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Abstract In this paper, we are interested in modeling
single-phase flow in a porous medium with known
faults seen as interfaces. We mainly focus on how to
handle non-matching grids problems arising from rock
displacement along the fault. We describe a model
that can be extended to multi-phase flow where faults
are treated as interfaces. The model is validated in an
academic framework and is then extended to 3D non
K-orthogonal grids, and a realistic case is presented.
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1 Introduction

The importance of fractures in hydrocarbon explo-
ration and exploitation has already been demonstrated
and investigated. Since the early 1960s, a large number
of studies has been performed, to take into account
their influence on fluid flow. The faults can be char-
acterized as extended fractures, across which there has
been a relative displacement of rocks on either side.
Faults are rarely only geometrical discontinuities but
rather zones of deformed rocks with particular fluid
flow properties. Fault zones have a small width com-
pared to basin or reservoir scale, and due to fractura-
tion and possible reactions, their properties can be very
different from the surrounding host rock. They are
assimilated to a porous media and could act as a barrier
or a conduit for fluid migration. Therefore, it becomes
necessary to model the fluid flow along the faults and
to integrate them in reservoir, basin and CO2 storage
simulations. Several difficulties are encountered when
modeling fluid flows along the faults. Firstly, the het-
erogeneous nature of the fault–matrix system leads to
very different space and time scales between matrix and
fault flow. Then, fault throw is usually accounted for
through non-matching grids across which there can be
large jumps in flow properties. Finally, faults are rarely
isolated planar objects but rather non-planar surfaces
organized in complex networks.

In reservoir simulation, faults are commonly han-
dled through fluxes across the non-matching interfaces
that use fault transmissibility multipliers [19]. These
fault transmissibility multipliers are generally calcu-
lated based on fault properties estimates (permeability
and width) that can be evaluated via the Shale Gouge
Ratio and the throw [24]. To account for fluid flow
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along the fault zones, several models have already
been proposed. Trocchio [23] and Gilman et al. [15]
tried unsuccessfully to homogenize the permeability
of the fault with the neighboring matrix blocks. They
concluded that the faults must be modeled explicitly.
This approach was followed by [16] and [15], who used
volumetric small cells with high permeabilities to rep-
resent the faults. In the same framework of volumetric
modeling, [13] proposed an approach for building and
populating the fault zone grid that accounts for its
3D architecture. Although accurate, volumetric fault
modeling is computationally expensive and requires
appropriate mesh builders.

Thanks to the difference of scales between reservoirs
or basins and faults, a fault can be considered, on
a geometrical point of view, as an interface between
two blocks of rock, the fault width then becoming a
model parameter. This approach leads to the so-called
interface model. Lee et al. [18] followed a well-like ap-
proach, where the potential distribution is supposed to
be at the hydrodynamic equilibrium. The fault volume
is neglected in this model and therefore cannot take
into account the distribution of several fluids inside
the fault. Faille et al. [9], Martin et al. [20] and Angot
et al. [5] derived an interface model from the volumetric
one, to simulate a single-phase flow along the fault for
matching grids. In this model, the equations for the
matrix subdomains remain unchanged whereas the flow
inside the (n − 1)-dimensional fault is obtained by av-
eraging the previous equations across the width of the
fault. Part of this model has been described in [2–4, 6,
11, 12]. The model they propose is easily extendable to
multi-phase flow. Reinchenberger et al. [22] proposed
a similar model but only for permeable faults. Karimi-
Fard et al. [17] studied the case of fracture networks
for multi-phase flow and used a parallel between fault
networks and electric resistances, to calculate equiva-
lent transmissivities. Finally, [14] applied this model for
a single-phase flow ruled by the Forcheimer’s law. The
authors treat non-matching meshes in their paper but
only for permeable faults, across which the pressure is
continuous. To our knowledge, there are no results with
non-matching grids for both permeable and imperme-
able faults.

This work intends to propose a model for fluid flow
along faults that could be integrated into standard oil
industry fluid flow simulators. So it has to be usable for
standard corner point geometry (CPG [21], see Fig. 1)
grids where the faults are represented by surfaces
across which the grid is non-matching. Even though
only single-phase flow is considered in the framework
of this paper, the approach retained must be easily
extendable to multi-phase flow. This work follows the

Fig. 1 Example of CPG mesh

approach of [5, 9, 20] and is based on an interface rep-
resentation of the fault zone that addresses the problem
of space scales.

In order to handle non-matching grids, several possi-
bilities exist to represent the faults. The most intuitive
one would be to use a common refined grid of the
two fault surfaces. However, considering the complex
geometry involved, eventually including fault networks,
this seems hardly applicable in 3D. Another possibility
would be to use one-single independant interface to
represent the fault. This method could lead to good
results but adds a major difficulty. Indeed, two non-
matching exchanges terms should be computed with the
neighbouring matrix. Besides the drawbacks pointed
out, these two methods to represent faults require
to introduce additional grid elements. One approach
to avoid the modelization difficulties previously listed
would be to use a single interface coming from the
reservoir grid. Nevertheless, this method requires to
choose one of the two non-matching surfaces and there-
fore gives artificially a preferential role to one side
of the fault. Finally, we choose to represent the fault
with the two non-matching interfaces, each side of the
fault being meshed conformal with its neighbouring
matrix block. This representation does not require to
introduce additional grid elements, implies only one
non-matching exchange terms, between the two sides
of the fault, and gives the same importance to the two
non-matching interfaces.

Moreover, the difficulty then associated to the non-
matching grids can be compared to the one classi-
cally handled when considering only flow across faults.
This approach uses different meshes on either side of
the fault, respecting therefore the geological layering.
In the discretised equations, the non-matching fault
cells are connected through “fault–fault” flux terms
across the two parts of the fault. This approach can be
naturally combined with standard cell-centered finite
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volume discretisation and could therefore be extended
to multi-phase flow.

In the first part of this paper, we consider a model
problem that allows us to investigate how the non-
matching grids can be handled. Namely, we restrict
ourselves to a single linear fault that connects two
rectangular subdomains, each of them being meshed
independently with a cartesian grid. The first section is
dedicated to the obtention and presentation of the in-
terface fault model. Then, a finite volume discretisation
is introduced. Results obtained on non-matching grids,
for permeable, impermeable and anisotropic faults, in
homogeneous or heterogeneous media are then ex-
posed and compared to a co-refined reference solution.

The second part of the paper is a step forward
towards real case simulation. Still considering single-
phase flow, we extend the discretised model to more
general grids such as CPG or unstructured grids. Some
numerical results illustrate the ability of the proposed
approach to account for flow along faults.

2 A simple model problem

In this first part, we want to study how the proposed
approach behaves with grids that are non-matching
across the faults. In order to focus on this particular
point, we deal with a model problem for which the non-
matching characteristic of the grid is the main difficulty.

Indeed, restricting ourselves to a 2D framework, we
consider a single 1D linear vertical fault that cuts a do-
main into two subdomains independently meshed with
cartesian grids (see Fig. 2). This 1D linear discretisation
of the fault zone aims at representing a volumetric fault
zone that is very thin compared to the domain size.
The true volumetric description of the fault zone will be
used as a reference domain where a reference solution
can be computed and with which the proposed model
can be compared.

Fig. 2 1D linear vertical fault

In the following, we first introduce the interface
fault model in a continuous framework. This model is
derived from the volumetric model, assuming that the
fault width is small compared to the domain size. Then,
we propose a cell-centered finite volume discretisation
which, compared to the standard discretisation with-
out faults, adds several exchange terms namely fault–
matrix, along fault fluxes and across fault fluxes which
take into account the non-matching interface. In the
finite elements or mixed finite elements framework,
this problem is usually treated with mortar and do-
main decomposition methods [7]. In the finite volume
framework, this approach was studied in [10] where the
authors showed that in a highly heterogeneous media,
it leads to poor results. We therefore consider here
directly finite volume fluxes discretisations on non-
matching grids. The accuracy of the proposed discre-
tised model is finally studied numerically for different
assumptions on the fault properties.

2.1 Derivation of the interface model

Considering incompressible single-phase flow in porous
media and neglecting gravity, we first describe the
volumetric model that governs fluid flow in a domain
of rectangular shape cut by one single vertical fault
subdomain of small width. We then derive the inter-
face model where the rectangular fault subdomain is
replaced by two vertical interfaces, using the technique
of averaging across the fault. Compared with previous
works [5, 9, 20], the main difference in the proposed
approach consists in distinguishing the two sides of
the fault and therefore in averaging over each half of
the volumetric fault subdomain instead of averaging
over the whole fault width. Let us consider a convex
domain � in R

2, composed of three subdomains: two
matrix domains �1 and �2 separated by one single fault
domain � f of width b f , defined by:

� f =
{

s + rn; s ∈ �, r ∈
]
−b f

2
,

b f

2

[}

where � is a 1D line segment, t its unit tangent and n
its unit normal. For the sake of simplicity, we assumed
that the normal n is always oriented from �1 to �2.
We denote by �i the boundaries of the domain �i,
i = 1, 2, f and by �i the common boundaries between
�i and � f , i = 1, 2. Finally, ∂� denotes the boundaries
of �.

Figure 3 shows the volumetric and the interface rep-
resentations of the faulted domain and the considered
notations.
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Fig. 3 Faulted domain. Left volumetric representation. Right
interface representation

2.1.1 Volumetric model

Incompressible single-phase fluid flow in the porous
domain � is governed by mass balance coupled with
Darcy’s law. The fault zone appears only as a part of the
domain with specific fluid flow properties (permeabil-
ity). However, to simplify the interface model deriva-
tion, the volumetric model is directly decomposed into
a set of three problems, one for each subdomain, linked
together through transmission conditions.

Mass balance equation in each subdomain �i, i =
1, 2, f , writes:

∇ · vi = qi in �i (1)

where vi is Darcy’s velocity and qi the source term in
domain �i.

Darcy’s law is given by, for i = 1, 2, f :

vi = −Ki∇ pi in �i (2)

where Ki is the permeability tensor, which is considered
diagonal, and pi the pressure in the subdomain �i, i =
1, 2, f . Fluid viscosity is assumed to be equal to 1.

The transmission conditions between the subdo-
mains express flux and pressure continuity across sub-
domains interfaces:

pi = p f on �i, i = 1, 2 (3)

vi.n = vf.n on �i, i = 1, 2 (4)

Finally, we consider the following Dirichlet bound-
ary conditions, for i = 1, 2, f :

pi = pD
i on �i, (5)

where �i denotes the external boundaries of �i, i =
1, 2, f and pD

i the imposed pressure. So, the volumetric
model consists in the Eqs. 1–5.

2.1.2 Interface model

In the interface model, we reduce the volumetric rep-
resentation of the fault subdomain � f to its interface
representation �. To do so, let us start by decomposing
Darcy’s velocity in the fault domain following its nor-

mal and tangential components: vf = vf,n + vf,t, where
vf,n = (vf.n)n and vf,t = (vf .t)t.

From the volumetric unknowns, we keep (Fig. 4):

– The trace on each side of the fault of:

– The normal component of the fault velocity:
vf n,1 on �1 and vf n,2 on �2

– The pressure: pf,1 on �1 and pf,2 on �2.

– The mean across each half of the fault of:

– The along component of the fluxes: Vf,I =∫ 0
−b f/2

vf,tdr, Vf,II = ∫ b f/2

0 vf,tdr

– The pressure: Pf,I = 2
b f

∫ 0
−b f/2

pf dr and Pf,II =
2

b f

∫ b f/2

0 pf dr

– The trace of the normal component of the fault
velocity vf n,I/II on the central segment �

To obtain the interface model, we average the mass
balance equation across each half of the fault. We get
two averaged mass balance equations that rule the fluid
flow along the fault. These equations are coupled with
the matrix through a fault–matrix flow obtained by
performing two Taylor expansions, one for each side
of the fault. They are also linked through a fault–fault
flow, obtained thanks to another Taylor expansion.

Let us start by rewriting the mass balance equation
inside the fault as:

∇n · vf + ∇t · vf = q f in � f (6)

where ∇n· and ∇t· are, respectively, the normal and
tangential divergence.

t

b f /2

b f / 4

Pf ,I

Vf,I

Pf ,II

Vf,II

p f ,1

v f n,1

p f ,2

v f n,2

v f n,I / II

-b f / 2 0 b f / 2
r

n n n

Fig. 4 From volumetric to interface unknowns
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We present the derivation of the model only for one
side of the fault ([−b f /2, 0]), the equations for the
other side of the fault are obtained in a similar way.

Integrating the mass conservation Eq. 6 across
[−b f /2, 0], one obtains:

v f n,I/II − v f n,1 + ∇t · Vf,I = Q f,I on �

where Q f,I = ∫ 0
−b f /2 q f dr.

This equation is the conservation equation on the
fault interface � linked to the other side of the
fault through the fault–fault exchange term v f n,I/II and
linked to the neighbouring matrix domain equations
through the matrix–fault exchange term v f n,1.

Darcy’s law can also be decomposed into a normal
and tangential component:

vf,t = −K f t∇t p f in � f (7)

vf,n = −K f n∇n p f in � f (8)

where ∇n and ∇t represent, respectively, the normal
and tangential gradient and K f t and K f n the normal
and tangential component of the permeability.

Averaging Eq. 7 across the half of the fault, one
obtains:

Vf,I = −K f t
b f

2
∇t P f,I on �

This equation can be seen as Darcy’s law along one side
of the fault interface.

The boundary condition is:

P f,I = PD
f,I on ∂�,

where PD
f,I = 2

b f

∫ 0
−b f /2 pD

f dr.
Equation 8 has not yet been introduced in our re-

duced model. We replace it by performing a first-order
Taylor expansion across the first quarter of the fault
[−bf /2, −bf /4] the width being very small; one obtains:

v f n,1 = −4K f n

b f
(P f,I − p f,1) (9)

The equations for the other side of the fault are ob-
tained in a similar way. The last equation, coupling the
equations along the two sides of the fault, is obtained by
performing another first-order Taylor expansion across
the half fault width ([−bf/4, bf/4]):

v f n,I/II = −2K f n

bf
(Pf,II − Pf,I) (10)

The interface model is finally completed by the
transmission conditions with the matrix subdomains

(Eqs. 3 and 4) that write with the considered fault
unknowns:

p f,1 = p1|� , v f n,1 = v1.n|�, on �

where v1.n|� denotes the trace of v1.n on �.
In [20], one can find other relations for Eq. 9, ob-

tained using different quadrature formulas to link the
flow and the unknowns on the interfaces. It is pos-
sible to sum up the different possibilities using two
parametrised equations. The equations we use here are
equivalent to the parametrised ones, taking a particular
value of this parameter.

Finally, the complete interface model is:

v f n,I/II − v f n,1 + ∇t · Vf,I = Q f,I, on � (11)

− v f n,I/II + v f n,2 + ∇t · Vf,II = Q f,II, on � (12)

Vf,I = −K f t
b f

2
∇t P f,I, on � (13)

Vf,II = −K f t
b f

2
∇t P f,II, on � (14)

v f n,1 = −4K f n

b f
(P f,I − p f,1), on � (15)

v f n,2 = −4K f n

b f
(p f,2 − P f,II), on � (16)

v f n,I/II = −2K f n

b f
(P f,II−P f,I), on � (17)

P f, j = PD
f, j, on ∂�, j=I, II (18)

p f,i = pi|� , v f n,i =vi.n|�, on �, i = 1, 2 (19)

2.1.3 Discretisation of the interface model

In order to focus on the difficulties associated to
the interface fault model and particularly to the non-
matching grids across the fault, we consider only matrix
subdomains meshed with cartesian grids. Most of the
notations used here are largely inspired by [6] and [8].
The interface model is discretised using a cell-centered
finite volume scheme, with a two-point flux approxima-
tion where orthogonality properties are satisfied. Let
�i,h be a cartesian mesh of �i, i = 1, 2.

As the mesh is defined independently in each subdo-
main, the interface � is represented by two different 1D
meshes, one for each subdomain. Once again we take
advantage of the symmetry of the model and describe
only one part of the discretisation. Let us denote by �I,h

the set of edges of the mesh of �1,h that are in �. The
idea is to discretise each mass balance equation along
the fault on the more appropriate mesh that is to say
Eq. 11 on �I,h as it has an exchange term with �1 via



282 Comput Geosci (2012) 16:277–296

the transmission conditions. We will denote by K or L a
cell of �1,h and by σ or γ an edge of �I,h.

Finally, m(σ ) denotes the measure of the edge σ ,
dσ,σ ′ the distance between the centers of the edges σ

and σ ′, dK(σ ), σ the distance between the center of cell
K and the center of edge σ , σ being an edge of K. Figure 5
presents the notations used for all elements in the mesh.

We introduce the following discrete unknowns:

– For each cell K of �1,h ∪ �2,h, pK the pressure at the
cell center

– For each edge σ of �I,h (resp. �II,h):

– p1
σ (resp. p2

σ ) the approximation of p1 (resp. p2)
at the edge center

– P f
σ the approximation of P f,I (resp. P f,II) at the

edge center
– p f,1

σ (resp. p f,2
σ ) the approximation of p f,1 (resp.

p f,2) at the edge center

Flow in the matrix The finite volume scheme in the
matrix is the same as the one for the volumetric case.

∑
δ,

δ edge of K

FK, δ = m(K)Q1,K, ∀K ∈ �1,h (20)

where Q1,K = 1
m(K)

∫
K Q1ds.

The flux FK, δ approximates
∫
δ

v1.nK, δ across the
edge δ, out of K. For δ =K|L, flux conservation and
continuity of the pressure give:

FK,L = FK, δ = −FL, δ = −m(δ)K
(

pL − pK
dK,L

)
(21)

where K is the harmonic average of the permeabilities
in cells K and L.

d

e

d

( )

d ( )

I h II h

Fig. 5 Discrete notations

The two-point flux approximation on each edge∫
σ

v1.n|� denoted by F1
σ gives:

F1
σ = −m(σ )K

⎛
⎝ p1

σ − p1
K(σ )

dK(σ ), σ

⎞
⎠ , ∀σ ∈ �I,h (22)

where K is the permeability of the cell K(σ ) connected
to the edge σ .

Flow along the fault The finite volume discretisation
of the mass balance equation along the fault (Eq. 11)
gives:

Gσ − F f,1
σ +

∑
e,

e vertex of σ

Gσ,e = m(σ )
b f

2
Q f,σ , ∀σ ∈ �I,h

(23)

where:

– Q f,σ = 1
m(σ )

∫
σ

Q f ds.
– Gσ,e represents the along fault flux across the vertex

e out of σ , which approximates
∫

e V f,I.

– F f,1
σ represents the fault–matrix flux which approx-

imates
∫
σ

v f n,1, for σ ∈ �I,h.
– Gσ represents the fault–fault flux which approxi-

mates
∫
σ

v f n,I/II across edge σ .

Figure 6 shows the different discrete fluxes.
For e = σ |σ ′, flux conservation and continuity of the

pressure give:

Gσ,σ ′ = Gσ,e = −Gσ ′,e = −K f t
b f

2

(
P f

σ ′ − P f
σ

dσ,σ ′

)
(24)

G

F G

( )

F f 1 F1

I h II h

Fig. 6 The different fluxes: matrix flux (FK,L), along the fault
flux (Gσ,σ ′ ), fault–matrix flux (F1

σ ′′ ), fault–fault flux (Gσ )
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For e ∈ ∂�, the Dirichlet boundary condition leads
to:

Gσ,e = −K f t
b f

2

(
pD

f (e) − P f
σ

dσ,e

)
(25)

Discretisation of Eq. 15 for the fault–matrix flux
gives:

F f,1
σ = −m(σ )

4K f n

b f
(P f

σ − p f,1
σ ), ∀σ ∈ �I,h (26)

The fault–fault flux Gσ across edge σ from side 1 of
the fault to side 2 is decomposed into a sum of fluxes
across subedges (σ |γ ) that have only one neighbouring
edge γ on the other side of the fault (see Fig. 7):

Gσ =
∑
γ,

γ∩σ �=∅

Gσ,γ (27)

where Gσ,γ denotes an approximation of
∫
σ |γ v f n,I/II

and σ |γ the subedge σ ∩ γ .
Approximation of

∫
σ |γ v f n,I/II by the midpoint rule

gives:∫
σ |γ

v f n,I/II 
 m(σ |γ )v f n,I/II(e) (28)

where e is the center of the subedge σ |γ and m(σ |γ ) its
measure.

Following the finite volume principle of conservation
and using Eq. 10, one obtains for Gσ,γ :

Gσ,γ = −Gγ,σ = −m(σ |γ )K f n

(
P f

γ |σ − P f
σ |γ

b f /2

)
(29)

where P f
σ |γ (resp. P f

γ |σ ) is an approximation of the
pressure at the center of the subedge in σ (resp. γ ) (see
Fig. 7).

Pf

Pf
P f

P f

I h II h

P f P f

Fig. 7 Fault–fault exchanges

There are several possibilities to compute the pres-
sure P f

σ |γ . The simplest way is to consider a piecewise
constant approximation:

P f
σ |γ = P f

σ (30)

However, this approximation leads to a non-
consistent approximation of v f n,I/II(e) unless σ and γ

are the same edge. It is then necessary to introduce a
first-order approximation. This problem is close to the
one encountered when discretising diffusion equations
on general meshes with cell-centered finite volume
which is still a problem studied by many authors. There-
fore, we consider only here a very simple approxima-
tion, which could in the future take advantages of new
advances for diffusive flux approximation.

The simple approximation used here is the following:

P f
σ |γ = α1 P f

σ + (1 − α1)P f
σ ′ (31)

where σ ′ is the appropriate neighbouring face of σ , as
presented in Fig. 7 and α1 is defined by:

α1 = (sσ ′ − se)

(sσ ′ − sσ )

where sσ (resp. sσ ′) is the curvilinear coordinate of
σ (resp. σ ′).

Transmission conditions The transmission conditions
between the fault and the matrix (Eq. 19) are written
for each fault edge:

p f,1
σ = p1

σ , F f,1
σ = F1

σ , ∀σ ∈ �I,h (32)

Discrete model Using Eqs. 32, 22, 26 and their coun-
terpart on �II,h, it is possible to eliminate the unknowns
pi

σ , p f,i
σ , F f,i

σ for all σ ∈ � j,h, (i, j) = {(1, I), (2, II)}. We
end up with a discrete model where the main equations
are mass balance in each matrix cell and in each fault
edge of the two fault sides and the main unknowns are
pK and P f

σ . The set of discrete equations forms a linear
system which is solved with a standard linear solver (no
domain decomposition has been implemented although
it could be considered).

2.2 Some results on non-matching grids

Focusing on the non-matching grids problem, this sec-
tion is dedicated to the validation and the analysis
of the model proposed in this paper. Different tests
were performed, in which the influence of the fault and
matrix properties are studied.

To validate the model, only cartesian grids composed
of quadrangles are considered. The throw is constant
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dz

dz
dz

2

b f

(a) Interface mesh (b) Co-refined reference mesh

Fig. 8 Meshes used

and equal to a half cell height. The matrix is isotropic
and the fault homogeneous. To qualify the results ob-
tained with the interface model, we compare them to a
so-called reference solution which is computed with the
volumetric model on a matching grid. More precisely,
this grid is a co-refined mesh of �1,h and �2,h that is to
say the coarser common submesh of the two subdomain
meshes. It is moreover increased by matching columns
of cells that mesh the fault domain � f (see Fig. 8).

We consider here only two columns of cells as it
is somehow the best solution one can obtain with the
interface model. Indeed, for matching cartesian grid,
it has been shown in the literature that the discrete

interface model is equivalent to the volumetric one
where only one column of cell is used to represent the
fault domain [11] and that it gives results that are in
good agreement with the converged discrete solution
of the volumetric model [20].

We are going to study the influence of the approx-
imation chosen to compute the fault–fault exchange
terms, namely we are going to compare the results
obtained with Eq. 30 that we call “piecewise constant
approximation” to the one obtained with Eq. 31 called
“linear approximation”. The comparison is performed
on the pressure profile along the fault line segment. In
the following figures, the pressure profiles along the
fault for the interface model (P f,I and P f,II) are plotted
with blue dashed line for the left part of the fault and
green dashed line for the right part of the fault. For the
reference solution, the pressure profiles (p f (−b f /2, .)

and p f (b f /2, .))) are plotted with black solid line for
the left part of the fault and in red solid line for the
right one. When the curves for the two sides of the fault
are merged, only one curve appears in the figure.

Figure 9a presents the general problem configura-
tion. The domain is [0, 2] × [0, 1], and the permeability
in the matrix is homogeneous, isotropic and such that
Km = 1. Three different kinds of faults are considered:

– Permeable fault: K f = 100
– Impermeable fault: K f = 0.01
– Anisotropic fault: K f,t = 50, K f,n = 0.02

Fig. 9 a General problem
configuration. Reference
pressure field for: b a
permeable fault, c an
impermeable fault, d an
anisotropic fault

P = 0 P = 1

Pf = 1

Pf = 0

Km KmKf

b f

v.n = 0 v.n = 0

v.n = 0 v.n = 0

(a) General problem configuration
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(b) Permeable fault: reference pressure field
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(c) Impermeable fault: reference pressure field
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(d) Anisotropic fault: reference pressure field
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(b) Linear approximation(a) Piecewise constant approximation

Fig. 10 Pressure along the permeable fault. Black solid reference solution, blue dashed interface solution. The pressure profile is almost
the same on both sides of the fault

The fault width is, for these three cases, b f = 2 × 10−3,
and 200 cells are used along the fault for the inter-
face model. Figure 9b–d gives the reference pressure
field obtained for the permeable, impermeable and
anisotropic fault.

Figure 10 presents the results obtained for the
permeable fault for the piecewise constant approxima-
tion (Eq. 30) and the linear approximation (Eq. 31) for
the fault–fault exchanges.

We first notice that for both approximations (piece-
wise constant or linear), the pressure is constant

through the fault width, as the curves for the two
sides of the fault are merged. This is in agreement
with the expected behavior as for a permeable fault,
the pressure is continuous across the fault. Compar-
ing now the two approximations, it appears that the
non-consistency of the piecewise constant approxi-
mation gives a poor approximation of the pressure
profile along the fault, whereas the linear approxima-
tion matches pretty well the reference solution.

Figure 11 presents the pressure profiles along the
impermeable fault. Unlike the permeable test case, we

(a) Piecewise constant approximation (b) Linear approximation

Fig. 11 Pressure along the impermeable fault. Solid lines reference solution, dashed lines interface solution. In each plot, the lower
curves correspond to the pressure in the left fault half while the upper ones correspond to its right half
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(a) Piecewise constant approximation (b) Linear approximation

Fig. 12 Pressure along the anisotropic fault. Solid lines reference solution, dashed lines interface solution. Interface and reference
solutions are very close

observe that the pressure varies through the fault width.
The pressure computed with the piecewise constant
approximation is a bit over-evaluated compared to the
reference solution. The linear approximation does not
give a good result. At the extremities of the fault,
the pressure profile exhibits overshoots or undershoots
probably linked to the Dirichlet boundary conditions
which enforce very strong pressure variations. The lin-
ear approximation does not ensure that the maximum
principle is respected.

Figure 12 presents the results obtained for the
anisotropic fault. We can see that both approximations
give a satisfactory solution: The pressure profiles in the
two halves of the fault zone are slightly different due to
low permeability across the fault and are well captured
by the interface model. This is the main difference with
the permeable fault: The pressure is not continuous
across the fault.

2.2.1 Heterogeneous matrix

This test aims at studying the behavior of the model in a
somewhat more realistic configuration from the geolog-
ical point of view. We consider a domain that includes
two geometrically disconnected permeable layers that
are linked through a permeable fault (see Fig. 13a).

The considered domain is [0, 8] × [0, 8]. The matrix
is heterogeneous and isotropic: K1 = 10−2 and K2 =
100. The fault is isotropic with a large permeability:
K f = 100 and a small width: b f = 2 × 10−3. Homoge-
neous Neuman boundary conditions hold on the fault
extremities. There are 200 cells along the fault for the
interface solution.

Figure 13b presents the reference pressure field ob-
tained for this test case, and Fig. 14 presents the results
obtained. The numerical solutions exhibit again the be-
havior encountered in the first test with the permeable

Fig. 13 a Problem
configuration. b Reference
pressure field
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(a) Heterogeneous problem configuration (b) Reference pressure field
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(a) Piecewise constant approximation (b) Linear approximation

Fig. 14 Pressure along the permeable fault in a heterogeneous matrix. Solid lines reference solution, dashed lines interface solution.
The curves of the two sides of the fault are not merged because of the non-matching grid

fault. Indeed, with the piecewise constant approxima-
tion, the pressure gradient along the fault is too much
dissipated while it is fairly well captured with the linear
approximation.

2.3 L-shaped fault

Through an academic problem, this section gives a
first insight into a particular difficulty that must be
addressed before considering real field faults. Although
not properly derived from the volumetric model, we
suggest particular numerical approximations to extend
the discrete interface fault model. The problem consid-
ered is a non-planar fault, which is addressed here in
one of its “stiffer” configuration, an “L-shaped” fault,
i.e. a fault composed of two orthogonal line segments.
The corner of the fault is a particular vertex of the fault
grid on both sides of which the normal along the fault
is not continuous. In the interface model discretisation,
this has to be accounted for in the approximation of the
flux along the fault (Eq. 24). We therefore introduce
two normals on the vertex e located at the corner of the
fault (see Fig. 15), one on each side of the vertex.

In this configuration, the fluxes along the fault, for
this vertex e, are given by:

Gσ,e = −K f t
bf

2

(
pe − pσ

dσ,e

)
(33)

Gσ ′,e = −K f t
bf

2

(
pe − pσ ′

dσ ′,e

)
(34)

To study numerically the proposed approximation, we
consider the problem sketched in Fig. 16a, where the
domain is [0, 2] × [0, 2]. Dirichlet boundary conditions
hold near the two domain corners (0,1) and (1,0) in
order to generate a fluid flow across the fault. Two
hundred cells along the fault were used for this test.
One can see the reference solution on Fig. 16b, com-
puted with the volumetric model for a permeable fault
on a matching cartesian grid where the fault domain is
represented by two rows of cells.

Figure 17 shows the results obtained for a permeable
fault and Fig. 18 for an impermeable one. There is a
good agreement between the pressure profiles along
the fault of the reference and the interface models. This
approach can be extended to a fault with several angles
by defining two normals for each vertex considered.
Indeed, one normal for each adjacent edge is computed
such that it stays inside each edge’s plan.

e e
n( )

n( )

d e

d e

(a) Problem presentation (b) Introducing two normals for
vertex e

Fig. 15 Non-planar fault problem
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Fig. 16 a Problem
configuration and b reference
pressure field

P = 0

P = 1

Pf = 1

Pf = 0

Km

Km

Kf

b f

v.n = 0

v.n = 0

x

y

(a) Problem configuration for a L-shaped fault (b) Reference pressure field for a permeable fault

(a) Pressure profile along the x constant part of the fault (b) Pressure profile along the y constant part of the fault

Fig. 17 Permeable L-shaped fault. Black solid line reference solution, blue dashed line interface solution. The curves for the two sides
of the fault are merged

(a) Pressure profile along the x constant part of the fault (b) Pressure profile along the y constant part of the fault

Fig. 18 Impermeable L-shaped fault. The lower curves correspond to the pressure in the left half of the fault while the upper ones
correspond to its right half. Black and red solid lines reference solution, green and blue dashed lines interface solution
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2.4 Discussion

In this section, we have derived an interface fault model
and studied its behaviour for a simple academic prob-
lem for which a reference solution can be computed.
On the discrete point of view, this model is naturally
discretised on grids that do not match across faults. The
discretisation is based on a cell-centered finite volume
scheme combined with a piecewise constant or linear
approximation of the pressure for the fault–fault fluxes.
Compared to the set of discretised equations classically
obtained when considering only flow across faults, this
model introduced additional mass balance equations
on each fault face, associated to additional pressure
unknowns located at fault face centers. The numerical
results illustrate the ability of the model to capture the
main components of flow along a fault especially when
the linear pressure approximation is considered. This
study performed in an academic framework confirms
the effectiveness of the proposed approach which has
now to be extended to more general grids, namely grids
that are not orthogonal such as well-known CPG grids.
This is the main objective of the next part of this paper.

3 Extension to 3D non-K-orthogonal grids

Following our main goal, which is to propose a model
for fluid flow along the faults that can be used in
standard oil industry simulators, we make a step for-
ward in considering real case applications. Indeed, we
want to extend the proposed approach to 3D non-
K-orthogonal grids such as usual CPG grids that are
popular in reservoir modeling. Contrary to the first
part of the paper, we step directly into the numerical
discretisation stage. Our aim is to indicate how classical
finite volume discretisations used for flow problems on
CPG-type grids can be extended to handle conductive
faults through the interface fault model. The most com-
monly finite volume scheme used in commercial reser-
voir simulators is probably the two-point scheme. How-
ever, this approximation is only valid for K-orthogonal
grids. Therefore, we consider here a more accurate
approximation, namely the O-scheme (see “Appendix”
for a brief presentation of the principle, [1] and ref-
erences therein for a complete description) although
other schemes can be considered such as the two-
point scheme or other MPFA approximations. In the
following sections, we present the discrete interface
model. We then introduce some numerical results on
a synthetic test case that mimics a real one.

Fig. 19 Schematic 3D grid. Although CPG grids usually share
the same pillars, we have represented a grid which is fully non-
matching across the fault. Fault faces of the left block are shown
in dashed lines while fault faces of the right block are in dotted
lines

3.1 Discrete interface model

We are going to extend the discrete interface model
introduced in the first part for 2D cartesian grids and
line segment faults to non-planar faults represented as
non-matching interfaces in 3D. So let us consider a
3D domain cut by faults, gridded with a mesh that is
non-matching across faults, i.e. a fault is represented
by two sets of faces, one for each side of the fault
(Fig. 19). Following the interface model principle, fluid
flow along the fault is modeled by adding discrete pres-
sure unknowns for each face of the fault surfaces which
are associated to a corresponding fluid mass balance.

Once again, we present the scheme for one side of
the fault (Fig. 20). If we still denote by �I,h the mesh of
the first side of a fault and by σ a face of �I,h, the mass

I h

II h

I h

G

F
1

Fig. 20 Fault grid. On the left: first part of the fault, flux along
the fault (Gσ ′,σ ′′ ) and fault–matrix flux (F1

σ ). On the right: second
part of the fault; the first part of the fault is plotted in grey line
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balance equation associated to the flow along the first
side of the fault writes:

Gσ − F f,1
σ +

∑
e,

e edge of σ

Gσ,e = m(σ )
b f

2
Q f,σ , ∀σ ∈ �I,h

(35)

where:

– Q f,σ = 1
m(σ )

∫
σ

Q f ds.

– F f,1
σ represents the fault–matrix flux which approx-

imates
∫
σ

v f n,1, for σ ∈ �I,h, the flux between the
fault face σ and its neighbouring matrix cell.

– Gσ represents the fault–fault flux which approxi-
mates

∫
σ

v f n,I/II, the flux between the two sides of
the fault, across face σ .

– Gσ,e, represents the along the fault flux which ap-
proximates

∫
e Vf,I.nσ,e, the flux along the fault sur-

face, across the edge e, out of σ .

For this last term, an additional difficulty occurs as the
fault surface is not necessarily planar.

Therefore, for each edge e of �I,h, we introduce two
normals, one for each of its adjacent faces. Let nσ be
the normal to the face σ oriented in an arbitrary way;
ne,σ is the unit vector simultaneously orthogonal to the
edge e and to nσ oriented outside of σ (Fig. 21). If the
face is not planar, we take nσ as the average normal of
the face.

Before going into details, let us give an overview
of the approach chosen to approximate the different
fluxes. Although not detailed in the following, the
mass balance equations in the matrix are classically
discretised using the O-scheme. For the fault, we are
going to use the O-scheme to compute the along fault
fluxes Gσ,e across the edges e of the fault surfacic mesh.
Then, for the flux Gσ between the two fault sides, we
generalize the linear approximation introduced in the
first part of this paper, by taking advantage of the along

n ,e

n ,e

n 

n 

Fig. 21 Introduction of two normals for each edge e of �I,h

fault pressure gradient approximation associated to the
O-scheme. Finally, the flux between a fault face and
its adjacent matrix cell combines the O-scheme flux
approximation on the matrix side with Eqs. 15 or 16. In
the next paragraphs, we first describe the computation
of the fluxes Gσ,e and Gσ , and then we precise how the
flux F f,1

σ is approximated.

Along the fault f luxes We want to compute Gσ,e, an
approximation of

∫
e Vf,I.ne,σ , across the edge e, out of

σ where Vf,I is given by Eq. 13. The O-scheme prin-
ciple recalled in “Appendix” can be straightforwardly
applied considering the surfacic mesh �I,h. Indeed, the
gradient approximation given by the O-scheme holds
here. The flux Gσ,e is then given by:

Gσ,e =
∑
γ,

γ neighbours of σ

bσ,γ P f
γ (36)

The neighbouring faces of σ are all the faces γ that
share a vertex with σ . The coefficient bσ,γ is given by
the O-scheme (see “Appendix”).

Fault–fault f low As for the line segment fault, the flux
Gσ is decomposed into a sum of fluxes across subfaces
(σ |γ ) that have only one neighbouring face γ on the
other side of the fault (Fig. 20).

Then Gσ =
∑

γ∈�II,h
γ∩σ �=∅

Gσ,γ where Gσ,γ is still defined by:

Gσ,γ = −m(σ |γ )K f n

(
P f

σ |γ − P f
γ |σ

b f /2

)
(37)

x

x

x

Fig. 22 Selection of the interaction volumes for the gradient
reconstruction. The interaction volumes for the faces σ and γ are
drawn in dashed lines
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Fig. 23 Geometry of the
synthetic test case

(a) Domain presentation (b) Injection location

(c) First side of the fault (d) Second side of the fault

with P f
σ |γ (resp. P f

γ |σ ) an approximation of the pressure
at the center of the subface in σ (resp. γ ). To perform
this approximation, we take advantage of the discrete
pressure gradient given by the O-scheme (39), which
expresses the pressure gradient in the subregion of
the face located in the interaction volume as a linear
combination of the pressure unknowns inside the whole
interaction volume.

Let us denote by xσ |γ the center of the subface σ |γ .
Among the different interaction volumes that cut σ , we
select the one to which xσ |γ belongs as shown on Fig. 22.
If xσ |γ happens to be on the line segment between
two interaction volumes, we simply chose one of them
although it could be interesting to perform an average
of the two approximations.

The pressure P f
σ |γ is then given by:

P f
σ |γ = P f

σ + ∇V∩σ P f
σ .(xσ |γ − xσ )

where xσ is the center of the faces σ and ∇V∩σ is the
pressure gradient inside the intersection of the relevant
interaction volume and the face σ .

Fault–matrix f low The fluxes F f,1
σ are approximated

simultaneously with the matrix–fault fluxes
∫
σ

v1.n|� ,
seen from the matrix side. The O-scheme principle is
again applied by considering a particular 3D interaction
volume around each vertex of the fault surface that is
composed of the matrix cells that share that vertex. In
this interaction volume, a linear approximation of the
pressure is performed in each matrix cell as a function
of the cell center pressure and matrix face center un-
knowns, while Eq. 15 is used to express the flux on
the fault faces from the fault side. The usual process
leads to fluxes on matrix–fault faces and matrix faces
adjacent to the fault, as a linear combination of matrix
pressure and fault pressure unknowns.

Fig. 24 Domain
configuration

(a) View direction set to -Y (b) View direction set to +X
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Table 1 Domain properties Orange cells White cells Fault

Porosity (%) 20 1

Permeability (mD)

⎡
⎣100 0 0

0 100 0
0 0 10

⎤
⎦

⎡
⎣0.1 0 0

0 0.1 0
0 0 0.01

⎤
⎦

⎡
⎣1,000 0 0

0 1,000 0
0 0 1,000

⎤
⎦

Compressibility (bar−1) 10−4 10−4 0

3.2 Realistic test case

In this section, the fault model proposed in this paper
is tested on a synthetic test which mimics a real test
configuration, inspired by CO2 storage problem. The
following equation is solved:

φc
∂p
∂t

− ∇ · (
Km

μ
∇ p) = q (38)

where φ is the porosity, Km the matrix’s permeability
tensor, c is the compressibility, μ the fluid viscosity and
q is the source term that corresponds to an injection
well. In the interface fault model, the accumulation
term is neglected as the fault width is small. It could,
however, have been kept.

Test case conf iguration The meshed domain is pre-
sented in Fig. 23a. The two parts of the fault are pre-
sented in Fig. 23c, d. The domain is approximatively
6,000 m in the x direction, 4,800 m in the y and 2,450 m
in the z direction. The fault’s width is constant and
equal to 5 m.

An injection of 10 m3/day is performed for 30 years
in the cells showed in Fig. 23b. On the opposite vertical
boundary, a pressure of 0 Pa is imposed on all the
faces during the simulation. Everywhere else, no-flow
boundary conditions hold. The fluid viscosity is μ =
1 cP. The fault connects one permeable layer on the
right side to three other permeable ones on the left side
(in orange on Fig. 24a). Without a model for fluid flow
along the faults, these permeable layers would not have
been connected. The parameters used are summarized
in Table 1, the different layers can be seen in Fig. 24a

and the connection between two permeable layers is
observable in Fig. 24b.

Simulation results As there is no reference solution
for this test, the results are analysed in a qualitative
manner. Two simulations have been performed to study
the impact of the approximation chosen for the flow
along and across the fault. For the two of them, the O-
scheme is used to compute the fluxes in the matrix. For
the fluxes associated to the fault, the two-point and O-
scheme described above are compared. For the sake of
simplicity, we have, however, always used a two-point
scheme for the flux on outside boundary faces. In the
following, the pressure is given in Pascal.

Figure 25a, b presents the pressure in the matrix
after 9 months of injection for the two-point and the
O-scheme (the pressure scale has been rescaled to en-
hance the readability). One can see that the pressure
inside the three permeable layers after the fault is high,
compared to the injection point, even if two of them are
not connected to the injection layer. This implies that
the fluids flow from the permeable layer into the fault,
then flow along the fault and, finally, to these perme-
able layers. This illustrates the ability of the approach
to account for fluid flow along the fault.

To compare the two approximations, we have plot-
ted on Fig. 26 the evolution of pressure versus time in
three matrix’s cells located near the fault surface and
shown in Fig. 26a. The results obtained with the two-
point scheme are drawn in solid red lines, whereas the
results obtained with the O-scheme are drawn in black
dashed lines.

Figure 27a, b gives the pressure field in the fault
after 3 months and after 60 years at the end of the

Fig. 25 Pressure in the
matrix after 9 months

(a) Two-point scheme (b) O-scheme
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(a) Selected cells
(b) Pressure over the time in the matrix for the bottom cell. Red: 
two-point scheme, black: O-scheme

(d) Pressure over the time in the matrix forthe top cell. Red: 
two-point scheme, black: O-scheme

(c) Pressure over the time in the matrix for the middle cell. Red:
two-point scheme, black: O-scheme

Fig. 26 a Selected cells. b–d Pressure over the time in the selected cells

simulation, for the two-point scheme while results for
the O-scheme are shown on Fig. 28a, b. The impact
of the scheme used is clearly observable, both in the

matrix and in the fault. In Fig. 26b, one can see that
the pressure calculated using the two-point scheme is
underestimated compared to the one found with the

Fig. 27 Results obtained for
the two-point scheme

(a) Pressure in the fault after 3 months (b) Pressure in the fault after 60 years



294 Comput Geosci (2012) 16:277–296

Fig. 28 Results obtained for
the O-scheme

(a) Pressure in the fault after 3 months (b) Pressure in the fault after 60 years

O-scheme. At this point, two permeable layers are
connected via the fault as shown in Fig. 24b and the
two-point scheme does not capture the impact of this
connection, as it can be seen in the fault pressure
profile. In Fig. 26c, d, one can observe that the pressure
is overestimated by the two-point scheme. Concerning
the pressure field in the fault depicted in Figs. 27a
to 28b, if the scale is almost the same for the two
schemes, the profile is completely different. The O-
scheme respects the geometry and the connection of the
layers via the fault when it calculates the pressure. As
it has been seen for the academic problems, the two-
point scheme approximation has a tendency to smooth
the pressure inside the fault.

4 Conclusion

In this study, an interface model for a single-phase
fluid flow in porous media has been proposed. Com-
pared to previous interface fault models found in the
literature, the proposed approach considers that the
fault is represented by two interfaces instead of one.
This enable to handle quite naturally grids that are not
matching across the fault, such as the well-known CPG
grids. Moreover, this model does not require to intro-
duce new grid elements and add no other difficulties
compared to the ones involved when computing fluxes
across the fault.

Within a classical finite volume discretisation, the
non-matching grids lead to so-called fault–fault fluxes
across faces that do not match. Mainly two approx-
imations have been considered, and the first one is
based on a piecewise constant approximation of the
pressure which is easy and robust but not always accu-
rate enough. Therefore, another approximation based
on a piecewise linear approximation has been studied.
We have chosen to base this approximation on the O-
scheme, but other schemes could have been considered.
Although only results with homogeneous faults have
been presented, heterogeneous faults can be consid-

ered by assigning a different fault permeability tensor
to each fault face. Compared to the discrete model clas-
sically obtained when accounting only for flow across
faults, the proposed model adds unknowns, and cor-
responding mass balance equations on fault faces, it
therefore integrates itself naturally in a simulator based
on a general connection-list representation of the grid
system.

The model can be extended in several directions. It
can for instance be applied in the framework of basin
modeling where non-matching evolving grids are con-
sidered to follow blocks sliding along faults. Moreover,
its extension to a multi-phase flow should be straight-
forward, as it enters in the finite volume framework.
However, we have handled here the problem of very
different space scales between the matrix and the fault
but problems associated to different time scales remain
especially when solving the non-linear system of dis-
crete equations that govern multiphase fluid flow.
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Appendix: O-scheme principle

The O-scheme is a cell-centered finite volume scheme
that gives an approximation of conductive fluxes on
non-K-orthogonal grids. Its principle is briefly recalled
here in a 2D framework to avoid cumbersome nota-
tions, but the same ideas apply for 3D grids.

Let us consider a 2D grid and a conductive operator
(−∇ · K∇u). Following the finite volume principle, we
are led to the approximation of the flux across each
edge δ : ∫

δ
−K∇u.n. The first stage of the approxima-

tion is to decompose the flux across δ into two fluxes
across each half edge associated to one of its vertices.
This half flux is then computed using a piecewise linear
interpolation of the unknown u around the associated
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Fig. 29 Notations for the
O-scheme
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(a) Interaction Volume, composed of 4 subre-
gions, one in each neighbouring cell
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vertex in a so-called interaction volume (Fig. 29a). For
the sake of simplicity, we consider only quadrilateral
faces but triangular faces can also be considered. The
cell centers are denoted by xk and the edges midpoints
by xk. The area determined by these eight points is
the interaction volume and is represented in dashed
line in Fig. 29a. The piecewise linear approximation is
obtained assuming a linear variation of the pressure
in each cell and pressure and flux continuity at each
point xk.

For a cell k in the interaction volume, we denote by
uk the unknown at the cell center, and we introduce
two auxiliary unknowns at edge mid-points u1 and u2

(Fig. 29b). The gradient of the unknown in this cell can
be written:

∇u = 1

2Ak
[ν(k)

1 (u1 − uk) + ν
(k)
2 (u2 − uk)] (39)

where Ak represents the area of the triangle xkx1x2

and ν
(k)
1 and ν

(k)
2 the normal vectors of the interaction

volume within cell k. The norm of vector ν
(k)

i is equal to
�i, the length of the half edge to which it is normal.

Hence, the fluxes through the half edges are given
by:

[
f (k)
1

f (k)
2

]
= −Bk

[
u1 − uk

u2 − uk

]
(40)

where f (k)

i is the flux through the half edge i of the cell
k and Bk is the matrix defined by:

Bk = 1

2Ak

[
�1nT

1 Kkν
(k)
1 �1nT

1 Kkν
(k)
2

�2nT
2 Kkν

(k)
1 �2nT

2 Kkν
(k)
2

]
(41)

where nT
i is the half edge i unit normal.

Computing the fluxes for all the half edges of an in-
teraction volume and requiring continuity for the fluxes
and for the unknown at the midpoints of each edge, it
is possible to eliminate the auxiliary unknowns located
at the midpoints of the edges. It ends up with a scheme
where the fluxes through all half edges are expressed
as a linear combination of the cell center unknowns.
Finally, the O-scheme provides an expression for the
fluxes across each edge as a linear combination of the
unknowns in the neighbouring cells, i.e. cells that share
a vertex with δ:∫

δ

−K∇u.n 

∑

k,
k neighbour of δ

b δ,kuk

where b δ,k is the relevant term of the matrix Bk defined
by Eq. 41.

Replacing unknowns u1 and u2 in Eq. 39 with their
corresponding expressions, the unknown gradient in
each sub-region is expressed as a linear combination of
cells unknowns:

∇u =
4∑

l=1

Vlul

where Vl is in R
2. More details can be found in [1].
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