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Abstract The ensemble Kalman filter (EnKF) has be-
come a popular method for history matching produc-
tion and seismic data in petroleum reservoir models.
However, it is known that EnKF may fail to give ac-
ceptable data matches especially for highly nonlinear
problems. In this paper, we introduce a procedure to
improve EnKF data matches based on assimilating the
same data multiple times with the covariance matrix of
the measurement errors multiplied by the number of
data assimilations. We prove the equivalence between
single and multiple data assimilations for the linear-
Gaussian case and present computational evidence that
multiple data assimilations can improve EnKF esti-
mates for the nonlinear case. The proposed procedure
was tested by assimilating time-lapse seismic data in
two synthetic reservoir problems, and the results show
significant improvements compared to the standard
EnKF. In addition, we review the inversion schemes
used in the EnKF analysis and present a rescaling
procedure to avoid loss of information during the trun-
cation of small singular values.
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1 Introduction

Reservoir simulation plays an important role in the
entire hydrocarbon recovery process. In a reservoir
simulation model, rock and fluid properties are char-
acterized, and the physical process of fluid flow in
the porous media is modeled in order to predict the
reservoir’s future performance. However, the reservoir
data available are typically inaccurate, inconsistent, and
insufficient, so that reservoir models are built with un-
certain parameters, which means that predictions based
on these models are also uncertain. In order to improve
the reliability of reservoir predictions, the dynamic
information available from historical field production
data and seismic acquisitions needs to be incorporated
into these reservoir models. This process is known in
the oil industry as history matching. Bayesian statistics
provides an adequate framework to incorporate field
observations in reservoir simulation models in a way
that allows one to describe uncertainty in the reservoir
parameters and simulations predictions.

The EnKF, which can be derived from Bayesian
statistics [13, Chap. 9], represents an attractive method
for reservoir history matching because it is easy to
implement and computationally efficient. Aanonsen
et al. [1] present a comprehensive review of EnKF
applications to reservoir problems. Some recent field
applications of EnKF can be found in [6, 9, 15, 39].
Even though the EnKF was originally proposed as an
alternative to the extended Kalman filter [13, Chap. 4]
for applications in nonlinear dynamical systems, the
update step in the EnKF is still linear. This linear
update may result in a sub-optimal performance for
highly nonlinear problems. Although the measurement
errors do not directly impact the nonlinear relation
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between predicted data and the EnKF state vector, it is
well-known that they influence the level of correction
in the states. For example, with EnKF, it is typically
more difficult to assimilate very reliable data, i.e., with
small measurement errors, than data with larger mea-
surement errors. As shown in this paper, for the linear
case with Gaussian prior, assimilating data multiple
times with the covariance matrix of the measurement
errors multiplied by the number of data assimilations
is equivalent to assimilating data only once with the
original covariance matrix. For the nonlinear case, how-
ever, this equivalence does not hold. In fact, the results
presented in this paper indicate that it may be beneficial
to assimilate data multiple times with an inflated mea-
surement error covariance matrix in the nonlinear case.
The rationality is that better estimates of the states can
be obtained by doing successive smaller updates instead
of one single large update.

This work was motivated by the comments made
on pages 44, 45, 86, and 109 of Rommelse [37]. Rom-
melse suggested that when assimilation of accurate
data requires a “large jump” between the forecast and
analyzed states, the magnitude of the jump is overesti-
mated by the linear update used in EnKF. He suggested
that this overestimation of the magnitude of the jump
could be reduced by assimilating the same data multiple
times with increased measurement errors. Rommelse
derived equations for determining the number of times
that the data should be assimilated with increased mea-
surement errors in order to obtain the same posterior
variance for the state. His derivation, however, was
based on a one-dimensional forecast vector, with a
single datum and sensitivity matrix equal to the 1 × 1
identity matrix. Rommelse applied this idea in a multi-
dimensional example, but he did not compare multiple
assimilations of data with standard EnKF. He also
did not discuss important implementation details. In a
sense, this paper extends the theoretical equations on
pages 44 and 45 of Rommelse [37] to multi-dimensional
problems with an arbitrary sensitivity matrix and a gen-
eral measurement error covariance matrix. However,
our derivations assume that we multiply the covariance
matrix of the measurement errors by the number of
data assimilations, whereas it appears that Rommelse
assimilated data one by one using an ensemble square
root filter [49]. In this case, each covariance matrix of
the measurement errors at each data assimilation is
1 × 1. Thus, he could assimilate each individual datum
a different number of times.

Reservoir production data are typically scarce spa-
tially, but dense in time. As shown in Reynolds et al.
[36], the application of EnKF is similar to one Gauss–
Newton (GN) iteration using an average sensitivity

matrix and a full step in the search direction. Based on
this analogy, we conjecture that sequential assimilation
is one of the reasons that EnKF gives acceptable results
when assimilating production data that are fairly closely
spaced in time. The process works such that at each
data assimilation time step, one GN correction is done
to each realization in the ensemble of states, but be-
cause we have production data for several consecutive
data assimilation time steps, we accumulate several GN
corrections, keeping the ensemble conditioned to the
production history. In contrast, seismic data are char-
acterized by the large amount of data, spatially dense,
but available at only a few times. Thus, we no longer
have the beneficial effect of several consecutive data as-
similation time steps as observed in the production data
case. While our conjecture that assimilating production
data with EnKF provides an approximation of multiple
GN iterations is based on intuition, it is well-known that
taking a full step at early iterations in the GN method
when matching production data can lead to significant
overcorrection (overshooting and undershooting) of
reservoir parameters and result in unrealistically rough
rock property fields [19, 29]. This overcorrection can be
avoided either by applying some form of damping or
constraining changes in model parameter at early iter-
ations or by inflating the covariance matrix associated
with measurement errors. This fact provides a strong
motivation for the procedure considered in this paper,
in which we apply EnKF to assimilate the same data
multiple times using an inflated covariance matrix.

This paper is organized as follows: In the next sec-
tions, we briefly present the Kalman filter and EnKF
equations. After that, we show the equivalence be-
tween single and multiple data assimilations (MDA)
for the linear-Gaussian case followed by an interpre-
tation of MDA for the nonlinear case. Then, we de-
scribe the implementation of the proposed procedure.
After that, we present a brief discussion about time-
lapse seismic data in the reservoir history-matching
context. In the subsequent section, we present two test
cases, which correspond to a small synthetic reservoir
problem and the Brugge benchmark case [34]. The
last section of the paper presents the conclusions. The
paper also includes two appendices. In Appendix A,
we review the inversion process required in the EnKF
analysis. In this appendix, we discuss the inversion
scheme based on truncated singular value decompo-
sition (SVD) and the subspace inversion proposed by
Evensen [12]. In both cases, we present a rescaling pro-
cedure to avoid loss of information during truncation
of small singular values. In Appendix B, we present
some matrix manipulations omitted in the main body of
the paper.



Comput Geosci (2012) 16:639–659 641

2 Kalman filter

Under the restrictions of a Gaussian prior, a linear
relation between state and predicted data, Gaussian
noise in the measurements and Gaussian model error,
the KF [26] is the optimal sequential data assimilation
scheme. In the KF, the mean, μn

y, and the covariance,
Cn

Y, of a state vector, yn, are updated sequentially in
time using

μn,a
y = μn, f

y + Kn

(
dn

obs − Hnμ
n, f
y

)
(1)

and

Cn,a
Y = (

INy − Kn Hn
)

Cn, f
Y , (2)

where

Kn ≡ Cn, f
Y HT

n

(
Cn

D + HnCn, f
Y HT

n

)−1
. (3)

Equations 1–3 are known as the KF analysis equa-
tions. In these equations, n denotes the data assimi-
lation time-step index. Kn is the Kalman gain matrix.
Hn is the Nn × Ny sensitivity matrix, which defines the
linear relation between the state vector and predicted
data, i.e.,

dn, f = Hn yn, f . (4)

Cn
D is the covariance matrix of the measurement errors.

INy is the Ny × Ny identity matrix, where Ny denotes
the dimension of the state vector yn. The superscripts a
and f denote analysis and forecast, respectively.

3 Ensemble Kalman filter

EnKF [3, 11, 24] is a sequential data assimilation
method in which an ensemble of realizations is em-
ployed to construct Monte Carlo approximations of
the mean and the covariance of the state vector. A
convenient way to present the EnKF equations is by
defining an augmented state vector, yn, in which the
predicted data vector, dn, is also included, i.e.,

yn
j =

⎡
⎣

mn
j

pn
j

dn
j

⎤
⎦ , (5)

where the subscript j denotes the jth ensemble mem-
ber. Equation 5 pertains to the parameter-state esti-
mation problem [14]. Here, mn is the Nm-dimensional
column vector of model parameters, and pn is the Np-
dimensional column vector representing the state of the

dynamical system (primary variables of the reservoir
simulator). Then, we define the matrix Hn as

Hn ≡ [
O INn

]
, (6)

where O is the Nn × (Nm + Np) null matrix and INn is
the Nn × Nn identity matrix. Using the definition 6, we
can write the predicted data vector, dn, f

j , using the same
linear relation used in the KF (Eq. 4).

This “trick” of augmenting the state vector with the
predicted data allows to derive the EnKF equations
in a similar fashion of the KF equations. The trick
turns a nonlinear relation between data and the original
state vector into a linear relationship between the vec-
tor of predicted data and the augmented state vector,
making it possible to write down the formula for the
analysis step analytically [28]. However, this trick does
not remove the effect of the nonlinearity, and it only
disguises the problem. As shown in Li and Reynolds
[28], augmenting the state vector with data results in
a correct procedure for sampling the posterior prob-
ability density function (pdf) if, and only if, at every
data assimilation time step, the predicted data vector
is a linear function of the unaugmented state vector.
Using the augmented state vector, the EnKF analysis
equations can be written in a similar form as the KF
equations. However, unlike the KF, where we update
directly the mean and covariance matrix, the EnKF
updates each ensemble member using

yn,a
j = yn, f

j + Cn, f
Y HT

n

(
Cn

D + HnCn, f
Y HT

n

)−1

×
(

dn
uc, j − dn, f

j

)
, (7)

for j = 1, . . . , Ne, where Ne is the number of state
vectors in the ensemble, i.e., the ensemble size and dn

uc, j
is a sample from the Gaussian distribution N (dn

obs, Cn
D).

In order to simplify the notation, we drop the time-step
index n in the remaining equations of this paper, noting
that all equations refer to the same data assimilation
time step. In Section 5, we make an exception to this
notational simplification as the time index is necessary
to explain the MDA procedure.

4 Multiple data assimilations

4.1 Multiple data assimilations for the linear case

In this section, we show the equivalence between single
and multiple data assimilations for the linear case using
the KF, where the full-rank covariance C f

Y is updated.
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Proposition For the linear case, with a Gaussian
prior and Gaussian noise in the measurements (linear-
Gaussian problem), applying the KF to assimilate data
Na times with the measurement error covariance matrix
multiplied by Na is equivalent to assimilating the same
data only once with the original measurement error
covariance matrix.

Proof We start the proof by noting that for the linear-
Gaussian problem the posterior pdf of model parame-
ters conditional to the observations is also Gaussian
[33, Chap. 7]. Hence, to prove the proposition, it is
necessary only to show that both procedures lead to the
same posterior covariance matrix and posterior mean.
Using results from [33, Chap. 7], the KF equations
(Eqs. 1–3) can be written as

μa
y = μ f

y + C f
Y HT

(
CD + HC f

Y HT
)−1 (

dobs − Hμ f
y

)

= Ca
Y

((
C f

Y

)−1
μ f

y + HTC−1
D dobs

)
(8)

and

Ca
Y = C f

Y − C f
Y HT

(
CD + HC f

Y HT
)−1

HC f
Y

=
((

C f
Y

)−1 + HTC−1
D H

)−1

. (9)

��

To assimilate data Na times with the measurement
error covariance multiplied by Na, let us define

d̃obs ≡
⎡
⎢⎣

dobs
...

dobs

⎤
⎥⎦ , (10)

H̃ ≡
⎡
⎢⎣

H
...

H

⎤
⎥⎦ (11)

and

C̃D ≡

⎡
⎢⎢⎢⎣

NaCD 0 · · · 0
0 NaCD · · · 0
...

. . .
...

0 · · · NaCD

⎤
⎥⎥⎥⎦ . (12)

In the above definitions, we simply repeated the vector
dobs and the matrices H and CD Na times. For assim-

ilating data multiple times, the linear relation (Eq. 4)
becomes

d̃ f = H̃y f . (13)

Now, we develop an expression for C̃a
Y, which de-

notes the posterior covariance for the MDA case. From
Eq. 9, we can write C̃a

Y as

C̃a
Y =

((
C f

Y

)−1 + H̃TC̃−1
D H̃

)−1

= C f
Y − C f

Y H̃T
(

C̃D + H̃C f
Y H̃T

)−1
H̃C f

Y. (14)

Using definitions 10, 11, and 12 in the second equal-
ity of Eq. 14, we can write this posterior covariance
matrix as

C̃a
Y = C f

Y −
[

C f
Y HT · · · C f

Y HT
]

C−1

⎡
⎢⎢⎣

HC f
Y

...

HC f
Y

⎤
⎥⎥⎦ . (15)

In Eq. 15, the matrix C is defined by

C ≡

⎡
⎢⎢⎢⎣

NaCD 0 · · · 0
0 NaCD · · · 0
...

. . .
...

0 · · · NaCD

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

HC f
Y HT HC f

Y HT · · · HC f
Y HT

HC f
Y HT HC f

Y HT · · · HC f
Y HT

...
. . .

...

HC f
Y HT · · · HC f

Y HT

⎤
⎥⎥⎥⎥⎦

(16)

=

⎡
⎢⎢⎢⎢⎣

NaCD + C f
DD C f

DD · · · C f
DD

C f
DD NaCD + C f

DD · · · C f
DD

...
. . .

...

C f
DD · · · NaCD + C f

DD.

⎤
⎥⎥⎥⎥⎦

.

In Eq. 16, we defined C f
DD ≡ HC f

Y HT to simplify
notation.

We need to develop an expression for C−1 in Eq. 15.
As C is a real symmetric positive definite matrix, its
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inverse is also real symmetric positive definite. Hence,
we can write the product CC−1 = I as

I = CC−1

=

⎡
⎢⎢⎢⎢⎣

NaCD + C f
DD C f

DD · · · C f
DD

C f
DD NaCD + C f

DD · · · C f
DD

...
. . .

...

C f
DD · · · NaCD + C f

DD

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

A B · · · B
B A · · · B
...

. . .
...

B · · · A

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

INn 0 · · · 0
0 INn · · · 0
...

. . .
...

0 · · · INn

⎤
⎥⎥⎥⎦ . (17)

Thus, in order to compute C−1, it is only necessary to
develop expressions for the submatrices A and B. From
Eq. 17, it is straightforward to obtain

(
NaCD + C f

DD

)
A + (Na − 1) C f

DD B = INn (18)

and

C f
DD A+

(
NaCD +C f

DD

)
B+ (Na −2) C f

DD B = 0. (19)

Subtracting Eq. 19 from Eq. 18, we obtain

A = 1
Na

C−1
D + B (20)

and using this result in Eq. 19, we obtain

B = − 1
N2

a

(
CD + C f

DD

)−1
C f

DDC−1
D . (21)

Using Eqs. 20 and 21 in Eq. 15, it is straightforward,
but tedious, to show that

C̃a
Y = C f

Y −C f
Y HT

(
CD + HC f

Y HT
)−1

HC f
Y = Ca

Y. (22)

In Appendix B, we present the matrix manipulations
required to establish Eq. 22. This equation shows that
the posterior covariance matrix obtained by assimilat-
ing data Na times with the measurement error covari-
ance matrix multiplied by Na is the same as the poste-
rior covariance matrix obtained assimilating data only
once with the original measurement error covariance
matrix. Following the same procedure, it is straightfor-
ward to show the equivalence of the posterior mean by
starting with Eq. 8 and using Eqs. 20 and 21.

It is known that EnKF becomes equivalent to the KF
for the linear-Gaussian case as the size of the ensemble
goes to infinity [13, Chap. 4]. Thus, the equivalence
between single and multiple data assimilations estab-
lished in this section guarantees that as Ne → ∞, EnKF
with multiple data assimilations (EnKF-MDA) is still
consistent with the KF for the linear-Gaussian case.

4.2 Sampling the posterior pdf with multiple data
assimilations for the linear case

In the previous section, we showed the equivalence
between single and multiple data assimilation for the
linear-Gaussian case using the KF. In the KF, the mean
and covariance are updated sequentially in time. For
the EnKF, on the other hand, we sequentially update
an ensemble of augmented state vectors generated by
sampling the prior distribution in order to obtain a sam-
pling of the posterior distribution. In this section, we
demonstrate that for the linear-Gaussian case, EnKF-
MDA samples the posterior pdf correctly, if we use the
full-rank forecast covariance matrix C f

Y. The deriva-
tion presented here explicitly shows that for EnKF-
MDA, we need to perturb the observations based on
the inflated covariance matrix of the measurement er-
rors. The derivation presented in this section, follows
Reynolds et al. [35] where it is shown that the random-
ized maximum likelihood (RML) method samples the
posterior pdf correctly for the linear-Gaussian case.

For sampling the posterior pdf with EnKF-MDA,
we start with a sample from the prior (forecast)
pdf, denoted by y f , i.e., y f ∼ N (μ

f
y , C f

Y). In addi-
tion, we perturb the observations by sampling duc ∼
N (dobs, NaCD). As before, to assimilate data Na times,
we define

d̃uc ≡
⎡
⎢⎣

d1
uc
...

dNa
uc

⎤
⎥⎦ , (23)

where d�
uc ∼ N (dobs, NaCD), for � = 1, 2, · · · Na.

The derivation has two parts. In the first part,
we define the vector ỹa as the minimizer of the
RML objective function [35] modified for the MDA
case, i.e.,

ỹa = arg min
y

Õ(y), (24)

where

Õ(y) = 1
2

(
y − y f )T

(C f
Y)−1 (

y − y f )

+ 1
2

(
H̃y − d̃uc

)T
C̃−1

D

(
H̃y − d̃uc

)
. (25)
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Minimizing Õ(y) is equivalent to assimilating d̃uc using
μ

f
y = y f with the KF [52]. In the second part of the

derivation, we show that ỹa has the correct posterior
pdf. Note that ỹa is a Gaussian random vector because
y f and d̃uc are Gaussian random vectors.

4.2.1 Part 1: Finding ỹa

Requiring the gradient of Õ(y) to vanish, solving the
resulting expression for y and denoting the result as ỹa,
we obtain

ỹa = Ca
Y

((
C f

Y

)−1
y f + H̃TC̃−1

D d̃uc

)
. (26)

Appendix B presents the steps required to obtain
Eq. 26.

The vectors y f and d̃uc are samples of Gaussian
distributions and can be obtained using the square roots
of the respective covariance matrices, i.e.,

y f = μ f
y +

(
C f

Y

)1/2
zy (27)

and

d̃uc = d̃obs + C̃1/2
D z̃d. (28)

In Eqs. 27 and 28, zy and z̃d are normally distrib-
uted random vectors, i.e., zy ∼ N (0, INy) and z̃d ∼
N (0, INd), where INy is the Ny × Ny identity matrix
and INd is the Nd × Nd identity matrix. Here, Nd =
Nn × Na denotes the number of data points at the nth
data assimilation time step multiplied by the number of
times these data are assimilated.

Using Eqs. 27 and 28 in Eq. 26 results in our final
expression for ỹa:

ỹa = Ca
Y

(
C f

Y

)−1
(

μ f
y +

(
C f

Y

)1/2
zy

)

+ Ca
Y H̃TC̃−1

D

(
d̃obs + C̃1/2

D z̃d
)
. (29)

4.2.2 Part 2: Proving that the pdf for ỹa is the correct
posterior pdf

In the second part of the derivation, we show that
sampling ỹa using Eq. 29 is equivalent to sam-
pling the posterior pdf, i.e., ỹa ∼ N (μa

y, Ca
Y). Be-

cause the posterior pdf is Gaussian, we only need to
show that

E
[
ỹa] = μa

y (30)

and

cov
[
ỹa] = E

[(
ỹa − μa

y

) (
ỹa − μa

y

)T
]

= Ca
Y. (31)

Using E[zy] = 0 and E[̃zd] = 0 and Eq. 8, it follows
that the expectation of ỹa is given by

E
[
ỹa] = Ca

Y

(
C f

Y

)−1
(

μ f
y +

(
C f

Y

)1/2
E[zy]

)

+ Ca
Y H̃TC̃−1

D

(
d̃obs + C̃1/2

D E [̃zd]
)

= Ca
Y

(
C f

Y

)−1
μ f

y + Ca
Y H̃TC̃−1

D d̃obs

= Ca
Y

(
C f

Y

)−1
μ f

y

+ Ca
Y

[
HT · · · HT

]

⎡
⎢⎢⎢⎢⎣

1
Na

C−1
D dobs

...
1

Na
C−1

D dobs

⎤
⎥⎥⎥⎥⎦

= Ca
Y

((
C f

Y

)−1
μ f

y + HTC−1
D dobs

)

= μa
y. (32)

Note that embedded in Eq. 32 is the equality

μa
y = Ca

Y

((
C f

Y

)−1
μ f

y + H̃TC̃−1
D d̃obs

)
. (33)

To obtain the posterior covariance, we first com-
pute ỹa − μa

y by subtracting Eq. 33 from Eq. 29, which
leads to

ỹa − μa
y = Ca

Y

[(
C f

Y

)−T/2
zy + H̃TC̃−T/2

D z̃d

]
. (34)

In Eq. 34, we allowed the possibility that the square
root of the covariance matrices C f

Y and C̃D are based on
the Cholesky decomposition, i.e., C f

Y = (C f
Y)1/2(C f

Y)T/2

and C̃D = C̃1/2
D C̃T/2

D , instead of requiring the symmetric
square roots from the spectral decomposition of C f

Y
and C̃D. For this reason, we obtained the transposes in
Eq. 34.

Using Eq. 34 in Eq. 31, we obtain

cov
[
ỹa] = E

[(
ỹa − μa

y

) (
ỹa − μa

y

)T
]

= Ca
Y

(
C f

Y

)−1/2
E

[
zyzT

y

] (
C f

Y

)−T/2
Ca

Y

+ Ca
Y

(
C f

Y

)−1/2
E

[
zyz̃T

d

]
C̃−T/2

D H̃Ca
Y

+ Ca
Y H̃TC̃−1/2

D E
[
z̃dzT

y

] (
C f

Y

)−T/2
Ca

Y

+ Ca
Y H̃TC̃−1/2

D E
[̃
zdz̃T

d

]
C̃−T/2

D H̃Ca
Y. (35)
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Noting that

E
[
zyzT

y

]
= INy, (36)

E
[̃
zdz̃T

d

] = INd , (37)

E
[
zyz̃T

d

] = 0 (38)

and

E
[
z̃dzT

y

]
= 0, (39)

Eq. 35 reduces to

cov
[
ỹa] = Ca

Y

((
C f

Y

)−1 + H̃TC̃−1
D H̃

)
Ca

Y. (40)

In the previous section, we showed that

C̃a
Y =

((
C f

Y

)−1 + H̃TC̃−1
D H̃

)−1

= Ca
Y. (41)

Using this result in Eq. 40, we obtain

cov
[
ỹa] = Ca

Y

(
Ca

Y

)−1
Ca

Y = Ca
Y, (42)

which completes the proof.
This result shows that in order to sample the pos-

terior pdf for the linear-Gaussian case with MDA, we
need to perturb the observations using the inflated
covariance matrix, C̃D. Again, the proof was presented
assuming the correct full-rank matrix C f

Y but will apply
for EnKF when Ne → ∞.

4.3 Interpretation of multiple data assimilations
for the nonlinear case

In the previous sections, we established the equivalence
between single and multiple data assimilation for the
linear-Gaussian case. However, for the nonlinear case,
this equivalence does not hold. Intuitively, we can ex-
pect some benefit from assimilating data multiple times
because we replace one potentially large update in the
state vector by multiple smaller updates.

It is well-known that when using the GN method for
history matching reservoir models, convergence prob-
lems can occur due to overcorrection in the model
parameters at early iterations. This overcorrection may
result in unreasonably small or large values of some
model parameters [29, 50]. This is particularly true
when the initial guess for the GN iterative process gives
predicted data far from the observations. Reynolds
et al. [36] showed that EnKF is similar to applying GN
sequentially, with a full step and replacing the sensi-
tivity matrix by an average sensitivity matrix obtained
from the ensemble. Because of this similarity between

the EnKF and GN method, it is reasonable to expect
that EnKF analysis may also result in overcorrection
in the states, especially if the predicted data are far
from the observations at a particular data assimilation
time step.

One way to ameliorate overcorrection when apply-
ing gradient-based minimization is to increase the vari-
ance of the measurement errors [19, 50]. By using an
artificially high value of data measurement errors dur-
ing early iterations, the objective function minimized
becomes more nearly quadratic so Newton-type meth-
ods work well. As the algorithm improves the data
matches, we can eventually use the correct measure-
ment error covariance matrix [19].

Li et al. [29] showed that the Levenberg–Marquardt
(LM) algorithm provides a natural way to avoid these
convergence difficulties observed in the GN method,
but it is clear that any trust-region method [31, 32] could
be used to achieve the same result. For the case where
the number of measurements is less than the number of
model parameters, a convenient way to write the LM
update equation for sampling with RML is [53]

y�+1
j = y�

j + y f
j − y�

j

1 + λ�

+ C f
Y HT

�

×
[
(1 + λ�)CD + H�C f

Y HT
�

]−1

×
⎧⎨
⎩

H�

(
y�

j − y f
j

)

1 + λ�

+ duc, j − d�
j

⎫⎬
⎭ , (43)

where λ� ≥ 0 is the LM parameter. Note that by choos-
ing λ� = 0, Eq. 43 becomes the GN update equation
with a full step. Because we can interpret EnKF as
one GN iteration with initial guess y0

j = y f
j and average

sensitivity matrix, H, we can write the EnKF analogous
LM equation as

y1
j = y f

j + C f
Y H

T
[
(1 + λ0)CD + HC f

Y H
T
]−1

×
(

duc, j − d f
j

)
. (44)

The similarity between Eq. 44 and the EnKF analysis
equation (Eq. 7) is evident. Using y1

j = ya
j , Eq. 44 rep-

resents the EnKF analysis equation with the covariance
of measurement errors increased by the factor 1 + λ0.
Hence, we can interpret EnKF-MDA as applying the
first iteration of the LM method Na times with λ0 =
Na − 1. Note that because Eq. 44 is missing terms in-
volving y�

j − y f
j (Eq. 43), this is not the same as applying

multiple consecutive LM iterations.
Another well-known advantage of the LM algorithm

over the GN method is that increasing λ� tends to
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decrease the condition number of the matrix inverted
in Eq. 43. A similar argument can be used for EnKF-
MDA. To illustrate this argument, consider the case
where the covariance matrix of the measurement errors
is a diagonal matrix given by CD = σ 2

d INn . It is straight-
forward to show that in this case, the condition number
of the matrix C = CD + HC f

Y HT is given by

κ(C) = βmax + σ 2
d

βmin + σ 2
d

, (45)

where βmax and βmin, respectively, are the largest and
the smallest eigenvalues of HC f

Y HT. For EnKF-MDA,
we have a matrix C̃ = NaCD + HC f

Y HT with condition
number given by

κ(C̃) = βmax + Naσ
2
d

βmin + Naσ
2
d

, (46)

which is a decreasing function of Na. Thus, κ(C̃) < κ(C)

for Na > 1. Also note that κ(C̃) → 1 as Na → ∞.

5 Computational implementation

The general EnKF-MDA algorithm follows:

1. Choose the number of data assimilations, Na.
2. Set mn,1

j = mn, f
j and pn−1,1

j = pn−1, f
j .

3. For � = 1 to Na do:
For j = 1 to Ne do:

(a) Run the forward model from the last data
assimilation time step, tn−1, until the next data
assimilation time step, tn, and store the pre-
dicted data vector dn,�

j .
(b) If � < Na, then build the forecast state vector,

yn,�
j , as

yn,�
j =

⎡
⎢⎣

mn,�
j

pn−1,�
j

dn,�
j

⎤
⎥⎦ , (47)

else, build yn,�
j as

yn,�
j =

⎡
⎢⎣

mn,�
j

pn,�
j

dn,�
j

⎤
⎥⎦ . (48)

(see comment 4 of Section 5.1.)
(c) Perturb the observation vector using

dn
uc, j = dn

obs + √
Na

(
Cn

D

)1/2
zn, (49)

where zn ∼ N (0, INn).

(d) Update the state vector using

yn,�+1
j = yn,�

j + Cn,�
Y HT

n

×
(

NaCn
D + HnCn,�

Y HT
n

)−1

×
(

dn
uc, j − dn,�

j

)
. (50)

end (for).
end (for).

4. Set yn,a
j = yn,�

j and go to the next data assimilation
time step.

5.1 Comments about the EnKF-MDA algorithm

1. The algorithm presented above refers to one data
assimilation time step. The same algorithm is ap-
plied for all time steps.

2. Perhaps, the most important thing to clarify about
the implementation of EnKF-MDA algorithm is
that dn,�

j is included in yn,�
j to keep the notation

consistent with Eqs. 5 and 7, where we used the
augmented state vector to present EnKF equations.
However, dn,�

j and pn,�
j are computed by running

the forward model from time step tn−1 to tn using
the reservoir state pn−1,�

j at time step tn−1. Addi-
tional clarification is given below.

3. With EnKF-MDA, at each data assimilation time
step, we do not assimilate the observed data Na

times simultaneously. Instead, we assimilate data
Na times consecutively and, after each of the Na

data assimilations, we rerun the forward model
(reservoir simulator) starting from the previous
time step for the ensemble with the updated state
vectors. With this procedure, we are effectively
updating the “average sensitivity” before the next
data assimilation. In a sense, EnKF-MDA can be
interpreted as an iterative form of EnKF where the
number of iterations is chosen a priori. Note that
in the derivations presented for the linear-Gaussian
case, we assimilate data Na times simultaneously.
However, consecutive and simultaneous data as-
similation are equivalent [13, Chap. 7]. Hence, the
derivations are still valid for assimilating data Na

times consecutively for the linear-Gaussian case.
4. In order to use MDA sequentially in time, it is

necessary to introduce an additional modification
in the data assimilation process to keep the up-
dated ensemble of model parameters statistically
consistent with the state of the dynamical system
(primary variables of the reservoir simulator). The
rigorous way to do this would be to rerun the
reservoir simulator from time zero after each data
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assimilation, but this is computationally expensive.
Instead, in our EnKF-MDA algorithm, we update
the primary variables (pn−1,�

j ) at time step tn−1 with
Eq. 50 for the first Na − 1 data assimilations. These
primary variables are used to restart the reservoir
simulations during the MDA loop. In the last data
assimilation, we update the vector of primary vari-
ables at the time step tn, i.e., pn,�

j , which is used to
restart simulations in the next time step.

5. As in standard implementations of EnKF, dn,�
j does

not need to be updated when using Eq. 7.
6. The computational cost of the proposed method is

roughly Na times the computational cost of data
assimilation with standard EnKF.

7. For each of the Na data assimilations, we recom-
pute the perturbed observation vector, i.e., we re-
sample dn

uc, j ∼ N (dn
obs, NaCn

D) instead of using the
same dn

uc, j for all Na data assimilations. Intuitively,
we expect that this procedure improves sam-
pling because we reduce bias possibly introduced
by matching “outliers” generated when sampling
dn

uc, j. Recall that the development presented in
Section 4.2 indicates that we should resample duc

at each of the Na consecutive data assimilations.

6 Time-lapse seismic data

History matching time-lapse seismic data require the
capability to compute seismic data from a given reser-
voir model. This task can be accomplished by introduc-
ing a rock–fluid model to convert the reservoir proper-
ties and the simulator primary variables (pressure and
saturations) into modeled elastic properties. The most
widely used model to predict the seismic response of
a reservoir due to production is the Gassmann model
[20]. Here, we use a petroelastic model (PEM) based
on Gassmann’s equation to compute synthetic seismic
data. Details about the PEM implementation can be
found in Emerick et al. [8]. Among the elastic proper-
ties typically used for seismic data history matching, the
most common choices are pressure-wave impedance
(P-impedance or acoustic impedance) and Poisson’s
ratio; see, e.g., [15, 21, 22, 40, 47]. However, other
seismic attributes such as amplitudes [23] and time
shifts [27, 41] have also been used. Fahimuddin et al.
[16] investigated different kinds of seismic data for
history matching with EnKF. They concluded that time-
difference impedance data performed better than time-
difference amplitude data.

Assimilation of seismic data introduces some chal-
lenges to the EnKF methodology. First, it may not be
feasible to directly compute or “invert” the Nn × Nn

matrix (CD + HC f
Y HT) in Eq. 7. In this case, the sub-

space inversion procedure proposed by Evensen [12]
and discussed in the Appendix A can be used. Second,
integrating time-lapse seismic data together with pro-
duction data typically requires the use of the ensemble
Kalman smoother [13, Chap. 9] because of the time-
difference characteristic of the data. In this case, it
is necessary to update the state vector at the current
data assimilation time step, and all other time steps
corresponding to times where measured seismic data
are available. A simple alternative procedure is to rerun
the reservoir simulation from time zero immediately
before the assimilation of the time-lapse data. This pro-
cedure removes potential problems related to statistical
inconsistency between the updated model and primary
variables but increases the computational cost of the
process. For the two synthetic cases presented in the
next sections of this paper, this inconsistency is not an
issue because the seismic data correspond to the time
difference between a monitor survey, obtained after a
period of production, and a base survey, obtained at
the initial condition of the reservoir, in which the states
are assumed to be known accurately. Third and per-
haps the most challenging problem when assimilating
seismic data with EnKF is the large amount of data
available. Effectively, there are roughly the same num-
ber of seismic data points as the number of reservoir
simulator gridblocks. In EnKF, the size of the ensemble
limits the number of degrees of freedom available to
assimilate data. Thus, the ensemble may not provide
enough degrees of freedom to assimilate all the seis-
mic information for large reservoir problems. In the
extreme case, the variability of the ensemble is reduced
to the point that the ensemble collapses to a single re-
alization. Standard procedures to reduce this problem
include local analysis [13] and covariance localization
[25]. Sakov and Bertino [38] showed that if we apply
a correlation function to taper the updates in the local
analysis procedure, then local analysis gives similar re-
sults to covariance localization. Both procedures, local
analysis and covariance localization, require choosing
a “localization region,” and the performance of these
methods is dependent on this choice. There exist also
other “localization” procedures which do not explicitly
require the definition of a “localization region”; see,
e.g., [2, 17, 44]. Nevertheless, because the objective of
this paper is only to investigate the effect of MDA, we
did not consider any localization procedure in the two
test cases presented in the next sections. For these two
test cases, we did not observe ensemble collapse after
assimilation of the seismic data. Finally, as discussed
before, because seismic data are available only at very
few and widely spaced time instances, we no longer
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have the potentially beneficial effect of applying several
consecutive data assimilation steps of data that have
overlapping information content. Thus, assimilation of
seismic data represents a problem in which MDA may
improve the history matching results.

7 Synthetic case 1

The first test case is a two-phase (oil and water)
synthetic reservoir model on a 2D uniform grid with
60 × 60 gridblocks. The dimensions of the gridblocks
are 150 × 150 × 25 ft. The model parameters are
gridblock log-permeabilities, ln(k)’s. The true model
was generated from an anisotropic exponential corre-
lation function with major correlation length of 3,750 ft
(which corresponds to the width of 25 gridblocks) and
minor correlation length of 1,050 ft (i.e., seven grid-
blocks) oriented at 45◦. The prior mean of ln(k) is
5.0 and the prior variance is 1.0 for all gridblocks.
Figure 1 shows the true permeability field used as the
reference to generate the observed data. The porosities
are constant and equal to 0.25 for all gridblocks. The
compressibility of the rock, oil, and water is also con-
stant and equal to 5 × 10−6, 10−5, and 10−6 psi−1, re-
spectively. In this model, there are five producing wells
and two water injectors. All producing wells are con-
trolled by a fixed bottomhole pressure of 1,000 psi. The
injectors are controlled by a fixed bottomhole pressure
of 3,000 psi.

7.1 Assimilation of seismic data

Synthetic time-lapse seismic data were generated based
on the true reservoir model. The seismic data corre-
spond to the P-impedance difference (�IP) between
a monitor survey after 3,900 days of production and
a base survey before the beginning of the produc-
tion. Figure 2a presents the true �IP data. Correlated
random noise was added to the true seismic data to
generate the synthetic observed data. The noise was
generated using an isotropic spherical covariance func-
tion with range of 750 ft (i.e., five gridblocks) and stan-

Fig. 1 True permeability
field (millidarcy)

(a) (b)

Fig. 2 P-impedance difference (lb/ft2s). a True seismic. b Seismic
with noise

dard deviation corresponding to 30% of the average
�IP data (σd,s = 17, 320 lb/ft2s). Figure 2b shows the re-
sulting seismic data with noise added. The seismic data
used for history matching correspond to one datum per
simulation gridblock.

Data assimilations with standard EnKF and EnKF-
MDA assimilating data two (EnKF 2×), four (EnKF
4×), and eight (EnKF 8×) times were performed to
history match the time-lapse seismic. The ensemble size
is 100 and the models of the initial ensemble were
generated using the same prior mean and covariance
function used to generate the true model. During data
assimilations, we used subspace inversion with rescal-
ing, as discussed in the Appendix A. Truncation was
done by retaining the largest singular values corre-
sponding to 99.9% of the sum of the nonzero singular
values when applying Eq. 76.

Figure 3 presents the mean ensemble predictions of
�IP obtained with the prior ensemble and the final
ensembles after EnKF and EnKF-MDA. For visual
comparison, we also include the true �IP in this figure.
For EnKF and EnKF-MDA, the predicted �IP data
were obtained by running the final ensembles from time
zero after data assimilation. This figure shows clearly
the improvement in the predicted �IP compared to
the prior ensemble. However, it is difficult to see the
differences between the EnKF and EnKF-MDA cases.
These differences are better visualized in the cross-plot
presented in Fig. 4, which shows that increasing the
number of data assimilations improved the match of
time-lapse seismic. For four and eight data assimila-
tions, the differences between the true and predicted
seismic from the updated permeability fields are less
than twice the standard deviation of the measurement
errors for almost all reservoir gridblocks. Figure 5 pre-
sents the final mean permeability fields obtained for
each case. It is interesting to note that all permeability
fields present some features of the true permeability,
e.g., the low permeability in the region between the
wells I1 (at the center of the reservoir) and P4 (at
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 P-impedance difference (pounds per square foot sec-
ond). True seismic data and mean ensemble predictions. a True.
b Prior. c EnKF 1×. d EnKF 2×. e EnKF 4×. f EnKF 8×

the lower left corner of the reservoir). However, the
mean permeability fields obtained with EnKF-MDA
are smoother than the one obtained with single data
assimilation. Note, for example, that the case with sin-
gle data assimilation (Fig. 5a) resulted in a relatively

Fig. 4 Cross-plots between true and mean predicted P-imped-
ance changes (pounds per square foot second). The dashed lines
correspond to ±2 standard deviations of the measurement errors

(a) (b)

(c) (d)

Fig. 5 Mean permeability fields (millidarcy) after assimilation of
seismic data. a EnKF 1×. b EnKF 2×. c EnKF 4×. d EnKF 8×

high permeability region between wells I1 and P2 (at
the upper right corner of the reservoir), whereas after
four data assimilations, the permeability in this region
is considerably reduced.

In order to further compare the data matches, we
repeated the data assimilations with ten different initial
ensembles. For each ensemble, we computed the data
mismatch objective function normalized by the number
of seismic data points, ON,s, i.e.,

ON,s = Od(m)

Nd,s
, (51)

where Nd,s = 3,600 is the number of data points and
Od(m) is the data mismatch objective function given by

Od(m) = 1
2

(d − dobs)
T C−1

D (d − dobs) . (52)

Some comments on Eqs. 51 and 52 are in order. For
the linear-Gaussian case, we define mc as the random
variable obtained by minimizing

O(m) = 1
2
(m − muc)

TC−1
M (m − muc)

+ 1
2

(Hm − duc)
T C−1

D (Hm − duc), (53)

where muc ∼ N (mpr, CM) and duc ∼ N (dobs, CD). In the
above equation, m is the vector of model parameters
(log-permeability), mpr is the vector with the prior
mean, and CM is the full-rank prior model covariance
matrix. The remaining terms were defined before. As
discussed in Oliver et al. [33, Chap. 10] as an extension
of the theoretical results of Tarantola [42], O(mc) has
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(a)

(b)

(c)

(d)

(e)

Fig. 6 Box plots of normalized seismic objective function for ten
different initial ensembles. Note that the vertical scale in the plots
are different. a Prior. b EnKF 1×. c EnKF 2×. d EnKF 4×. e
EnKF 8×

a chi-squared distribution with Nd degrees of freedom,
where Nd denotes the total number of data points. For
Nd large, this chi-squared distribution can be approxi-
mated by a Gaussian distribution with expectation Nd

and variance 2Nd. Although computational evidence
[18] suggests that this result on the distribution of
O(mc) also applies for the Gaussian-nonlinear case, it
has not been extended even for the linear case when
mc is restricted to a subspace spanned by Ne realization
in the initial ensemble. Thus, when the conditional
realizations, mc’s, are generated by EnKF, it is not clear
what the expected value of O(mc) is. Thus, we have sim-
ply computed the value of ON,s. In the special case that
m is the true model and dobs ∼ N (dtrue, CD), with dtrue

denoting the data predicted by the true model, ON,s

would have a chi-squared distribution with expectation
0.5. Thus, on average, we do not expect to be able to
obtain a value of ON,s less then 0.5, but whether we
can achieve an average ON,s of 0.5 is unclear as the
conditional realizations obtained by EnKF will always
lie in a subspace of dimension Ne.

Figure 6 presents the box plots of ON,s obtained
for each ensemble. Table 1 summarizes the results
for the ten ensembles. The results presented in Fig. 6
and Table 1 show that increasing the number of data
assimilations resulted in consistently better seismic data
matches. The biggest improvement occurred when the
number of data assimilations was increased from one
(average ON,s = 4.086) to two (average ON,s = 1.335).

Unfortunately, improving the data matches has an
undesirable side effect. The variability of the final en-
semble is also reduced. Figure 7 illustrates this fact
by showing the standard deviation of log-permeability
after data assimilation for the first of the ten ensem-
bles considered in this section. According to results in
this figure, we observe a significant reduction in the
standard deviation when we increase the number of
data assimilations from one (Fig. 7a) to two (Fig. 7b).
Compared to EnKF 2×, EnKF 4× and EnKF 8× did
not result in significant additional reductions in the
standard deviation. The reduction in the variability of
the final ensemble is related to the fact that EnKF

Table 1 Mean and standard deviation of ON,s for ten different
initial ensembles

Case Mean Standard deviation

Prior 33.195 14.261
EnKF 1× 4.086 1.504
EnKF 2× 1.335 0.323
EnKF 4× 0.885 0.198
EnKF 8× 0.764 0.144
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(a) (b)

(c) (d)

Fig. 7 Standard deviation of log-permeability after data assimi-
lation. a EnKF 1×. b EnKF 2×. c EnKF 4×. d EnKF 8×

“searches for solutions” in a subspace restricted by the
ensemble. If we become more restrictive and search for
models with better data matches, it is conceivable that
there will be fewer independent models in this subspace
satisfying the required level of matches, resulting in loss
of variability. It is important to note that this is not a
problem that occurs exclusively with EnKF-MDA. For
example, in [10], we used a different iterative method
based on EnKF and Markov chain Monte Carlo and
obtained the same conclusion that improving the data
matches by iterating with the ensemble results in ad-
ditional loss of variability. In fact, it is very likely that
additional loss of the ensemble variability is observed
with any iterative form of EnKF which aims to improve
the level of data matches. We believe that in order
to obtain a reliable characterization of uncertainty in
reservoir applications with ensemble-based methods, it
is necessary to repeat the data assimilation many times
with different initial ensembles because each ensemble
tends to sample only a small region of the posterior
pdf [10].

7.2 Production data prediction after assimilation
of seismic data

Figure 8 presents the field water production rate ob-
tained by simulation from time zero with the prior
ensemble and the final ensembles after assimilation
of the seismic data for the first of the ten ensembles
considered in the previous section. In this figure, be-
sides the historical period (3,900 days), we also include

(a) (b)

(c) (d)

(e)

Fig. 8 Field water production rate (stock tank barrels per day)
after assimilation of seismic data. The vertical dashed line indi-
cates the end of the history. The red dots represent the production
historical data, the red curve is the prediction from the true
model, the green curve is the mean ensemble prediction, and the
light blue curves are the predictions from the ensemble members.
a Prior. b EnKF 1×. c EnKF 2×. d EnKF 4×. e EnKF 8×

3,750 days of forecast. It is important to emphasize that,
even though Fig. 8 includes the production historical
data, only seismic data were assimilated. Note that the

(a) (b)

(c) (d)

Fig. 9 Field water production rate (stock tank barrels per day)
after assimilation of seismic and production data. The colors
mean the same as in Fig. 8. a EnKF 1×. b EnKF 2×. c EnKF 4×.
d EnKF 8×. Note that EnKF 2×, 4×, and 8× refer to multiple
assimilations of seismic data only. The production data were
assimilated with standard EnKF for all cases
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Table 2 Mean and standard deviation of ON,p for ten different
initial ensembles

Case Mean Standard deviation

EnKF 1× 2.893 2.946
EnKF 2× 2.230 1.806
EnKF 4× 1.780 1.460
EnKF 8× 1.533 1.135

assimilation of �IP data with standard EnKF resulted
in an ensemble which overestimated the field water
production (Fig. 8b). Increasing the number of times we
assimilate seismic data reduced the variance in the en-
semble predictions of field water rate. After eight data
assimilations, the ensemble underestimates the field
water production. This may be surprising considering
that we obtained a better match of seismic data with
eight data assimilations. Note, however, that the results
presented in Fig. 8 are after assimilating seismic data
only, where no production data were used.

7.3 Assimilation of production data

In order to further investigate the effect of a better
seismic data match on the production predictions, after
matching seismic data, we assimilated production data
using the standard EnKF (i.e., single data assimilation)
starting from the final ensembles obtained after assim-
ilation of seismic data. The observed production data

(a) (b)

(c) (d)

Fig. 10 Mean permeability fields (millidarcy) after assimilation
of seismic and production data. a EnKF 1×. b EnKF 2×. c EnKF
4×. d EnKF 8×. Note that EnKF 2×, 4×, and 8× refer to multiple
assimilations of seismic data only. The production data were
assimilated with standard EnKF for all cases

Table 3 Mean and standard deviation of ON,m for ten different
initial ensembles

Case Mean Standard deviation

EnKF 1× 0.501 0.134
EnKF 2× 0.388 0.078
EnKF 4× 0.365 0.058
EnKF 8× 0.358 0.056

correspond to 3,900 days of oil and water production
rates and water injection rates. The frequency of data
assimilation corresponds to one data assimilation every
150 days. Random normally distributed noise with zero
mean and standard deviation equal to 5% of the true
data was added to the true data to define the noisy
observations.

Figure 9 presents the field water production rate
obtained by running the ensembles from time zero after
assimilation of the production data. The results in this
figure indicate slightly better matches of production
data for the ensembles with multiple assimilations of
the seismic data, although the difference are not large.
Table 2 presents the mean and standard deviation of
the data mismatch objective function of the production
data normalized by the number of production measure-
ments (ON,p = O(m)/Nd,p, with Nd,p = 299) obtained
for the ten ensembles. According to results presented
in the Table 2, the ensembles obtained with multiple as-
similations of seismic data resulted in better production
data matches as well. Figure 10 presents the final mean
permeability fields for the first of the ten ensembles.
Comparing Fig. 10 with Fig. 5, we observe that for the
case with single assimilation of the seismic data, it was
necessary to make larger changes in the permeability
field to history match the production data, resulting in
a rougher mean permeability field. Table 3 presents the
mean and standard deviation of the normalized model
mismatch objective function (ON,m) obtained for the
ten ensembles. ON,m was computed using

ON,m = 1
2Nd

(m − mpr)
TC−1

M (m − mpr),

where Nd = Nd,s + Nd,p is the total number of data
points. The results of Table 3 indicate that EnKF-MDA
resulted in smoother permeability fields.

Table 4 Mean and standard deviation of ON,s for ten different
initial ensembles after assimilation of production data

Case Mean Standard deviation

EnKF 1× 4.104 0.997
EnKF 2× 2.043 0.679
EnKF 4× 1.343 0.430
EnKF 8× 1.187 0.416
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Fig. 11 Cross-plot between observed and mean predicted oil
saturation changes. The dashed lines correspond to ±2 standard
deviations of the measurement errors

Table 4 presents the mean and standard deviation of
the normalized seismic data mismatch objective func-
tion obtained after the assimilation of the production
data. The results presented in this table indicate only a
small deterioration in the seismic data matches. How-
ever, the EnKF-MDA cases still present better seismic
data matches compared to standard EnKF.

8 Brugge case

We also tested EnKF-MDA on the Brugge case [34].
The Brugge case is a synthetic reservoir designed as
a benchmark problem for evaluating methods for wa-
terflooding optimization combined with history match-
ing in a closed-loop workflow. A description of the
case can be found in [34]. In the original Brugge case
dataset, there are 104 realizations of rock properties
(porosity, horizontal, and vertical permeabilities and
net-to-gross ratio), 10 years of production history and
a synthetic time-lapse seismic. The time-lapse seismic
corresponds to pressure and oil saturation changes due
to the 10 years of production. According to Peters et al.
[34], from the nine research groups that participated
in the original benchmark study, six used the seismic
data in the history matching. However, no results or dis-

Table 5 Mean and standard deviation of ON,s for the
Brugge case

Case Mean Standard deviation

Prior 0.766 0.053
EnKF 1× 0.606 0.005
EnKF 2× 0.540 0.002
EnKF 4× 0.510 0.001

Fig. 12 Observed seismic (�So)

cussions about the seismic data matches are presented
in [34] nor in other papers published by some of the
groups [4, 5, 30].

According to Peters et al. [34], an unintentional bias
was introduced in the pressure data because the seismic
data were calculated based on an upscaled model. For
this reason, here, we consider only the oil saturation
data. The seismic data were provided as vertically
averaged data, corresponding to the four geological
zones of the reservoir. The provided seismic data were
corrupted with an unknown level of noise. Here, we
estimated the noise level by smoothing the observed
data with a window averaging for each of the four
reservoir zones and computing the residual between
observed and smoothed data. We tried different sizes
of the averaging window and, for each case, we com-
puted empirical variograms. The results indicated that
the noise added to the seismic seems to be spatially
uncorrelated in the horizontal plane with an average
standard deviation of 0.025.

Fig. 13 Average predicted seismic from the prior ensemble
(�So)
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Fig. 14 Average predicted seismic from the final ensemble after
EnKF (�So)

In this example, we assimilated only the seismic data
(�So) using standard EnKF and EnKF-MDA with two
and four data assimilations (no production data are
included). Figure 11 presents a cross-plot between ob-
served and the mean predicted �So obtained with the
prior ensemble and the ensembles after data assimila-
tion. This figure indicates a slightly improvement in the
predicted �So using two and four data assimilations.
Table 5 presents the average values of ON,s for each
case. Note that the values of the normalized objective
function for the Brugge case are relatively small, even
for the prior ensemble. This happens mainly because
in the Brugge case, there is a large aquifer, in which
the oil saturation change is zero, and thus seismic data
pertaining to the aquifer is automatically well matched.
Nevertheless, the results in Table 5 show reductions on

Fig. 15 Average predicted seismic from the final ensemble after
EnKF with two data assimilations (�So)

Fig. 16 Average predicted seismic from the final ensemble after
EnKF with four data assimilations (�So)

the order of 10% (EnKF 2×) and 15% (EnKF 4×) in
the values of ON,s compared to the standard EnKF.
Figures 12, 13, 14, 15, and 16 present the observed �So

and the mean predicted �So obtained with the prior
ensemble and the posterior ensembles obtained with
EnKF assimilating data one, two, and four times. In
these figures, the oil saturation changes are presented
for the four reservoir zones (Schelde, Waal, Maas, and
Schie). In these figures, the negative values (green to
blue colors) represent a decrease in oil saturation due
to the displacement of oil by injected water.

9 Discussion

The proposed EnKF-MDA procedure requires very
few modifications into a standard EnKF implementa-
tion. It can be interpreted as a simple, but still efficient,
iterative form of EnKF. In this paper, we investigated
EnKF-MDA for the case of assimilating time-lapse
seismic data. However, the proposed procedure is gen-
eral, and it can be used in different applications. For
example, EnKF-MDA can be useful for assimilating
production-logging data [7]. Production logging con-
sists of reservoir layer rate data but collected only at
a specific time. In this sense, data from production
logging are similar to seismic data. In fact, Coutinho
et al. [7] found that it was challenging to obtain good
data matches of production-logging data using EnKF
in a field case.

Although we conjecture that EnKF performs rea-
sonably well when history matching production data
because of the sequential assimilation approximately
corresponds to accumulate several GN corrections, we
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do not discard the possibility that EnKF-MDA can
still be useful in this case. In our limited set of tests,
however, we observed only small improvements in data
matches when EnKF-MDA was applied to assimilate
regular production data. However, the performance of
MDA needs further investigation for the production
data case.

Another potential application of MDA is for the
ensemble smoother (ES) [45, 46]. The ES was recently
applied for reservoir history matching by Skjervheim
et al. [41]. In the ES, all data are assimilated at once,
which means that only a single approximate GN iter-
ation is done to history match all data. One advan-
tage of ES over the standard EnKF is that in ES,
there is no need to restart reservoir simulations every
data assimilation time step. This makes ES much eas-
ier to implement and significantly faster than EnKF.
Skjervheim et al. [41], for example, reported that ES
required approximately 10% of the CPU time required
by EnKF. Besides that, ES is an attractive option for
data assimilation workflows which integrate different
part of the reservoir modeling process, including seis-
mic, structural, and geological modeling with flow sim-
ulation, as in the workflow presented by Zachariassen
et al. [51]. These workflows typically require the in-
tegration of different geomodeling softwares and may
include upscaling of the rock properties, which makes
the simulation restarts required by EnKF very incon-
venient, if not impossible. However, because in ES all
data are assimilated at once, it may also result in poor
data matches even compared to standard EnKF. In this
situation, MDA seems to be an easy way to improve
data matches obtained by the ES.

10 Conclusions

In this paper, we introduced the EnKF with multiple
data assimilations. We proved that single and multi-
ple data assimilations are equivalent for the linear-
Gaussian case and presented computational evidence
that multiple data assimilations can improve EnKF es-
timates for the nonlinear case. We applied the proposed
procedure to two synthetic cases to assimilate time-
lapse seismic data, and the results show better data
matches when compared to standard EnKF.
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Appendix A: Inversion and rescaling

Pseudo-inverse

The EnKF analysis requires the inversion of the Nn ×
Nn matrix C given by

C = HC f
Y HT + CD = C f

DD + CD. (54)

Because C f
DD is a real-symmetric positive semi-definite

matrix, C given by Eq. 54 will be real symmetric positive
definite as long as we choose CD positive definite.
However, this matrix may be poorly conditioned [13,
Chap. 14]. Hence, EnKF implementations typically use
a pseudo-inverse of C computed using a truncated
SVD, i.e.,

C+ = Ur�
−1
r UT

r , (55)

where C+ denotes the pseudo-inverse of C. Ur is the
Nn × Nr matrix with its jth column equal to the left
singular vector of C corresponding to the jth singular
value. �r is a diagonal matrix containing the Nr largest
nonzero singular values of C. Nr is typically defined by
sorting the singular values, λi, in a decreasing order and
finding the maximum Nr such that

∑Nr
i=1 λi∑Nn
i=1 λi

≤ ξ, (56)

where ξ is a number typically between 0.9 and 1.0.
However, C may also be poorly scaled as it may be con-
structed based on data with different magnitudes, e.g.,
pressure and water-cut data. In this case, one may lose
the information necessary to match data when truncat-
ing small singular values; see, for example, Wang et al.
[48] where an example is shown in which water-cut data
could not be matched because of truncation. For this
reason, it is important to rescale the components of the
matrix C before calculating the truncated SVD. This
rescaling can be done by using the Cholesky decompo-
sition of CD, i.e.,

CD = C1/2
D CT/2

D (57)

and writing Eq. 54 as

C = C1/2
D C̃CT/2

D , (58)

where

C̃ = C−1/2
D C f

DDC−T/2
D + INn . (59)
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Truncated SVD is now applied to the matrix C̃ to
obtain

C̃ = Ũr�̃rŨT
r , (60)

and the pseudo-inverse of C becomes

C+ = C−T/2
D Ũr�̃

−1
r ŨT

r C−1/2
D . (61)

This rescaling procedure can be justified by defining the
dimensionless sensitivity matrix, HD, [54] as

HD = C−1/2
D HC1/2

Y , (62)

For the linear case, we can write the vector of predicted
data d f in terms of the state vector y f as

d f = Hy f , (63)

so that the cross-covariance matrix C f
DD can be

written as

C f
DD = HC f

Y HT. (64)

Using Eqs. 62 and 64 in Eq. 59, we can write C̃ as

C̃ = HD HT
D + INn . (65)

Let ωi be the ith singular value of HD. Thus, it is
straightforward to show that the ith singular value
of C̃, denoted by λ̃i, is given by

λ̃i = ω2
i + 1. (66)

The results of Tavakoli and Reynolds [43] imply that
the singular values of HD govern the reduction in un-
certainty in the state vector due to the assimilation of
data with the Kalman filter. In addition, they show that
small singular values of HD have negligible influence
on the reduction of uncertainty. From Eq. 66, we note
that the singular values of C̃ are defined by the singular
values of HD, so that truncating small values of λ̃i

corresponds to eliminating small singular values of HD

which have the smallest influence on the reduction
of uncertainty. In this sense, the rescaling procedure
presented in this section is optimal.

10.1 Subspace inversion

The inversion procedure presented in the previous sec-
tion requires the SVD of a Nn × Nn matrix. However,
when the number of data points is large, as in the case

when assimilating seismic data, the computational cost
of this SVD procedure is too high. Evensen [12] intro-
duced a subspace inversion procedure, which is com-
putationally more efficient in the case where Ne � Nn.
Here, we briefly review the subspace inversion pro-
posed by Evensen [12] and rewrite this procedure for
the case in which rescaling is applied.

In the subspace inversion, we define Ĉ = (Ne − 1)C,
where C is given by Eq. 54 and write Ĉ in the following
form:

Ĉ = �D f (�D f )T + (Ne − 1)CD. (67)

Here, �D f = D f −D
f

where D f denotes the Nn×Ne

matrix of predicted data, i.e., the columns of D f cor-
respond to the vectors of predicted data obtained by

the ensemble members. D
f

is the Nn × Ne matrix with
all columns equal to the mean ensemble prediction.
Instead of computing the pseudo-inverse of Ĉ directly
by truncated SVD, we apply SVD to �D f and truncate
with the Nr largest singular values, i.e.,

�D f ≈ UrWrVT
r , (68)

where Ur is the Nn × Nr matrix containing as its
columns the left singular vectors of �D f corresponding
to its first Nr largest singular values; Vr is the Ne × Nr

corresponding matrix of right singular vectors and Wr

is a diagonal matrix with the Nr largest singular values
of �D f as its diagonal entries. Because we can choose
Nr ≤ min{Nn, Ne − 1}, we write Eq. 68 as an approxi-
mation; equality holds when we keep all nonzero singu-
lar values. Using Eq. 68 in Eq. 67, we obtain

Ĉ ≈ UrWr
[
INr + (Ne − 1)W−1

r UT
r CDUrW−1

r

]
WrUT

r .

(69)

In Eq. 69, we introduced the additional approximation
that UrUT

r ≈ INn . Defining the Nr × Nr symmetric ma-
trix X as

X = (Ne − 1)W−1
r UT

r CDUrW−1
r , (70)

we can write Eq. 69 as

Ĉ ≈ UrWr
[
INr + X

]
WrUT

r . (71)

Because X is real symmetric positive semidefinite,
the SVD of X is equivalent to a Schur decomposition,

X = Zr�r Z T
r , (72)
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where �r is a Nr × Nr diagonal matrix with the ith
diagonal entry equal to the ith eigenvalue of X, which is
real and non-negative, and Zr is a Nr × Nr orthogonal
matrix with its ith column equal to the ith eigenvector
of X. Using Eq. 72 in Eq. 71 and the fact that Zr is an
orthogonal matrix, we obtain

Ĉ ≈ (UrWr Zr)
[
INr + �r

]
(UrWr Zr)

T . (73)

Because Wr and �r are diagonal matrices, it is trivial
to compute their inverses and the pseudo-inverse of Ĉ
becomes

Ĉ+ = (
UrW−1

r Zr
) [

INr + �r
]−1 (

UrW−1
r Zr

)T
, (74)

which is the pseudo-inverse using the subspace inver-
sion scheme of Evensen [12].

As before, we may still have scaling problems when
truncating the small singular values of �D f . Hence,
we present a subspace inversion scheme for the case in
which we rescale �D f before applying truncated SVD.
This rescaling can be done by rewriting Eq. 67 as

Ĉ = C1/2
D

[
C−1/2

D �D f (�D f )TC−T/2
D + (Ne − 1)INn

]
CT/2

D .

(75)

Instead of using the truncated SVD of �D f , we calcu-
late the following truncated SVD:

C−1/2
D �D f ≈ ŨrW̃rṼT

r . (76)

Using the same procedure as before, we obtain

Ĉ ≈ C1/2
D ŨrW̃r

[
INr + (Ne − 1)W̃−1

r W̃−1
r

]
W̃rŨT

r CT/2
D .

(77)

Finally, the pseudo-inverse of Ĉ can be written as

Ĉ+ =
(

C−T/2
D ŨrW̃−1

r

) [
INr + �̃r

]−1
(

C−T/2
D ŨrW̃−1

r

)T
.

(78)

where �̃r is the Nr × Nr diagonal matrix given by

�̃r = (Ne − 1)W̃−1
r W̃−1

r . (79)

Appendix B: Matrix manipulations

Derivation of Eq. 22

Equation 22 can be obtained using Eqs. 20, 21, and 15
as follows:

C̃a
Y = C f

Y −
[

C f
Y HT · · · C f

Y HT
]

×

⎡
⎢⎢⎢⎢⎣

1
Na

C−1
D + B B · · · B
B 1

Na
C−1

D + B · · · B
...

. . .
...

B · · · 1
Na

C−1
D + B

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎣

HC f
Y

...

HC f
Y

⎤
⎥⎥⎦

= C f
Y−

[
C f

Y HT · · · C f
Y HT

]
⎡
⎢⎢⎢⎣

(
1

Na
C−1

D +Na B
)

HC f
Y

...(
1

Na
C−1

D +Na B
)

HC f
Y

⎤
⎥⎥⎥⎦

= C f
Y − NaC f

Y HT
(

1
Na

C−1
D + Na B

)
HC f

Y

= C f
Y−C f

Y HT
[
C−1

D −
(

CD+C f
DD

)−1
C f

DDC−1
D

]
HC f

Y

= C f
Y−C f

Y HT
[
INn −

(
CD+C f

DD

)−1
C f

DD

]
C−1

D HC f
Y

= C f
Y − C f

Y HT
[(

CD + C f
DD

)−1 (
CD + C f

DD

)

−
(

CD + C f
DD

)−1
C f

DD

]
C−1

D HC f
Y

= C f
Y − C f

Y HT
(

CD + C f
DD

)−1 [
CD + C f

DD − C f
DD

]

× C−1
D HC f

Y

= C f
Y − C f

Y HT
(

CD + HC f
Y HT

)−1
HC f

Y

= Ca
Y.

Derivation of Eq. 26

To derive Eq. 26, we first compute the gradient of Õ(y)

with respect to y and set it equal to a zero vector,
i.e.,

∇y Õ(y) =
(

C f
Y

)−1 (
y − y f ) + H̃TC̃−1

D

(
H̃y − d̃uc

) = 0.

(80)
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Rearranging Eq. 80, we obtain
[(

C f
Y

)−1 + H̃TC̃−1
D H̃

]
y =

(
C f

Y

)−1
y f + H̃TC̃−1

D d̃uc. (81)

Solving Eq. 81 for y and denoting the result as ỹa, we
obtain

ỹa =
[(

C f
Y

)−1 + H̃TC̃−1
D H̃

]−1

×
((

C f
Y

)−1
y f + H̃TC̃−1

D d̃uc

)
. (82)

Using of Eqs. 9 and 22, Eq. 82 can be written as

ỹa = Ca
Y

((
C f

Y

)−1
y f + H̃TC̃−1

D d̃uc

)
, (83)

which is Eq. 26 of the text.
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