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Abstract Parameter identification is one of the key
elements in the construction of models in geosciences.
However, inherent difficulties such as the instability of
ill-posed problems or the presence of multiple local
optima may impede the execution of this task. Regular-
ization methods and Bayesian formulations, such as the
maximum a posteriori estimation approach, have been
used to overcome those complications. Nevertheless, in
some instances, a more in-depth analysis of the inverse
problem is advisable before obtaining estimates of the
optimal parameters. The Markov Chain Monte Carlo
(MCMC) methods used in Bayesian inference have
been applied in the last 10 years in several fields of
geosciences such as hydrology, geophysics or reservoir
engineering. In the present paper, a compilation of
basic tools for inference and a case study illustrating
the practical application of them are given. Firstly, an
introduction to the Bayesian approach to the inverse
problem is provided together with the most common
sampling algorithms with MCMC chains. Secondly, a
series of estimators for quantities of interest, such as the
marginal densities or the normalization constant of the
posterior distribution of the parameters, are reviewed.
Those reduce the computational cost significantly, us-
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ing only the time needed to obtain a sample of the pos-
terior probability density function. The use of the in-
formation theory principles for the experimental design
and for the ill-posedness diagnosis is also introduced.
Finally, a case study based on a highly instrumented
well test found in the literature is presented. The results
obtained are compared with the ones computed by the
maximum likelihood estimation approach.
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1 Introduction

In any branch of natural science, any attempt of mod-
elization requires determining the mathematical for-
mulation of the model and estimating its parameters.
This process is generally known as inverse modeling [1].
Solving this problem is especially important in the field
of geosciences, since the high degree of heterogeneity
of the physical environment requires a characterization
of the spatial distribution of the parameter values.
Hence only the measurements of the variable to be
modeled will be available ([1], chapter 12.4).

In most cases, the model structure is determined
a priori, in keeping with the previous knowledge of
the modeler. Thus, the estimation of the parameters
is the only thing to be done to define a single model.
However, the selection of over-parameterized models
may result in poor prediction capability, although they
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may allow measured data to be reproduced without bias
([2], chapter 1.4). The trade-off between the number of
parameters and the prediction capability may be solved
through the maximum likelihood estimation method [3]
and information theory. Akaike [2, 4, 5] proposed a
criterion for the classification of models up for consid-
eration in terms of AIC criterion. In its simplest ex-
pression, it requires the value of the likelihood function
evaluated at its maximum. Some other criteria, such as
the BIC [6], the Minimum Description Length [7], the
KIC [8] or the YIC [9, 10] have been extensively used
in hydrological modeling [11–14]. In addition, another
family of model selection techniques based exclusively
on Bayesian Theory, such as the Bayes factors, has
been proposed [15–17]. This methodology has also been
applied in hydrological sciences [18–21], together with
model averaging approach for multimodel inference
[22, 23]. However, model selection and averaging is
beyond the scope of this paper, and we will concentrate
here on parameter estimation as the only component of
inverse modeling.

Despite the many possible ways of considering the
inverse problem, most of them have a similar math-
ematical formulation based on the construction and
analysis of a merit function [24–26]. Among all the pos-
sible analyses, the optimization of that function is the
most usual alternative. In this approach, the parameters
of a model are usually considered to be fixed and
unique. Nevertheless, in more advanced applications,
the parameters can be considered as time varying [27–
32]. Along with the error structure, the parameters
define a single probability density function (PDF) of
which the measured data are occurrences. Each of
these realizations has an associated PDF value, which
is a function of the parameters to be determined. The
combination of those PDFs, which is called likelihood
[33], is given by

L (d |m ) =
n∏

i=1

λ (di |m ) (1)

where d is the vector of observations (or data vector),
di is the ith observation, nis the number of observa-
tions, m is the vector of the model parameters (or
parameter vector) and λ is the PDF of each observa-
tion conditioned on the selected model d = g(m). An
estimator of the value of the parameters with a lot
of nice statistical properties, such as consistency and
asymptotic normality and efficiency [34, 35], is the max-
imum likelihood estimator (MLE), the point at which
the likelihood function exhibits its maximum. If the
errors have a Gaussian structure, the MLE estimator
becomes the point that minimizes the sum of squared

errors weighted by their variance–covariance matrix.
This gives rise to a geometric interpretation of the max-
imum likelihood principle, which can be interpreted as
a minimization of the weighted distance between the
observed and the simulated values.

This approach should be used only if the problem
does not present non-identifiable parameters, as long as
the necessary and sufficient conditions [36, 37] are met.
The non-identifiability of a set of parameters is defined
[38, 39] as the non-dependence of the likelihood func-
tion L(d|m) on them. Usually the data vector does not
provide any information on these parameters. In such
cases, Tikhonov regularization is advised [1, 25, 40],
although solutions are expected to be biased [41].

Another perspective of the inverse problem relies
on the Bayesian probability theory. According to this
theory, the axioms of probability can be interpreted in
terms of a subjective degree of knowledge [42–44]. The
uncertainty associated with a parameter or a particular
field measurement can be expressed in the form of
a PDF. From this point of view, the inverse problem
becomes a combination of our states of knowledge on
the parameters [45–47], including prior information.
The solution to the inverse problem is not based on
obtaining an estimator of the parameter vector. Rather,
it provides an objective state of belief which is repre-
sented by a PDF.

In the field of mathematics, both approaches have
evolved independently owing to theoretical controver-
sies. However, the use of prior information in geo-
sciences is quite common [25, 26, 48], although it is
based on the point estimation of the parameters [49]
by the Maximum a posteriori (MAP) approach [50,
51], rather than on Bayesian inference. In fact, the
use of Gaussian prior information is a regularization
procedure similar to the one proposed by Tikhonov
([26, 52], chapter 4.3; [53]). It provides solutions with
little computational cost, especially in cases where a
large amount of variables are involved (heterogeneity
at grid cell level). However, the analysis of the results
obtained is carried out using local approximations of
the posterior covariance matrix around the optimal
value of the posterior PDF (MAP approach) [25, 46],
which may be an unrepresentative point in multimodal
distributions [54]. These PDFs are relatively frequent in
environmental sciences modeling [55], but may present
as well non-smoothness. This feature may be caused
by, among other factors, the time stepping scheme used
for solving the differential equations involved in the
problem [56]. Consequently the MAP approach would
be useful only in well-behaved functions [57].

This paper reviews both conceptual and numerical
tools to provide a complete analysis of the inverse
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problem from a Bayesian perspective, with special fo-
cus on the Markov Chain Monte Carlo methods. These
methods have been used for 20 years in several fields of
geosciences, although they are not frequent in everyday
practice. This work reviews the Bayesian theory of in-
verse problems, as well as a series of existing algorithms
that will allow for a detailed analysis of the posterior
PDF of the model parameters. Furthermore, the re-
viewed algorithms reduce the computational expense
incurred in the calculation of marginal densities and
integrals.

2 Bayesian approach of inverse problems

As mentioned in the introduction, the Bayesian ap-
proach to inverse problems is based on the interpre-
tation of probability as states of information [42–44],
where all knowledge is expressed in the form of proba-
bility density functions. Any kind of plausible reasoning
can only be carried out by the combination of these
states of information [43, 45].

Only two sources of information are available to re-
solve an inverse problem: (1) information that provides
an analysis of the observed values (data) on the basis
of a theoretical relation (model) and (2) our previous
knowledge of the model parameters and data. [58].
The Bayesian formulation of the posterior PDF of the
parameters is given by the expression [51, 58, 59]

p (m| d) = p (d| m) p (m)∫
M

p (d| m) p (m)
(2)

where p(d|m) is the likelihood function (equivalent to
the expression in Eq. 1), p(m) is the prior probability
of the parameters and the integral in the denominator
is the normalization constant, also referred in the liter-
ature as p(d).

If p(m) and the observation errors are multivariate
normal, then p(m|d) may be expressed as [46, 51]:

p (m| d) = k · exp

(
−1

2

((
g(m) − d

)T C−1
D

(
g(m) − d

)

+ (m − mo)
T C−1

M (m − mo)
))

(3)

where k is the normalization constant, d is the vector
of observed values, CD is the covariance matrix of the
errors, mo is the mean of p(m), and lastly, CM is the
covariance matrix of p(m). In the event that C−1

M = 0
(non-informative prior information), the point at which
the p(m|d) is maximized will be the vector of para-
meters that minimizes the weighted sum of squares of
the first term of Eq. 3. When a parameter (or a set of

them) is non-identifiable [38, 39] the use of prior infor-
mation is indispensable. However, if the priors are also
non-informative for the non-identifiable parameters,
the problem is considered ill-posed [38]. Furthermore,
priors that not integrate to unity or contain little infor-
mation on the parameters of interest may also induce
ill-posedness as defined by Hadamard [38, 60].

In accordance with Eq. 3, the pure maximum like-
lihood estimation ignores the existence of any prior
information. In the past, this triggered some contro-
versy between the frequentist and Bayesian theories
of probability [42, 61]. To a degree, this controversy
has been resolved in geosciences by using regulariza-
tion approaches that include, to a certain extent, prior
information [1, 25, 26].

If the variance–covariance matrices in Eq. 3 are not
known a priori, their components can be considered
as unknown parameters which have their own prior
densities. The same occurs in the case of the direct
model d = g(m), where the measurement of the forcing
data (precipitation or temperature in the case hydro-
logical modeling for example) is subjected to error. For
a complete analysis of all the sources of uncertainty,
the hierarchical modeling approach proposed by the
BATEA framework is advised, especially if a complete
differentiation between input, response and model er-
ror is desired [30, 62, 63].

Equation 3 provides the modeler with a PDF that
synthesizes all the information that can be drawn from
the observed values and from our prior knowledge
[43, 64]. By means of integration, it is possible to obtain
from p(m|d), the moments of any order, marginal PDFs
of any parameter or set of parameters, as well as their
graphical representations in low dimensional spaces.

3 Markov Chain Monte Carlo sampling methods

Despite the fact that a PDF is available when following
the Bayesian approach, in geosciences it is custom-
ary to analyze problems that involve a large number
of parameters. Consequently, the classical methods of
integration and representation may be too costly in
computational terms. If we also consider that, in most
cases, p(m|d) lacks a simple analytical expression of
their descriptors, Monte Carlo methods are advisable
for use in this type of analysis [48].

The term Monte Carlo method stands for any mem-
ber of a very large group of algorithms used to solve
various kinds of computational problems by means of
randomly generated numbers [65, 66]. Of the many
existing methods to obtain a sample of p(m|d), perhaps
the most appropriate would be the MCMC method.
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The basic principle of these techniques is the applica-
tion of the convergence property to a specific probabil-
ity density function presented by the Markov Chains,
provided that they comply with the conditions of re-
versibility and ergodicity [67]. This means that if it
is possible to develop an algorithm that generates an
ergodic reversible Markov Chain over a continuous
space, then the states (points) of this chain will con-
verge asymptotically to a sample of the function con-
sidered, also called stationary distribution.

The first algorithm that was applied to the gen-
eration of these Markov Chains was the so-called
Metropolis–Hastings Sampler [67–69]. This sampling
method obtained a new state of the Markov Chain
(point in the space to be sampled) in two steps: a
proposal step and an acceptance step. An example of
a posterior density function like p(m|d) would be

3.1 Proposal step

• Start out with the state of the Markov Chain Xi = mi
• A sample point mc is generated from the proposal

PDF q(mi, mc) which defines the probability that
the Markov chain is found in mi; go to point mc.

3.2 Acceptance step

• Calculate the ratio α (mi, mc)=min
(
1,

p(mc|d )q(mc,mi)

p(mi|d )q(mi,mc)

)

• If α (mi, mc) = 1, then mc is accepted as the new
state of the Markov Chain Xi+1 = mi+1 = mc

• If α (mi, mc) < 1, then a random number, ρ, is
obtained from a uniform distribution over [0, 1).
If ρ < α (mi, mc) then mc is accepted as the new
state of the Markov Chain Xi+1 = mi+1 = mc. If the
opposite occurs, then the state of the Markov Chain
does not change.

• Begin a new proposal step, either with a new initial
state Xi+1 (if there is acceptance) or with the origi-
nal one (Xi in the event of rejection)

As can be observed, the simplicity of this algorithm
makes it especially useful for the sampling of pos-
terior probability density functions. Moreover the
Metropolis–Hastings sampler presents two other fun-
damental advantages. The first is that if q(mi, mc) =
q(mc, mi), it will hold that

α (mi, mc) = min

(
1,

p (mc |d )

p (mi |d )

)
. (4)

Therefore, to calculate α(mi, mc) it is only necessary
to evaluate the PDF at points mi and mc. The other
advantage is that it is not even necessary to know
the normalization constant k, but only the ratio of the

posterior density at mi and mc. That means, if p(m|d) =
kp∗(m|d), the value of α is obtained as follows

α (mi, mc) = min

(
1,

p∗ (mc |d )

p∗ (mi |d )

)
(5)

which allows for the sampling of PDFs even without
being normalized.

Due to their versatility, the MCMC methods have
been used in hydrological sciences and geophysics [70–
77]. Although the Metropolis–Hastings sampler is very
well suited for most of those applications (only the
unnormalized value of the posterior PDF is needed),
some other sampling strategies have been proposed. In
the case of Gibbs sampler [78, 79] it is necessary to
know any conditional probability density of the original
PDF, in order to be sampled. This requirement is easy
to fulfill in closed form expressions for the prior den-
sities, but it can be very computationally expensive for
the likelihood term. This fact is particularly important
for the numerical distributed models widely applied in
geosciences [80] where no closed form is available for
the posterior conditionals. However, the use of genetic
operators as proposal functions that has given rise to
the Evolutionary MCMC algorithms [81, 82] is proba-
bly the most promising computational tool for the sam-
pling unnormalized PDFs. The differential evolution
adaptive metropolis (DREAM) Markov Chain Monte
Carlo (MCMC) scheme [83, 84] has been applied to
hydrological sciences due to its better convergence
and mixing properties [85]. The randomized maximum
likelihood algorithm [51, 76, 86] also presents a better
rate of acceptance of the Metropolis–Hastings criterion
shown in Eq. 5, although it requires the resolution of
multiple optimization problems.

As was previously stated, Markov Chains converge
asymptotically to their stationary distribution. Several
methods have been developed to evaluate the degree
of convergence, ranging from graphical methods [79]
to more complex statistical methods [87–89]. However,
despite the solid foundations of all of these methods, it
has been demonstrated that any method when applied
individually may lead to poor performance. Hence it is
advisable to use a combination of them all [90].

To achieve a low rejection rate (points rejected ver-
sus points evaluated) of the algorithm and a rapid con-
vergence to the posterior PDF, several different sam-
pling strategies may be used [91]. However, perhaps the
most effective technique is problem reparametrization
to reduce the dimensionality of the problem, or at least
to reduce the parameter correlation [92]. This paper has
selected a proposal function q(mi, mc) that bears the
greatest resemblance to a p(m|d), which allows for bet-
ter mixing and faster convergence. In order to do this,
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it is necessary to take a small initial sample, so that the

process is restarted with q (mi, mc) ∼ N
(
μ̂s, Ĉs

)
, where

μ̂s and Ĉs are the mean and covariance matrix of the
initial sample respectively. The process is repeated until
an acceptable degree of convergence [88] is reached.

Another issue in the implementation of MCMC sam-
plers is the computational burden required, especially
in problems with time-dependent parameters such as
those arisen in environmental engineering. The use
of numerical solutions for the nonlinear differential
equations that describe the physical process makes
the parameter vector strongly dependent upon previ-
ous values. If the BATEA [62] or other hierarchical
Bayesian approach is applied, multiple evaluations of
the posterior PDF are needed and the computational
cost would increase prohibitively. A “limited memory”
MCMC sampler has been proposed to overcome this
issue [80]. This is done by truncating the temporal
dependence when the “memory effect” of the previous
conditions falls below a threshold value.

The inverse problem in subsurface flow presents
an additional difficulty: the parameterization of the
geological heterogeneity [51]. The MCMC sampling
procedure may become inefficient when a large number
of parameters (heterogeneity at grid cell level) is being
considered. The blocking MCMC [75] or the use of
coarse scale models [77, 93, 94] are based on the use
of upscalling techniques in order to reduce the number
or parameters.

Further attention should be devoted to dynami-
cal systems, where new data are being continuously
obtained. The process of incorporating new informa-
tion as it becomes available is known in literature as
data assimilation. The Kalman filter and the extended
Kalman filter (for nonlinear problems) are the most
accepted methods for this assimilation [51]. However,
the extension of ensemble Kalman filtering [51] with
MCMC methods [95] presents very promising results
for data assimilation and uncertainty quantification in
subsurface problems.

4 Inference from Markov Chain Monte Carlo samples

4.1 Marginal density estimation

Once a sample of the posterior density has been ob-
tained, inference from the MCMC output can be drawn.
Since the sample usually shows an autocorrelation with
a variable lag depending on q(mi, mc) it is not advisable
to use the classical estimators of the mean and variance
of the PDF. Some alternative estimators have been

proposed ([67, 88, 96], chapter 12.4). Nevertheless, fre-
quently it does not suffice to rely only on the intuitive
idea provided by the estimators or the scatter plots.
In such cases it would be advisable to estimate the
marginal probability density at any point on the basis
of the MCMC sample obtained. Some non-parametric
marginal density estimators have been proposed [91]—
namely, the conditional marginal density estimator [97].
This estimator requires full knowledge of any condi-
tional probability of p(m|d) up to its normalization con-
stant. This is a major drawback, which can be avoided
by using the importance weighted marginal density esti-
mator (IWMDE) [98], since this estimator only requires
the conditional probability densities of an arbitrary
weight function. This function was chosen with two
factors in mind. The first is that its form must resemble
p(m|d) as closely as possible. The second requirement
is that its conditional probability densities must be easy
to calculate. The IWMDE at point m∗( j) is obtained by
the expression:

pIWMDE
(
m∗( j) |d)

= 1

N

N∑

i=1

w
(

m( j)
i

∣∣∣m(− j)
i

) p
(

m∗( j), m(− j)
i |d

)

p (mi |d )
(6)

where pIWMDE
(
m∗( j) |d)

is the proposed estimator, N
is the total number of points of the MCMC sample,
w(m) is the weight function, mi is the ith point of the

sample and p
(

m∗( j), m(− j)
i |d

)
is the value of p(m|d) at

the point where the marginal PDF has been estimated(
m∗( j)

)
, and where the rest of the coordinates are those

of the point m(− j)
i . Thus, index ( j) denotes the group of

variables in which the IWMDE is obtained and index
(− j) indicates the rest of the components of vector m.
Therefore the value of p(m|d) up to its normalization
constant is not needed since it is cancelled out in ratio
p(m∗( j),m( j)

i |d)/p(mi|d).
The most outstanding of the non-parametric meth-

ods is the kernel density estimation (KDE) [99–101].
It is based on computing a sum equal to the length of
the sample of bounded density functions on the space,
called kernels. The kernel estimator at point m∗( j) may
be calculated as

pK
(
m∗( j) |d) = 1

Nh

N∑

i=1

K

(
m∗( j) − m( j)

i

h

)
(7)

where N is the sample size, h is a scale factor and
K(m( j)) is the kernel function. Since kernel density es-
timators are non-parametric, they may not be efficient.
However, with an adequate choice of the kernel func-
tion, good results may be obtained at a very low cost
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[102]. The resulting computational efficiency may be
attributed to the fact that, unlike the IWMDE, no ad-
ditional evaluation of the PDF is required. This makes
it especially well-suited for being used with the MCMC
output, even if it is not possible to evaluate the poste-
rior PDF again.

4.2 Normalization constant

The value of the normalization constant k is not needed
to obtain a sample of the posterior density p(m|d) or its
marginal PDFs. Nonetheless, it may be required for the
computation of Bayes Factors and for the multimodel
inference proposed in the Bayesian Model Averaging
methods [16, 17, 103, 104]. For this reason, while it
is possible to use the classic Monte Carlo integration
methods [105] or importance sampling [106], there are
algorithms that use only the MCMC output (posterior
sample and values of the PDF at those points) [107].
The normalization constant can be estimated as

log k = log L
(
m∗) − log

[
1

M

M∑

i=1

ω (mi)

p (mi)

L (m∗)
L (mi)

]
(8)

where L(m*) is the value of the likelihood function
at an arbitrary point m* (preferably a high posterior
density point), [mi] is the MCMC sample and M cor-
responds to its size. The weight function ω(m) must
be a probability density function which consequently
will ensure that

∫
M

ω (m) dm = 1. Since the evaluation
of ω(m)i is generally much less computationally costly
than L(d|mi) and p(mi), the time required to obtain log
k is negligible in comparison with the time needed to
obtain the posterior sample.

4.3 Posterior diagnostics

Once the sample of the posterior PDF has been ob-
tained, a critical examination of the assumptions made
during the formulation of the inverse problem is re-
quired [108, 109]. Firstly, an assessment on the compat-
ibility between the prior and the posterior information
is desirable. If both densities are too far apart, proba-
bly either the prior information is not reliable or the
likelihood function is not well constructed. A scatter
diagram of the posterior and prior sample can help in
this process, as well as for detecting non-identifiable
parameters or strong correlations between them.

Another aspect that should be assessed is the the-
oretical distributions of the errors in the model. In
many cases the normality of the residuals is a strong
hypothesis that should be examined. For that purpose,
it is advised to use a normal probability plot of the

residuals [110] and non-parametric tests such as the
Kolmogorov–Smirnov test.

Finally, the well-posedness of the problem should
be assessed. Usually this feature cannot be uncovered
by formal mathematical methods [38] in the case of
complex models. For that reason, indirect empirical evi-
dences of ill-posedness are sought, such as the condition
number of the Hessian matrix at the MLE [55, 63], the
Fisher information matrix [111, 112] or the poor con-
vergence of the MCMC samplers [38, 87]. The following
section reviews the Shannon information theory and its
use in posterior ill-posedness diagnostics.

5 Information theory in inverse problem analysis

The Monte Carlo Methods and the Bayesian approach
to inverse problems allow us to use global measures
of the information. That is, the complete posterior
density is taken into account, and not only the value of
the likelihood function at the MLE and the posterior
covariance matrix. The total amount of information
contained in a PDF, such as for example, p(m|d), is
defined as [113]:

IS =
∫

M

p (m |d ) log
(

p (m |d )

μ (m)

)
dm (9)

where μ(m) is the uniform PDF. With this expression,
called Shannon’s information measure (which is the in-
verse of the Shannon entropy), it is possible to evaluate
the information using μ(m) as a reference. The units
in which the information is expressed are called bits
when the base-2 logarithm is used, and nats or nits
when a natural logarithm is used. For μ(m) it is true
that IS = 0, which in Bayesianstatistics is called non-
informative. However, it is possible to understand the
expression proposed by Shannon as a particular case of
the expression [114]:

IKL =
∫

M

p (m |d ) log
(

p (m |d )

φ (m)

)
dm (10)

which may be interpreted intuitively as the distance that
exists between the probability density functions p(m|d)
and φ(m). This measure is non-symmetric. Hence, it is
called Kullback-Leibler (KL) divergence, rather than
distance, and it assesses the dissimilarity between two
density functions [114]. Therefore, IS may be inter-
preted as a measurement of the dissimilarity between
p(m|d) and μ(m), where μ(m) designates an absolute
reference that contains null information. The KL di-
vergence underlies most of the model selection criteria
mentioned in the introduction [2, 5].
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The calculation of Shannon’s information measure
is based on the integration of the posterior density in
the entire domain, as opposed to Fisher’s information,
which is based on the analysis of the second derivatives
around the optimum. As regards multimodal PDFs,
the differences between the two information measures
are relevant, since the former may be considered as a
global measure and the latter, a local one. The integral
of Eq. 9, may be calculated by means of importance
sampling [105, 106], a classical method of Monte Carlo
integration, also proposed for the calculation of nor-
malization constants of the PDFs and consequently of
their Bayes factors [115, 116]. The importance function
used is p(m|d) itself, since the sample obtained from
the MCMC sampler is available. Given that p(m|d) is
overdispersed with respect to the integrand of Eq. 9,
but it does have the same features as said integrand,
the numerical integral converges quickly. To evaluate
IS it is necessary to know the posterior density up to its
normalization constant, k. That is, p∗(m|d) must first be
integrated using the algorithm proposed in Eq. 8. The
normalization constant k and the information content
Is can be calculated without any additional evaluation
of the posterior PDF, using only the MCMC output.

The information content of the posterior PDF can
play a dual role in the analysis of inverse problems.
Firstly, the marginal information of the parameters can
be used as an indicator of ill-posedness of the inverse
problem (or non-identifiability if no prior information
is available [38]). If a parameter exhibits a low value of
marginal information, in contrast to the rest of them, it
is likely that the problem can be considered ill-posed.
For unimodal PDFs this criteria is quite similar to the
condition number of the Hessian matrix at the MAP
estimator. However, this evaluation of the ill-posedness
is not conclusive, and other methods of diagnosis have
been proposed, such as the study of the correlation of
the MCMC samples or the lack of convergence of the
sampling algorithm [38]. The combination of all of them
is probably the best alternative to the formal mathemat-
ical analysis [38] when this is not possible due to the
complexity of the model. Moreover, the identification
of the parameters with low marginal information in a
non-identifiable problem can be helpful for the search
of highly informative priors for them.

The second application of information theory is the
quantitative evaluation of different experimental al-
ternatives for data acquisition (design of monitoring
networks, frequency of measurement or selection of
variables of interest) based on the total and marginal
information provided by each experimental design.
This capability helps overcome the problem of non-
identifiability by the selection of the most informative

design. In addition, the quantification of the informa-
tion provided by any (additional) data is also possible
[117] as well as, for example, the determination of the
duration of the observation period or the selection of
observations to be analyzed.

6 A practical example

6.1 Description of the problem

To illustrate the sampling process, an analysis of a very
conventional inverse problem, like the pumping test,
is proposed. Although these kinds of tests may not
provide reliable estimates of the average parameter
values of an aquifer [118], they have been widely used
in hydrogeology with satisfactory results. The case pro-
posed here, an unconfined aquifer test conducted in a
glacial outwash deposit on Cape Cod, Massachusetts,
was studied. The geological formation under consid-
eration was a homogeneous, anisotropic unconfined
aquifer [119]. A partially penetrating well was drilled
and was pumped at a rate of 2.02 × 10−2 m3/s for 72 h.
Up to 20 piezometers were used to monitor the water
level during the test, apart from the pumped well itself.
A complete description of the experimental setup can
be found in the literature [119–121].

The case selected here is especially appropriate for
analysis by means of the Monte Carlo methods and
the information theory. First of all, the test was carried
out in a highly homogeneous aquifer. Hence, the ana-
lytical solution selected may be used without violating

ground-water flow 

pumping level 
static level 

kz 

kr 

Q 

pumped well observation piezometer 

r 

ground surface 

impermeable bed 

d 

l 

z

b

2×rc 

ks 

Ss, Sy, α1, α2, α3

r 

wellbore skin 

Fig. 1 Pumping test configuration and variables involved in
Moench’s analytical solution
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Table 1 Limits of the search space

Lower limit Upper limit

kr (m/s) 1.000 × 10−9 1.000 × 10−1

kz (m/s) 1.000 × 10−9 1.000 × 10−1

ks (m/s) 1.000 × 10−9 1.000 × 10−1

b (m) 3.346 × 101 1.000 × 103

Sy (-) 1.000 × 10−6 1.000 × 100

Ss (m−1) 1.000 × 10−9 1.000 × 100

α1 (s−1) 1.000 × 10−10 1.000 × 1010

α2 (s−1) 1.000 × 10−10 1.000 × 1010

α3 (s−1) 1.000 × 10−10 1.000 × 1010

its initial assumptions. Moreover, the test was highly
instrumented, including a large number of piezometers,
and the test conditions were under control. Also, the
test lasted long enough to provide early-time as well
as intermediate and late time data. The aquifer has
also been studied in depth and the test interpreted
on the basis of the least-squares approach mentioned
previously. With this method it is possible to compare
the results obtained and to evaluate the degree of
correctness found in the uncertainty estimation. Lastly,

the complete report of Moench et al. [119] offers a
detailed description of the experimental procedure, the
analytical solution used in the interpretation and the
different hypotheses put forward in the analysis of
the available information.

Nine parameters have been proposed for the reso-
lution of the inverse problem (see Fig. 1). Since the
aquifer in question is anisotropic, both radial and ver-
tical permeability, kr and kz (m/s), are two of the
fundamental parameters. The hydraulic conductivity of
the wellbore skin, ks (m/s), must also be identified.
In reality, ks lacks significance if the thickness of the
wellbore skin, ds (m) is unknown. Therefore, the value
to be identified would be the non-dimensional factor
Sw = kr·ds/ks·rw, where rw (m) is the outside radius
of the pumped well screen. This paper considers ds =
rw so that ks includes all of the information on the
two parameters. Moreover, it is necessary to identify
two fundamental parameters of the unconfined aquifer
analyzed, i.e., the specific storage, Ss (m−1), and the
specific yield, Sy (–). Also taken into account are the pa-
rameters, α1, α2 and α3 (s−1), which define the delayed

Fig. 2 Three stages sampling procedure. a Absolute values of the
correlation matrix of the. proposal function (White = 1, Black =
0). b chain evolution for α1. In the first stage, the chains got stuck

in a reduced area of the parameter space. c Convergence diag-
nostics based on Gelman et al. [88]. The value of R = 1.2 denotes
the start of convergence, an R = 1.0 the total convergence



Comput Geosci (2012) 16:1–20 9

drainage from the vadose zone in the analytical solution
proposed [119, 122, 123]. Finally, the original saturated
thickness, b (m), is included, even though there are
previous estimates of roughly 49 m [124–126].

The resolution of the joint inverse problem [119]
was carried out by means of nonlinear least squares
software, containing a gradient-based optimization al-
gorithm plus a series of tools for the local analysis of
the uncertainty of the estimated parameters [127]. Since
direct optimization might be complicated in a problem
that is highly multidimensional, nonlinear and probably
ill-posed, the process was carried out in several steps.
Firstly, only late-time data and very few variables were
considered. Subsequently, more variables were gradu-
ally introduced and the early-time data were used. In
this way, a fairly adequate initial parameter vector was
obtained to be taken as a starting point in the resolution
of the joint problem. This led to the start of an opti-
mization process which produced the numerical values
of eight out of the nine parameters under consideration,

as Sw was determined independently, while the other
remained fixed.

6.2 Sampling strategy

As a preliminary approximation, samples of the poste-
rior PDFs of each individual piezometer and the pump-
ing well were obtained, together with the joint inverse
problem (using the complete data set) [119] within
the upper and lower limits shown in Table 1. In all
of the cases, a non-informative prior with those limits
was included in the Bayesian formulation and CD =
σ̂ 2

e I was considered, where σ̂ 2
e designates the estimated

value of the error variance from Moench’s estimated
parameters and I is the identity matrix.

The Metropolis–Hastings algorithm was used to
sample the posterior parameter distribution of each
individual piezometer. For this purpose a multi-stage
process was employed to tune the sampler. The ap-
proach proposed by Gelman et al. [88] was adopted

Fig. 3 Sample of the PDF of the pumping well
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Fig. 4 Sample of the PDF of the joint problem

for obtaining a small initial sample of ten chains with
100 points each. The proposal function taken was a
normal function with a diagonal correlation matrix
(Fig. 2) and low values of the variance components.
The chains cannot explore all the parameter space
and consequently they get stuck. For that reason, the
convergence, measured by the estimator Rest (poten-
tial scale reduction factor [88]), is not attained for all
the parameters (Fig. 2). This process is restarted with

q (mi, mc) ∼ N
(

m̂s, Ĉs

)
where m̂s and Ĉs are the mean

and covariance matrix of the initial sample respectively
and repeated until Rest and its upper bound, Rub, are
below 1.2 and near to 1 (Fig. 2). For the pumping well
(F507080) and the joint problem, samples shown in
Figs. 3 and 4 were obtained. In order to depict the sam-
ple, it is necessary to draw n(n − 1)/2 two-dimensional
scatter plots (in our example, 36 plots since the num-
ber of parameters to be identified is n = 9). These
plots are a projection of the sampled points on the
planes obtained after grouping the parameters in pairs,
which is a graphical approximation of the marginal

probability density. This type of representation shows
the main trends of p(m|d). A comparison of the two
figures shows that the uncertainty associated with the

Fig. 5 Autocorrelogram for the pumped well (F507080). Auto-
correlation falls below significant values after the sixth iteration
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parameters of the pumping well is substantially greater
than the uncertainty presented in the joint problem.

6.3 Marginal density estimation

On the basis of the MCMC sample shown in Figs. 3
and 4, and by applying the IWMDE or the KDE [102]
(with which better results were had), the marginal
PDF of each variable was computed. However, the
high correlation between samples (a point usually is
correlated with the next ones in the chain) caused by
a poor mixing of the chains, can affect the inference
based on them. For this reason the autocorrelogram
is constructed (Fig. 5) and, in the case of the pumped
well, there is significant correlation until lag 6. Con-
sequently, only one every seven points of the total
sample is selected for the computation of the marginal
densities. This procedure for obtaining an independent

sample by reducing the length of the chains is called
“thinning”. Furthermore, the first half of the chains is
eliminated as burn-in [88]. With this reduced sample,
the marginal PDFs are estimated. In the computation
of the IWMDE the truncated multidimensional normal
function was used as the weight function. The selected
function minimizes the distances between this func-
tion and p(m|d). To make sure that all the marginal
densities of w(m) are normalized, the integrals of the
truncated multidimensional normal function must be
calculated [128]. In the case of the KDE, two alter-
natives were considered: a triangular kernel with an
amplitude of one tenth of the range of the values and
the Botev KDE [102]. In the case of the pumped well
(Fig. 6), the IWMDE has yielded non-convergent re-
sults, probably caused by an inadequate selection of the
weight function, which is one of the key points of this
estimator. However, both KDE estimates were stable

Fig. 6 Marginal density estimation for the pumped well (F507080)
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and almost coincident, showing that these marginal
density estimators are robust and relatively accurate.
As can be seen in Figs. 6 and 7, the estimated marginal
PDFs provide a reasonably coherent reproduction of
the sample dispersion.

Moreover, the results of Fig. 7 show that, in some
cases, they are far from being drawn from a normal
density function (especially for the multimodal distri-
butions of the αi parameters). Consequently, in these
cases, the classical confidence intervals may be of no
use to the modeler. The highest probability intervals
[58] are more appropriate for the marginal posterior

probability densities that exhibit asymmetry. There are
both complex [129] and simplified [130] algorithms
to determine these intervals. However, it is usually
enough to show graphical representations of the kind
presented in Figs. 6 and 7 to have a rough idea of
the highest probability intervals and their asymmetry.
This enables to compare these marginal PDF with
the confidence intervals obtained by Moench et al.
[119]. As can be seen in Fig. 7, there are variables
(particularly the permeabilities kr, kz and ks) whose
uncertainty is characterized fairly well on the basis of
estimations using classical methods. Moreover, in some
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Fig. 7 Comparison of the marginal PDF of each parameter (bold lines), and the 95% confidence intervals (grey shades) obtained by
Moench et al. [119]
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Table 2 Marginal information of the observation wells and the pumped well

# well Well id. Marginal information (nats) Total

kr(m/s) kz(m/s) ks(m/s) b(m) Sy(-) Ss(m−1) α1(s−1) α2(s−1) α3(s−1) information

1 F347031 2.182 1.060 0.241 0.343 1.764 0.355 0.033 0.021 0.032 10.137
2 F376037 3.012 2.685 0.381 0.118 1.832 0.431 0.012 0.016 0.060 11.308
3 F377037 3.254 2.614 0.888 1.226 1.940 0.466 0.062 0.063 0.092 16.550
4 F381056 2.944 3.495 0.558 0.669 1.804 0.523 0.030 0.038 0.022 12.941
5 F383032 3.343 2.230 0.398 1.056 1.749 0.366 0.031 0.058 0.037 14.306
6 F383061 3.007 3.541 1.154 0.678 1.813 0.545 0.048 0.055 0.036 16.387
7 F383082 2.844 3.522 0.489 0.652 1.581 0.449 0.015 0.026 0.028 13.949
8 F383129 2.577 2.498 0.442 0.499 1.417 0.466 0.048 0.030 0.021 12.364
9 F384033 3.061 3.078 0.511 0.355 1.935 0.477 0.014 0.075 0.017 13.572
10 F385032 2.855 1.702 0.250 0.107 1.813 0.350 0.037 0.038 0.037 10.228
11 F434060 3.503 2.849 0.617 0.565 1.761 0.766 0.050 0.043 0.069 16.766
12 F450061 3.237 2.742 0.448 0.652 1.672 0.373 0.018 0.021 0.028 14.722
13 F476061 3.377 2.691 0.443 0.794 1.783 0.362 0.014 0.055 0.039 14.838
14 F478061 3.056 2.548 0.397 0.648 1.802 0.347 0.026 0.025 0.046 13.262
15 F504032 3.719 3.275 0.809 1.591 2.097 1.086 0.283 0.284 0.263 21.470
16 F504060 3.156 3.886 1.000 0.887 1.655 3.030 0.091 0.140 0.131 21.185
17 F504080 3.123 3.715 0.913 0.666 1.623 2.890 0.062 0.025 0.019 19.179
18 F505032 4.001 3.458 1.037 1.814 2.276 1.229 0.294 1.765 0.320 26.510
19 F505059 3.834 3.792 1.197 0.917 2.024 3.316 0.357 0.316 0.264 25.147
20 F505080 3.317 2.848 1.032 1.154 1.435 2.899 0.096 0.075 0.122 21.226
21 F507080 3.497 0.852 1.224 1.541 0.190 0.783 0.142 0.107 0.124 17.888

All 6.265 5.205 5.263 3.829 4.443 4.579 2.535 2.675 2.596 44.807

of the parameters this determination is insufficient.
This deficiency may be attributed to the multimodal
character of the PDF and to the linearized approxi-
mation of the posterior covariance matrix around the
estimated optimum.

6.4 Application of the information theory

If Shannon’s information is evaluated for each
piezometer and the joint problem, the results shown in
Table 2 are obtained. This table presents the amount
of information contained in the marginal density func-
tions of each parameter as well as the joint posterior
probability density function (PDF) of all of them. As
evidenced by Fig. 8, the variables presenting greater
uncertainty (Figs. 6 and 7) coincide with those contain-
ing less marginal information. Since the piezometers
closest to the pumping well are more influenced by
the vertical component of flow, it can be verified that
there are groups of piezometers with a high information
level that coincide with the groups proposed by Moench
et al. [119], in keeping with their proximity to the
pumped well. The closest piezometers (like F505032
and F505059) are able to contribute a very high quan-
tity of global information as compared with the rest,
since they are located in the area of the aquifer where
the greatest variations in the pressure field are pro-
duced. On the other hand, the shallow, distant piezome-

ters (like F347031, F376037 and F385032) present a low
amount of global information, which implies a great
deal of uncertainty in the estimation of the parameters
by the classical optimization methods. Figure 8 shows
the results of Table 2 in the form of a Box-and-Whisker
diagram. The data pertaining to piezometer F505032

k r kz ks b Sy Ss α1 α2 α3
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Fig. 8 Box plot of the marginal Shannon information for each
parameter
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(close to the pumping well), have been superimposed
on piezometer F347031 (far from the pumping well)
and on piezometer F507080 (test well). For F505032 all
the marginal information values are above the median,
while for F347031 it falls generally below the median.
The marginal information values of the test well are
similar to the values of the other two piezometers,
except in the case of ks, kz and Sy. This is due to
the high sensitivity of the drawdowns in the pumping
well to the first parameter, and the low sensitivity to
the latter two. As it could be expected, the marginal

information of each variable in the complete problem
is much higher than what was found for the observation
wells on an individual basis. On the other hand, if
we compare the data in Table 2 regarding global and
marginal information of the complete problem, with
the data obtained solely from the interpretation of the
pumped well information (well #21, id. F507080, see
Table 2), the difference is substantial. This is illustrated
in Fig. 9, which shows the marginal densities, where it
is possible to observe the differences inferred from the
marginal information more clearly.
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Fig. 9 Comparison of the marginal PDFs of the complete dataset (bold line) and the pumped well (grey line)
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Table 3 Piezometer groups proposed

Group Obs. wells

A F505080 F504080 F383082 F383129
B F505059 F504060 F383061
C F505032 F504032 F377037 F383032
D F384033 F381056 F347031 F385032 F376037
E F434060 F450061 F476061 F478061
F F505032 F505059 F505080
G F504032 F504060 F504080
H F383032 F383061 F383082 F383129
I F504032 F504060 F505032 F505059 F505080
J F504060 F505032 F505059 F507080

In terms of ill-posedness of the problem, the low
marginal information of parameters such as Sy, or the
set of αi in the case of the pumping well (F507080),
denotes a problem of non-identifiability (since a non-
informative prior was selected). Although convergence
of the MCMC sample was attained in this case (Fig. 2),
it is only due to the fact that the space of the parameters
is bounded as is shown in Table 1. Otherwise, an erratic
behavior of the Metropolis–Hastings sampler would be
expected [38]. Furthermore, as it can be observed in
Fig. 3, Sy presents a strong correlation with kz, which
suggests that those variables cannot be identified in this
single-well test (as suggested in [131]).

In a further analysis, Moench et al. [119] selected
several piezometer groups in order to determine the
effectiveness of different piezometer locations. This
comparison was made on the basis of the values of
the MLE. Given that ill-posedness is common to hy-
drogeologic problems, minimum changes in the dataset
might lead to values that are very different from the
estimated optimums. Consequently, the assessment of
the suitability of the groups in terms of the distance be-
tween the MLEs may yield rather inconsistent results.
Moench et al. [119] proposed eight possible combina-
tions of the states of knowledge (Table 3, groups A to

H). In order to evaluate the applicability of information
theory for the design of experiments, the groups I and J
are proposed based on the results shown in Table 2. In
group I, the observation wells with global information
greater than 20 nats were selected. Group J considers
piezometers that present at least one marginal PDF
with maximum information.

As expected, groups F and G contain a quantity of
information that is close to the whole problem (see
Table 4), since both the marginal and global informa-
tion have very similar values. The proximity of the
observation wells to the pumped well was found to
determine the amount of global information that will
be obtained after the pumping test interpretation. As
far as groups I and J are concerned, the results are
even closer to those of the complete data set, since they
include most of the piezometers belonging to groups
F and G. It is interesting to note that the presence
of the pumped well proved to be fundamental to re-
ducing the uncertainty of variable ks in the case of J.
The application of information theory for the selec-
tion of the optimal experimental setup has provided
satisfactory results in this case. Although only three
piezometers and the pumping well were used for the
interpretation of the well, they yielded similar results to
those obtained by the complete observational network
(20 piezometers). This reduction of the number of con-
trol points highlights the importance in the selection of
non-redundant monitoring networks for future model
calibration.

The values corresponding to the marginal and total
information confirm the intuitive assessment of the
suitability of the groups in terms of the distance be-
tween MLEs made by Moench et al. [119]. For example,
piezometer groups D, E and H contain substantially
less information than piezometer groups F and G. The
maximum likelihood approach, however, is not capa-
ble of classifying the groups either in terms of the

Table 4 Marginal information of the piezometer groups proposed

Cluster Marginal information (nats) Total

kr (m/s) kz (m/s) ks(m/s) b(m) Sy(-) Ss(m−1) α1(s−1) α2(s−1) α3(s−1) information

A 5.410 4.330 1.303 3.104 3.280 4.120 0.509 0.494 0.683 28.039
B 5.621 4.817 1.309 2.921 2.923 4.133 0.304 0.239 0.170 28.789
C 5.932 4.347 1.197 2.882 3.725 3.451 0.951 0.997 0.862 30.848
D 3.927 3.358 0.575 1.628 2.319 0.520 0.055 0.047 0.049 17.083
E 5.068 3.614 2.172 2.264 2.406 0.383 0.088 0.081 0.075 21.285
F 4.673 4.252 2.276 2.547 2.817 3.212 1.802 1.774 1.370 36.277
G 4.510 4.492 1.089 2.272 3.164 3.892 2.443 2.462 2.412 32.323
H 3.977 3.736 0.900 2.528 2.305 0.899 0.135 0.118 0.143 21.402
I 5.798 5.085 1.590 3.373 3.815 3.741 2.583 2.028 2.694 37.295
J 5.665 5.064 4.899 3.181 3.582 4.382 2.695 2.688 2.495 40.763
All 6.265 5.205 5.263 3.829 4.443 4.579 2.535 2.675 2.596 44.807
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Table 5 Posterior diagnostics of the assumption of the normality
distribution of the residuals

Statistic Value of 5% significance Reject
statistic critical value normality?

Kolmogorov– 4.85 × 10−2 6.13 × 10−2 No
Smirnov

information provided or by the uncertainty in the evalu-
ation of its parameters on an individual basis. Neither is
this approach able to facilitate the task of grouping the
piezometers according to objective criteria. Piezometer
groups I and J, established on the basis of information
theory, provide much more information than any of the
other groups proposed.

6.5 Posterior diagnostics

The validity of the assumptions made in the construc-
tion of the posterior PDF should be tested. Therefore,
in order to be consistent with the diagnostics proposed
above, several features of the posterior sample are
examined. Firstly the comparison of the parameter
estimates obtained by Moench [119] and the posterior
marginals shows similar features in most of the
parameters (Fig. 7). However, some other parameters
such as Sy and αi, present discrepancies but these can be
attributed to the multimodality of the posterior PDF.

The normality of the residuals was examined us-
ing the Kolmogorov–Smirnov [132] test. In this case,
the null hypothesis that the residuals follow a normal
distribution cannot be rejected (Table 5). The normal
probability plot [110] of the residuals (Fig. 10) also
suggests a Gaussian distribution of the errors.

Finally the posterior PDF of the joint problem does
not exhibit ill-posedness, as can be observed in Table 2,
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Fig. 10 Normal probability plot of the residualsl

where all marginal information values are higher than
2.5 nats. Furthermore, the convergence of the MCMC
sampler (Fig. 2) suggests the same conclusion. Thus, ill-
posedness can be disregarded in the present problem.

7 Concluding remarks

This paper has recommended a methodology for the
analysis of inverse problems, based on three basic con-
cepts: the Bayesian approach to inverse problems, the
Markov Chain Monte Carlo algorithms and Shannon’s
information. Although they are all well known and
have been applied individually, they have been used
in combination only occasionally in the field of
geosciences.

Firstly, a collection of algorithms based on MCMC
methods for inverse problem analysis based on
Bayesian statistics has been reviewed in this paper.
The Bayesian approach to inverse problem analysis
has been applied to a variety of problems in hydro-
logical sciences. However, prior to the emergence of
the MCMC methods, this approach was not common
in complex problems without closed form descriptors
of the posterior density functions (such as their mode,
mean or variance). Despite of its versatility, the high
computational costs of this kind of analysis may not be
very competitive as compared to those based on the
optimization of the posterior density of the parameters.
However, the degree of knowledge acquired about the
problem in question makes it especially interesting in
research or in problems where the uncertainty quan-
tification is the central issue. Nevertheless, the cor-
rect construction of the likelihood function, the iden-
tification of the sources of uncertainty and the posterior
diagnostics of the assumptions made are essential if a
meaningful analysis is to be carried out.

The Shannon’s information measure is the second
basic tool within this approach for inverse problem
analysis. The importance of this measure lies in its
global character, based on the integration of the pos-
terior density of the parameters in the entire domain.
This enables the modeler to evaluate how much in-
cremental information content comes from each data
value, and to compare different experimental set-ups.
Furthermore, an evaluation of the ill-posedness (or
non-identifiability) of the problem can be done by the
examination of the marginal information content of
each parameter. Although this diagnostic tool is not
conclusive, it can be used together with other methods
such as the non-convergence of the MCMC samplers
or the condition number of the Hessian matrix at the
maximum likelihood estimator.
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Despite their high computational expense, the
MCMC methods are competitive as compared to other
integration or sampling methods in highly multidimen-
sional spaces. Although there are other alternatives to
reduce the total calculation time such as paralleliza-
tion (MCMC algorithms are easily parallelizable, espe-
cially if evolutionary algorithms are used as proposal
functions of the Metropolis–Hastings sampler) or the
improvement of the algorithm that resolves the di-
rect problem considered. In the present paper, several
computationally inexpensive estimators have been pre-
sented in order to reduce the computational effort to
the sampling procedure.

Finally the case study presented shows how the
MCMC methods can be applied in a common inverse
problem: a pumping test. The uncertainty of the pa-
rameters has been characterized, as well as the total
and marginal information content of the whole prob-
lem. The results obtained are more accurate that the
ones found in the literature [119] computed using the
maximum likelihood approach, mainly due to the mul-
timodal posterior PDF. Furthermore, an experimental
set-up that has reduced the total number of piezometers
to be used from 21 to 4 has been proposed. In the
end, an evaluation of the adequacy of the hypothesis
assumed during the construction of the posterior PDF
was carried out. The results confirm the validity of the
assumptions made and, consequently, the validity of the
uncertainty analysis carried in this case study.

On the whole, this approach offers a consistent way
of analyzing inverse problems, with a higher compu-
tational cost, but with a higher degree of knowledge
on the uncertainty of the parameters and the total
information content of the observed data.
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