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Abstract The transport of chemically reactive solutes
(e.g. surfactants, CO, or dissolved minerals) is of fun-
damental importance to a wide range of applications
in oil and gas reservoirs such as enhanced oil recov-
ery and mineral scale formation. In this work, we in-
vestigate exponential time integrators, in conjunction
with an upwind weighted finite volume discretisation
in space, for the efficient and accurate simulation
of advection—dispersion processes including non-linear
chemical reactions in highly heterogeneous 3D oil
reservoirs. We model sub-grid fluctuations in trans-
port velocities and uncertainty in the reaction term
by writing the advection-dispersion-reaction equation
as a stochastic partial differential equation with multi-
plicative noise. The exponential integrators are based
on the variation of constants solution and solve the
linear system exactly. While this is at the expense of
computing the exponential of the stiff matrix repre-
senting the finite volume discretisation, the use of real
Léja point or the Krylov subspace technique to approx-
imate the exponential makes these methods competi-
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tive compared to standard finite difference-based time
integrators. For the deterministic system, we investigate
two exponential time integrators, the second-order ac-
curate exponential Euler midpoint (EEM) scheme and
exponential time differencing of order one (ETD1). All
our numerical examples demonstrate that our meth-
ods can compete in terms of efficiency and accuracy
compared with standard first-order semi-implicit time
integrators when solving (stochastic) partial differential
equations that model mixing and chemical reactions in
3D heterogeneous porous media. Our results suggest
that exponential time integrators such as the ETD1 and
EEM schemes could be applied to typical 3D reser-
voir models comprising tens to hundreds of thousands
unknowns.

Keywords Advection—dispersion-reaction equations -
Fast time stepping - SPDESs - Langevin equation -
Sub-grid physics - Mixing and chemical reaction
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1 Introduction

Advection and diffusion can transport chemically reac-
tive components such as dissolved minerals and gases,
surfactants or polymers, over long distances through
the highly heterogeneous porous media comprising oil
and gas reservoirs. It is hence fundamental to reservoir
engineering and includes processes like enhanced oil
recovery due to controlled-salinity flooding [1], mineral
scale formation [33] or subsurface CO, storage [30].
Predicting the spatial spreading and mixing of reactive
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solutes in field applications by numerical simulations
requires the efficient and accurate numerical solution
of at least one advection—dispersion—reaction equation
(ADR), which must adequately resolve the wide range
in flow velocities and reaction rates intrinsic to 3D oil
and gas reservoirs.

There are two fundamental problems with using the
ADR to model reactive transport in heterogeneous
porous media [11]: First, the ADR treats mechanical
dispersion of solutes and diffusive mixing of solutes
by an effective Fickian dispersion tensor. This over-
estimates the amount of mixing and mixing-induced
reactions. Second, the actual reaction term is highly un-
certain because (a) chemical reaction rates depend on
pressure, temperature and composition, which change
locally and transiently, and (b) the reactive surface areca
of the pore space evolves transiently and spatially. Both
occur at scales that are commonly not resolved in a
typical reservoir simulation, i.e. at a scale smaller than
the size of a single grid block. It has recently been
shown that by including a stochastic forcing term in
the ADR, it is possible to model sub-grid variations
in transport velocities causing mechanical dispersion
and sub-grid diffusion during miscible single-phase flow
with chemical reactions [36, 37]. A stochastic form
of the ADR was also used to model trapping of an
immiscible fluid phase during multi-phase flow [39, 40].
Here we write the ADR in a more general form that
is as a stochastic partial equation with multiplicative
noise to model sub-grid fluctuations and uncertainties
in chemical reaction rates.

The classical deterministic ADR is usually discre-
tised in space by the full range of spatial discretisa-
tions (e.g. finite differences, finite volumes or finite
elements), and each method comprises its own body of
literature. However, a fundamental challenge remains:
How to integrate in time the system of stiff ODEs,
representing transport and reaction processes evolving
over multiple time scales, in a stable, accurate and
efficient way while avoiding non-physical oscillations?
The key problem in porous media flow is to overcome
the limitations of stability criteria, such as the Courant—
Friedrich-Levy criterion, when resolving the huge vari-
ation in competing transport and reaction rates. We
recently showed that an alternative time integration
strategy can be used: The exponential time differencing
scheme of order one (ETD1), i.e. O(A1), allows for the
fast and accurate solution of the ADR in 2D [35].

The family of exponential integrators date back to
the 1960s (see [16, 26] for history and references).
These methods are based on approximating the corre-
sponding integral formulation of the non-linear part of
the differential equation, solving the linear part exactly
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and computing the exponential of a matrix, see, for
example, [9, 13, 14, 16, 19] and [16, 26] for a review.
Although exponential integrators have the advantage
that they solve the linear part exactly in time, this is at
the price of computing the exponential of a matrix, a
notorious problem in numerical analysis [27]. However,
new developments in real fast Léja point and Krylov
subspace techniques for computing functions of the ma-
trix exponential has revived interest in these methods.
The real fast Léja point technique is based on matrix
interpolation polynomials at spectral Léja sequences [2,
3]. The Krylov subspace technique is based on the idea
of projecting the operator on a “small” Krylov subspace
of the matrix via the Arnoldi process [13, 28, 32]. Refer-
ences for work with the Krylov subspace technique and
real fast Léja points can be found in [35].

In this work, we solve the ADR (Eq. 1) with and
without a stochastic forcing term for anisotropic and
heterogeneous 3D porous media that exhibits high Pé-
clet numbers, i.e. solute transport that is advection-
dominated. For the deterministic case, we examine
flows using two exponential integrators: Exponential
time differencing of order O(Af) (ETD1) and the ex-
ponential Euler midpoint integrators (EEM) of order
O(Af?) [7]. For the stochastic case, we examine an
exponential integrator [34] based on the ETD1 scheme,
which we expect has order O(At'/?) for the system
considered here. In all cases, we use a finite volume
discretisation in space. The aim of this paper is to inves-
tigate these integrators, compare their performances in
terms of efficiency and accuracy to a standard semi-
implicit integrator for solving a non-linear ADR in
highly anisotropic and heterogeneous porous media
with high Péclet number flows where sub-grid flow
variations and changes in reaction rates are modelled
by stochastic forcing.

2 Model problem

For simplicity, we assume the movement of a chemi-
cally reactive solute in a single phase. Our model prob-
lem is to find the unknown concentration of the solute
C that satisfies the following stochastic ADR equation:

aC
P =V DEVE) -V - (@x0)

+Rx, C) + GG(C)%—VtV, 1)

where (x,1) € Q x [0, T]. We discuss the stochastic
term below, but note for now that when o = 0, we have
the standard deterministic model. Here we take Q to
be an open domain of R? and solve over a finite time
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interval [0, T]. ¢ is the porosity (void fraction) of the
rock, and D is the symmetric dispersion tensor, which
models small-scale mixing and spreading of solutes. R
is a reaction function, which models the chemical inter-
action between different solutes and/or between solutes
and pore space. A simple model for R(C) is the classical
Langmuir sorption isotherm R(C) = (AyC) /(1 + AC).
The formulation for D is given further below. The
velocity q is given by Darcy’s law as

k
n

where p is the fluid pressure, w is the fluid viscosity and
k the permeability tensor of the porous medium. For
simplicity, we take k to be

k, 00
k=|0k 0 (3)
0 0 ks

with k; > 0,k; > 0, k3 > 0. Assuming that rock and
fluids are incompressible and sources or sinks are ab-
sent, mass conservation is given by V - g = 0. From this
we can formulate the elliptic pressure equation, which
allows us to compute the pressure field in the porous
medium

v *2vp| -0 )

For o # 0, we have a stochastic ADR which should
be interpreted as an integral equation and here we
understand the stochastic integral in the Ito sense. We
use the representation of the Wiener process W (x, t) as

W, 0= Y JVixes)Bi ), )

i jkeN

see [10, 29], where (v, €ijx)i jken are eigenvalues and
eigenfunctions for a given covariance operator Q that
we take here to be exponential with correlation lengths
(€1, €2, ¢3) in the x-, y- and z-directions. The B
are independent and identically distributed standard
Brownian motions and so the noise is white in time.
We take G(C) = C(1 — C) as phenomenological form
of noise, it has the property that concentration remains
in [0, 1] and variations from noise are small for C close
to either O or 1. Interpretation of the stochastic integral
in the Ito sense from a modelling view can be thought
of that the pore-scale process acts on a time scale that
is faster than the reaction time scales.

3 Finite-volume space discretisation and exponential
integrators schemes for ADR

3.1 Space discretisation

As in [35], we use the classical finite volume method
with a structured mesh 7. First, we solve the pressure
equation (Eq. 4) and then obtain the velocity field from
Eq. 2. This provides the integral of the velocity {¢;},.,
at each edge j of a control volume i. Integrating Eq. 1
over i using the divergence theorem and the flux ap-
proximations, we obtain the following equation:

edges of i
dCi(o)
oVi—g =~ ; [Fij(t) + i, ,C;(0)] + Vi R(Ci(2))
+ oV, G(Ci(t))dvgit(t) vV ieT. (6)

Here, C;(t) is the approximation of C at time ¢ at
the centre of the control volume i € 7, F; (t) is the
approximation of the diffusive flux at time ¢ at edge j
and g; ;C;(?) is the approximation of the advective flux
at time ¢ at edge j. Note that F; ;(¢) already contains C;.
Vi R(C;(?)) is the approximation of the integral of the
reaction term over the ith control volume of volume
Vi and ¢; is the mean value of the porosity ¢ in the
control volume i. We apply standard upwind weighting
to the flux term ¢g; ;C;. For o # 0, the stochastic forcing
term is treated in a similar way to the reaction term.
We let h denote the maximum mesh size and use this to
indicate our spatial discretisation. We can rewrite Eq. 6
in the standard way as the following non-linear system
of equations for all control volumes i € 7

dg;t(t) =LC,() +N(C,, 1)
+0G(C)) dv_&;}t’(t), te[0, T]. (7)

Here L is the stiffness matrix coming from the approx-
imations of the advective and diffusive fluxes, C,(?)
is the concentration vector at all control volumes at
time ¢ and the term N(C,,, ) comes from the boundary
conditions and reaction term. For the case of stochas-
tic forcing when o # 0, we project W(x, ) onto the
centre of the finite volume by P, (see [22, 23, 34])
jl\/Tjkei/'k(x)ﬂijk(t)a and we

have also projected onto a finite set of eigenfunctions
e;jx of the covariance operator Q.
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3.2 Time discretisations

First, we discuss the implementation for the determin-
istic system when o = 0. The standard time-stepping
schemes commonly used for the ADR are the semi-
implicit Euler and implicit Euler schemes. In [35], we
showed, for several 2D applications, that the exponen-
tial time differencing scheme of order O(Ar) (ETD1)
requires at least ten times less computational cost com-
pared to implicit time integrators to reduce the numer-
ical error to a certain value. Here we only use the semi-
implicit scheme for comparisons. Recall that given the
initial data C) = C° and a sequence of time steps 1,, the
semi-implicit Euler scheme for Eq. 7 is

gz-‘rl _ Cn

~h — LQZ"’I + M@Z’ tn)’ T, = tn+1 — [n(g)

Tn
We introduce the ETD1 scheme for the ADR (Eq. 1)

using the variation of constants. This allows us to write
the exact solution of Eq. 7 as

Cy(ty) = e’
Iy
+/ e(tn—S)LN(Qh(s),s)ds, tn €10, T].
0

We can construct the corresponding solution at ¢, as

C),(tny1) = e™ Lgh(tn)
—i—/ ' e(f"_‘Y)LE(Qh(tn +9), t, + s)ds. 9)
0

Note that the expression in Eq. 9 is still an exact so-
lution. The idea behind exponential time differencing
is to approximate N(C,(t, +5),t, +5) by a suitable
polynomial [9, 19]. We consider the simplest case
where N(C,, (¢, + 5), t, + 5) is approximated by the con-
stant N(C,,(t,,), t,). The corresponding ETD1 scheme is
given by

QZ'H =e™ LQZ + Tug1 (T LN(Cy, 1) (10)

where ¢;(G) = G™! (¢ — 1) = (¢¥ —I) G™! for any in-
vertible matrix G and ¢;(G) = Y .7, G~'/i! when G is
singular. We also consider the EEM scheme [7], also
called the exponential Rosenbrock—Euler method [15],
which is of order O(A#?) for non-autonomous prob-
lems. The scheme uses the ¢; function

Ct = Ch + 7 91 (ta (L4 IN(C), ts172))
x (LG}, + N(Cy, tug1/2))s (11)

where ;41,2 = (ty41 + t,)/2. In our deterministic simu-
lations, we used the EEM scheme as the reference solu-
tion, i.e. treat it as the “exact” solution when comparing
the ETD1 and semi-implicit schemes. Throughout the
simulations, we use a constant time step 7, = At. We
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note that the EEM and ETD1 schemes are equivalent
for linear advection diffusion problems, and both give
the same solution up to the tolerance specified for the
evaluation of the exponential function ¢;.

For the stochastic ADR when o # 0, we apply the
stochastic exponential time differencing method, intro-
duced in [21] for a Fourier—Galerkin approximation
in space and developed further in [17, 18, 20]. Con-
vergence for finite element discretisation and imple-
mentation for finite volumes is considered in [22] for
a semi-implicit method and exponential integration in
[23, 24]. These methods are based on the mild solution
[10, 29] of the stochastic ADR (Eq. 1) and the system
of stochastic differential equations Eq. 7. Given the
solution at time ¢, the solution at time ¢, is given by

Cp(tns1) = e*'LCy (1)

I
+ / e =9 IN(C, (), 5)ds
1,

n

tn+l
+/ eI LG(C, (5)dW (s).
tn

A numerical scheme may be constructed approximat-
ing N(C,,(5), ) by N(C,, (1), 1) and e~ LG(C,, (5)) by
€A™ G(C, (t,)). This leads to

Citt = e LC) + Aty (At LN(C], 1)

+eMLG(CHAW (12)

where AW =P, > . ve(x)AB' and Ap"=

B(t, + 1) — B(t,) are standard Brownian increments,
independent identically distributed A(0, Af) random
variables. Convergence of the scheme is proved in [24].

In the absence of chemical reactions, i.e. y = 0, and
sub-grid heterogeneities, i.e. o0 =0, the ADR (Eq. 1)
is solved exactly within the given tolerance of & = 107°
of the EEM and ETD1 scheme, which give identical
results in this case.

4 Efficient computation of the action of ¢,

It is well-known that a standard Padé approximation
for a matrix exponential is not an efficient method for
large-scale problems [4, 27, 32]. Hence, we focus on the
real fast Léja point and the Krylov subspace techniques
to evaluate the action of the exponential matrix func-
tion ¢;(AtL) on a vector v, instead of computing the
full exponential function ¢; (At L) as in a standard Padé
approximation. For details on the real fast Léja point
technique, see [13, 32], and for the Krylov subspace
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technique, see [2, 3, 6]. We give a brief summary below.
Note that for the EEM scheme, we need to compute at
the n'" step the action of ¢; (Ar (L 4 dcN(C}, tns1/2)))
in the same way as the action of ¢; (At L).

4.1 Krylov space subspace technique

The Krylov subspace technique approximates the ac-
tion of the exponential matrix function ¢;(AfL) on
a vector v by projection onto a small Krylov sub-
space K,, =span {v, Ly, ..., L""!'v} [32]. The approx-
imation is formed using an orthonormal basis of V,, =
[Vi, Vs, ..., V,] of the Krylov subspace K,, and of its
completion Vi1 = [V, V,,, ] The basis is found by
Arnoldi iteration [12] which uses stabilised Gram-—
Schmidt to produce a sequence of vectors that span the
Krylov subspace. Let ¢/ be the ith standard basis vector
of R/. We approximate ¢, (At L)v by

o1 (ALL)Y ~ [|[V[2 V101 (At H, e (13)

with

H,. = (0, -0, hm+1,m O) where
H,, = V,Z;,Lvm = [hi’j]'

The coefficient A1 ,, is recovered in the last iteration
of Arnoldi’s iteration [13, 32, 35]. For a small Krylov
subspace (i.e. m is small), a standard Padé approxima-
tion can be used to form ¢;(AfH,,,), but an efficient
way used in [32] is to recover ¢; (AtH,,, 1)9’,’”rl directly
from the Padé approximation of the exponential of
a matrix related to H,,. In our implementation, we
use the function phiv.m of the Matlab package Ex-
pokit [32], which uses the efficient technique specified

i [§] = i€))

i [Ei1. Ejsns - &) — @i [E2 B,

above. It performs adaptive time stepping to achieve a
set tolerance.

4.2 Real fast Léja point technique

For a given vector v, real fast Léja points approximate
@1 (AtL)v by P, (AtL)y, where P, is an interpolation
polynomial of degree m of ¢, at the sequence of points
{&}1, called spectral real fast Léja points. These points
{&}1, belong to the spectral focal interval [«, 8] of the
matrix AfL, i.e. the focal interval of the smaller ellipse
containing all the eigenvalues of A¢L. This spectral
interval can be estimated by the well-known Gersh-
gorin circle theorem [38]. It has been shown that as the
degree of the polynomial increases and hence the num-
ber of Léja points increases, superlinear convergence is
achieved [6], i.e.

lim [lg;(AfL)Y — P, (At L)v[y" =0, (14)

where ||.||; is the standard Euclidian norm. For a real
interval [«, B], a sequence of real fast Léja points {&;}7",
is defined recursively as follows. Given an initial point
&, usually & = B, the sequence of fast Léja points is
generated by

j—1 j—1
[16 -6l = max [T16—&| j=1.23--.(15)
k=0 Selehl o

We use the Newton’s form of the interpolating polyno-
mial P, given by

m j=1
Pu(2) = g1 &l + ) _oi (60, &1, &] [ [ — &) (16)

j=1 k=0

where the divided differences ¢;[e] are defined recur-
sively by

-k ] (17)

0i & &1 L&k =

&k — &

An algorithm to compute the action of the exponential
matrix function ¢;(AtL) on a vector v can be found in
[35] where the standard way is used to compute the di-
vided differences. Due to cancelation errors, this stan-
dard way cannot produce accurate divided differences
with magnitude smaller than machine precision. Here
we used the techniques described in [5, 25] to compute
the divided differences efficiently and accurately. We

use the Taylor expansion with 16 terms during the
computation of the finite differences (Eq. 17).

[31] has shown that Léja points for the interval
[—2, 2] assure optimal accuracy; thus, for the spectral
focal interval [«, 8] of the matrix ArL, it is convenient
to interpolate, by a change of variables, the function
@i(c + y&) of the independent variable & € [—2, 2] with
¢c=(ax+pB)/2 and y = (B8 — «)/4. It can be shown [25]
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that the divided differences of a function f(c+ y§)
of the independent variable £ at the points {£}7., C
[=2,2] are the first column of the matrix function
f(L,,), where

&o
1 &

DU 1
Lm = CIm-H + yLm, Lm =

L &n
From this, the divided differences of ¢;(c + y&) of the
independent variable & € [—2, 2] at the points {§}]", C
[—2,2] is @1 (Ly)e]"" where €' is the first standard
basis vector of R”*!. Taylor expansion of order p = 16
with scaling and squaring is used in [5, 25] to compute
<p1(Lm)e’1”+1. In practice, the real fast Léja points is
computed once in the interval [—2, 2] and reused at
each time step during the computation of the divided
differences. We use the efficient algorithm of [2] to
compute the real fast Léja points in [—2, 2].

5 Numerical examples

To analyse the efficiency of the ETD1 and EEM
schemes compared to standard semi-implicit time inte-
grators and demonstrate that they can be used to solve
an ADR (Eq. 1) with stochastic forcing, we consider
three different examples. We use the upper 20 layers
(Examples 1 and 3) and upper 40 layers (Example 2)
of the highly heterogeneous SPE 10 benchmark case
(Fig. 1), which represents a braided fluvial North Sea

Fig. 1 Porosity field (a) for the first upper 20 layers of the SPE 10
model [8] and simulated velocity field, shown by the magnitude
of the velocity vector, i.e. logjo(/lgll) (b). The injector (IN) is
located along the vertical edge of the lower left model corner;
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oil field with seven orders of magnitude permeability
variation [8]. We consider two cases for dispersion. In
all examples, we take a uniform dispersion tensor of
D = 107 x I1. In Example 1, we additionally take D
as function of the velocity q

D = arliqlld;; + (@r —ar)qiqj/llqll, 1 <i j<3, (18)

where a7 and oy, are the longitudinal and the transverse
dispersivity, respectively. In Example 3, we also include
the stochastic forcing term with o € {0, 5 x 107, 1073},
i.e. we increase the influence of the noise term from
simulation to simulation, to model sub-grid fluctuations
in velocity and reaction rate.

All our tests were performed on a workstation with
a 3-GHz Intel processor and 8 GB RAM. Our code was
implemented in Matlab 7.10. In contrast to our earlier
2D simulations [35], we now use large time steps, very
large Péclet numbers and an iterative solver for linear
systems. Further, in contrast to the simulations pre-
sented in [7] for the EEM scheme used in conjunction
with a 2D finite element method, we use the Krylov
subspace technique and large Péclet number flows. The
resulting domain is Q = [0, L] x [0, L,] x [0, Ls], the
finite volume mesh 7 has a spatial discretisation Ax =
20 ft, Ay = 10 ft and Az = 2 ft. Dimensions are L; =
1,200 ft, L, = 2,200 ft and L3 = 20 ft in Examples 1 and
3 and L3 = 40 ft in Example 2.

The matrix L in Eq. 7 is sparse with size 264,000 x
264,000 and 1,810,400 non-zero elements for Example
1 and 528,000 x 528,000 with 3,647,200 non-zero ele-
ments for Example 2. For semi-implicit time integra-
tion, this linear systems is solved at each time step
with a variant of the iterative Krylov solver, the bi-
conjugate gradients stabilised method as implemented
in Matlab. We use ¢ = 107° as the absolute tolerance

)

1al (m/s)

0,00

the producer (P) is located diagonally opposite along the vertical
edge of the upper right model corner. Note that the vertical height
is exaggerated tenfold
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error and m = 8 for the Krylov subspace dimension. To
our knowledge, there is no rigorous theory that allows
us to predict the optimal value for m a priori. For small
m, a penalty can arise from an increase in the number
of iterations necessary to achieve a given tolerance,
especially if At is large, but less time is spent in the
orthogonalisation process and the required memory is
lower. When m increases, the total number of iterations
decreases, but a penalty occurs due to the additional
time spent in the orthogonalisation process and the
corresponding increase in memory requirements.

For pressure and concentration, we take the Dirichlet
boundary condition

Ip = {0} x {0} x [0, L3I} U {L1} x {L2} x [0, Ls]},

and homogenous Neumann boundary conditions else-
where such that

3,998.96 psi in {0} x {0} x [0, L]
p =
7,997.92 psi in

—kVpx,t)-n=0

{L1} x {La2} x [0, Ls]

in I'y= dQ\I'p.

This models a fixed-pressure injector and producer pair
located at two diagonally opposite edges of the model,
re. at {0} x {0} x [0, L3] and {L.} x {L»} x [0, L3],

respectively.
For the concentration, we take

C=0 1in
C=1 1in

{{0} {0} x [0, L3]} x [0, T']
{L1}x{Ly} x [0, L3]} x [0, T1]

10 T T T T
(a)
10° | 1
S 10” .
L
o
.
) =0~ Krylov ETD1
2 107 —8— Krylov EEM |
o == Leja ETD1
= Semi-implicit
10 1
-8
107 . . . .
107" 10° 10’ 10° 10° 10
log 4 O(A t)

Fig. 2 L? error as a function of size of the time step (a) and
CPU time as a function of the L? error (b) for Example 1. The
maximum Péclet number is 1.7 x 10°. The ADR Eq. 1 was solved

—DVO)(x,H) m=0
Co=0

in I'y x[0, 7]

in € (initial solution)

where n is the unit outward normal vector to I'y. For
the reaction function, we use the Langmuir sorption
isotherm with A =1, y = 1073 in Examples 1 and 2
and y =0 or y = 10~* in Example 3. In other words,
we model reactions in Example 3 either by explicitly
defining a reaction term and adding noise to it or just
by stochastic noise. The dynamic viscosity u is 0.3 cp in
all cases.

In the legends of Fig. 2, “Krylov ETD1” denotes
results from the ETD1 scheme with the Krylov sub-
space technique, “Léja ETD1” denotes results from the
ETD1 scheme with the real fast Léja point technique,
“Semi-implicit” denotes results from the standard semi-
implicit scheme and “Krylov EEM” denotes results
from EEM scheme the Krylov subspace technique.

We set a tolerance of 107% for the Krylov, Léja
point methods as well as for the iterative solver for
the standard semi-implicit scheme. This ensures errors
are from the discretisation rather than from the lin-
ear algebra. We discuss varying the tolerance further
below.

5.1 Example 1

We compare the concentration fields at time 7 =
4,096 s for the first 20 upper layers of the SPE 10 model
for the solution of the ADR with a spatially homo-
geneous dispersion tensor and with chemical reactions

10 T
=©—Krylov ETD1
(b) =& Krylov EEM
== eja ETD1
o = Semi-implicit
10 E
S 107 -
L
o
-
\:O_ .
8 10 E
10 1
-8
10 !
10° 10* 10°

Iogm(CPU time [sec])

with a spatially homogeneous dispersion tensor and with chemi-
cal reactions represented by a Langmuir adsorption isotherm
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modelled by a Langmuir adsorption isotherm with y =
1073, Figure 2a shows the corresponding L? error as a
function of the size of the time step. It demonstrates
that the ETD1 scheme is more accurate compared to
the standard semi-implicit method. It further shows that
the EEM scheme is also more accurate compared to the
semi-implicit and ETD1 schemes. All three time inte-
grators, semi-implicit, ETD1 and EEM, exhibit conver-
gence that is in agreement with theory: The temporal
order of the semi-implicit and ETD1 scheme is O(Af)
while the temporal order of the EEM scheme is O(A#?);
hence, the smallest error for a given time-step size is ob-
tained with the EEM scheme. Figure 2b demonstrates
the efficiency of ETD1 and EEM schemes compared
to the standard semi-implicit method by plotting the
L? error as a function of the CPU time. It shows that
the real Léja point technique is computationally more
efficient than the Krylov subspace technique in the
ETD1 scheme because the L? error is less for the same
CPU time. A slight improvement in efficiency can be
obtained with the EEM scheme compared to the ETD1
scheme with the Krylov subspace technique. Note that
the near-vertical CPU time for both Krylov subspace
methods implies that the L? error does not change
as a function of CPU time when smaller (or larger)
time-step sizes increase computational cost; there is
an optimum time-step size for which CPU time and
L? error are smallest. This is explained by the fact
that each time step is subdivided into smaller sub-steps
to reach the given fixed tolerance ¢ in the function
phiv.m of the package Expokit [32], providing a limit

Iogm(L2 Error)
S

=©—Krylov ETD1
== Krylov EEM E
== Leja ETD1

=& Semi-implicit|

-6
10 - -
10" 10° 10' 10

log, (A1)

Fig. 3 L? error as a function of size of the time step (a) and
CPU time as a function of the L? error (b) for Example 1. The
maximum Péclet number is 2.4 x 10°. The ADR Eq. 1 was solved
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for the efficiency of this method (see also Fig. 3b). We
also observed that the CPU time for the ETD1 scheme
with the real Léja technique appears to be proportional
to the size of the time step for the given fixed tolerance.
This indicates that the best efficiency is reached for
large time-step sizes. Generally, these results imply that
the best efficiency of the ETD1 and EEM schemes is
obtained for the largest time steps, although at the cost
of accuracy.

Figure 3 shows the results for the same 20 layers
of the SPE 10 model when solving the ADR with a
spatially heterogeneous dispersion tensor (Eq. 18) and
with chemical reactions modelled by a Langmuir ad-
sorption isotherm with y = 1073, Figure 3a depicts the
L? error as a function of the size of the time step, and
Fig. 3b depicts the cross-plot of L? error versus CPU
time. This indicates that, like in Fig. 2, the EEM scheme
is more accurate than the ETD1 and semi-implicit
schemes as it is of order O(Ar?). However, for this case,
the EEM scheme is significantly less efficient than the
ETD1 scheme with the Léja point technique. Likewise,
the ETD1 scheme with the Krylov subspace technique
is less efficient than the Léja point technique. In both
Krylov subspace methods, the L? error is independent
of the CPU time, i.e. spending higher computational
costs by varying the time-step size does not increase
the solution accuracy. It hence appears that a hetero-
geneous and anisotropic dispersion tensor reduces the
efficiency of the ETD1 and EEM schemes. However,
both schemes are still more accurate than the semi-
implicit time integrator. As explained above, this is due

(b)

=8— Krylov ETD1
-4 == Krylov EEM
% Leja ETD1
= Semi-implicit

|og10(L2 Error)
>

10 L
10° 10° 10*
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with a spatially heterogeneous dispersion tensor (see Eq. 18) and
with chemical reactions represented by a Langmuir adsorption
isotherm with y = 1073
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to the time step being subdivided into smaller sub-steps
to reach a given tolerance ¢ in the function phiv.m of
the package Expokit [32]. The ETD1 method with the
Léja point technique still shows scalability, i.e. the CPU
time decreases with decreasing size of the time step for
a fixed small tolerance.

5.2 Example 2

We consider the concentration field at time T = 4,096 s
for the first 40 upper layers of the SPE 10 model for
the solution of the ADR with a spatially homogeneous
dispersion tensor and chemical reactions modelled by
a Langmuir adsorption isotherm with y = 1073, As
before, ETD1 and semi-implicit schemes are of order
O(Ar) while the EEM scheme is of O(A#?) (Fig. 4a).
Like in the previous two examples, Fig. 4b shows that
the subdivision of the time step into smaller sub-steps
in the function phiv.m of the package Expokit [32]
to reach our given tolerance reduces the efficiency of
the Krylov subspace-based techniques EEM and ETD1
for large time steps. Further analysis [34] also showed
that the ETD1 scheme with the Léja point technique
is only more efficient than the standard semi-implicit
scheme for large time steps. For smaller time steps, the
ETD1 scheme with the Léja point technique becomes
less efficient because more Léja points are needed for
the interpolation. This is probably due to the lack of
accuracy in the computation of the divided differences
(Eq. 17). We can recover the efficiency by adding more
terms in the Taylor expansion during the computation

(a)
10°
g 107’
|
o
:',O —e—Krylov ETD1
o> —4 == Krylov EEM
e 1o = Leja ETD1
= Semi-implicit|
107}
-8
107k , , , ,
10" 10° 10’ ? 10° 10

0 10
log ’ 0(A t)

Fig. 4 L? error as a function of size of the time step (a) and
CPU time as a function of the L? error (b) for Example 2.
The maximum Péclet number is 3.2 x 10°. The ADR Eq. 1

of the finite differences (Eq. 17) or by scaling the matrix
L,, to smaller entries when using in the algorithm of [7]
to compute the finite differences. Scaling the matrix L,,
renders the “squaring” procedure less efficient, but as
the finite differences are computed only once per time
step, this will not increase the overall computational
cost greatly.

5.3 Example 3

Figure 5 shows simulated concentration fields in the
upper 20 layers of the SPE 10 model [8] after T =
32,768 s for a single realization of the noise path. We
used the Krylov subspace technique to evaluate the
matrix exponentials in Eq. 12. We took as eigenfunc-
tions e; of Q the eigenfunctions of the Laplacian
with periodic boundary conditions on €2 and correlation
in space corresponding to correlation lengths in x, y
and z of ¢, =24, ¢, =60 and ¢3 = 40. In Fig. 5, the
strength of the stochastic forcing term increases from
top to bottom, so that 0 =0 (a, d), 0 =5 x 107 (b,
e) and o = 1073 (c, f). The strength of the Langmuir
adsorption reaction term increases from left to right,
ie.y=0(a, b,c)and y =107 (d, e, f). We observe,
as expected, that the increase in reaction rate retards
breakthrough of the solute. The concentration fronts
become significantly sharper, i.e. less dispersed, for the
form of stochastic forcing we have taken to model sub-
grid heterogeneities. Sharp concentration fronts are
clearly seen as we increase the intensity of the stochas-
tic forcing (e.g. (c) and (f)). This can be explained by

=©— Krylov ETD1
(b) == Krylov EEM
== Leja ETD1
o =& Semi-implicit]
10" f E
S 107 1
L
o~
=
2
g’ 10 k
10° 1
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was solved with a spatially homogeneous dispersion tensor and
with chemical reactions represented by a Langmuir adsorption
isotherm with y = 1073
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(@)

C/Co (=)
1

Fig. 5 Simulated concentration fields in the upper 20 layers of
the SPE 10 model [8] after T = 32,768 s. The strength of the
stochastic forcing term increases from top to bottom, i.e. 0 =0
(a,d),0 =5 x 107* (b, e) and ¢ = 1073 (c, ). The strength of the
reaction term increases from left to right,i.e. y = 0 (a—¢) and y =

our choice of the phenomenological model for sub-grid
heterogeneity in our stochastic forcing term: It retards
breakthrough of low concentrations because, on aver-
age, more solutes react at intermediate concentrations;
this also promotes longer range higher concentrations
because once concentrations have reached a critical
threshold, they react more rapidly. As a consequence,
for larger noise intensity, we find less dispersed regions
of higher concentrations at further distances from the

@ Springer

()

C/Co (-)
1

l 08
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(f)
1C;‘Co )

0.8
0.6

10~ (d—f). An increase in reaction rate retards breakthrough of
the solute. An increase in stochastic forcing causes sharper fronts
because, on average, more solutes react at intermediate concen-
trations. Note that the vertical height is exaggerated tenfold

point of injector compared to lower noise or zero noise
intensity.

6 Conclusions
We have applied several exponential time integrators

to solve a non-linear advection—dispersion-reaction
problem in highly heterogeneous 3D porous media
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based on the SPE 10 test case [8]. We considered a
deterministic case where the reaction term is prescribed
explicitly and a stochastic case where we model sub-
grid variations in transport velocities and chemical re-
action rates using additive noise. We have presented
and analysed two exponential time integrators of or-
der O(Ar) (ETD1 scheme) and order O(Af?) (EEM
scheme) for the deterministic case. Here we have com-
puted the matrix exponential using either real fast
Léja point techniques (ETD1) or with a Krylov sub-
space technique (ETD1 and EEM). In the stochastic
case, we have implemented a stochastic exponential
time differencing scheme of order O(Ar'/?). The spa-
tial discretisation was achieved by standard upwind-
weighted finite volume method, and the resulting ma-
trices contained several 100,000 unknowns. For the
applied boundary conditions, solute transport is dom-
inated by advection (Péclet numbers larger than 10°).
Our analysis showed that the first- and second-order ex-
ponential time integration schemes perform well com-
pared to the standard first-order semi-implicit scheme
in terms of efficiency and accuracy in the deterministic
case. Exponential time integrators are further well-
suited to solve advection—dispersion-reaction problems
with stochastic noise, which is an emergent technology
to model uncertain and fluctuating sub-grid physics
during porous media flow [36, 37, 39, 40]. The results
we have presented have been for a fixed small tolerance
on the linear algebra. For large step sizes, this leads to a
reduced performance of the ETD1 and EEM schemes
with the Krylov subspace technique. This is caused by

—e—Krylov ETD1 |
(a) —4—Leja ETD1

-3
10 : .
10”" 10° 10’ 10

Iog10 (A1)

Fig. 6 Comparison of the Krylov method with a variable toler-
ance of ¢ = 1072At and Léja method with a fixed tolerance of
& = 1079 for the ETD1 scheme used in Example 1. The Krylov
method is more efficient compared to Fig. 3 where the tolerance

the function phi . m of the Expokit package [32], which
creates internal time subdivisions to satisfy a given
tolerance. If a large time step is chosen, this subdi-
vision can dominate the calculation and increase the
CPU time, rendering the Krylov-based techniques less
efficient. For large step sizes, such as we consider here,
we can consider varying the tolerance with the step size.
In Fig. 6, we vary the tolerance for the Krylov method
so that ¢ = 1072At and recompute the errors and CPU
time for the ETD1 method in Example 2. For compari-
son, we also show the Léja point calculation from Fig. 3
with a fixed tolerance of ¢ = 107°. It now seems that the
Krylov-based method is competitive with the Léja point
method. However, with larger tolerances in the linear
algebra, we note that some of the solutions take non-
physical values of concentration, i.e. slightly negative
or slightly larger than one. These are not present if the
tolerance in the Krylov method is fixed and small, i.e.
e = 107°. Given the small difference in efficiency, we
observe in Fig. 6 that this suggests a preference in the
Léja point implementation here.

In general, our results suggest that exponential inte-
grators can readily be applied to typical 3D reservoir
models comprising tens to hundreds of thousands grid
cells to simulate solute mixing and chemical reactions
where sub-grid processes are represented by stochastic
forcing.
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for was fixed but produced non-physical results, i.e. concentra-
tions slightly below zero or slightly above one due to the larger
tolerances in the linear algebra
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