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Abstract Due to the limited availability of adjoint
code in commercial reservoir simulators for gradi-
ent calculations, there is a need to explore the ap-
plicability of derivative-free optimization algorithms
for large-scale history matching. This paper tests the
utility of three derivative-free optimization algorithms
(stochastic Gaussian search direction (SGSD), new
unconstrained optimization algorithm (NEWUOA),
and quadratic interpolation model-based algorithm
guided by approximate gradient (QIM-AG)) for his-
tory matching. The SGSD method uses a negative sto-
chastic gradient which is obtained by simultaneously
perturbing all the model parameters using a Gaussian
random vector. For a continuous objective function
and a sufficiently small perturbation size, the stochastic
gradient is always uphill and the expectation of the
stochastic gradient converges to the true gradient as
the perturbation size goes to zero. NEWUOA is a
quadratic interpolation model-based optimization al-
gorithm. At each iteration, the objective function is
first approximated by a quadratic interpolation model.
The quadratic model is then minimized to obtain an
updated reservoir description for the next iteration.
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The number of interpolation points (reservoir simula-
tion runs) required by NEWUOA must be larger than
the dimension of reservoir model parameter space in
order to construct the initial quadratic model. QIM-AG
reduces the required number of interpolation points
by replacing the first-order coefficients that appear in
the quadratic model by an approximate gradient. The
approximate gradient used in this study is an average
of several stochastic gradients from SGSD. To reduce
the dimension of the optimization problem, a simple
parameterization method based on the prior covariance
matrix is applied. The prior covariance matrix is ap-
proximated using an ensemble of unconditional real-
izations. The parameterization avoids the calculation
of the inverse of the prior covariance matrix during
optimization and may further regularize the ill-posed
inverse problem.
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1 Introduction

In the Bayesian framework, the reservoir history-
matching problem is equivalent to the minimization
of an objective function which includes the mismatch
between the predicted and observed data and the mis-
match between the current reservoir model and the
prior mean reservoir model. This objective function can
be minimized with gradient-based or derivative-free
optimization algorithms. Gradient-based optimization
algorithms [2, 6, 7, 9, 10, 14, 23, 27, 30, 32, 42, 54,
63, 64, 68, 72, 74, 76] appear to be the most efficient
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approach for reservoir history-matching problems as
well as for the associated production optimization step
of the closed-loop reservoir management [8, 66, 73, 79].
The required gradient may be calculated efficiently
using the adjoint method based on the formulation
developed by [43], [64], or [41]. However, the adjoint
method requires specific knowledge of the mathemat-
ical details and numerics of reservoir simulators, and
commercial reservoir simulators in most cases do not
provide all gradients that are needed. A cogent discus-
sion of gradient-based and other methods for history
matching can be found in a recent review paper [55].

Derivative-free optimization algorithms [18, 40] re-
quire only the evaluation of the objective function, not
the gradient, and hence the reservoir simulator may
be treated as a black box. These algorithms may be
divided into several categories. One category includes
methods where the search direction is calculated based
on an approximate gradient such as simultaneous per-
turbation stochastic approximation (SPSA) [4, 29, 75]
or ensemble-based optimization [12, 13, 75]. In another
category, the objective function is approximated with
some polynomial function, which is then minimized
with a gradient-based method [16, 18, 60]. Heuristic
random search algorithms such as simulated annealing
[5, 20], genetic algorithm [22, 65], particle swarm op-
timization (PSO) [37, 47, 56], ant colony optimization
[31], and neighborhood algorithm [15] comprise a third
category. This class of derivative-free algorithms uses
heuristic random searches and may find global optima
but typically have very slow convergence rates and re-
quire such a large number of function evaluations that
they are feasible only when the number of variables
is small. The first two categories of the derivative-
free methods mimic the gradient-based optimization
with local searches hence have better convergence rate
compared to heuristic random search algorithms. An-
other class of derivative-free optimization algorithms
is directional-direct search methods [18, 19, 39] which
are popular in the optimization community as it can
be proved that they converge to a local optimum un-
der reasonable assumptions. Our experience with these
methods is minimal, and to the best of our knowledge,
these methods have not been tested for computational
efficiency in history-matching problems. A survey of
different derivative-free optimization methods for gen-
eral optimization problems can be found in Conn et
al. [17]. Zhao et al. [79] compared the performance
of different derivative-free methods for reservoir pro-
duction optimization. This paper will investigate three
derivative-free algorithms: stochastic Gaussian search
direction (SGSD) [45], new unconstrained optimization
algorithm (NEWUOA) [60, 61], and quadratic inter-

polation model-based algorithm guided by an approx-
imate gradient (QIM-AG) [79].

The SGSD algorithm has its root in the SPSA al-
gorithm [69–71]. SPSA as a derivative-free optimiza-
tion algorithm was first applied to history matching
by Gao et al. [29]. In the first-order SPSA algorithm,
the search direction is the negative SPSA gradient,
which is obtained by simultaneously perturbing all the
reservoir model parameters using a random vector. The
elements of the random vector are usually chosen as
samples from the symmetric ±1 Bernoulli distribution.
Although the SPSA gradient is stochastic, its expecta-
tion is approximately the true gradient and it is always
an uphill direction in the vicinity of the current iterate
[29]. To improve the performance of the first-order
SPSA, Gao et al. [29] tested two second-order SPSA
algorithms. The first one applies a stochastic Hessian
inverse matrix, which is obtained using simultaneous
perturbation, and the second one uses the prior covari-
ance matrix as the approximate inverse Hessian matrix.
The latter method is referred to as the simple second-
order SPSA. Examples presented in Gao et al. [29]
showed that the simple second-order SPSA performs
better than all other SPSA algorithms. Li and Reynolds
[45] proposed a new SGSD algorithm, which uses a
negative stochastic gradient as its search direction. The
stochastic gradient in the SGSD method is obtained
by simultaneously perturbing the model parameters
using unconditional realizations sampled from the prior
distribution. The expectation of this stochastic gradient
is the prior covariance matrix times the true gradient, so
the search direction in the SGSD method is similar to
the simple second-order SPSA algorithm. However, the
examples show that SGSD algorithm is more reliable
and efficient than the simple second-order SPSA algo-
rithm in obtaining a set of conditional reservoir mod-
els using the randomized maximum likelihood (RML)
method [38, 52, 54].

NEWUOA is an efficient and robust quadratic
model-based derivative-free algorithm developed by
Powell [60] for unconstrained optimization problems.
Its companion algorithm for bound constrained prob-
lem is bound-constrained optimization by quadratic
approximation (BOBYQA) [62]. As a good quadratic
model can capture the curvature of the objective func-
tion, reasonably fast convergence may be achieved
[46, 50, 58] once the initial quadratic model is built.
The coefficients of this initial quadratic model are
determined using the interpolation condition, i.e., the
quadratic model is made equal to the objective func-
tion at some interpolation points. When the number of
variables n is large, it is not feasible to generate enough
interpolation points ([(n + 1)(n + 2)]/2) to fully deter-
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mine a unique quadratic model. Thus, the number of
interpolation points used to build this initial quadratic
model is usually far smaller than the total number of
coefficients in the quadratic model, in which case the
coefficients in the constant and gradient part of the
quadratic model are fully determined and only some
of the coefficients in the Hessian matrix are calcu-
lated while others are equal to zero. During iteration,
NEWUOA updates the quadratic model by determin-
ing the coefficients in the change of the quadratic
model. These coefficients are calculated by minimizing
the Frobenius norm of the change in the Hessian matrix
subject to the constraints that the quadratic model
satisfies the interpolation conditions [59]. The construc-
tion and update of the quadratic model in NEWUOA
is similar to that of the Broyden–Fletcher–Goldfarb–
Shanno quasi-Newton method [49], which obtains the
updated Hessian matrix by minimizing the change in
the Hessian matrix between iterations subject to the
secant equation. In NEWUOA, the quadratic model is
minimized using a trust-region method to obtain an up-
dated reservoir model at each iteration. Another com-
parable derivative-free optimization (DFO) package
developed by Conn et al. [16] also uses the quadratic
interpolation model. In DFO, the basis functions for
the quadratic model are Newton polynomials while
NEWUOA uses Lagrangian polynomials. The DFO
package chooses a “well-poised” set of interpolation
points close to the current optimal estimate in building
the quadratic interpolation model to avoid numerical
difficulties in optimization, while NEWUOA does not
explicitly check the poisedness of the interpolation
points used to build the quadratic model. Although
NEWUOA does not directly check the interpolation
set to ensure it is poised, NEWUOA does contain
a procedure for changing the interpolation set which
aims to improve the position of interpolation set and
maintain the quality of the quadratic model. Fasano et
al. results suggest it may be possible to skip checks on
the quality of the interpolation model. The Fasano et
al. [24] results, however, are based on computational
experiments and are not supported by rigorous theory.
Conn et al. [18] suggest that DFO should be used for
small-scale optimization problems with less than 50
parameters.

The major challenge in applying NEWUOA and
BOBYQA to a large-scale optimization problem is
that the methods require a large number of interpo-
lation points (this number must be larger than the
dimension of the optimization problem) to build the
initial quadratic model. Note that the computational
time required may be significantly reduced with parallel
computing in a cluster environment. For computing

environments without computer-cluster access, Zhao
et al. [79] proposed a QIM-AG to reduce the num-
ber of interpolation points required for building initial
quadratic model. In the QIM-AG algorithm, the objec-
tive function is approximated by a quadratic model as in
NEWUOA. The gradient part of the quadratic model
at the current iterate is set equal to an approximate
gradient, which can be either a stochastic gradient as
in SGSD or a simplex gradient. The Hessian matrix of
the quadratic model is determined by minimizing the
Frobenius norm of the Hessian matrix subject to the in-
terpolation condition at some points as in NEWUOA.
The bound constraints in the reservoir model parame-
ters are dealt with by simple truncation as discussed in
Zhao et al. [79], i.e., when a parameter is outside of the
bounds, it is simply set equal to the value of its nearest
bound.

In a history-matching problem that adjusts the reser-
voir gridblock properties, the number of parameters
can be quite large. To reduce the computational cost
and ill-posedness in this inversion problem, one often
reduces the number of parameters through some para-
meterization method. A natural way to parameterize a
rock property field is to divide the reservoir into zones
and assume uniform properties in each zone which
may contain several reservoir gridblocks. Zonation was
introduced to the history-matching literature by [33].
The gradzone procedure of [6] is similar to zonation.
Although a property field does not have to be constant
within a gradzone, the property at all gridblocks within
a specific gradzone is multiplied by the same constant
during history matching. Although the zonation and
gradzone methods are simple, they can introduce non-
physical discontinuities in a rock property field across
the boundary of a zone or gradzone. Parameterization
methods using basis vectors avoid these discontinuities.
When using basis vectors, the original vector of reser-
voir parameters is represented as a linear combina-
tion of basis vectors and the new parameters are the
coefficients in this linear combination. The subspace
method [2, 51, 63] uses gradients of subgroups of data
mismatch term and gradients of the model mismatch
term in the objective function as the basis vectors.
Tavakoli and Reynolds [72] argued that the principal
right singular vectors of the dimensionless sensitivity
matrix form the optimal basis for parameter reduction
[72]. This parameter reduction method was also used
in Rodrigues [64]. As the basis vectors in these meth-
ods use gradient information, they cannot be used in
derivative-free methods. Assuming that a good prior
geostatistical knowledge of the reservoir is available
and reservoir models are Gaussian, one may use the
eigenvectors corresponding to the largest eigenvalues
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of covariance matrix as the basis vectors. The method is
known as linear principal component analysis (PCA) or
Karhunen–Loeve decomposition, which has been ap-
plied with gradient-based history matching [30, 53, 63],
with the ensemble Kalman filter (EnKF) [78] and with
PSO [47]. For non-Gaussian models (such as facies
reservoir models or reservoirs with fluvial channels),
one may use nonlinear kernel PCA (KPCA), which
preserves the high-order non-Gaussian moments [34,
67]. As in the linear PCA, KPCA relies on good prior
knowledge of the reservoir. When this prior geological
information is not available, one may apply the discrete
cosine transform [34–36], which constructs basis vectors
from cosine functions and does not explicitly require
prior geological knowledge, although the prior geolog-
ical knowledge may lead to better reservoir parameter
estimation.

In this paper, we always assume a Gaussian prior
model and apply a simple parameterization based on
the prior covariance matrix, which is approximated
using a set of unconditional reservoir models. This
parameterization is effectively the same as the one
used in the ensemble Kalman filter where any updated
vector of model parameters is a linear combination of
the initial ensemble of vectors of model parameters
[1, 44]. The optimization is done in the parameter-
ized space, which has a much smaller dimension. The
three optimization algorithms—SGSD, QIM-AG, and
NEWUOA—are compared through three synthetic
reservoir cases including the Brugge test reservoir [57].

2 Model parameterization

Based on the Bayesian statistical framework, the pos-
terior probability density function (pdf) conditioned to
the observation data (dobs) is given by

f (m|dobs) = aexp(−O(m)), (1)

where O(m) is the objective function,

O(m) = 1

2
(m − mprior)

TC−1
M (m − mprior)

+1

2
(g(m) − dobs)

TC−1
D (g(m) − dobs). (2)

In Eq. 2, m is an Nm-dimensional column vector,
which includes all the reservoir model parameters.
The prior model for m is Gaussian with mean mprior

and covariance matrix CM; dobs is an Nd-dimensional

observation data vector and the measurement errors
for dobs are assumed to be Gaussian with zero mean
and covariance matrix CD; g(m) is the corresponding
predicted data vector obtained by running the reservoir
simulator. The maximum a posteriori (MAP) estimate
is obtained by minimizing the objective function of
Eq. 2.

For any realistic history-matching problem where we
wish to estimate gridblock rock properties, the dimen-
sion Nm of the model parameter vector m is large, on
the order of 106 or more, which makes the history-
matching problem very ill-conditioned for typical co-
variance matrices. Because of this ill conditioning, one
is often forced to damp the changes in the objective
function at early iterations of any gradient-based op-
timization algorithm by artificially increasing the data
measurement error variance (see, for example, Gao
et al. [27] and Tavakoli and Reynolds [72]. Here, we
apply a simple model parameterization based on the
prior model to improve the conditioning of the inverse
problem.

We first generate a set of unconditional reservoir
models sampled from the prior Gaussian distribu-
tion, i.e., mj, j = 1, · · · , Ne. Note that Ne � Nm for
the large-scale history-matching problems. The mean
reservoir model is

m̄ = 1

Ne

Ne∑

j=1

mj. (3)

The prior covariance matrix can be approximated by a
set of realizations, i.e.,

CM ≈ 1

Ne − 1

Ne∑

j=1

(mj − m̄)(mj − m̄)T

= 1

Ne − 1
�M�MT , (4)

where �M is an Nm × Ne matrix with its j th column
equal to (mj − m̄). Applying the singular value decom-
position to �M yields

�M = U�VT , (5)

where U and V consist of the left and right singular
vectors and � contains the singular values on its diag-
onal. Note that there are at most Np ≤ Ne − 1 nonzero
singular values because the matrix on the right-hand
side of Eq. 4 has a rank less than or equal to Ne − 1.
Substituting Eq. 5 into Eq. 4 yields

CM ≈ 1

Ne − 1
U�VT V�TU T = 1

Ne − 1
Up�

2
pU T

p , (6)
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where the diagonal matrix �p contains the Np nonzero
singular values and the columns of Up are the corre-
sponding left singular vectors. The pseudo-inverse of
CM is

C†
M = (Ne − 1)U p�

−2
p U T

p . (7)

We now parameterize the model vector in terms of the
vector p, which is defined by

m = m̄ + U p�p√
Ne − 1

p. (8)

Note that Eq. 8 simply indicates that we restrict the
model space so that m − m̄ is a linear combination
of the columns of U p. If p is a random vector with
mean zero and Np × Np identity covariance matrix INp ,
m defined by Eq. 8 represents an approximate sam-
ple from N(m̄, CM). Replacing C−1

M with the pseudo-
inverse C†

M and mprior with m̄ in Eq. 2 yields

O(p) = 1

2
pT p

+1

2

(
g(m(p)) − dobs

)T
C−1

D

(
g(m(p)) − dobs

)
. (9)

Note that m̄ = mprior and C†
M = C−1

M are only true when
Ne → ∞.

During optimization, we adjust the parameter vector
p to minimize the objective function O(p) for the
MAP estimate. Normally, one wishes to quantify the
uncertainty in the reservoir model and in the reser-
voir performance predictions. One useful method for
uncertainty quantification is the RML method [52].
With the parameterization method, a set of conditional
realizations, which provide an approximate sampling
of the pdf in Eq. 1, can be obtained using the RML
method by minimizing the following objective function,

Or(p) = 1

2
(p − puc)

T(p − puc)

+1

2

(
g(m(p))−duc

)T
C−1

D

(
g(m(p))−duc

)
, (10)

where puc is an unconditional sample from N(0, INp)

and duc is a perturbed observation vector obtained by
sampling the Gaussian distribution, N(dobs, CD).

In the examples considered here, we use p = 0,
which corresponds to the prior mean model as the
initial guess for the MAP estimate. For uncertainty
quantification using the RML method, we use p = puc

as the initial guess.

3 SGSD algorithm

The SGSD algorithm iteratively minimizes the objec-
tive function of Eq. 9 to generate a MAP estimate
and Eq. 10 to generate a conditional realization. The
reservoir model update equation for iteration � + 1 is

p�+1 = p� + a� d�

‖ d� ‖∞
, (11)

where d� is the stochastic search direction and d� =
−ĝ�. Here, ĝ �(p�) is a stochastic gradient obtained with
simultaneous Gaussian perturbation as

ĝ�(p�) = O(p� + ε�z�) − O(p�)

ε�
z�, (12)

where the elements of the perturbation vector z� are
Gaussian random standard normal deviates and ε� is
the perturbation size. It is shown in Li and Reynolds
[45] that this stochastic gradient is an uphill direction in
the vicinity of p� and the expectation of ĝ� is the true
gradient of the objective function as the perturbation
size ε� goes to zero. Due to the latter property of this
stochastic gradient, the search direction is defined as
the average of several stochastic gradients, i.e., d� =
−ĝ� where

ĝ� = 1

Ng

Ng∑

i=1

ĝ�
i

(
p �

)
. (13)

We would expect that averaging a larger number of
SPSA gradients will yield an improved approximation
of the true gradient. However, experiments in [21]
indicate that using the average of five to ten SPSA
gradients to compute the search direction is optimal in
terms of overall computational efficiency. As shown in
[21] for production optimization problems, this result
appears to hold regardless of the number of parame-
ters. In the examples of this paper, we use Ng = 5 as an
approximate to the true gradient. However, in the first
example, we explore the effect of Ng on the results.

The stochastic gradient in Eq. 12 is sensitive to the
choice of the perturbation size ε�. After some experi-
mentation, we set ε� to 0.01 for all examples presented
in the paper. The stepsize a� is determined by a simple
line search with the initial stepsize a0 = 0.25. If the
objective function does not decrease, a� is cut by half
until we got a lower objective function or the maximum
number of stepsize cuts is reached, which is 4 in the ex-
amples presented here. If the maximum number of cuts
is reached without finding a p with O(p) < O(p �), then
we do not update � or p. Instead, we simply generate a
new search direction by averaging five new stochastic
gradients and do the iteration again. If at this repeat



122 Comput Geosci (2013) 17:117–138

of the iteration, we cannot obtain a decrease in the
objective function, the algorithm is terminated. When-
ever we do obtain a decrease in the objective function,
we evaluate for convergence based on the convergence
criterion

| O(p �+1) − O(p �) |
O(p �+1)

≤ 10−3, (14)

with the maximum number of simulation runs allowed
equal to 600 for the first example and 400 for other
examples.

4 NEWUOA

NEWUOA first constructs the initial quadratic model
using Ni specially designed interpolation points. This
quadratic model is then updated at each iteration as a
new interpolation point is included in the interpolation
set. In NEWUOA, the number of interpolation points,
Ni, is fixed; thus, one interpolation point has to be
removed when one new interpolation point is included
[60]. The quadratic model at the �th iteration is

Q�(p) = c� + (p − p0)
T g� + 1

2
(p − p0)

T G�(p − p0),

(15)

where p0 is a fixed point. The coefficients c�, g�, and
G� are, respectively, a scalar, an Np-dimensional vec-
tor, and an Np × Np-dimensional symmetric matrix.
With a new interpolation point, NEWUOA updates the
change of the quadratic model,

δQ �(p) = Q �(p) − Q �−1(p)

= δc �+(p− p0)
Tδg �+ 1

2
(p− p0)

TδG �(p − p0),

(16)

subject to the interpolation conditions at the interpola-
tion set p̂ �

k , i.e.,

δQ �( p̂ �
k) = O( p̂ �

k) − Q �−1( p̂ �
k) k = 1, 2, ..., Ni. (17)

The total number of coefficients for the quadratic
model in Eq. 16 is

N∗
i = (Np + 1)(Np + 2)

2
, (18)

so N∗
i interpolation conditions (Eq. 17) are required to

fully determine all the coefficients, which in turn re-
quires N∗

i objective function evaluations at the interpo-
lation points. In our problems, each objective function
evaluation requires a reservoir simulation run. Thus,
when the number of model parameters (Np) is large

and the reservoir simulation model is large, it is worth-
while to try to minimize the number of function evalu-
ations required. In general, NEWUOA only requires
the number of interpolation points Ni be within the
interval [Np + 2, N∗

i ] and the originally recommended
value for Ni was 2Np + 1 [60]. However, for many test
problems with a large number of variables, experiments
in [61] show that using Ni = Np + 6 results in faster
convergence. The extra degrees of freedom are used to
minimize the Frobenius norm of δG, which is defined
as

‖δG �‖2
F =

Np∑

i=1

Np∑

j=1

(
δG �

ij

)2
. (19)

This constrained minimization problem can be
solved by minimizing the Lagrange function

L
(
δc�,δg�,δG�,λ�

)=1

4

Np∑

i=1

Np∑

j=1

(
δG �

ij

)2−
Ni∑

k=1

λ�
k

×{
δQ �

(
p̂ �

k

)−(
O

(
p̂ �

k

)−Q �−1
(

p̂ �
k

))}
.

(20)

The minimum is achieved when the first-order deriv-
atives ∇δc� L, ∇δg� L, ∇δG � L, and ∇λ� L are all zero which
yields the following (Ni + Np + 1) system of equations,

(
A PT

P O

)�
⎛

⎝
λ�

δc�

δg�

⎞

⎠ =
⎛

⎝
R �

0
0

⎞

⎠ , (21)

where the matrix A � is Ni × Ni and the entry in the ith
row and the kth column is given by

A �
ik = 1

2

{(
p̂ �

i − p0
)T (

p̂ �
k − p0

)}2
. (22)

R � is an Ni-dimensional vector with the components
O( p̂ �

k)−Q �−1( p̂ �
k) , k=1, 2, ..., Ni and P � is (Np + 1)×

Ni matrix, defined by

P � =
(

1 1 ... 1
p̂ �

1 − p0 p̂ �
2 − p0 ... p̂ �

Ni
− p0

)
. (23)

Note that setting ∇δG � L = 0 yields the relationship
between G � and λ�

k ’s,

δG � =
Ni∑

k=1

λ�
k

(
p̂ �

k − p0
) (

p̂ �
k − p0

)T
. (24)

The parameters δc�, δg�, and λ� can then be obtained
by solving Eq. 21. Substituting these parameters into
Eq. 24 and then 16 yields the updated quadratic model
Q�(p).
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The updated quadratic model is minimized using a
trust-region conjugate gradient method [60], i.e.,

min Q �
(

p �−1
opt + δp �

)
, subject to ‖ δp � ‖≤ ��, (25)

where p �−1
opt is the optimal point found so far and �� is

the trust-region radius.

5 QIM-AG algorithm

The major challenge in applying NEWUOA to large-
scale optimization problems is that the number of in-
terpolation points has to be larger than the dimension
of the problem for initial quadratic model construc-
tion as it requires the estimation of the gradient of
the quadratic model. To alleviate this problem, Zhao
et al. [79] proposed QIM-AG. In the proposed QIM-
AG algorithm, instead of determining c� and g� in the
quadratic model (Eq. 15) using interpolation points,
c� is fixed at the best function evaluation, i.e., c� =
O(p�−1

opt ), and g� is replaced with ĝ�, the average of sev-
eral stochastic gradients, i.e., Eq. 13 at each iteration.
The quadratic function now becomes

Q �(p) = O
(

p �−1
opt

)
+

(
p − p �−1

opt

)T
ĝ �

+1

2

(
p − p �−1

opt

)T
G �

(
p − p �−1

opt

)
. (26)

To determine G �, the QIM-AG algorithm minimizes
the Frobenius norm of G � under the constraints that
the quadratic model of Eq. 26 is equal to the objective
function at all interpolation points p̂ �

k ,

Q �
(

p̂ �
k

) = O
(

p̂ �
k

)
, k = 1, · · · , Ni. (27)

QIM-AG requires a minimum of one interpolation
point, i.e., Ni ≥ 1 in addition to p �−1

opt while NEWUOA
requires Ni ≥ Np + 2.

Following the derivation in NEWUOA and Zhao et
al. [79], the updated quadratic model at the �th iteration
is given by

Q �(p) = O
(

p �−1
opt

)
+

(
p − p �−1

opt

)T
ĝ �

+1

2

Ni∑

k=1

λ�
k

{(
p − p �−1

opt

)T (
p̂ �

k − p �−1
opt

)}2

.(28)

Using the interpolation condition of Eq. 27 in Eq. 28
yields Ni linear equations. These equations can be writ-
ten in a matrix form as

A �λ � = R �, (29)

where λ� = [λ�
1, λ

�
2, · · · , λ�

Ni
]T ; the matrix A � has the

elements

A �
ik = 1

2

{(
p̂ �

i − u�−1
opt

)T (
p̂ �

k − p�−1
opt

)}2

, (30)

and vector R � has the elements

R �
k = O

(
p̂ �

k

) − O
(

p�−1
opt

)
−

(
p̂ �

k − p�−1
opt

)T
ĝ �, (31)

for k = 1, · · · , Ni. Solving Eq. 29 for λ� and substituting
it into Eq. 28 yields the interpolation quadratic model
for the QIM-AG algorithm. Similar to Eq. 25, this
quadratic model is then minimized with a trust-region
method (DGQT routine from the MINIPACK2 [48])
to obtain an updated model, p̃ �

opt = p �−1
opt + δp �

opt. If
p̃ �

opt yields a strict decrease in the objective function,
i.e., O( p̃ �

opt) < O(p �−1
opt ), it is accepted as the optimal

point for the �th iteration, i.e., p �
opt = p̃ �

opt. Then, the
quadratic model for the next iteration, Q �+1, is up-
dated using O(p �

opt) as the constant part, a new average
stochastic gradient from Eq. 13 as the gradient part,
and p �

opt as an additional interpolation point for the
Hessian matrix. If the norm of the change in model
‖δp �‖ is equal to the trust-region radius, i.e., ‖δp �‖ =
��, the trust-region radius is doubled for the next
iteration as long as the updated trust-region radius is
less than the maximum trust-region radius specified,
�max, for the algorithm, i.e., ��+1 = min(�max, 2��).
However, if ‖δp �‖ < ��, the trust-region radius does
not change, i.e., ��+1 = ��. If the current iteration
does not yield a strict decrease in the objective function,
i.e., if O( p̃ �

opt) ≥ O(p �−1
opt ), p �

opt is set to p �−1
opt and the

trust-region radius is cut by half, i.e., ��+1 = 0.5��.
However, the quadratic model is updated using p̃ �

opt as
an additional interpolation point, which is the updating
strategy used in “wedge method” [46]. The algorithm
converges when the maximum number of iteration is
reached or �� ≤ �min, where �min is the minimum
trust-region radius specified.

In the examples, the initial trust-region radius �0

for QIM-AG is always set equal to 2; this value was
determined by experimentation (see the first exam-
ple) and has worked well for all examples we have
tried. �min = 0.01 and �max = 5.0 in all examples. In
the QIM-AG algorithm, the number of interpolation
points, Ni, increases as the iterations proceed as long
as Ni ≤ 5Np. When the number of interpolation points
is greater than 5Np, the farthest points from the optimal
point are removed from the interpolation set.
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6 Examples

In this section, we apply the three derivative-free op-
timization algorithms (SGSD, NEWUOA, and QIM-
AG) to three synthetic reservoir cases: a 2D synthetic
reservoir model, the well-known PUNQ reservoir [25],
and the Brugge field [57].

6.1 Example 1: 2D synthetic model

This horizontal 2D synthetic model is the same as the
one used in Zafari and Reynolds [77]. The reservoir has
20 × 30 gridblocks. For parameterization, we generate
100 initial unconditional realizations of the porosity and
log-permeability fields (i.e., Ne = 100). Figure 1 shows
three initial realizations and the corresponding mean of
log-permeability. The true horizontal log-permeability
map with the location of six wells is shown in Fig. 2a.
Note that permeability is isotropic. Wells INJ1, Pro2,
and Pro5 lie along a high-permeability channel and the
other wells are drilled in relatively low-permeability re-
gions. The true reservoir porosity and log-permeability
fields were generated using sequential Gaussian co-
simulation. The well injection and production schedule
is the same as that in Zafari and Reynolds [77]. The
first well was put on production at time 0 with an oil
rate of 100 STB/day, and every 90 days, one more well
was put on production at the same rate of 100 STB/day.
After the sixth well had produced for 90 days, the first
well was converted to an injector with an injection
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Fig. 1 Some initial realizations of log-permeability field and the
mean of the ensemble of realizations, example 1
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Fig. 2 The MAP estimate of log-permeability field compared
with the truth, example 1

rate of 1,000 STB/day and the oil production rate of
all other wells was increased to 200 STB/day. At day
5,850, the injection rate of well INJ1 was increased to
2,000 STB/day, Pro5 was shut in due to excessive water
production, and the oil production rate of all other
production wells was increased to 300 STB/day. The
dynamic well data to be history-matched are bottom
hole pressure (BHP) of the injector and producers,
gas production rate (GPR), and water production rate
(WPR) of the production wells. The observed data
(dobs) are generated by adding Gaussian noise to the
predicted data generated with the true porosity and
permeability fields. Random normally distributed noise
with zero mean and standard deviation equal to 5 % of
the true data was added to the true data to define the
observed data.

In NEWUOA, the initial trust-region radius �0 and
the initial value of its lower bound, ρ, are both equal
to 0.4. For convergence, the minimum value for ρ is
ρend = 0.1. The total number of interpolation points
is Ni = Np + 6 where Np = Ne − 1 after parameteri-
zation. For the QIM-AG algorithm, the initial trust-
region radius is set to �0 = 2.0 with an upper and lower
bound of �max = 5.0 and �min = 0.01, respectively. An
average of five stochastic gradients is used to define
the search direction, i.e., Ng = 5 in Eq. 13. Figure 2b–
d shows the MAP estimates of the log-permeability
fields obtained with algorithms QIM-AG, SGSD, and
NEWUOA. As shown in the figure, all of the above
methods give results that capture the main geological
features of the true permeability field, especially for
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the high-permeability region connecting Pro5 and Pro2.
However, the MAP estimates of the log-permeability
field is smoother than the truth model as expected.
The porosity field has a correlation coefficient of 0.8
with the permeability field, and similar MAP estimates
of porosity are obtained from the three optimization
algorithms.

Figure 3 illustrates the BHP data match up to day
7,290 and prediction of BHP until day 9,000 of two
wells (INJ1 and Pro4). In the figure, the red curve is the
true BHP data obtained by running the true geological
model and the red circles are the observed BHP data.
The initial guess (prior mean) gives a prediction far
from that of the true model. After history matching, the
predictions from the MAP estimates generated with the
three optimization algorithms match the observations
reasonably well. The WPR data match for Pro2 and
Pro5 is shown in Fig. 4. Note that Pro2 and Pro5
are the only two wells that have water breakthrough
before day 9,000 and Pro5 was shut in around day 6,000
due to excessive water production. The prior mean
model predicts no water breakthrough for both wells.
Figures 5 and 6, respectively, show the matches and
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Fig. 3 BHP data match, example 1
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Fig. 4 Water production rate data match, example 1

future predictions of the gas production rate at Pro4
and the field cumulative water production. As shown
in Figs. 3, 4, 5, and 6, good data matches and future
predictions are obtained for all the algorithms.

Figure 7 shows the convergence rates of different
algorithms starting with the prior mean as the initial
guess. With the maximum allowable simulation runs
equal to 600, the three optimization algorithms yield
almost the same objective function value of about 3,400,
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Fig. 5 Gas production rate data match of Pro4, example 1
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Fig. 6 Field cumulative water production, example 1

while the QIM-AG method (red curve) requires far
fewer simulation runs than SGSD and NEWUOA.
Note that optimization in NEWUOA starts after the
construction of the initial quadratic model, which uses
about 100 simulation runs shown as the flat section
in the objective function of Fig. 7. At the early itera-
tions, the QIM-AG algorithm behaves similar to that of
the SGSD method as there are very few interpolation
points available and the minimization of the quadratic
model is basically done along the hyperplane deter-
mined by the previous optimal point and the SGSD
search direction. At late iterations where more inter-
polation points are added, the rate of decrease of the
objective function in the QIM-AG algorithm is similar
to that of NEWUOA.

For QIM-AG and NEWUOA algorithms, we per-
formed some tests for parameter selection of the ini-
tial trust-region radius �0 in this example. The other
parameters are all the same as defined above. The
convergence performance for different values of �0 for
QIM-AG algorithm is shown in Fig. 8 and Table 1.
For the three cases, when �0 ≤ 3.0, the final objective
function value at convergence is about 3,400, which
is obviously smaller than the final objective function
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Fig. 7 Objective function Eq. 9 versus simulation runs, example 1
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Fig. 8 Objective function versus iterations with different �0 for
QIM-AG algorithm, example 1

obtained when �0 ≥ 4.0. When �0 = 1.0, we obtain
a slightly slower convergence rate, i.e., more simula-
tion runs are required to obtain convergence, than for
�0 = 2.0. In the following two examples, we set the
parameter for �0 to 2.0 in QIM-AG algorithm. The
performance of convergence rates for NEWUOA can
be seen in Fig. 9 and Table 2. As shown in Fig. 9, with
a larger �0, NEWUOA may result in a faster decrease
in the objective function at early iterations but results
in a final value of the objective function that is larger,
especially when �0 ≥ 1.0. A good choice for �0 seems
to be between 0.1 and 1.0, and we simply set �0 to 0.4
in the next two examples.

For the QIM-AG algorithm, another key parame-
ter that may affect the computational behavior is the
number of stochastic gradients Ng averaged to obtain
the search direction at each iteration (see Eq. 13).
Because the expectation of the SPSA gradient is equal
to the true gradient, one might expect that averaging
more SPSA gradients in Eq. 13 would yield superior
results. While it is true that one might expect to obtain
a better approximation to the true gradient by using
a larger value of Ng, increasing Ng also increases the
number of reservoir simulation runs required to reach
convergence. For production optimization problems,
[21] found that using an average of five to ten SPSA
gradients was optimal for virtually all of the example
considered, specifically using Ng > 10 did not generally
yield a significant improvement in the optimum but

Table 1 The convergence
rates with different �0 for
QIM-AG algorithm,
example 1

�0 Total Final
simulations objective

function

1.0 469 3,403.5
2.0 313 3,390.2
3.0 349 3,427.4
4.0 403 4,722.6
5.0 421 6,261.1
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Fig. 9 Objective function versus simulations with different �0

for NEWUOA algorithm, Example 1

Table 2 The convergence
rates with different �0 for
NEWUOA algorithm,
example 1

�0 Total Final
simulations objective

function

0.1 600 3,534.9
0.4 600 3,440.7
1.0 600 4,369.8
2.0 600 4,904.1
3.0 600 5,541.6
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Fig. 10 Objective function versus iterations with different Ng for
QIM-AG algorithm, example 1

Table 3 The convergence
rates with different Ng for
QIM-AG algorithm,
example 1

Ng Total Final
simulations objective

function

5 313 3,390.2
10 419 4,225.0
20 883 3,023.1
30 834 2,938.6

invariably required far more simulation runs to reach
convergence. For the history-matching problem of ex-
ample 1, we present in Fig. 10 and Table 3 the conver-
gence rates and the minimum values of the objective
function obtained for different values of Ng. In this
experiment, we use �0 = 2. The lowest value of the
objective function (best history match) was obtained
by averaging 30 SPSA gradients but the result is not
substantially better than the result obtained with Ng =
5, and when averaging 30 gradients, 834 simulation
runs were required to reach convergence whereas only
313 simulation runs were required for the termination
of the algorithm when only five SPSA gradients were
averaged. As it would be costly to do experiments to
determine the optimal value of Ng, we have opted to
simply use Ng = 5 in all cases.

6.2 Example 2: PUNQ reservoir

PUNQ-S3 is a three-phase, three-dimensional reservoir
model [3, 25, 28, 29]. Figure 11 shows the true hori-
zontal log-permeability distribution for all five layers.
The blue region at the bottom and left corner is a
strong aquifer. In this study, we simulate the aquifer
numerically with high porosity (0.95) and 100 % water
saturation for the aquifer gridblocks as in Gao [26].
The reservoir is bounded with two faults to the right
and top. A small gas cap is located at the center of the
dome-shaped structure. There are six production wells
drilled around the gas cap. No producers are completed
in the top two layers. The production data used for

5 10 15 20

5

10

15

20

25

30

5 10 15 20

5

10

15

20

25

30

ο P1

ο
P5

5 10 15 20

5

10

15

20

25

30

ο P1

ο P4

ο
P5

ο
P11

ο
P12

ο
P15

5 10 15 20

5

10

15

20

25

30

ο P1

ο P4

ο
P12

5 10 15 20

5

10

15

20

25

30

−2

0

2

4

6

Fig. 11 The true log-permeability field, example 2
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Fig. 12 The MAP estimate of log-permeability field, example 2
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Fig. 13 BHP match data for PRO1, example 2

history matching are BHP, GOR, and WCT, which are
the same as in Gao et al. [29] with the same production
schedule. The wells were produced for 1 year and then
shut in for a 3-year extended well test. After they
were reopen, the wells were producing at a rate of
943.5 STB/day with a minimum bottomhole pressure
constraint of 14.7 psi. The observations between time
0 and day 2,936 are used for history matching, and then
the estimated reservoir models are run for prediction
up to day 6,000. The reservoir model parameters are
horizontal and vertical gridblock log-permeability and
porosity. The number of realizations used for parame-
terization is 100 and Np = 99.

The optimization parameters for the QIM-AG al-
gorithm are set to �0 = 2.0 with an upper and lower
bound of �max = 5.0 and �min = 0.01. For NEWUOA,
the initial trust-region radius is 0.4 and its minimum
value for convergence is 0.1. The total number of in-
terpolation points is Ni = Np + 6. The final MAP esti-
mates of the horizontal log-permeability for each layer
obtained by the optimization algorithms are presented
in Fig. 12. As shown in the figure, all algorithms yield
log-permeability fields that give a vague hint of the
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Fig. 14 GOR match data for PRO1, example 2
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Fig. 15 WCT match data for PRO11, example 2

channelized geological features of the true permeability
field (Fig. 11), but the estimated log-permeability fields
are roughly right considering that the initial guess for
history matching is the prior mean, which has a constant
log-permeability value for each layer. Also by nature,
the MAP estimate is smoother than individual realiza-
tions (see Gao et al. [28]).

Figure 13 shows the BHP data match of well PRO1.
The spikes are due to the 15-day shut-in each year.
The initial model cannot maintain the oil production
rate specified, so the well produces at a minimum bot-
tomhole pressure of 14.7 psi. After history matching,
the data predictions from the MAP estimates of all
the three methods are quite close to the true (red
curve), even in the forecasting period from day 2,936
to day 6,000. Figures 14 and 15 illustrate the GOR
data match of well PRO1 and the WCT data match
of well PRO11, respectively. All methods lead to an
improved data match over that obtained with the prior
model. However, the NEWUOA algorithm underesti-
mates the WCT of PRO11 compared to the true in the
prediction period.

The convergence performance of the different algo-
rithms is shown in Fig. 16. The QIM-AG and SGSD
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Fig. 16 Objective function versus simulation runs, example 2

algorithms, respectively, converged after 193 and 313
simulation runs, and NEWUOA was terminated as
it reached the maximum number of simulation runs,
which is 400. All algorithms reached a minimum objec-
tive function value close to 100. Similar to example 1, if
we plotted the NEWUOA results in Fig. 13 with 106
subtracted from the number of simulation runs, then
the NEWUOA and QIM-AG results would roughly
overlay.
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Fig. 17 Data match from unconditional realization, example 2
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To quantify uncertainty in the future reservoir per-
formance predictions, ten conditional realizations were
generated using the RML method by minimizing Eq. 10
with different (puc, duc) pairs using the QIM-AG algo-
rithm. The realization puc is sampled from the normal
distribution N(0, INp). The predictions of cumulative
oil, water, and gas production for the unconditional
and conditional realizations are shown in Figs. 17 and
18. In all the figures, the red curve represents the
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Fig. 18 Data match from conditional realization, example 2
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Fig. 19 The log-permeability field of one unconditional realiza-
tion, example 2

true prediction, the blue curve represents either the
prediction based on the prior mean model or the MAP
estimate, and the gray curves are the predictions from
the unconditional or conditional realizations depending
on the figure considered. Figure 17 shows that the
unconditional and prior mean models do not provide
good predictions. After history matching with the QIM-
AG algorithm, the conditional realizations and MAP
estimate reduce the uncertainty in predictions and give
predictions that are close to those of the truth (Fig. 18).
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Fig. 20 The log-permeability field of one conditional realization,
example 2
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Fig. 21 The top structure of Brugge field, example 3

Figures 19 and 20, respectively, present an uncon-
ditional realization of the log-permeability field and
its corresponding conditional realization after matching
the data. The figures show that limited model changes
are made to match the data. The most noticeable
change is in layer 4, where the permeability in most
gridblocks was increased. The conditional realization is
much rougher than the MAP estimate in Fig. 12.

6.3 Example 3: Brugge reservoir

The Brugge field is a synthetic reservoir developed
by TNO [57] as a benchmark study to test different
algorithms for closed-loop reservoir management. The
simulation model has a grid system of 139 × 48 × 9. The
total number of active gridblocks is 44,550. The top
structure map and well locations are shown in Fig. 21.

Layer 1

20 40

20
40
60
80

100
120

Layer 2

20 40

20
40
60
80

100
120

Layer 3

20 40

20
40
60
80

100
120

Layer 4

20 40

20
40
60
80

100
120

Layer 5

20 40

20
40
60
80

100
120

Layer 6

20 40

20
40
60
80

100
120

Layer 7

20 40

20
40
60
80

100
120

Layer 8

20 40

20
40
60
80

100
120

Layer 9

20 40

20
40
60
80

100
120

−2

−1

0

1

2

3

4

5

6

7

8

9

Fig. 22 Prior mean log-permeability model, example 3
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(a) QIM-AG
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(b) SGSD
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Fig. 23 MAP estimate of log-permeability fields, example 3
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Fig. 24 BHP data match, example 3
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Fig. 25 Oil production rate (OPR) data match, example 3
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Fig. 26 Field production rate, example 1

There are 30 vertical wells in the reservoir including
20 producing wells and ten water injection wells. The
target liquid rate for each producer is 2,000 STB/day
with a minimum bottomhole pressure constraint of
725 psi. The target rate for each water injector is
4,000 STB/day and the maximum allowable pressure
is 2,611 psi. Observation data including bottomhole
pressure or water injection rates at injection wells
and bottomhole pressure or oil and water production
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Fig. 27 Objective function versus the simulation numbers,
example 3

rates at producers were provided at 1-month inter-
vals for the first 10 years. For history matching, we
use the same noise level as in Chen et al. [11]. The
parameters to be estimated are the following proper-
ties of each gridblock: net-to-gross ratio, porosity, ini-
tial water saturation, and absolute permeability in the
x-, y-, and z-directions. Figure 22 shows the prior mean
reservoir model of horizontal log permeability obtained
by averaging the ensemble of 104 initial realizations.
For parameterization, we use all the 104 realizations
provided by TNO and the number of model parame-
ters.

The optimization parameters for the QIM-AG al-
gorithm are set to �0 = 2.0 with an upper and lower
bound of �max = 5.0 and �min = 0.01. For NEWUOA,
the initial trust-region radius is 0.4 and its minimum
value for convergence is 0.1. The total number of in-
terpolation points is Ni = Np + 2.

The MAP estimates of log-permeability field ob-
tained by the three algorithms are shown in Fig. 23. By
visual comparison, QIM-AG, NEWUOA, and SGSD
give similar results in the MAP estimates of horizontal
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Fig. 28 Data match from unconditional realization, example 3
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Fig. 29 Data match from conditional realization, example 3

log permeability and they all look smoother than the
mean model obtained from EnKF [11, 13, 57].

Figure 24 illustrates the BHP data match of four
wells for the first 10 years. In the figure, the red cir-
cles are the observed BHP data. The predicted data
obtained from the initial guess (prior mean) are far
from the observed data. After history matching, the
predictions from the MAP estimates generated from
the three algorithms match the data very well. The oil
production rate data match for four producers and the
field production rate data match are shown in Figs. 25
and 26, respectively. The oil production rate data match
is greatly improved compared to the initial guess (prior
mean) for producer P9. The improvement on the oil
production rate data match for other wells is not as
obvious as for well P9. The BHP and oil production rate
data match obtained from all algorithms is comparable
to or better than the results shown in Peters et al. [57].

The convergence performance of different algo-
rithms with simulation runs is shown in Fig. 27. In
this example, all the optimization algorithms yield a
final objective function value of about 12,300 within
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Fig. 30 The log-permeability field of one unconditional realiza-
tion, example 3

400 simulation runs. Compared to the previous two
examples, the decreasing rate in the objective function
at early iterations is much slower in QIM-AG than that
of NEWUOA. This may indicate that the quality of the
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Fig. 31 The log-permeability field of one conditional realization,
example 3
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quadratic approximation model in QIM-AG is not as
good as the one in NEWUOA.

We also applied the RML method using QIM-AG
algorithm for uncertainty quantification. As shown in
Figs. 28 and 29, the predictions in FOPT obtained from
the set of conditional models significantly improved af-
ter history matching and are quite close to the true ob-
servation data compared with that of the unconditional
realizations. However, the data match for FWPT only
improved slightly. The results are comparable to those
obtained with other algorithms shown in Peters et al.
[57]. Figures 30 and 31 show the log-permeability field
of one unconditional realization and its corresponding
conditional realization.

7 Note on the performance of SGSD and QIM-AG

Based on nonexhaustive experiments, we choose to use
an initial trust region radius of �0 = 2.0 for the QIM-
AG algorithm and �0 = 0.4 in NEWUOA. Similarly,
based on computational experiments, we choose to use
Ng = 5, i.e., to use the average of five SPSA gradients
to compute a search direction in SGSD and QIM-AG.
Although there is no guarantee that these choices are
optimal, or even appropriate for all problems, it would
not be feasible to do a large number of experiments to
determine optimal values for each problem considered.
Moreover, these values have worked well for other
problems similar to those considered here.

There currently exists no formal convergence proof
for the QIM-AG and SGSD algorithms, and as we have
experimented with these methods only for a handful of
problems, there is no guarantee that the methods will
exhibit a similar rate of convergence for all problems.
However, the experiments we have done suggest that
the behavior of the SGSD and QIM-AG algorithms
is fairly illustrative of what we can expect for other
history-matching problems. Moreover, we observed a
similar rate of convergence when SGSD and QIM-AG
were applied to the optimal well control problem when
the only constraints were simple bounds on the well
controls [79]. For this optimal well control problem,
the number of reservoir simulation runs required to
obtain numerical convergence ranged from about 400
to 1,000 but [79] did not use reparameterization and the
number of variables (well controls) estimated was equal
to 3,360 for the largest problem considered. Although
the use of any method which does not have a formal
convergence proof should be used with some caution,
the results presented here and in [79] suggest that
SGSD and/or QIM-AG are useful algorithms for both
the history matching and production optimization step

of closed-loop reservoir. If this is indeed true, and we
believe it is, then these algorithms would not be the
first ones of value that are not supported by rigorous
theory; consider, for example, the now highly popular
particle swarm algorithm. Moreover, it is important to
note that the SGSD shares the most important features
of the classical SPSA algorithm of [70], which has a
convergence proof.

8 Conclusions

In this paper, we compared three derivative-free meth-
ods for large-scale history matching: the SGSD method,
NEWUOA and a newly developed QIM-AG. The
SGSD methods mimics the steepest descent method
using a stochastic gradient, while NEWUOA approx-
imates the quasi-Newton method using a quadratic in-
terpolation model. QIM-AG is a hybrid of the above
two methods, which uses the SGSD stochastic gradient
as the first-order coefficients in the quadratic interpola-
tion model, hence reduces the required number of the
interpolation points compared to NEWUOA for initial
quadratic model construction.

To further simplify the history-matching problem,
we applied a simple parameterization method. The
reservoir property fields are parameterized as a linear
combination of the principal eigenvectors of the prior
covariance matrix, which is approximated with a set of
unconditional realizations. This not only reduced the
parameter space for optimization but also eliminated
the need to calculate the inverse of the prior covariance
matrix in evaluating the objective function.

All the algorithms are applied to three synthetic
reservoir examples: a simple 2D reservoir, the 3D
PUNQ reservoir, and the Brugge test reservoir for
history matching as well as uncertainty quantification
using the RML method.

In obtaining the MAP estimate during history match-
ing, QIM-AG results in a much more rapid decrease in
the objective function at early iterations and converges
in fewer iterations than NEWUOA. Both QIM-AG
and NEWUOA exhibit better convergence than the
SGSD algorithm for the first two reservoir test cases,
but they all perform similarly in the more realistic
Brugge reservoir test case. All algorithms greatly im-
proved the production data match in most wells.

The QIM-AG is applied to sample the posterior pdf
using the RML method for the PUNQ and Brugge
reservoir examples. The algorithm could effectively
reduce the uncertainty of the cumulative production
forecast by assimilating the production data.
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