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Abstract We consider two-component (typically, water
and hydrogen) compressible liquid–gas porous media
flows including mass exchange between phases possibly
leading to gas-phase (dis)appearance, as motivated by
hydrogen production in underground repositories of
radioactive waste. Following recent work by Bourgeat,
Jurak, and Smaï, we formulate the governing equations
in terms of liquid pressure and dissolved hydrogen den-
sity as main unknowns, leading mathematically to a
nonlinear elliptic–parabolic system of partial differen-
tial equations, in which the equations degenerate when
the gas phase disappears. We develop a discontinuous
Galerkin method for space discretization, combined with
a backward Euler scheme for time discretization and
an incomplete Newton method for linearization. Nu-
merical examples deal with gas-phase (dis)appearance,
ill-prepared initial conditions, and heterogeneous prob-
lem with different rock types.
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1 Introduction

Multicomponent multiphase porous media flows are
encountered in several applications including petro-
leum engineering and various hydrology models re-
lated, e.g., to agricultural engineering and groundwater
remediation. Such flows have received an enhanced
attention recently in connection with gas sequestration
and the disposal of radioactive waste in underground
repositories. This last application actually constitutes
the main motivation for the present work. In such
repositories, the corrosion of metallic components, and
also marginally the radiolysis of water, leads to hydro-
gen production. An important issue in the design and
safety analysis of the underground repository is then
to understand and predict the migration of hydrogen
through the host rock. A typical model to describe this
situation is to consider a two-phase (liquid and gas),
two-component (water and hydrogen) flow. During the
simulation, the gas phase is generally not present in
the whole domain, as hydrogen gradually penetrates
into the host rock which is initially saturated. When
both phases are present, the hydrogen component is
assumed to be in thermodynamic equilibrium between
both phases, and in the context of moderate hydrogen
concentrations, this equilibrium is described by the lin-
ear Henry law for hydrogen dissolution. For simplicity,
we assume herein that water does not vaporize, which
is a reasonable assumption in the present context. Ad-
ditionally, the compressibility of the gas phase must be
accounted for.
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Multicomponent multiphase porous media flows are
described by well-established models covered in several
monographs, see, e.g., Bear [6], Chavent and Jaffré [10],
Helmig [20], Marle [26], and Peaceman [30]. There
is a satisfactory mathematical theory for incompress-
ible two-phase flows hinging on the theory of elliptic–
parabolic partial differential equations (PDEs), see,
e.g., [2, 7, 23, 24, 28]. Recent mathematical results in
the compressible case can be found in [3, 25] without
mass exchange between phases and in [27, 33, 34] with
mass exchange.

The possibility of gas-phase disappearance rises the
issue of selecting the main unknowns in the governing
equations since, typically, the phase saturations are
not appropriate for that purpose. Following [8, 32],
we select here the liquid pressure together with the
dissolved hydrogen density. This choice is motivated by
the fact that the liquid phase is always present in the
whole domain, while the dissolved hydrogen density is
always well-defined, regardless of the presence of a gas
phase. As observed in [22], Henry’s law can be used
within a formulation with complementary constraints
to determine the presence of the gas phase. Here, as
in [8, 32], we adopt the simpler approach where the gas-
phase saturation is recovered from the main unknowns
using the reciprocal function of the capillary pressure
extended by zero. An alternative approach to phase
disappearance (where both phases can disappear in
different parts of the domain) is discussed in [1, 29].

The goal of the present work is to design and evalu-
ate numerically a discontinuous Galerkin (dG) method
for two-component compressible liquid–gas porous me-
dia flows including mass exchange between phases.
The dG method is used for space discretization, in
conjunction with a backward Euler scheme for time
discretization and an inexact Newton solver for linear-
ization. Of special interest in the numerical evaluation
of the dG method are test cases featuring gas-phase
(dis)appearance, ill-prepared initial conditions, and
heterogeneous problems with different rock types. In-
troduced 40 years ago, dG methods have experienced
a vigorous development over the last decade in many
fields of engineering. Attractive features offered by
dG methods include the possibility of enforcing locally
basic conservation principles, the flexibility in design-
ing the mesh and local degrees of freedom, and the
ability to enforce interface conditions in the context
of multi-domain problems. We refer to [4, 14] for a
unified analysis of dG methods and to recent mono-
graphs on the subject [12, 21, 31]. DG methods for
incompressible two-phase porous media flows without
inter-phase mass exchange have been developed, e.g.,
in [5, 13, 15, 16, 18], but, to our knowledge, this is the

first time where compressible flows with inter-phase
mass exchange are covered.

This paper is organized as follows: In Section 2, we
present the governing equations and formulate the math-
ematical model. In Section 3, we describe the numerical
method and, in particular, design the dG method for
space discretization. Finally, in Section 4, we present
the numerical results and we draw some conclusions in
Section 5.

2 Problem setting

In this section, we first present the governing equations
in their basic form. Then, we specify the choice of main
unknowns and derive the mathematical model.

2.1 Governing equations

We assume that the porous medium is isothermal
and undeformable. We adopt the terminology of our
targeted application related to hydrogen production
within geological repositories of radioactive waste. The
two phases are indicated by a subscript α ∈ {l, g} re-
ferring to liquid and gas, respectively. We consider
two components, indicated by a superscript β ∈ {w, h}
referring to water and hydrogen, respectively.

The mass conservation equation for each component
β ∈ {w, h} can be written as

�
∑

α∈{l,g}
∂t

(
sα�β

α

) +
∑

α∈{l,g}
∇ · (

�β
αqα + jβα

) = Fβ, (1)

where � denotes the porosity, sα the saturation of phase
α, �β

α the density of component β in phase α, qα the
volumetric flow rate for phase α, jβα the mass diffusion
flux of component β in phase α, and Fβ the source term
of component β. The volumetric flow rate of each phase
is obtained from the Darcy–Muskat law in the form

qα = −Kλα(sα)∇ pα, α ∈ {l, g}, (2)

where K denotes the absolute permeability of the
medium (taken to be scalar-valued for simplicity), λα

the mobility of phase α (assumed to be a given function
of the saturation sα such that λα vanishes if the phase
α is absent), and pα the pressure of phase α. For
simplicity, gravity forces are neglected in Eq. 2. The
phase saturations take values in [0, 1] (in hydrogeology
models, they often take values in a subinterval of [0, 1]
depending on residual saturations of both phases, cf.
Section 4) and are such that

sl + sg = 1. (3)
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Furthermore, assuming that the gas phase is the non-
wetting phase, the phase pressures are such that

pg = pl + π(sg), (4)

where π : [0, 1) → [π(0), +∞) denotes the capillary
pressure (assumed to be a given function of the gas
saturation). The quantity π(0) denotes the possibly
nonzero entry pressure.

Concerning the water component, we assume incom-
pressibility in the liquid phase, and we neglect water
vaporization. As a result,

�w
l = �std

l , �w
g = 0, (5)

where ρstd
l denotes the standard water density at the

given temperature of the medium. Concerning the hy-
drogen component, we assume the ideal gas law in
the gas phase and that hydrogen-phase changes are
in thermodynamic equilibrium as governed by Henry’s
law. This leads to

�h
g = Cg pg, Cg = Mh

RT
, (6)

and

�h
l = Ch pg, Ch = HMh, (7)

where Mh denotes the hydrogen molar mass, R the uni-
versal gas constant, T the (absolute) temperature, and
H the (temperature-dependent) constant in Henry’s
law. Furthermore, the hydrogen diffusion flux in the
liquid phase, jh

l , is evaluated using a Fick-type law in
the form

jh
l = −�sl Dh

l ∇�h
l , (8)

where Dh
l denotes the (temperature-dependent) mole-

cular diffusion coefficient of hydrogen in the liquid
phase. Since for a two-component system, the diffusion
fluxes in the liquid phase satisfy

∑
β∈{w,h} jβl = 0, we

infer jwl = −jh
l . The use of the Fick-type law (Eq. 8)

using density, and not concentration, gradients and ne-
glecting cross-diffusion effects is reasonable as long as
the hydrogen component is diluted in the liquid phase.

To sum up, the above simplifying assumptions allow
us to recast the mass conservation equations (1) for
both components as

��std
l ∂tsl + ∇ · (

�std
l ql − jh

l

) = Fw, (9a)

�∂t
(
�h

l sl + Cg pgsg
) + ∇ · (

�h
l ql + Cg pgqg + jh

l

) = Fh.

(9b)

2.2 Mathematical model

Owing to the possible disappearance of the gas phase
in some parts of the computational domain that are
a priori unknown, it is not appropriate to select any
of the saturations or the gas pressure as one of the
main unknowns of the mathematical model. Indeed, the
saturations vanish identically, or are identically equal
to one, in those regions where only the liquid phase is
present, while the gas pressure is not even defined in
those regions. Following the recent ideas of Smaï [32]
(see also Bourgeat, Jurak, and Smaï [8] for a slightly
different choice), we select as main unknowns of the
mathematical model the liquid pressure pl (since the
liquid phase is always present throughout the domain)
and the dissolved hydrogen density �h

l . In what follows,
we set

y = (y1, y2), y1 := pl, y2 := �h
l . (10)

The mass conservation equations (9) can then be recast
into the form

∂tb 1(y) − ∇ · (A11(y)∇y1 + A12(y)∇y2) = F1, (11a)

∂tb 2(y) − ∇ · (A21(y)∇y1 + A22(y)∇y2) = F2, (11b)

or, in more compact form, for all i ∈ {1, 2},

∂tb i(y) −
∑

j∈{1,2}
∇ · (Aij(y)∇y j) = Fi, (12)

with source terms F1 := Fw, F2 := Fh, and

b 1(y) = −��std
l sg(y), (13a)

b 2(y) = �a(sg(y))y2, (13b)

A11(y) = �std
l Kλl(1 − sg(y)), (13c)

A12(y) = −�(1 − sg(y))Dh
l , (13d)

A21(y) = y2 Kλl(1 − sg(y)), (13e)

A22(y) = y2 Kλg(sg(y))ωC−1
h + �(1 − sg(y))Dh

l , (13f)

where ω = Cg

Ch
and a(s) = 1 + (ω − 1)s. Finally, the gas

saturation is recovered from

sg(y) = π−1

(
y2

Ch
− y1

)
, (14)

where π−1 : R → [0, 1) denotes the extension by zero
to R of the inverse function of the capillary pressure π ,
cf Fig. 1. We observe that sg is a continuous function
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Fig. 1 Function π−1 : R → [0, 1) used to recover the gas
saturation

of y; this function is actually differentiable if the van
Genuchten model is considered for the capillary pres-
sure, as is often the case in hydrogeology and is actually
the case in our numerical experiments presented in
Section 4 below. If the Brooks–Corey model is used
instead, the function π−1 is not differentiable at the
entry pressure π(0), and a semi-smooth version of the
linearization procedure described in Section 3.1 needs
to be considered.

The governing equations (12), supplemented with
Eqs. 13 and 14, are posed in the computational domain
� which we assume to be a bounded, open, polyhedral
domain in R

d, d ≥ 1, with boundary denoted by ∂�

and outward unit normal by n. Dirichlet and Neumann
boundary conditions are enforced at the boundary.
Given a partition of ∂� into ∂�D ∪ ∂�N, we enforce
on ∂�D the value y = yD, and on ∂�N, we enforce
n · σi(y) = σi for all i ∈ {1, 2}, where the total fluxes σi

are defined as

σi(y) = −(Ai1(y)∇y1 + Ai2(y)∇y2). (15)

It is possible to consider a setting where the partition
into Dirichlet and Neumann boundaries depends on the
component i ∈ {1, 2}, but this generality is not needed
for the test cases envisaged herein. Finally, initial con-
ditions are imposed on y in the form y(x, 0) = y0 for all
x ∈ �.

Equation 11a is a parabolic equation in y1 (since the
liquid phase is always present) that degenerates into
an elliptic equation if the gas phase disappears. Equa-
tion 11b is a parabolic equation in y2 that degenerates
into an elliptic equation if there is no dissolved hydro-
gen. Therefore, Eq. 11a is loosely termed the “pressure
equation” and Eq. 11b the “hydrogen equation.” To
examine the coupled system, we write it in nondimen-
sional form. Let y1 = p0 y1 and y2 = Ch p0 y2, where p0

denotes a reference pressure. Dividing Eq. 11a by �std
l

and Eq. 11b by Ch p0 yields

∂tb 1(y) − ∇ ·
(

A11(y)∇y1 + A12(y)∇y2

)
= F1, (16a)

∂tb 2(y) − ∇ ·
(

A21(y)∇y1 + A22(y)∇y2

)
= F2, (16b)

with F1 := Fw/�std
l , F2 := Fh/(Ch p0) and letting sg(y) =

π−1(p0(y2 − y1)),

b 1(y) = −�sg(y), (17a)

b 2(y) = �a
(
sg(y)

)
y2, (17b)

A11(y) = p0 Kλl
(
1 − sg(y)

)
, (17c)

A12(y) = − (
Ch p0/�

std
l

)
�

(
1 − sg(y)

)
Dh

l , (17d)

A21(y) = y2 p0 Kλl
(
1 − sg(y)

)
, (17e)

A22(y) = y2 p0 Kλg
(
sg(y)

)
ω + �

(
1 − sg(y)

)
Dh

l , (17f)

where bi(y) is nondimensional and Aij(y) scales as
square meters per second. The matrix A yields a pos-
itive definite quadratic form (and hence ellipticity on
the space differential operator) if and only if

4A11 A22 −
(

A12 + A21

)2
> 0. (18)

For applications related to hydrogen migration in un-
derground repositories, typical values are p0 = 1 MPa,
Ch p0 = 1.5×10−2 kg/m3, and using the values listed in
Table 1, we obtain the estimates (in square meters
per second) A11 ≈ 5×10−11, A12 ≈ 6.8×10−15, A21 ≈
5×10−11, A22 ≈ 4.5×10−10 (for A22, only the second
term is used for the estimate, but the first term can take
much larger values if the gas phase is present). Hence,
condition 18 holds true. We observe that A12 	 A11,
whence, neglecting A12 (and using only the second term
for A22), we infer from Eq. 18 the condition p0 Kλl(1) <

4�Dh
l for ellipticity. In situations where this condition

fails (e.g., because K is too large or Dh
l too small), a

smallness condition on the dissolved hydrogen density
can be invoked, with an upper bound typically depend-
ing on K and Dh

l . Finally, an important result under the
assumption A12 ≈ 0 is that the change of variables (see
Smaï [33, 34])

y1 = u1 + ω−1eωu2, y2 = eωu2, (19)

yields a new system in the variables (u1, u2) fitting the
framework of the Alt–Luckhaus theorem for the exis-
tence of weak solutions [2], namely the time-derivative
term involves the gradient of a convex potential and
the space-derivative terms yield a symmetric positive
definite matrix.
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3 Numerical method

In this section, we first present the time discretiza-
tion together with the linearization procedure and then
describe the dG method for space discretization. We
consider the nondimensional form (Eq. 16); to alleviate
the notation, bars are henceforth omitted.

3.1 Time discretization and linearization

Let {tm}0≤m≤M be a partition of time interval [0, T] such
that t0 = 0 and tM = T, the given simulation time, and
set τm = tm − tm−1 for m = 1, . . . , M. Time discretiza-
tion of Eq. 12 is achieved using the backward Euler
method: Starting from the initial condition y0 := y0, we
seek, for all m = 1, . . . , M, the function ym such that,
for all i ∈ {1, 2},
1

τm

(
bi(ym) − bi(ym−1)

)

−
∑

j∈{1,2}
∇ ·

(
Aij(ym)∇ym

j

)
= Fm

i ,

where a superscript m on any problem data (e.g., on Fi)
indicates evaluation at the discrete time tm.

The linearization procedure is based on an incom-
plete Newton solver. It first involves a fixed-point iter-
ation (indicated by an index l) on the coefficients in the
diffusive terms, leading to

1

τm

(
bi

(
ym

l+1

) − bi(ym−1)
)

−
∑

j∈{1,2}
∇ ·

(
Aij

(
ym

l

) ∇ym
j,l+1

)
= Fm

i .

The fixed-point iteration is initialized with the values
at the previous time step, i.e., we take ym

0 := ym−1. The
second ingredient in the linearization procedure is a
linear approximation of the time-derivative terms,

1

τm

(
bi

(
ym

l+1

) − bi(ym−1)
)

= 1

τm

(
bi

(
ym

l+1

) − bi
(
ym

l

))

+ 1

τm

(
bi

(
ym

l

)−bi(ym−1)
)

≈∂1bi
(
ym

l

) ym
1,l+1−ym

1,l

τm
+ ∂2bi

(
ym

l

) ym
2,l+1 − ym

2,l

τm

+ bi
(
ym

l

) − bi(ym−1)

τm
.

As a result, for all m = 1, . . . , M (time loop) and
for all l ≥ 0 (fixed-point loop), we seek ym

l+1 such that,
for all i ∈ {1, 2},

−
∑

j∈{1,2}
∇ ·

(
Aij

(
ym

l

) ∇ym
j,l+1

)
+

∑

j∈{1,2}
∂ jb i

(
ym

l

) ym
j,l+1−ym

j,l

τm

= Fm
i − bi(ym

l ) − bi(ym−1)

τm
.

Solving for ym
l+1 amounts to solving the linear system of

PDEs,

− ∇ · (
A11

(
ym

l

)∇ym
1,l+1 + A12

(
ym

l

) ∇ym
2,l+1

)

+ 1

τm

(
∂1b 1

(
ym

l

)
ym

1,l+1 + ∂2b 1
(
ym

l

)
ym

2,l+1

) = Gm
1,l,

(20a)

− ∇ · (
A21

(
ym

l

)∇ym
1,l+1 + A22

(
ym

l

) ∇ym
2,l+1

)

+ 1

τm

(
∂1b 2

(
ym

l

)
ym

1,l+1 + ∂2b 2
(
ym

l

)
ym

2,l+1

) = Gm
2,l,

(20b)

with the right-hand sides, for all i ∈ {1, 2},

Gm
i,l = Fm

i + 1

τm
bi(ym−1)

+ 1

τm

(
∂1bi

(
ym

l

)
ym

1,l + ∂2bi
(
ym

l

)
ym

2,l − bi
(
ym

l

))
,

(21)

together with the boundary conditions

ym
l+1 = ym

D on ∂�D, (22a)

n · σi(ym
l+1) = σ m

i , i ∈ {1, 2}, on ∂�N. (22b)

3.2 Space discretization: dG method

Let {Tδ}δ>0 be a family of shape-regular meshes of the
domain � (possibly containing hanging nodes), where
δ denotes the maximum element diameter in Tδ . We
say that the set F is a mesh interface (resp., boundary
face) if F has nonzero (d − 1)-dimensional measure and
if there exist distinct T−, T+ ∈ Tδ such that F = ∂T− ∩
∂T+ (resp., if there exists T ∈ Tδ such that F = ∂T ∩
∂�). Interfaces are collected in the set F i

δ , boundary
faces in the set Fb

δ , and we let Fδ := Fb
δ ∪ F i

δ . For all
F ∈ Fδ , δF denotes its diameter. We suppose that the
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meshes Tδ are fitted to the partition ∂� = ∂�D ∪ ∂�N;
accordingly, the set of boundary faces Fb

δ is partitioned
as Fb

δ = FD
δ ∪ FN

δ with obvious notation.
For a scalar- or vector-valued function v that is pos-

sibly two-valued at an interface F = ∂T− ∩ ∂T+ ∈ F i
δ ,

we define its jump and average at F as

[[v]] = v− − v+, {v} = 1
2 (v− + v+), v± = v|T±

and extend these definitions to boundary faces F =
∂T ∩ ∂� ∈ Fb

δ by setting [[v]] = {v} = v|T . For all F =
∂T− ∩ ∂T+ ∈ F i

δ , we define nF as the unit normal vec-
tor to F pointing from T− toward T+, whereas for
F ∈ Fb

δ we set nF = n. The sign arbitrariness in the
definition of nF and of the jump across F, for all F ∈ F i

δ ,
is irrelevant in what follows.

Let k ≥ 1 be an integer. The dG method is based on
the discrete space

Vk
δ := {

vδ ∈ L2(�); ∀T ∈ Tδ, vδ|T ∈ Pk(T)
}
, (23)

where Pk(T) denotes the vector space spanned by poly-
nomials of total degree ≤ k on T. Let yδ ∈ [Vk

δ ]2 and
let i, j ∈ {1, 2}. The interior penalty dG bilinear form
discretizing the differential operator −∇ · (Aij(yδ)∇·)
can be written, for all uδ, vδ ∈ Vk

δ , as

aij
δ (yδ; uδ, vδ) =

∑

T∈Tδ

∫

T
Aij(yδ)∇uδ · ∇vδ

−
∑

F∈F i
δ∪FD

δ

∫

F
nF ·{Aij(yδ)∇uδ}[[vδ]]

−θ ij
∑

F∈F i
δ∪FD

δ

∫

F
nF ·{Aij(yδ)∇vδ}[[uδ]]

+
∑

F∈F i
δ∪FD

δ

η
ij
F
σk2

δF

∫

F
[[uδ]][[vδ]],

where θ ij = 0 for i = j and θ ii = 1 for i ∈ {1, 2} (so that
the diagonal blocks of the linear system matrix remain
symmetric), while ηij = 0 for i = j and ηii

F = ‖Aii‖L∞(�)

for i ∈ {1, 2} (in the present context, the variations of
Aii in � are sufficiently mild to use a global scaling for
the penalty parameter). Moreover, the user-dependent
parameter σ is typically set to 10.

We consider the following dG method: Given ym−1
δ ∈

[Vk
δ ]2 from the previous time step (or the L2-projection

of the initial condition), the fixed-point loop is initial-

ized as ym
δ,0 = ym−1

δ , and, for all l ≥ 0, we seek ym
δ,l+1 ∈

[Vk
δ ]2 such that, for all vδ, wδ ∈ Vk

δ ,

a11
δ

(
ym

δ,l; ym
1,δ,l+1, vδ

) + a12
δ

(
ym

δ,l; ym
2,δ,l+1, vδ

)

+ 1

τm

∫

�

(
∂1b 1

(
ym

δ,l

)
ym

1,δ,l+1 + ∂2b 1
(
ym

δ,l

)
ym

2,δ,l+1

)
vδ

=
∫

�

Gm
1,lvδ −

∑

F∈FN
δ

∫

F
σ m

1 vδ

+
∑

F∈FD
δ

∫

F

(
φ11

F

(
ym

δ,l; vδ

)
ym

1,D+φ12
F

(
ym

δ,l; vδ

)
ym

2,D

)
,

(24)

a21
δ

(
ym

δ,l; ym
1,δ,l+1, wδ

) + a22
δ

(
ym

δ,l; ym
2,δ,l+1, wδ

)

+ 1

τm

∫

�

(
∂1b 2

(
ym

δ,l

)
ym

1,δ,l+1 + ∂2b 2
(
ym

δ,l

)
ym

2,δ,l+1

)
wδ

=
∫

�

Gm
2,lwδ −

∑

F∈FN
δ

∫

F
σ m

2 wδ

+
∑

F∈FD
δ

∫

F

(
φ21

F

(
ym

δ,l; wδ

)
ym

1,D+φ22
F

(
ym

δ,l; wδ

)
ym

2,D

)
,

(25)

with φ
ij
F(yδ; vδ) = −θ ijnF ·Aij(yδ)∇vδ + η

ij
F

σk2

δF
vδ , for all

i, j ∈ {1, 2}. Integrating by parts elementwise the vol-
ume term in the bilinear forms aij

δ , it is seen that the
above formulation weakly enforces the PDEs (Eq. 11)
in each mesh element, the boundary conditions (Eq. 22)
on all boundary faces, and, on all mesh interfaces F ∈
F i

δ , the transmission conditions

[[yi]] = 0, nF · [[σi(y)]] = 0, ∀i ∈ {1, 2}, (26)

consistently with the properties satisfied by the exact
solution.

Remark 1 For heterogeneous media consisting of dif-
ferent rocks with contrasting properties, weighted av-
erages can be considered in the formulation of the dG
method, as in [11, 17] for linear advection–diffusion
equations. Furthermore, we observe that Eq. 26 implies
that the dissolved hydrogen density �h

l is continuous at
any interface. Owing to Henry’s law, the gas pressure
(if this phase exists on both sides of the interface)
is also continuous; hence, since the liquid pressure is
continuous (also by Eq. 26), the capillary pressure is
also continuous at the interface. However, the gas sat-
uration is in general discontinuous at the interface; this
fact is illustrated in the test case of Section 4.3. Instead,
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for two-component porous media flows without inter-
phase mass exchange where one of the saturations is
used as one of the main unknowns, the penalty strategy
in the dG method must be revised to enforce weakly a
nonlinear jump condition on the saturation, cf. [16].

4 Numerical results

In this section, we evaluate numerically the dG method
derived in Section 3 on three one-dimensional test cases,
dedicated respectively to gas-phase (dis)appearance,
ill-prepared initial conditions, and heterogeneous prob-
lems with different rock types. The first two test
cases have been proposed within the GNR MoMaS in
connection with the Couplex-Gas benchmark proposed
by the French National Radioactive Waste Manage-
ment Agency; reference solutions can be found in [19].
The third test case has been investigated in [9].

We use the van Genuchten model for capillary pres-
sure and the van Genuchten–Mualem model for rela-
tive permeability, i.e.,

π(sg) = Pr
(
sle(sg)

−1/m − 1
)1/n

, (27a)

λl(sg) = 1

μl
sle(sg)

1/2
(

1 − (
1 − sle(sg)

1/m)m
)2

, (27b)

λg(sg) = 1

μg
sge(sg)

1/2
(
1 − sle(s)1/m)2m

, (27c)

where m = 1 − 1
n , μl and μg are viscosities, while

sge(sg) = sg − sgr

1 − slr − sgr
, sle(sg) = 1 − sge(sg), (28)

are the relative gas and liquid saturations and sgr, slr

are the residual saturations in the gas and liquid phases,
respectively. Values for the above physical parameters

are specified below for each test case. In all cases,
the convergence criterion in the incomplete Newton
method uses a tolerance of 10−8 in the L2(�)-norm, and
in the present one-dimensional setting, a direct solver is
used for the linear systems.

4.1 Gas-phase (dis)appearance

In this test case, hydrogen is injected into the porous
medium � = (0, 200) m initially saturated by water.
Injection is performed through the left boundary x =
0 during the injection time Tinj = 105 year, while the
simulation time is T = 106 years. There are no ex-
ternal sources, i.e., Fw = Fh = 0. This example illus-
trates the potential of the method to simulate gas-phase
appearance and disappearance related to hydrogen
injection.

The porous medium and fluid characteristics are
presented in Table 1. Initial and boundary conditions
are given by

− n · σ1|x=0 = 0, −n · σ2|x=0 = qinj; (29)

pl|x=200 = 106 Pa, �h
l |x=200 = 0; (30)

pl|t=0 = 106 Pa, �h
l |t=0 = 0; (31)

where qinj = 5.57×10−6χ[0,Tinj](t) kg/m2/year and χA de-
notes the characteristic function of the set A. The
ellipticity criterion (Eq. 18) can be verified at each point
in space and in time; the left-hand side of Eq. 18 takes
values in the range [1, 8] × 10−4 (m2/year)2.

We consider the first-order dG space V1
δ (k = 1) and

use a uniform mesh of 200 elements in �. In time,
we consider the partition [0, 1, 2, 3, 5, 7, 10]×105 years
of the time interval [0, T] and use the time steps τ =
[125, 500, 1,000, 5,000, 1,000, 5,000] years within each
time slab.

Figures 2 and 3 present the selected results of our sim-
ulations at various times. During an initial transient
up to ≈2×103 years, the dissolved hydrogen molar
density increases owing to gas injection, while the liquid

Table 1 Parameter values for
the porous medium and fluid
characteristics used in test
case 1

Porous medium Fluid characteristics

Parameter Value Parameter Value

� 0.15 (–) Dh
l 3 × 10−9 m2/s

K 5 × 10−20 m2 μl 1 × 10−3 Pa s
Pr 2 × 106 Pa μg 9 × 10−6 Pa s
n 1.49 (–) H(303K) 7.65 × 10−6 mol/Pa/m3

slr 0.4 (–) Mh 2 × 10−3 kg/mol
sgr 0 (–) �std

l 103 kg/m3
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pressure remains roughly constant, and there is no gas
phase. The gas phase appears at the time ≈1.3×104

years, and the liquid pressure begins to increase un-
til it reaches its maximum at the time ≈105 years.

The gas saturation continues to increase up to the
time ≈5×105 years, while the gas pressure reaches its
maximum at x = 0 at the time ≈105 years and de-
creases afterward. When the gas injection is eventually

Fig. 2 Liquid pressure pl
(top line, megapascal),
dissolved hydrogen molar
density �h

l /Mh (second line,
moles per cubic meter), and
gas saturation sg (bottom line,
percent) at times {2×103,

1.4×104, 105, 1.4×105, 5×105}
(left column, years) and {5.1×
105, 5.6×105, 6.1×105, 6.6×
105, 106} (right column, years)
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stopped, the liquid pressure starts to decrease (owing to
the absence of entering water flux at x = 0) and reaches
its minimum at the time ≈5.6×105 years. Afterward,
the water pressure increases again, the dissolved hy-

drogen molar density and the gas saturation decrease,
while the system has almost reached equilibrium at the
final simulation time. All these results agree well with
those presented in [19, 32].

Fig. 3 From top to bottom
and from left to right, as a
function of time: liquid and
gas pressures pl and pg at
x = 0 (megapascal), gas
saturation sg at x = 0
(percent), front position of
the gas phase (meters), total
water flux at
x = 200 (kilogram per square
meter per year), and total
hydrogen flux at
x = 200 (kilogram per square
meter per year)
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4.2 Ill-prepared initial condition

In this test case, we consider the domain � = (0, 1) m
with zero flux boundary conditions and no external
sources, while uniform liquid pressure and discontin-
uous gas pressure are considered as initial conditions.
Owing to the discontinuity of the gas pressure, the
system is initially out of the mechanical equilibrium.
This example illustrates the potential of the method to
simulate the evolution of the system back to equilib-
rium starting from an ill-prepared initial condition.

The porous medium and fluid characteristics are pre-
sented in Table 2. The main difference with Table 1 is
the higher value for K. Initial and boundary conditions
are given by

−n · σ1|x=0 = 0, −n · σ2|x=0 = 0;
−n · σ1|x=1 = 0, −n · σ2|x=1 = 0;

pl(x, 0) = 106 Pa, x ∈ (0, 1)

pg(x, 0) =
{

1.5×106 Pa if x ∈ (0, 0.5),

2.5×106 Pa if x ∈ (0.5, 1).

The left-hand side of Eq. 18 takes values in the range

[6, 9] × 103 (m2/year)2.
We consider the first-order dG space V1

δ (k = 1) and
use a uniform mesh of 512 elements in �. The simula-
tion time is T = 106 s. We consider the partition T =
[0, 10, 102, 5×102, 103, 5×103, 104, 2×105, 5×105, 106] s
of the time interval [0, T] and use 32 uniform time steps
within each time slab.

Figures 4 and 5 present selected results of our sim-
ulations at various times. The gas phase is initially
present in the whole domain. Owing to the initial dis-
continuity in the gas pressure, the gas saturation and
the dissolved hydrogen density are also discontinuous
initially. After a short time (10 s), the liquid pressure
exhibits a jump of the order of 0.8 MPa. Then, a liquid
pressure front propagates and reaches the boundaries
at ≈102 s. Afterward, up to the time ≈104 s, the liquid

pressure increases at the left boundary and decreases at
the right boundary. At the time ≈104 s, the difference
of left and right boundary values is of the order of
1 MPa, and the liquid pressure still exhibits a sharp gra-
dient at x = 0.5. Next, the difference between bound-
ary values begins to decrease, and the liquid pressure
smoothly converges to its equilibrium position, which
it has almost reached at time 106 s. Furthermore, the
initially discontinuous profile of dissolved hydrogen
density is smoothed owing to fast hydrogen diffusion
in water. Thus, this profile reaches equilibrium much
earlier than the liquid pressure, at time ≈104 s. Finally,
the gas saturation profile exhibits a very steep front
up to the time ≈103 s; then, the shock slowly dissi-
pates, but the profile still exhibits a sizable gradient
at time ≈105 s. The gas saturation profile has almost
relaxed back to equilibrium at the final simulation
time. All these results agree well with those reported
in [19].

4.3 Hydrogen injection in heterogeneous medium

In this test case, we consider the heterogeneous porous
medium � = (0, 200) m composed of two rocks occupy-
ing, respectively, the subdomains �1 = (0, 20) and �2 =
(20, 200). The porous medium and fluid characteristics
are presented in Table 3. The column for the porous
medium contains two values, one for each rock type.
We observe that the rock occupying the subdomain �2

has a finer texture.
As in test case 1, the initial and boundary conditions

are given by Eq. 31, except that the gas injection is not
stopped at time Tinj. This example illustrates the po-
tential of the method to handle heterogeneous porous
media. The left-hand side of Eq. 18 takes values in the
range [10−4, 1] (m2/year)2.

We consider the first-order dG space V1
δ (k = 1) and

use a uniform mesh of 16 elements in �1 and 144 ele-
ments in �2 so that the mesh is fitted to the interface
separating �1 and �2. The simulation time is T =
106 years. We consider the partition [0, 6×104, 2×105,

Table 2 Parameter values for
the porous medium and fluid
characteristics used in test
case 2

Porous medium Fluid characteristics

Parameter Value Parameter Value

� 0.3 (–) Dh
l 3 × 10−9 m2/s

K 10−16 m2 μl 1 × 10−3 Pa s
Pr 2 × 106 Pa μg 9 × 10−6 Pa s
n 1.54 (–) H(303K) 7.65 × 10−6 mol/Pa/m3

slr 0.01 (–) Mh 2 × 10−3 kg/mol
sgr 0 (–) �std

l 103 kg/m3
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6×105, 106] years of the time interval [0, T] and use the
time steps τ = [200, 1,000, 2,000, 20,000] years within
each time slab. We recall that the dG method weakly

enforces the continuity of the normal component of the
total fluxes and that of the liquid pressure and of the
dissolved hydrogen density, cf. Eq. 26.

Fig. 4 Liquid pressure pl
(top line, megapascal),
dissolved hydrogen molar
density �h

l /Mh (second line,
moles per cubic meter), and
gas saturation sg (bottom line,
percent) at times
{10, 102, 5×102, 103} (left
column, second) and
{5×103, 104, 5×104, 105}
(right column, second)

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

x (m)

Li
qu

id
 p

re
ss

ur
e 

10
100
500
1000

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

x (m)

Li
qu

id
 p

re
ss

ur
e 

5 103

104

5 104

105

0 0.2 0.4 0.6 0.8 1
10

11

12

13

14

15

16

17

18

19

20

x (m)

D
is

so
lv

ed
 h

yd
ro

ge
n 

m
ol

ar
 d

en
si

ty

10
100
500
1000

0 0.2 0.4 0.6 0.8 1
10

11

12

13

14

15

16

17

18

19

20

x (m)

D
is

so
lv

ed
 h

yd
ro

ge
n 

m
ol

ar
 d

en
si

ty

5 103

104

5 104

105

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14

16

18

x (m)

G
as

 s
at

ur
at

io
n

10
100
500
1000

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14

16

18

x (m)

G
as

 s
at

ur
at

io
n

5 103

104

5 104

105



688 Comput Geosci (2012) 16:677–690

Fig. 5 Liquid pressure pl
(megapascal), dissolved
hydrogen molar density
�l

h/Mh (moles per cubic
meter), and gas saturation sg
(percent) at times
{2×105, 5×105, 106} s
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Figure 6 presents selected results of our simulations
at various times. Owing to gas injection, the gas phase
appears in the first subdomain at the time ≈3×104 years
and reaches the interface separating the two rock types
at the time ≈4.2×104 years. The saturation at the
left of the interface (in the coarser rock) starts to
increase while maintaining the jump in the saturation

such that capillary pressure continuity is preserved,
and the gas phase penetrates into the second (finer)
rock. Next, at the time ≈1.3×105 years, the liquid
pressure starts to decrease, and the system relaxes back
to equilibrium, as reflected by the fact that the net
difference of total hydrogen flow at inflow and outflow
boundaries tends to zero. We stress that the capillary

Table 3 Parameter values for
the porous medium and fluid
characteristics used in test
case 3

Porous medium Fluid characteristics

Parameter Value Parameter Value

� (0.3, 0.15) (-) Dh
l 3 × 10−9 m2/s

K (10−18, 5 × 10−20) m2 μl 1 × 10−3 Pa s
Pr (2 × 106, 15 × 106) Pa μg 9 × 10−6 Pa s
n (1.54, 1.49) (-) H(303K) 7.65 × 10−6 mol/Pa/m3

slr (0.01, 0.4) (-) Mh 2 × 10−3 kg/mol
sgr (0, 0) (-) �std

l 103 kg/m3
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Fig. 6 Liquid pressure pl
(megapascal), dissolved
hydrogen molar density
�h

l /Mh (moles per cubic
meter), gas saturation sg
(percent), and capillary
pressure π (megapascal) at
times {3×104, 4.2×104,

1.3×105, 106} (years)
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pressure is continuous at the interface at all times.
The results are in good agreement with those reported
in [9].

5 Conclusions

The above numerical results show that the proposed
methodology is capable of delivering accurate discrete
solutions capturing the correct physical behavior in var-
ious complex situations. Future work can aim at assess-
ing the proposed methodology on higher-dimensional
test cases and at analyzing the discrete scheme to derive
stability and error estimates.
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