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Abstract There is no gainsaying that determining the
optimal number, type, and location of hydrocarbon
reservoir wells is a very important aspect of field de-
velopment planning. The reason behind this fact is
not farfetched—the objective of any field development
exercise is to maximize the total hydrocarbon recovery,
which for all intents and purposes, can be measured by
an economic criterion such as the net present value of
the reservoir during its estimated operational life-cycle.
Since the cost of drilling and completion of wells can
be significantly high (millions of dollars), there is need
for some form of operational and economic justification
of potential well configuration, so that the ultimate
purpose of maximizing production and asset value is
not defeated in the long run. The problem, however,
is that well optimization problems are by no means
trivial. Inherent drawbacks include the associated com-
putational cost of evaluating the objective function, the
high dimensionality of the search space, and the effects
of a continuous range of geological uncertainty. In this
paper, the differential evolution (DE) and the particle
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swarm optimization (PSO) algorithms are applied to
well placement problems. The results emanating from
both algorithms are compared with results obtained
by applying a third algorithm called hybrid particle
swarm differential evolution (HPSDE)—a product of
the hybridization of DE and PSO algorithms. Three
cases involving the placement of vertical wells in 2-D
and 3-D reservoir models are considered. In two of the
three cases, a max-mean objective robust optimization
was performed to address geological uncertainty arising
from the mismatch between real physical reservoir and
the reservoir model. We demonstrate that the perfor-
mance of DE and PSO algorithms is dependent on the
total number of function evaluations performed; im-
portantly, we show that in all cases, HPSDE algorithm
outperforms both DE and PSO algorithms. Based on
the evidence of these findings, we hold the view that
hybridized metaheuristic optimization algorithms (such
as HPSDE) are applicable in this problem domain and
could be potentially useful in other reservoir engineer-
ing problems.

Keywords Differential evolution · DE · Particle
swarm optimization · PSO · Hybridization · HPSDE ·
Reservoir simulation · Well placement optimization

1 Introduction

During the field development planning phase of hy-
drocarbon reservoirs, optimal well configuration is ar-
guably the most important decision input. It is generally
a nontrivial task which has a significant bearing on the
asset value of the project, as it can potentially deter-
mine the recoverability of the hydrocarbon in place.
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The fact, however, is that the very nature of subsur-
face reservoirs make well configuration optimization a
very challenging problem. Hydrocarbon reservoir mod-
els are generally a system of highly nonlinear equa-
tions with large number of time-varying states, time-
invariant parameters, and geological uncertainties. It
is therefore essential that optimization algorithms for
this purpose are efficient, reliable, and robust. In
this work, we apply three metaheuristic algorithms—
differential evolution (DE), particle swarm optimiza-
tion (PSO), and hybrid particle swarm differential evo-
lution (HPSDE)—to well placement problem. We com-
pare the results from all three algorithms; and we show
that on the average, the HPSDE algorithm outperforms
both the DE and the PSO algorithms. We also show
that the performance of DE and PSO are dependent
on the total number of simulations performed.

The DE is a population-based metaheuristic algo-
rithm that is modeled on Darwin’s evolutionary prin-
ciple of “survival of the fittest.” It was introduced as
a computational intelligence paradigm in [60], and it is
a member of the evolutionary algorithm family. Like
the well-known genetic algorithm (GA), it is based
on the theory of natural selection, and they both use
evolutionary operators such as crossover, mutation,
and selection to maintain a population of potential
solutions. In both DE and GA algorithms, the selection
operator is the sole mechanism for choosing the best
individuals from the population in every generation (or
iteration); thus, many researchers have reported DE
as an improved version of GA [16]. It is noted, how-
ever, that there are salient differences between both
algorithms. While GA relies either on binary or real-
valued (continuous) strings, DE operates directly on
floating point vectors; whereas GA maintains a genetic
link from one generation to another, DE is an abstrac-
tion of evolution at individual behavioral level; and
most importantly, GA relies mainly on the crossover
operator to explore the search space, while a special
form of mutation operator effects the working of DE.
In other words, crossover and mutation mechanisms
are the dominant operator in GA and DE algorithms,
respectively. Over the past years, DE has been shown
to be a simple yet versatile metaheuristic algorithm for
real parameter optimization and global optimization in
general [16, 56, 61]. It is arguably one of the hottest
topics in today’s computational intelligence research
domain, and the spurt in interest in this subject is
evident from the breathtaking wide array of applica-
tion areas—science, engineering, statistics, economics,
and finance. However, this does not appear to be the
case in reservoir engineering or in the area of oil field

development planning. To the best of our knowledge,
besides [68] and [27] where DE is employed in history
matching, there has not been much in the literature on
the application of DE in reservoir engineering problem
domains.

The PSO algorithm was originally introduced in
terms of social and cognitive behavior by Kennedy
and Eberhart [21, 35]. As a computational paradigm,
it attempts to mimic the social interaction exhibited by
social animal groups such as flocks of birds and schools
of fish. Like most biologically inspired optimization al-
gorithms, PSO is population-based, and the individuals
that make up the population are referred to as particles.
The popularity of PSO stems from the simplicity of
its implementation, and the computational efficiency of
information-sharing within the algorithm—as it derives
its internal communications from the social behavior of
the particles that make up the population. Thus, there
are various applications of PSO in diverse engineering
and computational science disciplines across the liter-
ature. However, like DE, the application of PSO in
reservoir engineering is exiguous. We note that [20] and
[47] are the only known applications of PSO in well
placement optimization problem domain.

Well configuration optimization often entails finding
the number, type, location, and possibly drilling se-
quence of reservoir wells in order to maximize recovery
factor, production rates, and asset value. It is a common
practice to associate wells to reservoir grid block cell
centers where they are represented by source or sink
terms (depending on whether they produce fluid from
or inject fluid into the reservoir), and therefore the op-
timization variables are typically real-valued integers.
Since determining the number of wells is clearly an inte-
ger problem, the combination of this optimization prob-
lem with the optimization of the production settings of
the wells leads to a mixed-integer nonlinear problem
(MINLP) [36]. However, due to issues bothering on
nonconvexity, such MINLPs are extremely difficult to
solve. Another drawback for MINLPs is that they re-
quire far too many evaluations of the objective function
(which in this case entails full reservoir simulation), and
this renders it less effective in reservoir engineering
applications. To this end, most of the solution methods
in well configuration optimization problems are either
gradient-based local optimization methods or gradient-
free stochastic optimization techniques.

Local optimization methods attempt to find the op-
timum by iteratively improving upon an initial guess
(well placement) until the optimal (albeit local) is de-
termined. The main drawback of these methods is to
effectively find the improving directions in which to
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alter the initial guess. Bangerth et al. [3] compared
the performance of two local techniques, the finite
difference gradient (FDG) and the simultaneous per-
turbation stochastic approximation (SPSA), against the
performance of a global technique—the very fast simu-
lated annealing (VFSA)—in optimizing the placement
of vertical wells in a 2-D reservoir model. The FDG
method attempts to find improving directions by per-
turbing each of the well location by one grid block in
every direction. The obvious drawback of this method
is the requirement of 2n + 1 number of objective func-
tion evaluations to compute an improving direction for
any n to-be-placed wells. The SPSA method which was
earlier employed in [59] is an approximate gradient-
based method where the gradients are approximated
by random perturbations. To compute the derivative,
a random direction in which to alter the wells is gener-
ated, and if this change in position of the wells does not
yield an improvement in the objective function, then
the opposite direction is automatically assumed. This
algorithm was shown to perform better than GA in
the optimization of vertical wells, and it is noted that
the computational requirement for this method is less
expensive, as improving direction is definitely found
in at most two reservoir simulations. However, the
disadvantage of the SPSA algorithm is that the assumed
optimal configuration may generally not be the “steep-
est” one. Another drawback appears in the calculation
of new solutions: the step size must be chosen carefully,
otherwise there is a risk of finding “solutions” which
are not feasible. Thus, the assumed efficiency of this
method is questionable. The VFSA technique which
is based on standard simulated annealing (SA) shares
some semblance with most stochastic approximation
algorithms. In all cases considered, both the VFSA and
SPSA outperformed the FDG method. Wang et al. [67]
applied a gradient-based steepest descent algorithm in
optimizing the number and placement of injection wells
in a 2-D reservoir model, while Sarma and Chen [57]
applied a gradient-based algorithm where the deriva-
tive of the objective function is computed with respect
to continuous well locations, thereby allowing for arbi-
trary step size and search directions. A gradient-based
algorithm was utilized in [73] for the optimal placement
of vertical wells in a 2-D reservoir model. The methods
applied in [57] and [73] are based on the same principle.
The difference, however, is in the derivatives used and
the method of its computation. While the derivative of
the objective function in [57] is with respect to continu-
ous well locations, the derivative in [73] is with respect
to flow rates. At each discrete time step, an adjoint
formulation was used to compute the “rate gradients”

for each of the low rate “pseudowells” that are placed at
the eight neighboring grid blocks surrounding a current
well position. The derivatives (with respect to flow
rate) at the pseudowells are then summed, and the well
is moved in the direction of the pseudowell with the
largest summed gradient. In terms of computational
efficiency, these gradient-based approaches are highly
reliable; however, they have their drawbacks. The non-
convex nature of the underlying optimization problem
inevitably means that they generally contain multiple
optima; hence, they are prone to be trapped in local
solutions. In addition, discontinuous derivatives arising
from the nonsmooth nature of the optimization surface
may pose significant problems. It is also important to
recognize the fact that gradient information is often not
readily available. Adjoint-based formulations, which
are a popular and efficient way of computing deriva-
tives, are invasive with respect to the flow simulator.
They are therefore only feasible with full access to, and
detailed knowledge of, the simulator source code [13].
Besides, the objective function value may be computed
with some noise, this therefore means that any compu-
tation of derivative estimates is susceptible to lots of
inaccuracies.

The gradient-free stochastic optimization techniques
by their nature are generally noninvasive with respect
to the flow simulator. They treat the simulator as a
black box—only objective function values are required
and no explicit gradient computations are involved.
These methods are therefore much easier to imple-
ment than, for example, gradient-based adjoint tech-
niques. However, in a typical “no-free-lunch” fash-
ion (see [70]), this advantage is counterbalanced by
a significant deterioration in computational efficiency
when compared to gradient-based adjoint formulation
approaches. In other words, the gradient-free global
methods will tolerate lower performance measures in
the hope of finding the global optimum, as opposed
to the computationally efficient gradient-based local
optimal solutions. This appears to be the reason why
there are many applications of stochastic optimization
algorithms in the well placement optimization prob-
lem domain. In this regard, the binary GA (hereafter
referred to simply as GA) appears to be the most
frequently used technique. Becker and Song [5] ap-
plied SA in optimizing the placement and schedule
of horizontal wells that were originally cast as a trav-
eling salesman problem. The use of neural networks
(NN) was applied in [11], while GA was employed in
[1, 6, 23, 26, 40, 46, 48]. A combination of NN and
GA was applied in [72]; PSO was applied in [20, 47],
and covariance matrix adaptation evolution strategy
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was applied in [8]. Apparently, there appears to be
no instance or citation of DE in this problem domain.
We note that both DE and PSO are relatively new
nondeterministic approaches for global optimization
(both algorithms were introduced in 1995); we allude
that their relative “young age” may be the reason why
their application in well optimization problem domain
is almost nonexistent, or at best, few and far between.

Since inception, DE has been employed in vari-
ous science and engineering problem domains—neural
network training [15, 28, 50, 51, 63], optimization of
mechanical design [38], aerodynamic shape optimiza-
tion problem [43, 56], power transmission expansion
planning [62], and economic dispatch problems for
nonsmooth objective functions [49, 69]. In the same
vein, PSO has been used in diverse application areas—
dynamic economic dispatch problems [12], quadratic
assignment problems [24], pole shape optimization [10],
and neural networks training [9, 21, 35]. Despite the
popularity and application of both algorithms in the
aforementioned areas of science and engineering, they
are almost nonexistent in the well placement optimiza-
tion problem domain, but for [20] and [47]. In [47] the
standard PSO was applied to various well optimization
problems, and it was shown that on the average, PSO
outperforms GA in maximizing the net present value
(NPV) of the reservoir models. This finding (result
from comparing the performance of GA and PSO) pro-
vides the main motivation for this work. We compare
the performance of DE and PSO algorithms, and our
choice is borne out of the fact that DE is a deviant of
GA—the crossover operator in GA is replaced with
a special type of differential operator for reproducing
offspring in subsequent generations.

The results from both algorithms (DE and PSO) are
further compared with the results emanating from a
hybrid of both algorithms—HPSDE. The robustness
of the results is enhanced by incorporating geological
uncertainty in two of the three examples considered. To
this end, we espouse [65] where multiple geological re-
alizations were used to account for reservoir uncertain-
ties. In all cases, the performance measure relating to
all three algorithms are based on averaged results over
multiple runs of the algorithms. Detailed comparison
of the results from DE, PSO and HPSDE algorithms
highlights some interesting findings. It shows that on
the average, HPSDE outperformed both DE and PSO
algorithms. The paper is structured as follows: in Sec-
tion 2, DE, PSO, and HPSDE algorithms are described,
and the implementation of all three algorithms as used
in this work is presented in Section 3. In Section 4, we
present the well optimization examples considered in

this work, and discuss the results. Finally, we draw con-
clusion and propose future work direction in Section 5.

2 DE algorithm

In 1995, Rainer Storn and Kenneth Price proposed a
new floating point-encoded, population-based evolu-
tionary algorithm for global optimization, and the new
algorithm was named differential evolution. It derived
its name from a special kind of differential operator
which they invoked when creating new offspring of its
population [16]. Being an evolutionary algorithm, DE
is based on the Darwin’s principle of survival of the
fittest, a strategy in which the individuals in a popu-
lation evolve by improving their fitness value through
the probabilistic operations of mutation, recombina-
tion, and selection. The individuals are evaluated with
respect to their fitness against a defined objective func-
tion, and those with superior fitness are selected to
compose the population of the next generation. Since
inception, several DE strategies have evolved, and a
comprehensive naming notation to classify these strate-
gies is presented in [61]. As a standard, the nomencla-
ture of DE strategies is consistent with the DE/a/b /c
format, where a represents a string denoting the target
of the mutation operation, b defines the number of
difference vectors used in the mutation, and c stands for
the type of crossover employed. Based on the standard
and notations defined above, the most widely used DE
strategy is the DE/rand/1/bin. This strategy indicates
that the mutation target is randomly selected from
the population, and the mutation is performed using a
single difference vector, as well as a uniform binomial
crossover. The basic DE algorithm consists of four
distinct events which are represented as shown in Fig. 1.

The first step is the initialization of a population of
candidate solutions Np at iteration k = 1, and this is
given by

Np (k) = [
X1 (k) , X2 (k) , . . . , XNp (k)

]
(1)

where each candidate solution Xi(k) is a D-dimensional
vector containing as many real-valued parameters as
the problem dimension D. Each of the candidate so-
lution is given by

Xi (k) = [
xi, j (k) , xi, j (k) , ..., xi,D (k)

]
(2)

where i = 1, 2, . . ., Np and j = 1, 2, . . ., D.
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Fig. 1 Basic DE algorithm
procedure

Typically, each decision parameter in every candi-
date solution of the initial population is assigned a
randomly chosen value from a predefined feasible nu-
merical bound. In other words, the j-th component of
the i-th population member at the initialization step is
given by

xi, j (1) = xL
j + rand (0, 1) ·

(
xU

j − xL
j

)
(3)

where xL
j and xU

j are, respectively, the lower and upper
bound of the j-th component, and rand (0,1) is a uni-
formly distributed random number between 0 and 1.

Once the population has been initialized, the corre-
sponding fitness value is evaluated and stored in mem-
ory for future reference. In each generation, a mutant
vector is created for each i-th population member by
randomly choosing three parameter vectors from the
current population. A scalar number F is used to scale
the difference of any two of the three randomly chosen
vectors, and the scaled difference is added to the third
one. We can express the mutation process of the j-th
component of each vector as follows:

vi (k) = xr1, j (k) + F · (
xr2, j (k) − xr3, j (k)

)
(4)

where F ∈ [0, 1+] is a user-defined constant known as
the scaling (or mutation) factor, and vector indices r1,
r2, and r3 are randomly chosen with r1, r2, and r3
∈{1,2,. . . ,Np}.

Note that r1 �= r2 �= r3 �= i and that xr1, xr2, and xr3 are
selected anew for each parent vector in every genera-
tion. The magnitude and direction of the mutation step
is defined by the difference between two of the three
randomly chosen population vectors; and this makes
the mutation operation to exhibit a self-adaptive be-
havior, such that the average mutation length decreases
as the population converges [61]. The third step is the
crossover or recombination scheme. The main purpose
of this process is to increase the potential diversity of
the population by mixing the parameters of the mutant
vector with the target vector according to a selected
probability distribution. There are mainly two kinds
of crossover schemes—binomial and exponential. The
result of the crossover step at iteration k is the birth of
a trial vector which is defined as follows:

Ui (k) = [
ui, j (k) , ui, j (k) , ..., ui,D (k)

]
. (5)

For a maximization problem, the binomial crossover
scheme is performed on each of the D-dimensional
variables according to the following equation:

ui, j (k) =
{

vi, j (k) , if rand (0, 1) ≤ CR
xi, j (k) , else

(6)

where CR is a user-defined crossover rate which is
usually in the range of [0,1].

The crossover rate controls the diversity of the pop-
ulation and aids the algorithm to avoid getting stuck in
local optima. At the end of the iteration, the selection
operator is applied to determine which one of the target
and the trial vectors would survive in the next iteration,
i.e., at iteration k = k + 1. This operator compares the
fitness of the trial vectors against the corresponding
target vectors and selects the better solution according
to the following equation:

Xi(k + 1) =
{

Ui (k) , if f (Ui (k)) ≥ f (Xi (k))

Xi (k) , else
(7)

where f (x) is a fitness value. Thus, if the new trial
vector yields a better fitness value, it automatically
replaces its target in the next iteration; otherwise, the
target vector is retained in the population. In other
words, the population must either get better (w.r.t. the
fitness value) or remain constant; it never deteriorates.
Figure 2 is a simple flowchart that illustrates the DE
algorithm. The control parameters for this algorithm
are the mutation factor F, the crossover rate CR, and
the population size Np.

2.1 Treatment of infeasible solutions

Evolutionary algorithms such as DE were originally
proposed to solve unconstrained optimization prob-
lems. The application of these algorithms on boundary-
constrained problems such as well placement optimiza-
tion problem may result in solutions that violate the
physical boundary of the search space. All such bound
offending values are termed infeasible solutions, and a
comprehensive review of methods for preserving fea-
sibility of solutions is available in [44]. In this work,
however, we employ the “out-of-bound value” tech-
nique [17, 39, 44]. This involves the use of specialized
operators to create and retain candidate solutions that
are feasible. It is implemented in accordance to the
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Fig. 2 Flowchart showing the DE algorithm

following equation:

xi, j (k) =

⎧
⎪⎨

⎪⎩

xmin
i, j if xi, j (k) ≤ xmin

i, j

xmax
i, j if xi, j (k) ≥ xmax

i, j

xi, j (k) otherwise

(8)

where xmin
i, j and xmax

i, j are, respectively, the minimum
and maximum bound of the j-th component of the i-th
population member. The application of Eq. 8 ensures
that all bound offending values are reset to boundary
values.

2.2 PSO algorithm

It can be said that the basic idea behind the PSO algo-
rithm is the simulation of the social behavior metaphor
of bird flocks and fish schools. It is a population-
based stochastic algorithm which has been widely and
efficiently deployed in nonlinear optimizations of vary-
ing complexities. Introduced in 1995 [21, 35], its popu-
larity has gained momentum because of its low memory
requirement, high computational efficiency, and easy-
to-implement properties. Being a population-based al-
gorithm, the individuals of the population are referred

to as particles, and a collection of particle at any given
iteration is called the swarm. The particles are flown
through the search space, with each particle represent-
ing a possible or potential solution of the optimization
problem. In any given iteration, a particle’s fitness is
based on a performance function related to the opti-
mization problem, or in other words, the position of
each particle is continually adjusted according to its
relative fitness and position to other particles that make
up the swarm. The movement of the particles across
the search space is influenced by two factors: informa-
tion from iteration-to-iteration and information from
particle-to-particle interactions. Based on iteration-to-
iteration information, the particle stores in its memory
the best solution attained so far, and it experiences
an attraction towards this solution (called pbest) as
it traverses across the problem search space. On the
other hand, the outcome of the particle-to-particle in-
formation is that each particle stores in its memory the
best solution (called gbest) attained by any particle in
the swarm and experiences an attraction towards this
solution. The first and second factors are, respectively,
referred to as the cognitive and social components of
the algorithm. At the end of each iteration, the pbest
and gbest are updated for each particle, and this update
process continues iteratively until the desired result is
converged upon, or it is determined that an acceptable
solution cannot be found within available computa-
tional limit.

At iteration k, if the position of the i-th particle of
the swarm across the search space is represented by
a D-dimensional vector xi(k), and the velocity of this
particle is given by vector vi(k), if the best position
found in the search space by particle i up to iteration
k is represented by another vector yi(k), and if the best
position found by any of the particles in the neighbor-
hood of particle i up to iteration k is represented by
yet another vector y∗(k), then we can mathematically
represent all four vectors as:

xi (k) = [
xi,1 (k) , xi,2 (k) , . . . , xi,D (k)

]
(9)

vi (k) = [
vi,1 (k) , vi,2 (k) , . . . , vi,D (k)

]
(10)

yi (k) = [
yi,1 (k) , yi,2 (k) , . . . , yi,D (k)

]
(11)

y∗ (k) = [
y∗

i,1 (k) , y∗
i,2 (k) , . . . , y∗

i,D (k)
]
. (12)

At the next iteration (k + 1), the position and velocity
vectors are updated accordingly, and the new position
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of particle i can be computed with respect to its previ-
ous position xi(k) by adding an updated velocity vector
to the previous position vector:

xi (k + 1) = xi (k) + vi (k + 1) . (13)

The elements of the updated velocity vector vi(k + 1)

are given by

vi, j (k + 1) = vi, j (k) + c1r1, j
(
yi, j (k) − xi, j (k)

)

+ c2r2, j

(
y∗

j (k) − xi, j (k)
)

(14)

where j = 1, 2, . . ., D represents the components or
dimension of the search space; c1 and c2 are constants
called cognitive and social scaling parameters, respec-
tively; and r1, j and r2, j are random numbers drawn from
a uniform distribution [0, 1].

Equations 13 and 14 represent the classical version
of the PSO algorithm [18]. The concept of an inertia
weight (ω) was developed to better control the explo-
ration and exploitation abilities of the algorithm. It was
incorporated into the algorithm and was first reported
in the literature in 1998 by Shi and Eberhart [58]. The
resulting velocity update equation is given by

vi, j (k + 1) = ω vi, j (k)
︸ ︷︷ ︸
inertia term

+ c1r1, j
(
yi, j (k) − xi, j (k)

)

︸ ︷︷ ︸
cognitive term

+ c2r2, j

(
y∗

j (k) − xi, j (k)
)

︸ ︷︷ ︸
social scaling term

(15)

Equations 13 and 15 define the standard version of the
PSO algorithm. As indicated above, Eq. 15 is the sum
of three components, namely the inertia, the cognitive,
and the social scaling components. The inertia com-
ponent (in apparent reference to its relationship with
the inertia weight ω), defines the particle’s momentum,
and it causes the particle to continue in the direction
in which it is moving at iteration k in accordance to
the second law of motion. The cognitive component
(in apparent reference to its relationship with the cog-
nitive parameter c1) captures the particle’s memory
with respect to its previously attained best position; it
provides a velocity component in this direction and is
responsible for local search. The third term, which is
called the social component (in apparent reference to
its relationship with the social scaling parameter c2),
represents information stored in memory about the
best position of any particle in the neighborhood of
particle i and causes movement towards this particle.
This component is responsible for global search. Thus,
the position of each particle at every instance is deter-
mined by its momentum, its memory, and the collective
experience of other particles in the swarm.

Of the three components highlighted above, it ap-
pears that the social component have the greatest
influence on the overall performance of the PSO algo-
rithm. This is because an individual particle (on its own)
has little or no power to solve any problem whatsoever;
problem solving can only take place when the particles
in the swarm interact. In other words, the effectiveness
or otherwise of problem solving by PSO is a population-
wide phenomenon, emerging from the individual be-
haviors of the particles through their interactions with
one another (the swarm), and in accordance to some
sort of communication structure called neighborhood
topologies.

The topology typically consists of bidirectional edges
connecting pairs of particles, so that if a particle j is in
the neighborhood of another particle i, then particle
i is also in j’s neighborhood. Each particle commu-
nicates with some other particles and is affected by
the best point found by any member of its topologi-
cal neighborhood. Several types of PSO neighborhood
topologies have been reported; however, it is noted
that PSO algorithms with small neighborhoods perform
better on complex problems while PSO algorithms with
large neighborhoods perform better for simple prob-
lems [34]. The k-best topology which was proposed in
[34] connects every particle to its k-nearest particles in
the topological space. Generally speaking, there are as
many neighborhoods as there are particles in a given
swarm. This is so because each of the particles can form
its own neighborhood in its own right. However, when
k = 1, the neighborhoods of individual particles are
the same for all particles. In this special case, we have
one neighborhood which has a star topology where
each particle has a direct link to every other particle
in the neighborhood as shown in Fig. 3a. Although they
have fast convergence properties, PSO algorithms using
this topology are susceptible to premature convergence
and are generally referred to as global best or “gbest”
algorithms [21, 22, 34].

With k = 2, this becomes the circle (or ring) topology
where each particle is directly linked to two adjacent
particles in its topological space as shown in Fig. 3b.
There are diverse neighborhood topologies that have
been reported in the PSO literature. This includes the
wheel topology, which effectively isolates the particles
from one another, as information is communicated to
other particles through a focal (or central) particle as
shown in Fig. 3c. We note that besides the star topology,
PSO algorithms using other topologies are referred to
as local best or “lbest” algorithms [22]. The flowchart
illustrating the standard PSO algorithm is shown in
Fig. 4.
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Fig. 3 Examples of PSO
neighborhood topologies. a
Star topology. b Ring or
circular topology. c Wheel
topology

(a) Star topology (b) Ring or Circular
       topology

(c) Wheel topology

Like in DE, one of the challenges in implementing
PSO in boundary-constrained optimization problems is
the issues that arise from infeasible solutions. Direct
use of Eqs. 13 and 15 on boundary-constrained prob-
lems may result to solutions that violate the physical
boundary. To handle this issue, we employ the “absorb”
technique [14, 47] by applying the following equations:

xi, j (k + 1) =
{

l j if xi, j (k + 1) < l j

u j if xi, j (k + 1) > u j

}
(16)

vi, j (k + 1) =
{

0 if xi, j (k + 1) < l j

0 if xi, j (k + 1) > u j

}
(17)

where l j and u j are the lower and upper bounds of the
j-th component of the search space.

Fig. 4 Flowchart showing the PSO algorithm

While Eq. 16 has the effect of moving infeasible
solutions to the nearest boundary by setting all vari-
ables outside the feasible region to the nearest bound,
Eq.17 has the effect of halting the affected particles by
setting their velocities to zero. In any case, the absorb
technique works in a very similar fashion with the out-
of-bound value technique that we employ in DE.

2.3 Hybridization and HPSDE algorithm

Though classified as global optimization techniques,
DE and PSO have their own drawbacks. They are
susceptible to premature convergence which can lead
to potential solutions being trapped in local optima.
This shortcoming is even more pronounced in domains
where the search space is nonlinear, noncontinuous,
and nonsmooth, as often the case in many reservoir
engineering problems. To overcome this disadvantage,
researchers have employed various hybridization tech-
niques to create hybrid metaheuristic algorithms that
are more robust and effective in problem solving. In
a general sense, hybridization is simply an attempt at
combining the good traits of participating algorithms
or concepts, with the ultimate view of improving the
efficiency and capabilities of the newly created “hy-
brid” algorithm. We justify the use of hybridization
as a direct consequence of the so called no-free-lunch
theorem. Wolpert and Macready [70] established that
any elevated performance over one class of problem
by any algorithm is offset by performance over another
class of problem. This underlines the fact that no single
optimization technique can solve all optimization prob-
lems optimally.

Generally speaking, most of the hybrid metaheuris-
tics that have been published in the literature can be
loosely grouped into three categories: those created by
combining one metaheuristic algorithm with another
metaheuristic algorithm; those developed by combining
a standard metaheuristic algorithm with mathematical
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operators; and those developed by incorporating evolu-
tionary operators (selection, mutation, and crossover)
into nonevolutionary metaheuristic algorithms.

Among the three evolutionary operators, mutation
appears to be the most commonly applied operator
in the hybridization of nonevolutionary metaheuristic
algorithms such as PSO. The purpose of applying muta-
tion to PSO is to increase the diversity of the population
and enable the PSO to escape local optima [7, 31,
37, 41, 45, 54]. In [33], mutation alongside crossover
and elitism is incorporated into PSO, and the resulting
algorithm outperformed both PSO and GA in recurrent
network design problem. The selection operator (which
entails copying the particles with the best performance
into the next generation) was applied to a PSO algo-
rithm in [2], and this led to a continuous retention of the
best-performing particles. Løvbjerg et al. [42] showed
that incorporating the crossover operation in PSO al-
gorithms effects information-swap between individual
particles. A quadratic approximation operator (QA) is
used in [19] and [18] to hybridize a binary GA and PSO,
respectively. In both cases, the QA operator was used
to update a part of the population, while the remaining
of the population is updated by GA or PSO as the case
may be. The result showed a substantial improvement
in the performance of the hybrid algorithm when used
to solve a set of 15 benchmark problems.

Collision-avoiding mechanisms are designed in [7]
and [37] to prevent particles from colliding with each
other, and a “dissipative particle swarm” is designed in
[71] by adding negative entropy into PSO to discourage
premature convergence. Better results were obtained
in [55] by applying a hybrid of PSO and GA in the
profiled corrugated horn antenna optimization prob-
lem, while a PSO hybrid with GA crossover operator
was introduced in [32] to optimize difficult real number
optimization problems. Genetical swarm optimization
is presented by systematically combining PSO and GA
in [25]. The population in each iteration is divided into
two parts, and these parts are evolved with the two
techniques, respectively. They are then recombined in
the updated population and further divided into two
random parts for another run of GA and PSO in the
next iteration.

Poli et al. [52, 53] proposed a hybrid PSO based on
genetic programming (GP), and the GP was used to
evolve new laws for the control of particles’ movement
for specific classes of problems. Ant colony optimiza-
tion is combined with PSO in [29], while DE and PSO
are combined in [30]. The particles in the swarm drift
according to position update equation, but occasion-
ally, DE is applied to replace poorly performing par-
ticles with better ones while retaining their velocity.

The DEPSO algorithm in [74] basically involves the
use of DE and canonical PSO operators in alternate
generations. The hybrid achieved better results than
PSO in problems with higher dimensionality.

From the foregoing, it is evident that a wide array
of hybridized metaheuristic algorithms have been de-
signed and implemented for the purpose of improving
the performance and problem-solving capabilities of
the participating algorithms. A comprehensive (but not
exhaustive) review is available in [4]. In this paper,
we employ a hybrid of DE and PSO referred to as
hybrid particle swarm differential evolution (HPSDE).
This is a modified version of the algorithm proposed
in [64, 74]. It starts off as a standard DE algorithm up
to the point where the trial vector is generated. If the
fitness of the trial vector is better than the correspond-
ing target vector, then it is included in the population;
otherwise, the algorithm activates the PSO phase and
generates a new candidate solution using the position
and velocity update equations. The method is repeated
iteratively with the hope of finding better solutions or
till optimum values are reached. The inclusion of PSO
phase creates a perturbation in the population, which
in turn helps in maintaining diversity of the population
and producing an optimal solution [64]. The HPSDE
flowchart is depicted in Fig. 5.

Fig. 5 Flowchart illustrating the HPSDE algorithm
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3 Implementation of well placement optimization
problem

In this section, we describe the implementation of DE,
PSO, and HPSDE algorithms in the well placement
optimization problem. The algorithms are given, and a
step-by-step implementation is presented.

3.1 Implementation of DE in well placement problem

We describe the implementation of the DE algorithm
for a well placement optimization problem. Algo-
rithm 1 presents the steps in the DE/1/rand/bin strat-
egy for a maximization problem. It is adapted and
modified from [61] and implemented in MATLAB�.
The first step signifies the beginning of the algorithm,
and step 2 assigns values to DE parameters Np, F,
CR, D, and K. In step 3 of the algorithm, the pop-
ulation is initialized such that each component xi, j(k),
∀i ∈{1,2,. . . ,Np},∀ j ∈{1,2,. . . ,D} are made of random el-
ements drawn from predefined lower (L) and upper

(U) bounds in accordance to Eqs. 2 and 3. Step 4
computes the objective function of the initialized pop-
ulation, and the evaluated objective function is saved
in step 6 for future reference. Steps 9–11 compute a
mutant vector vi(k) in accordance with Eq. 4.

Step 12 is used in order to generate a trial vector
Ui in accordance with Eq. 6. Following the birth of
the trial vector, if any element of the “newly born”
vector are outside the feasible region of the search
space, step 13 is activated to modify and adjust the
trial vector within the feasible region. Step 14 evaluates
the objective function of the trial vectors. Steps 18–25
describe the selection process; the objective function of
the trial vector is compared against the target vector in
order to determine the population of the next iteration.
The algorithm terminates when the maximum number
of iterations K is reached.

3.2 Implementation of PSO in well placement problem

The implementation of the PSO algorithm in well
placement optimization problem is given below; it is
adopted from [47]. Algorithm 2 presents the steps as
implemented in MATLAB�. Like Algorithm 1, the
PSO algorithm presented here is for a maximization
problem. Step 1 signifies the beginning of the algo-
rithm. Step 2 initializes the values of the PSO para-
meters ω, c1, c2, Np, and K. Step 3 initializes each
component of the particle position, xi, j(k), with random
elements drawn from a uniform distribution U, such
that U,∀ j ∈{1,2,. . . ,D},∀i ∈{1,2,. . . ,Np}. In step 4, the
components of the velocity vector, vi, j(k), is initialized
in a similar fashion as in step 3. Step 5 computes the
objective function of all particles. Step 6 updates the
previous best position for each particle. The particle
indices (positions of particles in the array of particles)
are permuted in step 8, and the neighborhoods for each
particle are generated in step 9.

Step 12 determines the best particle in the neigh-
borhood of particle i. The elements of the updated
velocity vector of new particle, vi, j(k+1), are computed
in accordance with Eq. 15 in step 13. Steps 15–19 update
all components of the position of particle i. In step
17, infeasible solutions are modified using Eqs. 16 and
17. Step 20 evaluates the objective function f (xi(k+1))
based on the new particle position. Steps 24–31 update
the previous best positions for each particle, yi(k), if
the new objective function value, f (xi(k+1)), is better
than that at the previous best position, f (yi(k)). The
algorithm terminates when the maximum number of
iterations K is reached.
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3.3 Implementation of HPSDE in well placement
problem

The HPSDE algorithm is a hybrid of DE and PSO. It
begins with DE algorithm up to the point where the
trial vectors are generated. The fitness of the trial vec-
tor is compared with that of the corresponding target
vector to determine if it is included in the population of
the next iteration or if it is updated using a global best
PSO algorithm. By so doing, we combine the global
information obtained via PSO algorithm into the DE
algorithm thereby maintaining a fair balance between
the exploration and exploitation factors of the algo-
rithms. Algorithm 3 presents the steps in HPSDE for a
maximization problem. It is adapted and modified from
[64] and implemented in MATLAB�.

The algorithm begins in step 1 with the initializa-
tion of the first iteration k = 1. Step 2 assigns val-
ues to DE and PSO parameters. Step 3 initializes a
population of vectors Xi(k) such that each component
xi, j(k),∀i ∈{1,2,. . . ,Np},∀ j ∈{1,2,. . . ,D} are made of ran-
dom elements drawn from predefined L and U bounds
in accordance to Eqs. 2 and 3. Step 4 computes the
objective function of the initialized population, and
the computed objective function is saved in step 6 for
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future reference. In steps 9–12, we compute a mutant
vector vi(k) in accordance with Eq. 4, while a trial
vector Ui is generated in step 14 in accordance with
Eq. 6. If any element of the trial vector is outside the
feasible region of the search space, step 15 is activated
in order to modify and adjust the trial vector within the
feasible region. In step 16, the objective function of the
trial vectors is evaluated. Steps 21 and 22 compare the
objective function of the trial vector with that of the
corresponding target vector in order to determine the
population of the next iteration. The fitness value of the
trial vector must be greater than the fitness value of the
target vector in order to make it to the next iteration;
otherwise, the algorithm uses the PSO velocity and
position update equation to generate new candidate
solution as illustrated in steps 23–27. In steps 30–33, the
objective function of the newly generated vectors Xi (k)

is evaluated and compared with the fitness of corre-
sponding target vectors to determine the population of
the next iteration. The algorithm continues iteratively
until it terminates when the predefined maximum num-
ber of iterations K is attained.

4 Objective function formulation and optimization

For any given hydrocarbon reservoir, determining the
optimal well configuration that maximizes the recovery
factor over a time interval [0, T] can be posed as
an optimization problem. In every practical sense, the
maximization of the recovery factor (objective func-
tion) for a water-flooded reservoir is equivalent to any
of the following:

1. Maximizing the cumulative volumes of hydrocar-
bon produced at terminal time T

2. Maximizing the water saturation of the reservoir at
terminal time T

3. Minimizing the volume of hydrocarbon in place at
terminal time T

However, the objective for most E&P companies is
to maximize the economic value of the asset. The
commonly used economic criterion for this purpose is
the NPV [1, 3, 5, 8, 13, 20, 46, 47, 57, 65, 72, 73].
Therefore, we designate NPV as the objective function
in all problems considered in this work. For all potential
solutions (well configuration), the NPV is computed
from the fluid production profiles generated as a result
of simulation run associated with corresponding well
placements. Thus, the NPV is a measure of the cash
flow (CF) generated from sale of produced volumes
of oil. Following a slight modification of the economic
model described in [47], we define the NPV as the total

oil revenues minus the capital expenditure (CAPEX)
and the operation cost (OPEX), in combination with
a discount factor d, which represents the time value
of money (i.e., interest rate or inflation). This can be
represented mathematically as follows:

NPV =
T∑

t=1

CF(t)

(1 + d)
t − CAPEX (18)

where T is the terminal time or total production years,
d is the discount factor, and CF(t) represents the cash
flow at time t. The cash flow at any time is given by

CF(t) = REV(t) − OPEX(t) (19)

where REV(t) is the revenue accrued from sale of prod-
ucts at time t, and OPEX(t) represents the operating
expenditure (or cost of production) at time t. Both
quantities are usually measured in US dollars.

For a two-phase (oil and water) flow reservoir
model, the values of REV(t) and OPEX(t) at any time
(t) are, respectively, given by

REV(t) = poil
(t) υoil

(t) (20)

OPEX(t) = pw,p
(t) υ

w,p
(t) + pw,i

(t) υ
w,i
(t) (21)

where poil
(t) is the price of oil at time t, pw,p

(t) is the cost of

producing water in the production wells, and pw,i
(t) is the

cost of injecting water in the injection wells at time t; all
three quantities are measured in dollars per barrel. On
the other hand, υoil

(t) is the total volume of oil produced

at time t, while υ
w,p
(t) and υ

w,i
(t) (all measured in barrels)

represent the total volumes of water produced (from
production wells) and injected (in injection wells),
respectively.

The CAPEX represents the total cost to drill and
complete all wells; it is noted that as far as production
is concerned, CAPEX is incurred at time t = 0. It is
computed as follows:

CAPEX =
nw∑

w=1

(
Ctop

w + Lmain
w + Cdrill

)
(22)

where nw is the total number of wells, Ctop
w is the cost

of drilling the main bore to the top of the reservoir
(in US dollars), Lmain

w is the length of the main bore
(in meters), and Cdrill is the cost of drilling within the
reservoir (in dollars per meter).

The values of the parameters for NPV computation
are given in Table 1 below. We assume that time-
dependent parameters such as d, poil

(t) , pw,p
(t) , and pw,i

(t) are
constant over the time period [0, T].
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Table 1 NPV computation parameters

Parameters Symbol Value

Price of oil poil $50/bbl
Water production cost pw,p $10/bbl
Water injection cost pw,i $5/bbl
Discount factor d 0.1
Drilling cost per meter Cdrill $5.3 × 104/m
Drilling cost to reservoir top Ctop

w $50 × 106

We now apply the algorithms DE, PSO, and HPSDE
to three optimization problems involving placement of
vertical wells in 2-D and 3-D reservoir models. For
each of the problems, five optimization runs of the
algorithms are performed, and the results are aver-
aged over the number of runs to determine the rel-
ative performance of each algorithm. The choice of
five runs is based on suggestion in [13, 66], and the
importance of comparing the average performance of
the algorithms (over multiple optimization runs) stems
from the nondeterministic nature of these algorithms.
It is noted that this reduces both the effects caused by
different distributions of the initial solutions and the
randomness resulting from the probabilistic operators
in the algorithms. To further reinforce fairness in the
results; the control parameters used in each of the three
algorithms are the same in all the problems considered.
These factors afford us the ability to draw a more
general conclusion with respect to the performance of
the algorithms.

All applications in this work are model-based,
and the simulations are performed using MATLAB�

Reservoir Simulation Toolbox 2011a. Since our appli-
cations are model-based, we note the inevitable pres-
ence of geological uncertainty—a direct consequence
of the fact that reservoir models are a “crude” ap-
proximation of real physical oil reservoirs. To address
this mismatch between the physical reservoir and the
reservoir model, we employ a robust optimization strat-
egy in the first two examples. By robust optimization,
the optimization procedure is carried out over a set of
realizations which explicitly accounts for the geological
uncertainty in the models [65]. The robust optimiza-
tion objective adopted in this work is the max-mean
objective, which basically seeks to maximize the aver-
age performance measure associated with each of the
realizations. It is given by

〈NPV〉 =
(

1

R

R∑

i=1

NPVi

)

(23)

where <NPV> is the expected NPV, and R is the
number of geological realization.

4.1 Case 1: placement of a single producer

For the first example, we consider optimizing the place-
ment of a single producer well in a 2-D reservoir model
with 45 × 45 × 1 grid blocks of dimensions of 10 m
× 10 m × 10 m. In order to address the mismatch
between model and physical reservoir, we incorporate
geological uncertainty by considering ten realizations
of the model. Usually, it is common to decide upon a
few sources of uncertainty that presumably have the
largest impact on the model, and, to this end, we choose
the permeability distribution. Thus, the realizations are
generated based on varying permeability distribution.
The system contains oil and connate water. The initial
pressure and saturation (connate water saturation) are
350 × 105 Pa and 0.2, respectively, and both are uniform
throughout the reservoir model. There are no aquifers
and no water injection; thus, only oil is produced. The
remaining system properties are given in Table 2. The
reservoir is simulated for 10 years with the single pro-
ducer placed in grid block position corresponding to
the results obtained from the five runs of each of the
algorithms. It is constrained to operate at a bottom
hole pressure (BHP) of 65 × 105 Pa, and the cumulative
volume of oil produced is used to compute the NPV (by
applying Eq. 18) corresponding to each optimization
run of the algorithms.

The computed NPVs are averaged over the number
of runs to reflect the relative performance of each
algorithm. In the same way, the average NPV achieved
by each of the algorithm is computed for the remaining
realizations, and, using Eq. 23, <NPV> of the reservoir
model is computed for each of the algorithm.

We perform a sensitivity analysis in order to examine
the effect of different population size and iteration
number combinations on the performance of the three
algorithms. To this end, we consider six population
size and iteration combinations: (5, 10), (10, 10), (20,
10), (10, 20), (10, 40), and (10, 80), respectively. Note
that in three of the six population size and iteration
combinations, the number of iteration is held constant
(while the population size is varied), and the population
size is held constant (while the maximum number of
iteration is varied) in the remaining three combinations.

Table 2 Systems properties

Properties Symbol Value

Porosity φ 0.3
Oil viscosity μo 10−3 Pas
Oil compressibility co 10−10 Pa−1

Rock compressibility cr 1.8 × 10−10 Pa−1
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For each of the population size and iteration com-
bination, we perform five optimization runs of the
algorithms and computed the average NPV relating
to each algorithm. Figure 6 shows the corresponding
<NPV> for each algorithm against the total number
of simulations per realization, given by Np × K. It is
obvious in all six population size and iteration number
combinations that HPSDE (red line) algorithm greatly
outperforms both DE (blue line) and PSO (green line)
algorithms.

The advantage of the HPSDE algorithm over DE
and PSO algorithms is very much pronounced in cases
where the population size and iteration combination
are low. For example, at the respective population size
and iteration combination of five and ten, an <NPV>

of $175.8 × 106 was attained for HPSDE. This repre-
sents a 24% increase in the <NPV> of $141.7 × 106 and
a 52% increase in the <NPV> of $115 × 106 achieved
by the PSO and the DE algorithms, respectively. The
comparative advantage of the performance of HPSDE
over PSO and DE algorithms becomes less remark-
able as the total number of simulations per realization
(given by Np × K) increases from 50 to 800. For a
population size of ten and maximum iteration of 80,
the HPSDE algorithm achieves an <NPV> of $303.7 ×
106, while the PSO and the DE algorithms attained a
near-convergence <NPV> of $261 × 106 and $259.9 ×
106, respectively. This performance of the PSO and
DE algorithms is 14% less than the performance of
HPSDE.

Another interesting observation from the view
points of the DE and PSO algorithms is that the per-
formance of one algorithm over the other in well place-

ment optimization problem appears to be dependent on
the total number of simulations. In all six population
size and iteration number combinations, the DE algo-
rithm attained higher <NPV> than the PSO algorithm
at very low simulation per realization. For example, in
the first population size and iteration combination (i.e.,
Np = 5, K = 10), DE outperforms PSO algorithm from
the start till 15 simulations per realization. After this
“threshold” number of simulations, the PSO achieved
better <NPV> than DE. This pattern is observed in all
six population size and iteration number combinations.
However, the threshold number of simulation after
which PSO outperforms DE varies from one popu-
lation size and iteration number combination to the
other. In the last population size and iteration combi-
nation, though PSO outperforms DE from simulation
per realization of 22, both algorithms (PSO and DE)
achieve a near-convergent <NPV> of $261 × 106 and
$259.9 × 106 from a total simulation per realization of
744 to 800. In any case, the HPSDE algorithm outper-
forms both the DE and PSO algorithms.

4.2 Case 2: placement of two wells—a producer and an
injector

In this example, we consider optimizing the placement
of a producer and an injector in a 2-D reservoir model
where the oil is to be replaced by water in a simple
waterflooding process. The reservoir model has 50 ×
50 × 1 grid blocks, each of the grid blocks has a
dimension of 10 m × 10 m × 10 m; initial pressure of
the reservoir is 350 × 105 Pa and the residual oil and
connate water saturation is 0.2. Again, we consider ten

Fig. 6 <NPV> of DE, PSO,
and HPSDE versus number
of simulations per realization
for different population size
and maximum iteration
number combinations
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realizations of the model, so that optimization results
are robust against geological uncertainty. Unlike in ex-
ample 1 (which did not require relative permeability),
we employ the Corey model for relative permeability,
with Corey exponents no = nw = 2.45 and relative per-
meability endpoints for oil and water 0.9 and 0.65, re-
spectively. The relative permeability curve is depicted
in Fig. 7, and the remaining system properties are given
in Table 3.

In mathematical probability, we often encounter oc-
cupancy problems where the usual task is to find the
total number of possible placement of m different balls
into n bins (read, placement of two nonidentical wells
in 2,500 possible grid blocks).

However, in this case, we are not interested in the
total number of possible outcomes. We are only inter-
ested in the outcome that yields the highest NPV in
each realization of the reservoir model.

For each of the wells, there are three optimization
variables {x, y, I}, which results in a total of six vari-
ables. The Cartesian coordinates of each well location is
represented by the variables x and y, while the variable
I ∈(0,1) is a binary indicator that represents the well
type (i.e., I = 0 designates a production well, and I = 1
designates an injection well). Such binary indicator was
employed in [72], and we have adopted it in this work
because of simplicity and ease of implementation.

Using a population size of 20 and maximum itera-
tions of 100, five optimization runs of DE, PSO, and
HPSDE algorithms are performed to determine the
placement of the injector and producer. Both wells are
placed at locations corresponding to the solutions from
each run of the algorithms. The system is simulated for
10 years, with the producer constrained to operate at
a BHP of 65 × 105 Pa and the injector operating at a
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Fig. 7 Relative permeability curve for oil and water

Table 3 Systems properties

Properties Symbol Value

Oil viscosity μo 10−3 Pas
Water viscosity μw 10−3 Pas
Oil compressibility co 10−10 Pa−1

Rock compressibility μr 1.8 × 10−10 Pa−1

BHP of 140 × 105 Pa. The volumes produced are used
to compute the NPV in accordance with Eq. 18, and the
computed NPVs are averaged over the number of runs
to determine the average NPV associated with each
algorithm. Accordingly, this is repeated for each real-
ization of the model and the <NPV> for the reservoir
model corresponding to each algorithm is computed
using Eq. 23. The results are plotted and shown in
Fig. 8.

The DE and the PSO algorithms yielded <NPV>

of $543.1 × 106 and $536.9 × 106, respectively. Both
performance values are below the <NPV> of $580.8 ×
106 that is achieved using the HPSDE. Again, it is ob-
served that DE achieved better results than PSO when
the number of simulation is below a threshold value.
This is consistent with the pattern observed in the first
example (see Section 4.1). Beyond this threshold num-
ber of simulations (54 in this case), PSO outperforms
DE until after 1,588 simulations, when both algorithms
begin to converge to the same value of <NPV>. We
also note that DE attained nominally better <NPV>

than PSO after 1,720 simulations. In any case, however,
HPSDE achieved better <NPV> values than the duo
of DE and PSO algorithms. The water saturation maps
of the reservoir from the best run of the algorithms are
shown in Fig. 9.
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Fig. 9 Initial pressure in
106 Pa (top row) and water
saturation map (bottom row)
from realization with best
performance of DE, PSO,
and HPSDE runs
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4.3 Case 3: placement of nine wells in a 3-D reservoir

A 3-D reservoir model is considered in this example.
It contains 50 × 50 × 8 grid blocks with dimension
of 10 m × 10 m × 10 m. The fluid, geological, and
system properties are the same as in case 2, and Fig. 10
shows the permeability distribution of the model. The
task is to determine the optimal type and placement of
nine wells (injectors and producers) for a waterflooding
operation. In this example, we ignore the effects of ge-
ological uncertainty; therefore, the performance mea-
sure is the simple NPV resulting from the fluid profile
generated. Like in case 2, each of the nine wells has
three optimization variables {x, y, I}, which results in
a total of 27 variables. The variables x and y represent
the Cartesian coordinates of each well location, and the
variable I ∈(0,1) is a binary indicator that represents
the well type (producer or injector). Using a popula-
tion size of 50 and maximum iterations of 100, five
runs of DE, PSO, and HPSDE algorithms are used to
determine the placement of the wells. The system is
simulated for 10 years, with the producers constrained
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-11.8

Fig. 10 Permeability field (in millidarcys) for case 3

to operate at a BHP of 65 × 105 Pa and the injectors at
100 × 105 Pa.

It is important to note that there were more produc-
ers than injectors in the best optimization runs of the
algorithms. In this regard, the well split of the producers
to injectors are 5:4, 5:4, and 6:3 for DE, PSO, and
HPSDE algorithms, respectively. The reservoir water
saturation maps from well location obtained from best
runs of the algorithms are shown in Fig. 11.

The fluid profiles are used to compute the NPV cor-
responding to each optimization run of the algorithms.
This is achieved by applying Eq. 18, and the computed
NPVs are averaged over the number of optimization
runs to determine the average performance measure
(NPV) associated with each of the algorithm. The re-
sults are plotted and shown in Fig. 12.

At the end of the total number of simulations, the
performance of DE algorithm was higher than that
of PSO algorithm. It achieved a maximum NPV of
$46.3 × 109, which is 1.7% higher than the NPV of
$45.3 × 109 attained by PSO algorithm. With an NPV
of $49.1 × 109, the performance of HPSDE represents
a 5.7% rise in the performance of DE and a 7.7%
increase in the performance of PSO. Though there were
periods when DE and PSO converge to near and same
NPV measure, the DE outperformed the PSO algo-
rithm at very low and very high numbers of simulations.
The better performance of DE over PSO at low number
of simulation is consistent with the pattern observed in
cases 1 and 2; DE better performance (than PSO) at
very high number of simulation was only observed in
case 2. Although the exact reason for this is unknown
at this time, we note that the overall performance of
PSO is better than the overall performance of DE over
reasonable number of simulations. In all cases, how-
ever, both algorithms did not achieve better NPV than
the HPSDE algorithm. This result is consistent with the
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Fig. 11 Initial pressure in
106 Pa (top row) and water
saturation maps (bottom row)
from best optimization runs
of DE, PSO, and HPSDE
algorithms
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results from the first and second cases where max-mean
objective robust optimization was performed.

Furthermore, we compared the performance of the
three stochastic algorithms against the computed NPV
for a specific well pattern with same number of wells—
an inverted nine-spot arrangement (eight producers
and one injector placed at the center). The inverted
nine-spot arrangement yielded an NPV of $41.9 × 109.
This is considerably lower than the NPV attained by
any of the three metaheuristic algorithms.

In fact, the NPV attained by the DE algorithm is
10% higher than that of the inverted nine-spot well
pattern; PSO and HPSDE algorithms yielded an NPV
that is, respectively, 8 and 17% higher than the NPV
achieved by the inverted nine-spot well arrangement.
This reinforces the belief that metaheuristic algorithms
are able to provide better results than specific well
pattern arrangement of same economic constraints (i.e.,
same number of wells).
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Fig. 12 NPV of DE, PSO, and HPSDE algorithms for case 3

5 Conclusions

Well configuration is an important decision input
that can ultimately determine a reservoir’s production
profile and, therefore, the recoverability of the reser-
voir. For all intents and purposes, the recoverability is
a direct measure of the economic value of the portfolio
or the NPV of the asset. In this paper, we applied three
metaheuristic algorithms in well placement optimiza-
tion problems. One of the algorithms (HPSDE) is a
hybrid of the other two algorithms—DE and PSO. With
NPV as performance measure, we considered three
examples involving the placement of one, two, and
nine vertical wells. Based on suggestion from [13, 66],
five optimization runs of each of the algorithms are
performed in each examples considered, and the re-
sults are averaged over the number of optimization
runs. The HPSDE algorithm consistently outperformed
DE and PSO algorithms. In two of the examples, we
factored in geological uncertainty by addressing the
discrepancies between physical reservoir and reservoir
model. To this end, we performed a max-mean objec-
tive robust optimization of the performance measure,
and HPSDE yielded better results than DE and PSO. In
the third example, we also compared the performance
(NPV) of the metaheuristic algorithms with the NPV
attained via a specific well pattern with same number of
wells (inverted nine-spot arrangement). The stochastic
algorithms yielded higher NPV than the specific well
pattern arrangement. We also showed that the perfor-
mance of DE and PSO is, to an extent, dependent on
the total number of simulations. DE attained higher
NPV than PSO at very low and very high number of
total simulations. However, in all examples considered,
the overall performance of PSO is better than that of
DE. More importantly, we note that HPSDE outper-
formed both algorithms in all cases.
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While we note that these findings are interesting
and potentially useful, we acknowledge that there are
issues or limitations that still need to be addressed.
Chief among these limitations is the issue of control
parameter tuning. For instance, in the second and third
examples, there are instances where DE outperformed
PSO and vice versa. It is important to understand how
these behaviors are influenced by relevant control pa-
rameters of the algorithm. We note that DE parameters
(F = 0.5, CR = 0.1) used in this work are adopted from
[61], and PSO parameters (c1 = c2 = 1.193, ω = 0.721)
are adopted from [47]. For reasons bothering on fair
comparison of results, all three algorithms were used
without parameter tuning of any kind. Although the
population size and the maximum number of iteration
are largely dependent on the complexity of the under-
lying optimization problem and the number of opti-
mization variables, we believe that effective parameter
tuning (which will be computational expensive, as it
will require extra function evaluations) would further
enhance the performance of the algorithms.

A closely related limitation is the issue of usabil-
ity in practical field development optimization scenar-
ios. Indeed, a hybridized metaheuristic optimization
algorithm such as HPSDE is potentially a viable and
promising alternative in reservoir engineering opti-
mization problems; however, issues of usability have
to be addressed before it can be deployed for prac-
tical use in the industry. In some sense, the usability
limitation is intertwined with parameter tuning, as us-
ability would be undoubtedly enhanced if parameter
tuning is sorted out in the design-end of the algorithm,
as opposed to the user-end. This is so because it is
generally unrealistic for industrial end-users to waste
expensive function evaluations in correcting the in-
herent weakness of the design phase of an algorithm.
We also note that the performance of HPSDE algo-
rithm and, indeed, other hybridized stochastic algo-
rithms, could be further improved by incorporating
into the algorithms, knowledge (such as the problem
structure) and relevant information about the under-
lying optimization problem. We plan to consider these
issues in our future work and we also plan to apply
these algorithms in nonconventional well optimization
problems.

The above limitations notwithstanding, this work
demonstrates the potential benefit of hybridized meta-
heuristic algorithms over standard stochastic tech-
niques (such as DE and PSO) in reservoir engineering
applications. Besides the fact that these findings are
promising, the applicability of HPSDE algorithm in
well placement optimization problem shows that hy-
bridization could be key to unlocking some of the chal-

lenging optimization problems in field development
optimization and reservoir engineering in general.
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