of all, to provide nu-
merical evidence for convergence of sε towards the
appropriate entropy solution s (recall that the notion
of solution strongly depends on the capillarity profiles
πL,R, see Section 3) and secondly, to discuss about
“time saved versus accuracy lost” by solving the sim-
pler problem Eq. 25 instead of solving the finer prob-
lem Eq. 15. To do so, we introduce two numerical
schemes: the first one, used to discretize the parabolic
problem Eq. 15, was proved to be convergent by the
second author in [22]; the second one, introduced by the
authors in [4], is the exact Godunov scheme adapted to
the connection (sπ

L, sπ
R) and is based on the notion of

flux limitation [31] discussed in Section 3.1.

4.1 A finite volume scheme for the parabolic model

First, we have to compute the mild solutions sε of
the degenerate parabolic problem. This is done by
means of the fully implicit finite volume scheme studied
in [22, 34].

For �x > 0, we denote by
(
x j+1/2

)
j∈Z

=
{( j + 1/2)�x | j ∈ Z} the set of the “cell centers”
and by

(
x j

)
j∈Z

= { j�x | j ∈ Z} the sets of the “edges.”
Given �t > 0, we use (tn)n = {n�t | n∈N} for time
steps.

For s0 ∈ L∞(R; [0, 1]), the initial data are discretized
as follows:

sε,0
j+1/2 = 1

�x

∫ x j+1

x j

s0(x)dx. (35)

The implicit scheme is then given by

∀ j ∈ Z, ∀n ∈ N,

φ j

sε,n+1
j+1/2 − sε,n

j+1/2

�t
�x + Fε,n+1

j+1 − Fε,n+1
j = 0, (36)

where the fluxes Fε,n+1
j have to be made explicit.

Let j ∈ Z \ {0}; for ψ standing for one of the sym-
bols φ, f, ϕ, π, s, we denote a space-dependent function
which is constant in �L,R as follows:

ψ j := ψ(·, x j) =
{

ψL if j < 0
ψR if j > 0.

Now, we introduce the exact Riemann solver for the
convection within �L,R. For (a, b) ∈ [0, 1]2 and j ∈ Z \
{0}, we set

G j(a, b) =
{

mins∈[a,b ] f j(s) if a ≤ b ,

maxs∈[a,b ] f j(s) if a ≥ b .

Note that G j(a, a) = f j(a), that G j is Lipschitz continu-
ous w.r.t. both variables, and that G j is non-decreasing
w.r.t to its first argument and non-increasing w.r.t. the
second. It is well known that for bell-shaped fluxes, G j

can be computed by the formula

G j(a, b) = min
(

f j(min(a, s j)), f j(max(b , s j))
) ; (37)

let us recall that s̄L,R = arg max fL,R (see Assump-
tion (A1)).

For j �= 0 (i.e., in the case where the edge j is not at
the interface), one defines

Fε,n+1
j = G j(s

ε,n+1
j−1/2, sε,n+1

j+1/2) − ε
ϕ j(s

ε,n+1
j+1/2) − ϕ j(s

ε,n+1
j−1/2)

�x
.

(38)

It remains to define the flux Fε,n+1
0 across the inter-

face so that everything be defined in Eq. 36. To do
so, following [34], we introduce additional unknowns
sε,n+1

0,L , sε,n+1
0,R that solve the following nonlinear system

π̃L(sε,n+1
0,L ) ∩ π̃R(sε,n+1

0,R ) �= ∅, (39a)

Fε,n+1
0 := GL(sε,n+1

−1/2 , sε,n+1
0,L ) − ε

ϕL(sε,n+1
0,L ) − ϕL(sε,n+1

−1/2 )

�x/2

(39b)
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= GR(sε,n+1
0,R , sε,n+1

1/2 ) − ε
ϕR(sε,n+1

1/2 ) − ϕL(sε,n+1
0,R )

�x/2
.

(39c)

It is proven in [22] that for all (sε,n+1
−1/2 , sε,n+1

1/2 ), the sys-

tem Eq. 39 admits a unique solution (sε,n+1
0,L , sε,n+1

0,R ),
hence the flux Fε,n+1

0 is well defined.
The results of the paper [22] can be summarized as

follows.

Proposition 4 Let ε > 0 be fixed and let s0 ∈
L∞(R; [0, 1]), then

1. the schemes 36, 38, and 39 admits a unique solution(
sε,n+1

j+1/2

)

j∈Z,n∈N

;

2. if we define the approximate solution sε
h almost

everywhere on R+ × R by

sε
h(x, t) = sε,n+1

j+1/2 if (x, t) ∈ (x j, x j+1) × (tn, tn+1),

then sε
h ∈ L∞(R × R+; [0, 1]) converges in L1

loc(R ×
R+) towards the unique mild solution of the problem
as �x, �t → 0.

4.2 A finite volume scheme for the hyperbolic model

The scheme introduced in previous section is asymp-
totic preserving, in the sense that choosing ε = 0, and
obtaining therefore an approximate solution s0

h (the
solution to the scheme in the case ε = 0 is once again
unique), one can show that s0

h tends to the vanishing
capillarity limit described in Theorem 5. This point is
made explicit in the Appendix A2. Nevertheless, to
produce numerical results for the hyperbolic problem
Eq. 25, we use the Godunov scheme under the form ex-
plained in our note [4] (see also [29]). Namely, we have
shown in [4, Theorem 3.1] that in order to obtain the
Godunov scheme for approximation of G(A,B)-entropy
solutions of Eq. 25 with fluxes (A1), it is enough to
take the scheme of Adimurthi et al. [1] known for the
optimal connection (Aopt, Bopt) and to limit the flux
at the interface to the maximum value F̄(A,B). More
precisely, in our case, the explicit Godunov scheme for
computing the unique G(sπ

L,sπ
R)-entropy solution can be

rewritten as

φ j

sn+1
j+1/2 − sn

j+1/2

�t
�x + Fn

j+1 − Fn
j = 0, (40)

where the fluxes Fn
j are given by

Fn
j = G j(sn

j−1/2, sn
j+1/2) if j �= 0, (41)

Fn
0 = min

(
F̄π , fL(min(sn

−1/2, s̄L)), fR(max(sn
1/2, s̄L))

)
.

(42)

In the previous formula (Eq. 41), the exact Riemann
solver G j was defined by Eq. 37 while, in formula 42, the
quantity F̄π = fL,R(sπ

L,R) is the connection level corre-
sponding to the connection chosen using the selection
rule of Section 2.3.

We now state a convergence result which is a con-
sequence of the fact that the scheme prescribed by
Eqs. 40–42 is monotone and preserves G(sπ

L,sπ
R) (it even

preserves G∗
(sπ

L,sπ
R) since the scheme is the Godunov one).

Recall that it has been stated in Theorem 3 that the
Godunov scheme is convergent. We refer to [4, 7] for
further explanations.

Proposition 5 Define sh : R × R+ → R by sh(x, t) =
sn+1

j+1/2 if (x, t) ∈ (x j, x j+1) × (tn, tn+1), then, if we denote
by L f a Lispchitz constant of both fL,R, and if there
exists ζ ∈ (0, 1) such that

�t ≤ (1 − ζ )�x
L f

, (43)

then sh ∈ L∞(R × R+; [0, 1]). Moreover, under the CFL
condition (Eq. 43), when �x (and thus also �t) tends
to zero the discrete solution sh converges in L1

loc(R ×
R+) towards the unique G(sπ

L,sπ
R)-entropy solution of the

problem.

4.3 Numerical illustrations of convergence

We now give numerical evidence of convergence of the
mild solution sε of the parabolic problem towards the
G(sπ

L,sπ
R)-entropy solution by comparing their respective

approximations sε
h and sh.

4.3.1 The test cases

Concerning the design of the test cases, we have chosen
a particularly simple configuration. The capillary pres-
sure functions πL,R are defined by

πL,R(s) = PL,R − ln(1 − s), (44)

where the quantities PL,R, called entry pressures, play
an important role in the selection of the correct solution
notion (cf. Section 2.3) and will vary from one case to
another. Note that in the case where PR ≥ PL, the set
P defined in Section 2.3 by Eq. 21 has the particular
simple expression

P = {(
s, max

{
0, 1 + (s − 1)ePR−PL

})
, s ∈ [0, 1]} .

Numerical values of the parameters The only parame-
ter we let vary between the two test cases is the entry
pressure PR. In the first case, which leads to the optimal
connection, we choose PR = 0.5. In the second case,
we chose PR = 2, so that the selection rule presented
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Fig. 3 log ‖sε
h − sh‖L1(0,T;L1(−1,1)) as a function of ε (in blue)

and a straight line with slope −1/2 (dashed green). We re-
cover numerically the order of convergence that was expected
from Eq. 45. Note that the slope of the blue curve is damaged
when ε is too large. This phenomenon is due to the fact that the
solution is computed on the finite domain x ∈ (−1, 1). When the
diffusion is large, the boundary conditions affects the numerical

solution. The convergence rate is also damaged for small ε. This
comes from the fact that the numerical error become comparable
to the modeling error ‖sε − s‖ (this effect is particularly visible
since the convection is discretized in an implicit way in the
scheme presented in Section 4.1 and in an explicit way in the
Godunov scheme presented in Section 4.2

in Section 2.3 provides another solution, despite the
fact that formally, the equation remains the same. The
physical parameters and functions used in the simula-
tions are collected in the following tables. Concerning
the scaling parameter ε, several values has been used in
order to illustrate the convergence of sε towards s (see
Fig. 3). All the numerical tests have been performed for
the initial data u0 ≡ 0.5.

Total flow rate q = 0;
Gravity g = −9.81;
Intrinsic permeabilities KL = 10−2, KR = 5.10−3;
Porosity φL = φR = 1;
Entry pressures PL = 0,

PR = 0.5 in Section 4.3.2,
PR = 2 in Section 4.3.3;

Viscosities μa = 10−3,
μb = 3.10−3;

Densities ρa = 0.87,
ρb = 1;

Relative permeabilities kra,i(s) = s,
krb ,i(s) = (1 − s);

Time step �t = 2.5 ∗ 10−3,
Space step �x = 10−2.

4.3.2 The optimal connection

In the case where PR = 0.5, the connection diagram
(Fig. 4) is such that P ∩ U = ∅. Therefore, the selection

rule of Section 2.3 and Theorem 5 claim that the good
notion of solution for the vanishing capillarity limit is
the G(sopt

L ,sopt
R )-entropy solution.

The numerical approximation of the optimal entropy
solution obtained via the Godunov scheme described
in Section 4.2 is presented in Fig. 5a. It appears to
be in good accordance with the solution for a small
value of ε given by the implicit scheme described in

Fig. 4 The connection diagram in a case where the intersection of
P (in blue) and U (in green) is empty; according to the Selection
Rule of Section 2.3, it leads to considering the optimal entropy
solution. We refer to the online version of the article for the
colors



Comput Geosci (2013) 17:551–572 565

(a) (b)

Fig. 5 a Solution sh to the hyperbolic problem. b Solution sε
h to the parabolic problem ε = 10−3

(a) (b)

Fig. 6 a Difference between sh and sε
h. b Solutions sh and sε

h at different times

Fig. 7 The capillary pressure curves (a) defined by Eq. 44—here,
PL = 0 (blue) and PR = 2 (green)—satisfy lims→1 πL,R(s) =
+∞. Therefore, the maximal extension π̃L,R of πL,R is ob-
tained by adding {0} × [−∞, PL,R) and {1} × {+∞} to the graph
{(s, πL,R(s) | s ∈ [0, 1)}. For the particularly simple choice of pa-

rameters and functions done in the simulations, the flux functions
fL,R are proportional one to the other. We have represented on
(b) the optimal connection that is relevant for the case presented
in Section 4.3.2, but not in the one presented in Section 4.3.3. We
refer to the online version of the article for the colors
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Fig. 8 Waves generated by the medium discontinuity. a Solution sh to the hyperbolic problem. b Solution sε
h to the parabolic problem

ε = 10−3

Section 4.1, and represented on Fig. 5b. In particular,
the wave starting from the interface with negative speed
has the expected amplitude and the expected speed.
As already noticed on Fig. 5, we see on Fig. 6 that
the shocks of the hyperbolic solution are smoothed
by adding some capillary diffusion. Let us also point
out that the one-sided traces sL, sR of the hyper-
bolic solution on the interface {x = 0} do not satisfy
π̃L(sL) ∩ π̃R(sR) �= ∅. Therefore, these traces are not
suitable for the parabolic approximation. We can see
on both figures (particularly on Fig. 6a) that a bound-
ary layer is present on the right-hand side from the
interface.

4.3.3 Another connection

Choosing now PR = 2 provides the connection diagram
presented in Fig. 7a, where it clearly appears that
P ∩ U �= ∅. As previously mentioned, we denote by
(sπ

L, sπ
R) the connection belonging to P ∩ U . Following

the selection rule of Section 2.3 and Theorem 5, the
appropriate notion of entropy solution for the vanish-
ing capillarity limit is then the G(sπ

L,sπ
R)-entropy solution.

As a consequence, the interface flux is limited to the
maximal value F̄π (formally, the limitation is equal to
F̄opt in the case where the optimal entropy solution is
selected).

(a) (b)

Fig. 9 The connection diagram in a case where the intersection
of P (in blue) and U (in green) is nonempty (a). This results in a
flux limitation, in the sense that at the interface, the flux of the

hyperbolic solution may not exceed the value F̄π = fL,R(sπ
L,R),

where (sπ
L, sπ

R) is the intersection point of U and P . We refer to
the online version of the article for the colors
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Fig. 10 Illustration of the
convergence of order 1 in the
genuinely nonlinear case. The
blue curve correspond to the
plot of ‖sh − sref‖L1 as a
function of �x, where sref is a
reference solution computed
with a small �x = 10−3. The
green dashed line has a slope
equal to 1

Here again, the approximate solution sε
h for small

capillarity (ε = 10−3) is really close to the vanish-
ing capillarity solution (the G(sπ

L,sπ
R)-entropy solution).

On Fig. 8, one can see that the shocks (for the hy-
perbolic solution) are smoothed in presence of cap-
illary diffusion. Three waves are generated by the
medium discontinuity: one wave with negative speed
joining s0 = 0.5 to sπ

L � 0.87, one wave with zero speed
joining sπ

L to sπ
R � 0.11, and one wave with positive

speed joining sπ
R to s0 = 0.5. Note that since π̃L(sπ

L) ∩
π̃R(sπ

R) �= ∅, then there is no boundary layer for sε

as x → 0.

4.3.4 Convergence speed, numerical speed-up

One of the most important drawbacks of the numerical
scheme presented in Section 4.1 for approximation of
solutions to the parabolic problem is being implicit: the
scheme requires the use of an iterative method at each
time step, making the solution expensive to compute.
For example, computing the approximate solution sε

h
presented on Fig. 5b requires 2182.31 s of CPU time
with Scilab, while the computation of the approximate
solution sh presented on Fig. 5a only requires 3.185 s
of CPU time, the speed-up ration being hence of about
685. Moreover, since it is explicit, the computation of sh

requires less memory than the one needed to obtain sε
h;

this allows to solve the hyperbolic problem on a finer
mesh.

Concerning the convergence speed, we first illustrate
in Fig. 3 the convergence of sε towards s by plotting
log ‖sε

h − sh‖L1(0,T;L1(−1,1)) as a function of ε. In accor-

dance with theory (see e.g., [15, 49]), Fig. 3 lets us think
that for all T > 0, one has
∫ T

0

∫

R

|sε(x, t) − s(x, t)|dxdt ≤ Cε1/2. (45)

We now look at the convergence rate of the Go-
dunov scheme. To our knowledge, no uniform bound
on the total variation of sh has been proved in the
case fL �= fR (see [29] for the case fL ≡ fR). Yet the
particularly simple configuration we are dealing with
(a Riemann problem) ensures the existence of a vari-
ation bound. Carrying out a proof similar to the one
performed in [29] provides an error estimate of type
∫ T

0

∫

R

|sh(x, t) − s(x, t)|dxdt ≤ C�x1/2

(recall that �t ≤ C�x thanks to Eq. 43). This estimate
is optimal in the case where fR or fL is linear. In the
framework of the test case presented in Section 4.3.1,
the flux functions are genuinely nonlinear (see Fig. 9).
As it is usual in this case, a convergence of order 1 is
observed numerically: see Fig. 10.

5 Conclusion

The goal of this paper was to investigate the limit, as
ε → 0, of the system Eq. 15. This study is close to
the one performed by E. Kaasschieter [40], but here,
we have taken advantage of the recent developments
in the theory of the scalar conservation laws with
discontinuous-flux function (see [7, 19] and references
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therein) to avoid difficult calculations, and eventually
achieved a full classification of possible physical situa-
tions. We have identified the correct interface coupling
in the discontinuous-flux Buckley–Leverett model in
terms of the profiles of the flux functions and capillary
pressure functions on two sides from the interface. In
particular, we clarified the conclusions of the work
[40] by proving that “optimal entropy solution” is not
always the right notion of solution in the Buckley–
Leverett context. Finally, we constructed an adequate
numerical method and gave strong evidences on its
efficiency.

Appendix

A.1 The BVloc technique

The goal of this appendix is to prove the relation Eq. 32
by adapting to the continuous case, and under the addi-
tional assumption that ϕL,R ∈ W2,∞([0, 1]), a technique
developed in [17, 19].

Because of the finite speed of propagation and the
L1

loc contraction property for G-entropy solutions, com-
pletely analogous to the classical estimate of [41], it
is enough to prove Eq. 32 for an L1

loc-dense subset of
initial data. Indeed, a limit of vanishing viscosity limits
is still a vanishing viscosity limit.

Thus we pick s0 ∈ C∞
0 (R) and such that s0 ≡ 0 on

some interval around zero (this is a way to ensure
a smooth transition across the interface {x = 0}). We
extend the corresponding solution sε of Eq. 15 con-
tinuously by s0 for t ≤ 0; notice that for t < 0, the so
extended function sε satisfies

∂t
(
(φL11x<0 + φR11x>0)sε

) + ∂x
(

fL(sε)11x<0 + fR(sε)11x>0
)

= ε∂x
(
∂xϕL(sε)11x<0 + ∂xϕR(sε)11x>0

) + r(x)

where

r : x �→ ∂x

[(
fL(s0) − ε∂xϕL(s0))11x<0

+ (
fR(s0) − ε∂xϕR(s0))11x>0

]
(46)

is an L∞(R) ∩ L1(R) function, by the assumptions on s0

and because fL,R, ϕL,R were assumed regular enough.
Therefore the so extended function sε is an entire

solution (i.e., a solution defined for t ∈ R) of problem
Eq. 15 with the additional source term r(x)11t<0. Now,
the key fact is that we can control the L1 time trans-
lates of sε by a linear modulus of continuity, because

solutions of Eq. 15 with a source term verify the L1

contraction principle completely analogous to Eq. 19:
∑

i∈{L,R}

∫

�i

φi|sε(t) − sε(t − τ)|

≤
∑

i∈{L,R}

∫

�i

φi|sε(0) − sε(−τ)|

+
∫ t

0

∫

R

|r 11s<0 − r 11s−τ<0| ds = τ ‖r‖L1 .

Therefore sε ∈ BV(0, T; L1(R)), with a uniform in ε

bound. Then we can use the idea of [17, Lemma 4.2]
and [19, Lemma 5.4]: for a > 0, using the mean-value
theorem for each ε > 0, we can find a contour (0, T) ×
{aε} with 0 < aε < a such that TotVar aε along these
contours is uniformly bounded by C

a . The variation of
s0 is also bounded, therefore in the same way as in the
classical estimate of Bardos et al. [12] for the Dirichlet
problem for viscous conservation law (with boundary
datum given by the values of sε on our contour), we get
the bound

TotVar sε |{(t,x) | t∈(0,T), x≥a} ≤ C
a

,

with C that only depends on s0 and on the Lipschitz con-
stant of fL,R and of ϕ′

L,R. Analogous estimate holds for
the variation on the set {(t, x) | t ∈ (0, T), x ≤ a}. With
the Cantor diagonal argument, we deduce compactness
of (sε)ε in L1

loc((0, T) × R+) and thus justify Eq. 32.

A.2 An asymptotic preserving scheme

As a consequence of Proposition 4 and Theorem 5, we
have

lim
ε→0

(
lim

�t,�x→0
sε

h

)
= s in L1

loc(R × R+),

where sε
h is the solution to the schemes 35–39. In order

to justify the comparison of the numerical solutions sε
h

and sh on Figs. 3, 5, 6, 8, and 11, in this appendix, we
aim to prove that

lim
�x,�t→0

(
lim
ε→0

sε
h

)
= s in L1

loc(R × R+).

First of all, we need to identify which scheme governs
limε→0 sε

h.

Lemma 1 Let sε
h be the solution of Eqs. 35–39, then

s0
h := limε→0 sε

h (in the L1
loc sense) is a solution of the

schemes 35–39 where ε has been set to 0.

Proof First of all, since, for all compact subset K of R ×
R+, the restriction of sε

h to K lies in a finite dimensional
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Fig. 11 a Difference between both. b Plot of both solutions for different time t

space, the L1
loc convergence means the convergence of

each sε,n
j+1/2 ( j ∈ Z, n ∈ N) towards some s0,n

j+1/2. Assume
that this holds for n ∈ N (this is true for n = 0), let us
show it for n + 1.

Since, for all ε > 0, sε,n+1
j+1/2 ∈ [0, 1], then, up to a

subsequence, sε,n+1
j+1/2 tends to some s0,n+1

j+1/2 ∈ [0, 1], and,
by a diagonal extraction process, one can assume that
this convergence occurs for all j ∈ Z. Up to an new
subsequence, one can assume that sε,n+1

L,R tends to s0,n+1
L,R

as well as ε tends to 0. Note that since the set P in Eq. 21
is closed, (s0,n+1

L , s0,n+1
R ) ∈ P .

For j �= 0, the flux Fε,n+1
j := G j(s

ε,n+1
j−1/2, sε,n+1

j+1/2) −
ε

ϕ j(s
ε,n+1
j+1/2)−ϕ j(s

ε,n+1
j−1/2)

�x satisfies

lim
ε→0

Fε,n+1
j = G j

(
s0,n+1

j−1/2, s0,n+1
j+1/2

)
:= F0,n+1

j .

Similarly, it follows from the formulas

Fε,n+1
0 = GL(sε,n+1

−1/2 , sε,n+1
L ) − ε

ϕL(sε,n+1
L ) − ϕL(sε,n+1

−1/2 )

�x/2

= GR(sε,n+1
R , sε,n+1

1/2 ) − ε
ϕR(sε,n+1

1/2 ) − ϕR(sε,n+1
R )

�x/2
,

and from the property (s0,n+1
L , s0,n+1

R ) ∈ P , that

{
π̃L(s0,n+1

L ) ∩ π̃R(s0,n+1
R ) �= ∅,

F0,n+1
0 = GL(s0,n+1

−1/2 , s0,n+1
L ) = GR(s0,n+1

R , s0,n+1
1/2 ).

(47)

�

The following lemma ensures that the transmission
conditions system (Eq. 47) yields a flux that is well
defined.

Lemma 2 Let (uL, uR) ∈ [0, 1]2, then the system

{
π̃L(sL) ∩ π̃R(sR) �= ∅,

F0
0 (uL, uR) = GL(uL, sL) = GR(sR, uR)

(48)

admits a least one solution (sL, sR) ∈ P ; moreover, the
value F0

0 (uL, uR) is defined uniquely by Eq. 48.

Proof The set P can be naturally parametrized by p ∈
R̄ as follows:

P = {(
π̃−1

L (p), π̃−1
R (p)

) | p ∈ R̄
}
.

Therefore, finding (sL, sR) solution of Eq. 48 reduces to
finding p ∈ R̄ such that

�L(p) := GL(uL, π̃−1
L (p))= GR(π̃−1

R (p), uR) := �R(p),

(49)

where the left-hand side �L is non-increasing while the
right-hand side �R is non-decreasing. In addition, we
have �L(−∞) ≥ �R(−∞) and �L(+∞) ≤ �R(+∞):
e.g.,

GL(uL, 0) ≥ GL(0, 0) = 0 = GR(0, 0) ≥ GR(0, uR)

due to the consistency and the monotonicity properties
of the numerical fluxes GL,R(·, ·). As a consequence,
there exists at least one value of p and a unique value
of �L,R(p) such that Eq. 49 holds. �
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In the following proposition, we identify the flux
given by Eq. 48 with the Godunov flux at the interface,
whose explicit formula was derived in [4].

Proposition 6 Let (uL, uR) ∈ [0, 1]2, then the flux
F0

0 (uL, uR) given by the nonlinear system (Eq. 48) is
equal to the Godunov flux

F0(uL, uR)

= min
(
F̄π , fL(min(uL, s̄L)), fR(max(s̄R, uR))

)
,

(50)

where F̄π = fL,R(sπ
L,R) and (sπ

L, sπ
R) is the connection

selected in Section 2.3.

Proof We perform the proof by a case-by-case study
relying on the resolution of the Riemann problem.
First, we need to introduce some notation. To start
with, we extend the graphs fi by setting fi(0) = (−∞, 0]
and fi(1) = (−∞, q]. In this case, for all F < F̄opt, the
sets of level F for fL, R have exactly two elements,
one on each side from s̄L,R. Then we denote by u�

i the
unique value of [0, 1], called conjugate of ui, such that
fi(u�

i ) = fi(ui) and Ê(s̄L − u�
i )(s̄L − ui) ≤ 0.

Moreover, if fL(uL) ≤ F̄opt (resp. fR(uR) ≤ F̄opt),
we denote by uR

L (resp uL
R) the unique value in

[0, 1], called transpose of uL (resp. uR), such that
fL(uL) = fR(uR

L) and (uL − s̄L)(uR
L − s̄R) ≥ 0 (resp.

fR(uR) = fL(uL
R) and (uR − s̄R)(uL

R − s̄L) ≥ 0). We
will denote by uR,�

L (resp. uL,�
R ) the transpose of the

conjugate of uL (resp. uR) (cf. Fig. 12). Note that, for
(uL, uR) ∈ U , one has uR = uR,�

L (and uL = uL,�
R ). In

the case where (uL, uR) ∈ O, then either uL = uL
R (and

uR = uR
L) if (uL, uR) lies on an increasing branch of

O, or uL = uL,�
R (and uR = uR,�

L ) if (uL, uR) lies on the
decreasing branch of O.

We denote by (sπ
L, sπ

R) the connection defined by the
Selection Rule at the end of Section 2.3, and by sπ,�

L,R,
the conjugate values of sπ

L,R.

(i) Assume first that uL ≥ sπ,�
L and uR ≤ sπ,�

R , then,
thanks to Assumption (A1), the Godunov flux
given by formula 50 provides F0(uL, uR) = F̄π .
Reciprocally, assume firstly that P ∩ U �= ∅, so
that (sπ

L, sπ
R) ∈ P . From Assumption (A1) on

the flux functions, we deduce that GL(uL, sπ
L) =

GR(sπ
R, uR) = F̄π . Thus formulas 48 and 50 yield

the same value. The remaining case is when
P ∩ U = ∅, thus F̄π = F̄opt. There are two sym-
metric situations: the one where F̄opt = fL(s̄L)

and the one where F̄opt = fR(s̄R). Let us treat
the first situation in detail: see Fig. 1, but imag-
ine now that P crosses D and not U . We see
that there exists a value sL < sopt

L = s̄L such that
(sL, sopt

R ) ∈ P . Moreover, since sL < s̄L = sπ,∗
L ≤

uL, we do have GL(uL, sL) = fL(sopt
L ). The latter

value coincides with fR(sopt
R ), which also equals

GR(sopt
R , uR) because uR ≤ sopt

R . We arrive to
the desired equality GL(uL, sL) = GR(sopt

R , uR) =
F̄opt with (sL, sopt

R ) ∈ P : again, we see that formu-
las 48 and 50 yield the same value.

(ii) Assume that uL ≤ sπ,�
L and that uR ≤ uR,�

L , so that
formula 50 provides that the flux at the interface
should be given by F0(uL, uR) = fL(uL). Let us
find a convenient choice of (sL, sR) solution to
Eq. 48 so that F0

0 (uL, uR) = F0(uL, uR). The fact
that GL(uL, sL) = GR(sR, uR) = fL(uL) implies,
because of Assumption (A1), that sL can be
chosen arbitrarily in [0, u�

L], while sR has to be
equal to uR

L. Note that (u�
L, uR

L) ∈ U , and that
u�

L ≥ sπ
L, uR

L ≤ sπ
R. It can thus be seen on Fig. 1

that ([0, u�
L] × {uR

L}) ∩ P �= ∅. Choosing (sL, sR)

at this last intersection in Eq. 48 ensures that

(a) (b)

Fig. 12 a Transpose uL
R and conjugate u�

R of uR. b The case-by-case study’s zones



Comput Geosci (2013) 17:551–572 571

formulas 48 and 50 yield the same value for the
flux F0(uL, uR).

(iii) The last case is then uR ≥ sπ,�
R and uL ≥ uL,�

R ,
so that the flux given by Eq. 50 turns to be
equal to fR(uR). From similar argument as in
the previous case, we deduce from GL(uL, sL) =
GR(sR, uR) that sR can be chosen arbitrary in
[u�

R, 1] while the condition sL = uL
R is enforced.

Here again, the segment {uL
R} × [u�

R, 1] has a non-
empty intersection with P . Choosing (sL, sR) ∈({uL

R} × [u�
R, 1]) ∩ P ensures that, in this case

again, the values given by the formulas 48 and 50
coincide.

The above case by case study is illustrated by
Fig. 12. �

As a direct consequence of formula 50 and of [4], tak-
ing ε = 0 in the scheme defined by Eqs. 35–39 yields the
implicit Godunov scheme corresponding to the notion
of G(sπ

L,sπ
R)-entropy solution. From the monotonicity of

the scheme, we deduce that the discrete solution s0
h is

unique (e.g., [22, 33]). The analysis carried out in [7] for
the explicit Godunov scheme can be straightforwardly
adapted to the implicit case.

Corollary 2 Let s0
h be the unique approximate solution

provided by the schemes 35–39 in the case ε = 0, then

lim
�x,�t→0

s0
h = s in L1

loc(R × R+),

where s is the unique G(sπ
L,sπ

R)-entropy solution to the
hyperbolic Buckley–Leverett equation in two-rocks’
medium.
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