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Abstract The objective is to capture the 3D spatial
variation in the failure mode occurring in accretionary
wedges and their analog experiments in the laboratory
from the sole knowledge of the material strength and
the structure geometry. The proposed methodology
relies on the maximum strength theorem which is in-
herited from the kinematic approach of the classical
limit analysis. It selects the optimum virtual velocity
field which minimizes the tectonic force. These velocity
fields are constructed by interpolation thanks to the
spatial discretization conducted with ten-noded tetra-
hedra in 3D and six-noded triangles in 2D. The re-
sulting, discrete optimization problem is first presented
emphasizing the dual formalism found most appropri-
ate in the presence of nonlinear strength criteria, such
as the Drucker—Prager criterion used in all reported
examples. The numerical scheme is first applied to a
perfectly triangular 2D wedge. It is known that fail-
ure occurs to the back for topographic slope smaller
than and to the front for slope larger than a critical
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slope, defining subcritical and supercritical slope stabil-
ity conditions, respectively. The failure mode is char-
acterized by the activation of a ramp, its conjugate
back thrust, and the partial or complete activation of
the décollement. It is shown that the critical slope is
captured precisely by the proposed numerical scheme,
the ramp, and the back thrust corresponding to regions
of localized virtual strain. The influence of the back-
wall friction on this critical slope is explored. It is
found that the failure mechanism reduces to a thrust
rooting at the base of the back wall and the absence
of back thrust, for small enough values of the friction
angle. This influence is well explained by the Mohr
construction and further validated with experimental
results with sand, considered as an analog material. 3D
applications of the same methodology are presented in
a companion paper.

Keywords Geomechanics - Limit analysis -
Optimization - Structural geology

1 Introduction

The objective is to determine the 3D failure mode
which characterizes the onset of thrusting or folding in
fold-and-thrust belts and in accretionary wedges. The
numerical method which is proposed has its root in the
kinematic approach of limit analysis although only
the knowledge of the material strength is required.
The numerical algorithm and its 2D validation are
presented in this contribution, the 3D applications in
a companion paper (Souloumiac et al., submitted for
publication).
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The kinematics of 2D folds and thrusts has been
studied at length and is now well captured by geometri-
cal constructions inspired by the seminal work of Suppe
[29]. The absence of any concept of mechanics, such
as material strength and mechanical equilibrium, ren-
ders, however, impossible the comparison between two
geometrical constructions necessary to select the most
relevant one. The merit of these constructions is, how-
ever, clear in view of their simplicity and their potential
application in the oil industry, once completed by the
computation of the temperature evolution [24, 30].

The line of work which has been followed by the
authors tries to take the most advantage of the 2D
geometrical construction while accounting for material
strength and mechanical equilibrium. The principle of
minimum dissipation was applied by Maillot and Leroy
[14] in their study of a simple fault-bend fold, with
either brittle or ductile material response, to find the
optimum orientation of the back thrust. A more rigor-
ous framework is now adopted, based on the kinematics
approach of limit analysis [20, 21] and referred to as the
maximum strength theorem. It was applied to the evo-
lution of a kink-fold by Maillot and Leroy [15] propos-
ing that, at any stage of the structure development, its
main geometrical attributes, such as the kink dip and
width, could be found by minimizing the upper bound
to the applied tectonic force. Cubas et al. [5] extended
this argument to study sequences of thrusts within an
accretionary wedge. Souloumiac et al. [28] proved that
the optimum stress state could be calculated at any step
of the thrusting sequence development, based on the
static approach of the limit analysis.

There is a definite need to propose 3D constructions
of folding and thrusting which is often inhibited by the
lack of intuition for parameterizing simply the failure
mechanism (e.g., ramp and back thrust system) at the
onset and during the development of the fold. It is thus
necessary to develop a systematic procedure to study
the failure mode of 3D geological structures. For the
onset, the kinematic approach of limit analysis could
provide a first insight on the failure mode. It is the
subject of the present contribution, and it is hoped that
the results could help in constructing the 3D kinematics
of the evolving structures.

The proposed method, referred to as the maximum
strength theorem, does not require a complete plastic-
ity theory and the provision of the strength domain,
convex in the stress space, suffices to obtain an upper
bound to the applied tectonic force. Over the years, a
number of different numerical formulations of the max-
imum strength (or upper bound) theorem have been
proposed. Early formulations, focusing on 2D problems
[1, 3, 18, 25], typically involved a linearization of the
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strength domain and made use of the simplex method
or one of its derivatives to solve the resulting linear
programs. Inspired by the progress in general convex
programming, these linear programming formulations
have recently been replaced by more general nonlinear
formulations avoiding the need to linearize [8, 13]. The
most recent development on this front has been the
applications of the so-called conic programming algo-
rithms to solve typical limit analysis problems such as
the ones considered here as well other plasticity pro-
blems [10, 11]. These algorithms are particularly suited
for dealing with nonsmooth strength domains such
as those typically characterizing the strength of cohe-
sive, frictional materials (Drucker-Prager, Coulomb,
etc...).

In its primal form, the maximum strength theorem is
formulated in terms of kinematic variables, the virtual
velocities. Their distribution is constructed here by spa-
tial interpolation. This primal form with discretization
leads to a convex minimization problem. Alternatively,
it is possible to work directly with the dual form of the
theorem which leads to a maximization problem remi-
niscent of the static approach leading to lower bounds
to the tectonic force. The dual variables, in the sense of
power, of the velocities (of its symmetric gradient to be
more precise) are regarded as stresses after appropri-
ate scaling. They do not constitute, however, statically
admissible fields since these dual variables do not sat-
isfy equilibrium. From a numerical point of view, this
alternative, dual approach has a number of advantages.
For example, it is possible to impose completely general
strength criteria in a straightforward manner whereas
a primal upper bound formulation would require the
specification of the corresponding support function.
This function defines the maximum power which could
be provided for a given velocity and strength domain.
Its analytical expression is certainly nontrivial to derive
and the resulting constraints difficult to account for in
a classical optimization code. Furthermore, following
the approach proposed by Krabbenhgft et al. [9], the
incorporation of kinematically admissible velocity dis-
continuities is straightforward and will be proposed in
this paper for the general 3D case for the first time.

The paper contents are as follows: The next section is
devoted to the presentation of the numerical algorithm.
The 2D setting is most suited for such presentation
for the sake of simplicity, and the extension to 3D is
postponed to Appendix 2. The construction of the dual
problem is highlighted with the help of the primal-
dual algorithm of linear programming summarized in
Appendix 1. Appendix 3 presents the link between
these strength domains, typical of soil mechanics, and
the conic programming algorithms adopted in MOSEK
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[17], which is used for all examples reported here.
Section 3 is concerned with 2D applications to accre-
tionary wedges of perfect triangular shape. Failure in
the bulk occurs either to the back or to the front,
with the complete activation of the weak décollement
at the base, depending on the topographic slope. The
transition from subcritical (failure to the back) to su-
percritical (failure to the front) is captured exactly,
validating the numerical procedure. It is shown that the
friction angle on the back wall influences the failure
mode for subcritical conditions. For small values of the
friction angle, a single ramp roots to the base of the
back wall whereas a ramp and back thrust occurs for
larger values. The transition in failure mode occurs for
a friction angle detected numerically which is exactly
the one predicted by the Mohr’s construction. It is also
shown that these two modes of failure are reproduced
in the laboratory experiments with sand by selecting the
appropriate friction conditions at the back wall contact.

2 The maximum strength theorem
with spatial discretization

The objective of this section is to present in three steps
the theory applied in the next section for 2D wedges
and for 3D examples in the companion paper. The first
step is the presentation of the upper bound theorem
of classical limit analysis, as it is found in Salencon
[21] and Maillot and Leroy [15]. It is proposed here
to approximate the strength domain externally by a
series of hyperplanes, in the appropriate stress space,
to facilitate the setup of the optimization problem. The
second step is the discretization of the space and the
construction of interpolations for the virtual velocities
as well as for the virtual scalars associated to these hy-
perplanes. The third step consists in the dualization of
the upper bound problem after discretization, resulting
in a maximization problem where the basic unknowns
are scaled to have dimension of stress. This dual for-
mulation is used in all examples but should not be con-
fused with the lower bound approach (constructed with
statically admissible stress fields) for reasons which are
also discussed.

2.1 Summary of the upper bound theorem
of limit analysis

The upper bound theorem of limit analysis is called
here the maximum strength theorem to emphasize that
only the concept of strength is required. This theorem
is now presented in details.

The starting point is the theorem of virtual power
which states the equality between the internal and the

external powers for any kinematically admissible (KA)
velocity field. The set S, of KA fields comprises any
field U which is zero over part of the boundary 92,
where the displacements are prescribed. Elements of S,
are identified by a superposed hat. The external power,
defined by

T° x UdS
Qy

Pext(U) = f 0g X deV—i—af
Q d
+/ T¢ x UdS, 1)

Q7

is due to the power of the velocity over the body
force, p is the material density, and g is the gravity
acceleration and of the forces applied on the two parts
of the boundary Q27 and 92,. This applied force over
02, 1s assumed to be known in distribution T° but not
in its intensity defined by the scalar o which is the
unknown of the problem and for which we seek the
best upper bound. The applied force on 3Q7 is T¢
(the upper-script d is for data) and is known in orienta-
tion and density. Note that in Eq. 1 and in what follows,
vectors and subsequently tensors, are identified with
bold characters. The internal power is given by

Pt (0) = / o d0)av, @)
Q

where o and d(ﬁ) are the Cauchy stress tensor and
the virtual rate of deformation tensor (also denoted
ﬁ) based on U, respectively. The double dot product
in Eq. 2 between these two tensors results in ai,»c? jiin
terms of their components in an orthonormal basis. The
expression 2 for the internal power does not account for
potential discontinuities in the velocity fields, and bulk
deformation is the only source of dissipation. Explicit
account of discontinuities, which orientations are part
of the unknowns of the problem, is typical of analytical
developments but is not necessary in the numerical
formulation considered in this paper. However, pre-
defined, physical discontinuities thus of known geom-
etry are approached as zones of bulk material having a
zero thickness, as it will be discussed in the last part of
this second section.

Coming back to the internal power (Eq. 2), note that
the stress field is unknown and its elimination is desired.
For that purpose, we take advantage of the material
maximum strength. The stress is required to remain
within the strength domain denoted G(o). The strength
of cohesive, frictional faults is usually described in
terms of the Coulomb criterion, and for pristine, bulk
materials the strength domain is

G(o) = {0 |01 — o + (o1 + o) sing — Ccos ¢ < 0},
(3)
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where o7 and oy are the minor and major princi-
pal stresses (continuum mechanics convention: tensile
stresses are positive, o1 > op;) and C and ¢ are the
cohesion and the friction angle, respectively. Failure is
described in the plane which is orthogonal to the inter-
mediate stress direction. The principal stresses could be
eliminated in favor of the stress components such that
Eq. 3 reads in a 2D setting

G(o) ={o|o.+2Psingp —2Ccos¢ < 0}

with o, = \/(axx — o)+ 403), ,
P = (0xx+0y,)/2, 4)

in which o, and P are referred to as the equivalent
shear stress and the in-plane mean stress, respectively.
The determination of the intermediate stress direction
becomes a burden in 3D applications, and it is more
convenient to consider the strength domain bounded by
the Drucker—Prager criterion:

Gpp(0) = {0 |appli + /7, — Cpp < 0},

1
with [} = tr(o), J2=§tr(a/ x o'),

a = G—%tr(a)S, 5)

in which I, J,, and § are the first invariant of the stress,
the second invariant of the deviatory stress o', and
the second-order identity tensor, respectively. The two
material parameters in Eq. 5 are the friction coefficient
and the cohesion for the Drucker—Prager criterion, and
they are conveniently defined as

tan ¢ 3C
app= ————, Cpp= ————,
V9 + 12tan? ¢ V9 + 12tan? ¢

so that the domain boundaries described by Eqgs. 3
and 5 coincide for 2D plane-strain problems (see, e.g.,
Davis and Selvadurai [6], for further details).

Most if not all strength domains considered in the lit-
erature are convex. Consequently, the maximum power
o :d is bounded and defined in terms of the virtual
rate of deformation d by the support function 7(d).
It depends on the geometry of the strength domain
boundary and of course on the velocity field. A graph-
ical method to construct this function is presented in
Fig. 1 where stress tensors are represented as vectors.
The strength domain has an arbitrary, albeit convex,
boundary in the stress space. Superpose in this stress
space the virtual rate of deformation d despite the
difference in dimension. This virtual rate of deforma-
tion is normal to the hyperplane represented with a
dashed line. Translate this plane toward the strength
domain, as illustrated by the dotted curve, and the

(6)
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Fig. 1 The graphical method to construct the support function
for a convex strength domain. The linearized strength domain
bounds the support function externally and is represented by four
hyperplanes (two dashed and two solid lines)

point of contact, denoted ¢*, is the stress providing the
maximum power according to classical convex analysis.
Consequently, n(&) =o* : d and the selection of o* is
indeed a function of the orientation of d and of the
shape of the strength domain boundary.

The analysis of the 2D results in Section 3 will be
facilitated with the explicit expression of the support
function. It reads

€ t@.

casel : tr(&) > (|c§1| + Icizl) sin¢,n(&) =
tan ¢

case2 : tr(d) = (|d,| + |da]) sin g,
m(d) = Ccosp(|di| + |dal) .
case3 : tr(d) < (|di| + |da]) sing , 7(d) = +oo, (7)

for bulk materials having the strength limit defined
by the Coulomb criterion 3 in 2D [21]. In Eq. 7, d,
and d, are the 2D principal values of the virtual rate
of deformation tensor. This example reveals that the
support function could be infinite for some orientations
of the rate of deformation. More specifically, the trace
of the virtual rate of deformation has to be positive, for
the bound to be finite, implying a virtual dilation which
we will not try to interpret physically. This is due to the
infinite resistance in pure compression assumed for the
Coulomb criterion.

It is found convenient for what follows to approxi-
mate externally the strength domain boundary with a
series of n hyperplanes in the stress space. Each plane
bounds a half-space defined by

A,:0—k, <0, a=1,,...n, ®)
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in which A, and k, are the normal (symmetric second-
order tensor) to the hyperplane and the reference stress
(cohesion-like) for the a'! plane, respectively. Such an
approximation is presented in Fig. 1 with four hyper-
planes, two dashed and two solid lines, the latter two
labeled b and c. It is also convenient in what follows to
introduce the new variables s, (“slack” variable) which
define the distance between the stress point and the
boundary of the linearized strength domain:

A,:0—ky+5,=0 with s,>0. )

The same graphical method proposed above is used to
construct the support function of the linearized strength
domain, referred to as G .. The translation of the hyper-
plane of normal d toward G, leads to the contact at the
corner denoted o *. It corresponds to the intersection
of two hyperplanes of normal A, and A, in our specific
illustration. The virtual rate of deformation tensor has
to be oriented within the cone defined by these two
normals. Consequently and more generally, the virtual
rate of deformation is linearly related to the normals of
the various hyperplanes defining the contact point

with A, >0, (10)

where 1, are the nonnegative virtual deformation com-
ponents. In the example of Fig. 1, the i, associated to
the dashed lines are zero and the only strictly positive
scalars are related to the planes b and c. Furthermore,
the support function of the linearized criterion has the
following properties

n n

wLd) =Y Ay ol =) Ak, = w(d), (11)
a=1 a=1

the second equality being a consequence of o * belong-

ing to each activated hyperplane (nonzero )A»a) and on

account of Eq. 8, which is then an equality.

The concept of support function is now used to
derive the upper bound to the loading scalar «. The
internal work defined in Eq. 2 is bounded by above
with

Pu(0) = [ m@av, (12)
Q
so that the theorem of virtual power provides

af T x UdS < / nL(&)dV—/ pg x UdV
R, Q Q

—f T¢ x UdS, VU KA. (13)
Q7

The right-hand side provides the upper bound oy, after
proper normalization in the left-hand side. The upper

bound theorem, referred here as the maximum strength
theorem, is thus summarized as the minimization prob-
lem with respect to the velocity fields

minimize oy = ):aka—,o x Ut dv
U /Q{Z g }

a=1

- / T x UdS
0Qr

n
subject to d(fJ) = ZAaia Vx € 2,
a=1

Qo{
iazO Vx € 2,
Ues, ={00=0 vxei,). (14)

2.2 Spatial discretization and interpolation
of the velocity field

The spatial discretization and the interpolation of the
velocity field as well as of the virtual deformation
components 4, are now introduced for 2D analyses, the
generalization to 3D being postponed to Appendix 2.

The domain of interest Q is approximated by the
domain Q" where the boundary corresponds to a series
of straight segments or planar surfaces, as illustrated for
the 2D case in Fig. 2a. The interior of " is partitioned
in g six-noded triangles (¢ = 11 in Fig. 2a). Note that
the midside nodes are at the same distance from the
two nodes at the adjacent vertices. The virtual velocities
within a six-noded triangle are interpolated by

3
U =366 - DU+ 410604 + 60U0s + 012306l

i=1
(15)

in terms of the area-coordinate ¢;, defined in Fig. 2b,
and the six nodal velocities IAJ,-. The interpolated fields,
denoted with the letter /4 in upper-script, define a set of
kinematically admissible fields

Sh= ifjh|fjl- = 0if node i on 89{1} c S, (16)

which is a subset of S,. Consider that there are m
degrees of freedom set to zero by the above boundary
condition on 99! and define the equivalent, global
linear system

(HI{U} = {0}, (17)

in which [H] is the m x p matrix with components set
either to zero or one. The column vector {U} in (17) is
the global vector of nodal velocities which has, say, p
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Fig. 2 Discretization of the a)

domain € by six-noded

triangles (a). The six-noded

triangle local node numbering

and the definition of the area Qh
coordinates (b)

components (twice the total number of nodes in 2D).
The notation in the left-hand side of Eq. 17 implies a
matrix multiplication resulting in a column vector of
length m. Note also in the right hand-side of Eq. 17 that
the subscript m defines the vector length, again for sake
of clarity.

The element velocity interpolation (Eq. 15) is conve-
niently written in matrix notation as
(0" = [NJ{OY, (18)
in which {U }¢ is the column vector containing the local
nodal velocities (length of 12) and [N,]¢ is the 2 x 12
matrix of shape functions. The notation in Eq. 18 and
in what follows for local array includes the letter e
in superscript to avoid any confusion with the global
arrays. To compute the virtual rate of deformation, we
first consider the gradient of the area coordinate which
is the constant vector V¢; = —n;l;/ A oriented opposite
to the unit, external normal to the side opposite to node
i (Fig. 2b). The norm of this gradient vector is set by
the length /; of the side i divided by the area A of
the element. The gradient to the interpolated velocity
(Eq. 15) is thus

3
A l; A
vU"=->" —@;-DhUien
U ; J@G—1Uien
4
- Z[U4 ® (§1lhmy + Solimy)
+Us® (&alsnz + $3lomy)
+ Us ® (¢1lsms + shny)], (19)
which is proportional to the area coordinates (note that
37 ¢; = 1). This gradient is now used to construct the
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virtual rate of deformation tensor d” which is repre-
sented by the column vector {d"}* =(d},, dly, 2d};)*
(note that a line vector is limited by parentheses and
that the transpose of a column vector, denoted by a
upper-script ¢ to the left, is a line vector). The virtual
rate of deformation vector is then expressed locally in
terms of the nodal velocities
{d"y = B, 1, (U, (20)
in which the local [ B]¢ operator is the 3 x 12 matrix for
each element constructed from Eq. 19.

Attention is now turned to the local interpolation
of the virtual deformation components A, defined in
Eq. 10. It is proposed that these n scalars be interpo-
lated linearly
5 = INIGAS, 1)
in terms of the vector of nodal values containing the
A.’s at the three vertices of a given element. The shape
function N, of node i is thus simply the area coordinate
¢i. This choice of interpolation implies that there is
no continuity across the elements and the vector (A}
(3n components) is indeed specific to each element.
The local interpolation of the Ao’s is linear in the area-
coordinates, as the interpolation of the virtual rate
of deformation in Egs. 19 and 20. Consequently, the
equality between the virtual rate of deformation and
the linear combination of the stress normals in Eq. 10
is satisfied point-wise over each element by enforcing
it at three specific points. The nodes at the vertices of
each element are chosen for that purpose. The resulting
system of equations reads

(BIE(U)* = AL, 5, {3)° (22)
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in which the 9 x 12 [B]¢ and the 9 x 3n [ A] matrices are
defined by

Be(gi = éin) [A]°[0] [O]
[BI°=| B°(&i=4én) |, [Al°=| [0] [A]°[0]
Bé(gi = 6i3) [0] [0] [AlJ¢
Al . Al
with [Al5,, = | Ax1 ... An, |, (23)
2A121 ... 2A 12,

in which §;; is the Kronecker delta and the A;;, are the
ij-component of the normal A, to the a™ hyperplane.

To prepare the grounds for the discretization of the
predefined discontinuities, it is convenient to multiply
both sides of Eq. 22 by %A, a third of the element area.
In addition, the new scaled variables {1}¢ = {%Ai}e are
introduced so that Eq. 22 is replaced by

BI(U)* = [AI{3)°. (24)

The matrix [B]¢ = %A[B]e is represented in closed
form as

) ([3P =P, =Py 4P, 0 4P
(Blj.n=—¢ | ~P1 3Py —Py 4P, 4Py 0 |,
P, —P, 3P; 0 4P, 4P,

(25)
in terms of the 3 x 2 matrix
n 0
Pl=1L| 0n|. (26)
1 1y

with (r}, n}) being the two components of the unit out-
ward normal to side i (opposite node i). Equations 25
and 26 are derived from Eq. 19. It is noted that
[B)¢ is well defined regardless of the element area.
This feature is of key importance in the incorporation
of kinematically admissible velocity discontinuities as
discussed at the end of this section.

In summary, the minimization problem 14, after
discretization and interpolation, is written as

ay = "{klgan{i} — {G},{U)

subject o [Blogxp{U} = [Alogxgsnir} s

[Hlmxp{U} = {0} .

{ToHUY =1,

{2} = {0}, 27)

minimize

in which the size of the global vectors and matrices
could be estimated with the definitions summarized
in Table 1. Note that a vectorial inequality should be

Table 1 Various definitions related to the discretization, the
different interpolations, and the linearization of the strength
domains

Symbol Definition

q Number of elements

)4 Total number of velocity degrees of freedom

m Total number of velocity degrees of freedom
set to zero (boundary condition)

n Number of hyperplanes in stress space to

bound the strength domain

interpreted as a series of inequalities for the corre-
sponding components on the two sides. The n succes-
sive components of the global {k} vectors, for a given
node in a given element, are the reference stresses k,
defined in Eq. 9, assumed to be constant over each
element for sake of simplicity. The vector {G} requires
a global assembly since several elements contributes
to the same degree of freedom. For the examples
presented here, the surface 9Q27 = ¢ and only gravity
forces contribute to this vector. The contribution of a
single element is ‘{G}* = p A(0; 0; 0; 0; 0; 0; g./3; gy/3;
8x/3; 8y/3; 8x/3; &y/3), assuming a constant mass den-
sity and body force per element. The vector {7y}
requires also a global assembly and its expression de-
pends on the distribution of the applied force T on the
boundary 9€2,.

2.3 The dual problem

The objective is now to construct the dual problem to
Eq. 27 following the classical argument known in linear
programming and presented for sake of completeness
in Appendix 1. To comply with the structure of the
primal problem presented there, decompose the vector
of nodal velocities {U } into two vectors of unknowns
{U*} and {U~} with the conditions:

{U)={U*})— (U~} with (U} > {0} and {U} > (0}.

(28)
The primal problem 27 then becomes
{1
minimize aU=<’{k};—t{G};t{G}) (U} ¢,
{0
[A] —[B] [B] ) {0}oq
subjectto | [0] [H] —[H] [{{UT} =14 {0 -
0) "(To} —{To} ] | (U7} 1
("33 071 107Y) = Opsgurap -
(29)
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The dual problem, following the results presented in
Appendix 1 reads
)
maximize ay = ((0)9q; O)m; 1) {R} (.
ay

‘LAl (0] {0} ] (5]
—'B1 '[H] {To} | { (R}

'[B] —"[H] —{To} ay

subject to

G ] [
=1 -G
611 Lo
(623 673 67) = Osmgizp. (0)

in which 3ng + 2p slack variables have been intro-
duced. Those variables are eliminated to provide the
equivalent optimization problem

maximize ay
"1BI{&} = "THIR} + au{To} + {G},
TANGY < (k). (31)

A physical interpretation of the dual variables is now
tentatively proposed. The & (three components at each
vertex) can be seen as stress-like quantities from the
dimension point of view. The R (one component for
each constrained velocity degree of freedom) are like
reaction forces. The set of equalities in Eq. 31 is then
seen as an expression of the balance of the internal
and external forces for the dual problem. It is for that
reason that the matrix [B] is often referred to as
the pseudo-equilibrium matrix. This interpretation is,
however, limited in the sense that the above stress-
like quantities do not define statically admissible stress
fields. We can only state that the dualization has pro-
vided a max-problem which is convenient to search for
the upper bound to the tectonic force, as it is shown
next.

The set of inequalities in Eq. 31 is due to the lin-
earized strength domains introduced in Eq. 8. The lin-
earized strength domain tends to the original nonlinear
domain in the limit of an infinite number of hyper-
planes. Consider this limiting process so that the lin-
earized strength domain can be replaced by the original
nonlinear domain and Eq. 31 becomes

subject to

maximize ay
1BIG)="THI{ R} +ay{To} + (G},

G(0;) <0 fori=1 to 3, for each element
in Q".

subject to

(32)
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It is this problem which is set up with SARPP [22] and
solved with MOSEK [17] in 2D and 3D. The details
of the 3D formulation are presented in Appendix 2.
Appendix 3 establishes the link with the conic program-
ming algorithms adopted in MOSEK [17]. MOSEK [17]
is based on a homogeneous interior-point method. Con-
sequently, the original system is augmented with some
additional equations that have the effect of reducing
(actually in practice almost eliminating) the sensitivity
to the initial solution. We have used the default initial
solution generated by MOSEK [17] in all runs and have
always experienced a satisfactory performance.

It is emphasized that although the final problem is
reminiscent of a classical lower bound construction,
it does in fact result in a rigorous upper bound. The
procedure of (a) linearizing the strength domain, (b)
setting up a discrete upper bound problem, (c) con-
structing the dual problem, and finally (d) replacing
the linearized strength domain by the original nonlin-
ear domain provides a completely general approach
to numerical upper bound limit analysis. In contrast,
numerical formulations based on the primal form of
the upper bound theorem are highly dependent on the
particular expression of the support function.

2.4 Velocity discontinuities

The ability to incorporate kinematically admissible ve-
locity discontinuities across surfaces of known geome-
try is often desired as for example in the 2D and 3D
wedge problems considered next and in the companion
paper. The internal work for the continuum problem
in Eq. 2 should then be amended to account for the
virtual power T x [U] in which T is the stress vec-
tor dual to the jump in the virtual velocities. These
surfaces have specific material properties reflected by
a strength domain which would be represented in a
stress space of reduced dimension. Typically, this di-
mension is two, corresponding to the resolved shear
stress and the normal stress. The linearization of these
strength domain, if necessary, would lead to additional
nonnegative virtual deformation components 4 intro-
duced to decompose the velocity jump, in the same
way the rate of deformation was presented in Eq. 10.
These extra variables would be included into the upper
bound problem (Eq. 14). The dualization of Section 2.3
would have been done along the same line of thoughts
with additional dual variables corresponding to stress-
like vectors. Alternatively, we consider that a mate-
rial discontinuity is simply an infinitely thin layer of
material, likely of specific properties, but which is dis-
cretized similarly to the bulk region. The feasibility
of this approach—and indeed its equivalence to tradi-
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tional kinematic formulation such as that of Sloan and
Kleeman [26]—was first demonstrated by Krabbenhgft
et al. [9] in the context of elements with a linear varia-
tion in the velocities.

In the present paper, elements with a quadratic vari-
ation of the velocities are used. The construction of the
discontinuity with a zero-thickness patch of elements
is possible thanks to the appropriate scaling with the
element area, leading to the introduction of the matrix
[B)¢ in Eq. 25. This matrix is well defined even for an
element area identically set to zero. Therefore, as a
direct extension of the linear velocity element, we pro-
pose to construct discontinuities of known position and
geometry as patches of two zero-thickness quadratic
elements, as illustrated in Fig. 3. The resulting velocity
jumps are quadratic and should have relatively moder-
ate influence on the accuracy of the limit load. It is of
interest to reduce the number of variables associated
with a given discontinuity. For this purpose, the internal
discontinuity velocities (which are not attached to ei-
ther of the jointed regions) could be expressed in terms
of the others (the nodes attached to either side) in the
following way:

1 A N ~ 1 A N
U; = E(Ul + Uy, Ug= §(U3 + Us),

1 =~ ~
Uy = E(UZ +Us). (33)

Other choices are of course possible, but numerical
tests suggest that the above proposition is efficient, with
only a marginal decrease in accuracy as compared to
the case of a full quadratic discontinuity with three
independent internal nodes (Pastor 2006, personal
communication). It should be emphasized that this con-
densation restricts the velocities to vary linearly across
a discontinuity. Along the discontinuity, the velocity
jump is still quadratic in the tangential direction, in
contrast to more traditional kinematic formulations
(e.g., Pastor et al. [19]). This choice (Eq. 33) was not
adopted here and a full quadratic discontinuity retained
for all the 2D applications but its generalization in

4 5 6
.
7 9 8 I=0
@
1 2 3

Fig.3 Kinematically admissible velocity discontinuity comprised
of two quadratic elements of thickness / set to zero

3D was indeed applied in the examples treated in the
companion paper.

3 Application to the 2D stability
of accretionary wedges

The objective of this section is to validate the numerical
development with the example of the 2D stability of
accretionary wedges and in particular of cohesionless
triangular wedges. There is an analytical solution [7] for
that particular case which can also be obtained with the
Mohr construction [12].

The 3D wedge studied in the companion paper is
presented in Fig. 4a where the observer is seen exerting
the force Q on the back wall. His horizon is set on the
décollement, the lower surface on which the wedge is
resting, so that gravity is acting at the angle g8 from the
vertical direction. Of interest to this contribution is the
wedge in the 2D central cross section ABC which angle
is a + B, where « is the topographic slope (Fig. 4b).
Geometrical and material parameters are provided in
Table 2.

3.1 The critical wedge theory

The theory of the critical, cohesionless wedge is sum-
marized as follows considering the slope of the décolle-
ment B constant: For topographic angles « less than the
critical angle «., the deformation occurs at the back
of the structure which is said to be subcritical. The
failure mode is typically composed of a ramp and a
back thrust, as illustrated in Fig. 4b for 2D problems

back wall

1

d ‘ décollement

Fig. 4 The 3D geometry of the accretionary wedge (a) and the
central cross section considered for the 2D analysis (b)
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Table 2 Geometrical and material parameters for the 2D appli-
cations unless they vary from one simulation to the other. The
critical slope «. is 3.38° for this data set

Symbol Definition Value Unit
a Topographic slope angle Variable deg
B Décollement angle 3 deg
D Total length of the décollement 50 km
8 Thickness of décollement and 107D  km
back wall
PBW Friction angle of the back wall Variable deg
Cpw Cohesion of the back wall 0 Pa
[035) Friction angle of the décollement 15 deg
Cp Cohesion of the décollement 0 Pa
bp Friction angle of the bulk material 30 deg
Cp Cohesion of the bulk material 0 Pa
P Material density 2,200 kg/m?
g Gravity acceleration 9.81 m/s?

by the segments GE and GF, respectively. They corre-
spond ideally to velocity discontinuities [5]. Material in
the back stop is displaced parallel to the décollement
before taking a trajectory parallel to the ramp at the
crossing of the back thrust. The material in the hanging
wall is overthrusting the material in the foot wall which
is at rest. For subcritical slope conditions (& < «.), the
common root of the two discontinuities on the décolle-
ment is as much as possible to the back, so that point F
is superposed on point C. Only part of the décollement
is activated, segment AG. For slope angles larger than
o, the deformation is to the front and the structure
is said to be supercritical. In that instance, the failure
mechanism (ramp, back thrust) collapses to a single
point at the toe of the wedge, point B, and the whole
décollement is activated. The transition occurs exactly
for « = o, and is marked by the potential activation of

Fig. 5 The type of mesh over
the wedge, including the

collapsed elements for the S
interfaces (a). The two

faulting everywhere within the wedge. The distance of
the root of the failure mechanism, denoted d, is then
undetermined. The analytical expression for the critical
slope angle [7] is

o + arcsin ( s‘m:;cc ) = —2pB + arcsin (s%ndm) —¢p .

SIN PR sin ¢g

(34)

This interpretation of Dahlen’s solution is in line
with the results of Cubas et al. [5] who applied the
maximum strength theorem for the failure mechanism
composed of a ramp and back thrust. Their minimiza-
tion is in terms of three variables, the dips of the two
velocity discontinuities and the position d of their com-
mon root on the décollement. These analytical results
pinpoint exactly the transition. The objective is now
to repeat this analysis with the proposed numerical
scheme without postulating the shape nor the position
of the failure modes.

The mesh considered for that problem uses (60 x
30)/2 cells, each cell composed of four crossed triangles,
except for the cells at the toe composed of a single tri-
angular element. A coarse mesh is presented in Fig. 5a
for the sake of illustration. The collapsed cells for
friction on the back wall and the décollement are also
presented. The thickness of these two layersissetto/ =
1075 D corresponding to the physical thickness of 5 cm.
There is a total of 7,470 elements and 15,123 nodes.
The boundary conditions are as follows: The velocities
on the lowest plane parallel to the décollement are
prescribed to be zero (see Eq. 17). The horizontal com-
ponent of the velocity at the rear of the back wall layer
are set to one, leading to an algorithm slightly different

invariants of the stress-like I=10°D}

results, the in-plane mean
stress P (b) and the
equivalent stress o, for o = 3°
(¢), corresponding to
subcritical slope conditions.
Units: megapascal
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from the one presented in Section 2 and discussed in
Souloumiac [27]. The only material property not set in
Table 2 is the back wall friction angle: ¢gw = 30°.

The fundamental problem unknowns are the three
stress components (011, 02, and oy,) defined at the
three vertices of each triangle, in the basis attached to
the observer (Fig. 4a). Results of the dual problem are
presented in Fig. 5b, ¢ in terms of the equivalent shear
stress and the in-plane mean stress defined in Eq. 4.
These results are obtained for o« = 3°, corresponding
to subcritical conditions («. = 3.38°). It is tentatively
proposed to interpret physically those stress fields
although they are not statically admissible. The motiva-
tion for this proposition comes from the stress distribu-
tion which is mostly parallel to the topography. There is
thus an invariance of the stress field with respect to the
position along the free surface, the classical assumption
in the critical wedge theory. This spatial dependence is
altered close to the back wall for reasons which will be
discussed in the next subsection. This variation occurs
in a region of characteristic size less than the wedge
height H defined as D tan(a + B).

The primal variables are the nodal velocities and
they are also computed by the optimization code
MOSEK [17]. They are used in Fig. 6a to construct the
boundary of the deformed mesh considering the virtual
velocity as the actual velocity and taking a time step of
arbitrary magnitude. The original domain boundaries
correspond to the dashed lines. There is a forward
motion of two triangular regions with boundaries delin-
eated by dotted segments, which we propose to mark
the ramp and the back thrust. The region most to the
rear is the back stop and the other the hanging wall.
Their boundaries are strips of localized deformation.

Fig. 6 Subcritical slope
conditions: @ = 3° < «a,.. The
deformed boundary of the
mesh based on the nodal

The motion along the décollement ceases at the point
where the ramp and the back are rooting. This inter-
pretation of the failure mechanisms and more generally
the analysis of the spatial gradient in the virtual rate of
deformation tensor are facilitated with the introduction
of the two invariants

A

A - o N a0
0=t@0), p=yd:d with d=d-23,
(35)

in which d’ is the deviatory, virtual rate of deforma-
tion tensor. The first invariant is the virtual volumet-
ric strain and the second, the virtual equivalent shear
strain. They are plotted in Fig. 6b and ¢ over the
original domain. One observes a strong virtual strain
localization along the two directions at 23.5° and 40.5°
corresponding to the expected dips of the ramp and
back thrust. The virtual dilation @ is of course more
difficult to interpret physically, in the absence of any
plasticity constitutive response. In particular, the ver-
tical displacement along the décollement which marks
its activation extent and, seen in Fig. 6a, will not be
interpreted beyond the constraint due to the structure
of the support function in Eq. 7. We know from Cubas
et al. [5] that the décollement is in condition 2, and
the virtual velocity vector is at the angle ¢p from this
surface, explaining the virtual opening necessary for
the virtual sliding. This opening or dilation is necessary
according to the definition of the support function. It
is interesting to note that the dual problem in terms
of stress considered here leads to the same conclusion
although the exact expression for the support function
is not required.

velocities at the six nodes of
each triangle, superposed to
the original mesh in dashed
lines (a). The dotted segments
mark the core of the zone of
localized virtual deformation
and could be interpreted as
the back thrust and the ramp.
Isocontours of the virtual
volumetric § and the virtual
equivalent shear strain y are
presented in b and ¢,
respectively

c)
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Fig. 7 Critical slope
conditions: « = «,. The
boundary of the deformed
mesh superposed to the

original mesh, dashed lines
(a) and the isocontours of
equivalent-shear
virtual-strain y in b. The
whole décollement is
activated and the
deformation is rather diffuse

Results for a wedge with a topographic slope at
criticality (¢ = ) are presented in Fig. 7 and consist of
the deformed mesh and the distribution of the virtual
equivalent shear strain y. Most of the décollement
appears to be activated, and the virtual deformation
in the bulk is mostly diffuse with a large ramp region
which marks more the flexure of the domain then the
tendency for the virtual strain to localize. Results for su-
percritical slope conditions are presented in Fig. 8. The
whole décollement is activated except at the toe where
there are some mesh effects. The virtual deformation is
zero in most of the wedge except in that specific region.

The results presented in Figs. 6, 7, and 8 illustrate
that our numerical implementation does capture the
stability of the perfectly-triangular wedge. The mode of
failure is indeed with a ramp and back thrust system
defined numerically as localized zone of virtual shear
and dilation. Such strips are well described by sharp
velocity discontinuities in analytical work [5]. The dips
of the numerical failure system coincide with the ana-
lytical predictions.

This quantitative validation is continued by plotting
in Fig. 9 the distance d, positioning the root of the
failure mechanism on the décollement, as a function
of the topographic slope « (back wall friction ¢pw =
30°). The dashed vertical line corresponds to Dahlen’s
critical slope of o, = 3.38°. The numerical results are
presented as open circles linked by the series of solid

Fig. 8 Supercritical slope
conditions: @ = 3.5 > «.. The
boundary of the deformed
mesh superposed to the

‘ '_-....__2

b)

segments. For « less than «,, d is as small as possible to
let the back thrust outcrop on the top surface. It is equal
to the whole décollement length, D, for values larger
then o.. The numerical transition occurs exactly for the
analytical value of the critical slope, further validating
the numerical development.

3.2 Influence of the friction on the back wall

The series of 2D results are completed with a regard on
the influence of the back wall friction. This analysis is
certainly of most interest to the practitioners of numer-
ical modeling and physicists reproducing with analogue
materials in the laboratory the work of nature, where
the concept of boundary conditions remains difficult
to grasp [23]. The topographic slope is set to a = 3°,
corresponding to subcritical conditions so that failure
should occur close to the back wall.

The upper bound in the tectonic force necessary to
initiate failure is presented as a function of the back
wall friction angle in Fig. 10. The curve is approximately
defined by two straight segments intersecting for the
specific value ¢y, = 5.8°. This critical value of the back
wall friction angle marks also a change in the failure
modes which are illustrated in Fig. 11 with isocontours
of virtual equivalent shear strain. For the smallest value
¢pw = 3°, the failure mode is composed of a single
ramp taking root on the décollement at the back wall

original mesh, dashed lines
(a) and the isocontours of
equivalent-shear
virtual-strain y in b
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Critical slope o..

0 | | ‘ |
2 2,5 3 3,5 4 4.5

Surface slope o [deg.]

Fig.9 The position of the root of the ramp and back thrust on the
décollement as a function of the topographic slope. The dashed
line marks the analytical solution of Dahlen [7]. The back-wall
friction angle is set to ¢pw = 30°

contact. A triangular region is virtually moving up the
ramp requiring shear along the back wall. For values
of the friction angle close to ¢}, a fraction of the dé-
collement is activated and the back thrust is intersecting
the back wall at depth. The failure system favors the
activation of the décollement to reduce sliding on the
back wall. The transition to the straight ramp and back
thrust takes place for ¢pw larger than ¢y, as illustrated
in Fig. 11d, e, for 7° and 15°.

The dual stress field for the case of ¢ggpw = 5.7° is
presented in Fig. 12 in terms of the two invariants o,
and P, defined in Eq. 4. The main difference with the
results obtained for ¢pw = 30° in Fig. 5 is the absence
of stress concentration at the bottom left corner of

Q/pgH?

Ramp + back thrust

Normalized force
_
kN

q)*

BW

I
10 15 20 25 30
Back wall friction angle (I)Bw(deg)

Fig. 10 The normalized upper bound to the tectonic force as a
function to the friction angle on the back wall

the wedge. The stress state seems to be only function
of the distance to the topographic surface, a classical
stress state in soil mechanics and used by Dahlen [7]
and Lehner [12]. This statically admissible stress state
is used next to explain further the influence of the back
wall friction on the failure mode.

The stress state is assumed to be independent of
the position along the topography (x-coordinate in
Fig. 13a) and thus reads o,, = pgzsinf and o,, =
—pgzcos B. The stress vector ¢ x m acting on the facette
no 1 in Fig. 13a has the component (r = —sin g, 0, =
—cos 8), once normalized by pgz, in the direct basis
(m, t) shown in the same figure. This stress vector corre-
sponds to point T in the Mohr construction of Fig. 13b
where the normalized coordinates o,,/pgz and —t/pgz
are used to render consistent the stress sign convention
and the use of the pole defined in what follows. The
normalization in the absence of any cohesion for the
Coulomb criterion renders the following construction
applicable at any position within the wedge. The two
Mohr circles which are presented are tangent to the
Coulomb strength criterion. They represent the active
and the passive stress state, respectively. We are inter-
ested by the passive circle defining the failure mode
under compression at the back of the wedge. The pole P
of this circle is defined by the remarkable property that
any line oriented with the physical dip of the facette
of interest (not its normal) and passing through P also
intersects the Mohr circle at the point defining the rel-
evant stress vector (see Mandl [16]). This is clearly the
case of facette 1 which was used to construct the pole.
It is also true of the décollement dipping at 8 which has
the stress vector at point R’. The zoom in the region
of points R” and T in Fig. 13c shows that this point R’
differs from point R which is the stress vector necessary
to activate the décollement with friction angle ¢p. The
point R’ is below R and signals that the décollement
friction is too large for this surface to be activated.
Our choice of parameters does correspond to subcrit-
ical conditions. The pole is further used to construct
the stress vector of facette no 2, parallel to the back
wall, which is at point S in the Mohr’s construction.
The value of the friction angle which would mark the
activation of slip along the back wall is ¢}y, >~ 6°, within
the accuracy of the measure with a protractor. This is
certainly a sufficiently accurate approximation of the
5.7° found numerically above.

If ¢pw is larger than ¢, slip is prevented to occur
on the back wall and the back stop can only glide on
the décollement. For ¢pw smaller then ¢y, slip can
occur on the back wall and the failure mechanism make
use of that property to initiate the ramp at the back
wall. The back stop is then part of the hanging wall.
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Fig. 11 The failure mode for
subcritical topographic slope
conditions (¢ = 3° < «,) for
fives values of the back wall
friction ¢gw set to 3°,5.5°,
5.7°,7°,and 15° ina to e,
respectively. Isocontours of
the virtual equivalent shear
strain y

For the critical value ¢f,, the numerical stress field
coincides closely to the statically admissible field used
in the Mohr’s construction, see Fig. 12.

3.3 Comparison with analog experiments

It is now proposed to compare the failure modes pre-
dicted by the virtual velocity field with the results of

Fig. 12 The two stress
invariants, the equivalent
shear o, and the in-plane
mean stress Pinaandb,
respectively, for a back wall
friction ¢gw = 5.7°

[
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laboratory experiments with sand. The box is composed
of two parallel side glass walls, separated by the dis-
tance of 7 cm, clamped on a flat plate defining the
plane of the décollement. The fourth plate corresponds
to the back wall which exerts the force necessary to
compress the granular, analog material and can be
displaced between the two lateral walls. The fifth plate
is clamped on the décollement and parallel to the back
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Fig. 13 The Mohr’s construction for the triangular wedge in a.
The stress vector on facette 1, parallel to the topography, defines
point T as well as the position of the pole on the circle, point
P (b). The segment PR’ is dipping at B and provides the stress
acting on the décollement, point R’. The stress vector acting on
facette 2 in a is the point S in b. The zoom in ¢ on the region of
points R and 7 in b shows that the décollement is not activated
since R’ is within the Coulomb cone of the décollement

wall at a distance D = 37 cm, initially. The internal
region is filled with a well-sorted (good distribution in
grain size) Fontainebleau quartz sand (median grain
size of 250 um). Its friction angle is of the order of 30°
[23]. The friction over the side glass and the bottom

Bt b e ST TRy S T

plate is close to 15° thanks to a proper treatment with
chemical product. The friction over the back wall is
larger unless a thin layer of silicon putty (Dow Corning
SGM 36) is inserted. This material has a viscosity of
w =5 x 10* Pas. The rate of compression is set to 8.3 x
107% m/s and the ramp in the sand inclined at 30°, so
that the hanging wall is moving up at 4.8 x 10~%m/s.
The silicone layer of thickness 2.5 mm if assumed to
sustain a simple shear deformation is flowing at a strain
rate of y = 1.9 x 1073 1/s. The shear stress on the back
wall is then 7 = yu = 96 Pa. The compressive force
magnitude measured in the laboratory is of the order of
36 N/m (per unit width), so that the normal stress on the
back wall is on average 1,800 Pa. The equivalent friction
coefficient is then 7/, = 5 x 1072 corresponding to the
friction angle of 3° which is indeed below the critical
value ¢, = 6° found above.

The initial setup corresponds to a sand pack with
a = B =0 and a layer thickness of 20 mm. The sand
is deposited with a sand distributor, to ensure ex-
perimental reproducibility, by layers of up to S mm
and separated by fine layers of colored sand acting as
markers. The complete description of the experimental
setup and of the protocol is presented by Cubas [4]
and Souloumiac [27]. The results after shortening by
9 mm approximately are presented in Fig. 14a, b in
the absence and the presence of silicon putty on the
back wall, respectively. The pictures are taken from the
right side and present, through the side wall, the failure
mode. It consists of a ramp and a back thrust, dashed
segments, with a slight relief (Fig. 14a). The back thrust
is outcropping close to the back wall. In the presence of
the silicone, a single discontinuity in the form of a ramp
occurs rooting on the décollement at the back wall
contact. Although many parameters are estimated to
first order, these results validate the observation made
in the previous section: The selection of the failure
mode with or without back thrust is due to the friction
over the back wall. The larger friction angles promote

7 &?ﬁ ---m-:_w..-..-._.--u et
. S 1 3

]

Fig. 14 Two pictures of the laboratory experiments from the side showing a ramp and back-thrust for failure mode (a) and a ramp only
in b in the absence and the presence of a layer of silicone along the back wall, respectively
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the presence of the back thrust. This interpretation will
certainly contribute to the discussion initiated during
the experimental benchmark of Schreurs et al. [23].

4 Conclusion

The objective was to propose a methodology which
could ultimately permit to study systematically the
3D variations of the failure mode within accretionary
wedges. It is not the primal problem, constructed di-
rectly from the kinematics approach of the limit analy-
sis, but its dual version which is found most convenient
in view of the complexity of most strength criteria and
the difficulty to account properly of the constraints
(inequalities) due to their support functions. The dual
variables are stress-like quantities, once appropriately
scaled, although their distribution is not a priori stat-
ically admissible. It is shown nevertheless, in the case
of the 2D triangular wedge, that the dual stress field
corresponds to the expected theoretical solution which
satisfies equilibrium and is independent of the position
along the topography and function only of the distance
to this flat surface. The primal variables provide the
virtual velocity field which characterizes the failure
mode of the structure. The ramp and back thrust system
defining the 2D failure mode is expressed as narrow
strips of localized virtual deformation. This localization
of virtual strain as well as the activation of the décolle-
ment are dilatant. This fact is known from the primal
problem since dilatancy is required for the support
function to be finite. It is interesting to recognize that
the solution of the dual problem comes to the same
conclusion. The back stop and the hanging wall are
regions sustaining virtual rigid motions. The position
of the failure mechanism to the front (supercritical)
or the rear (subcritical) of the wedge depends on the
topographic slope, the décollement friction, and the
bulk friction angle. The exact relation [7, 12] defines
the critical topographic slope «, which is captured ex-
actly by the numerical procedure. It is further shown
that the failure mode at the rear for subcritical condi-
tions (¢ < «,) could collapse to a single ramp rooting at
the intersection of the back wall and the décollement
instead of a ramp and back thrust system. The back
wall friction angle predicted by a Mohr construction
is, within graphical error, equal to the angle found
numerically at the transition between these two modes
of failure. Laboratory experiments, with sand and with
or without silicone along the back wall, validate this
finding quantitatively.

Two 3D examples are presented in the companion
paper [28]. The first of the two examples has for objec-
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tive to shed light on the validity of the 2D stability crite-
rion in the presence of a lateral topographic slope vari-
ation (perpendicular to the direction of compression).
It is shown that a lateral variation by +0.5° from the
critical «., chosen in the central cross section, could pre-
vent the deformation front to be at toe of the wedge in
the 2D supercritical region. The 3D failure mechanism
is then characterized by a ramp in the 2D subcritical re-
gion which becomes diffuse with a decreasing dip as one
move toward the 2D supercritical region. The second of
the 3D examples is proposed to question the influence
of the lateral wall friction on the failure mode produced
typically in the laboratory. For a lateral wall friction of
15° and a box width to length ratio of one, 20% of the
width setup is affected by the lateral wall. The critical
slope angle o, = 3.38° is increased by as much as 1.5°. It
is indeed necessary to increase significantly the weight
of the wedge before supercritical conditions are met.
The 2D stability are thus questioned and a 3D criterion
based on the percentage of the surface of décollement
which is activated is tentatively proposed and compared
with predictions obtained with sand in the laboratory.

Appendix 1: Linear programming duality

The objective of this appendix is to present the dualiza-
tion argument, which is classical in linear programming,
with a notation consistent with the development pro-
posed in this paper. This material is certainly not new
and proposed here only for sake of completeness.

The primal problem is the following minimization
search

e} x)

minimize

subjectto [Al{x} = {b},

{x} = {0}, (36)

in which the vector {x} is the collection of m unknowns
and where there are n equalities to be satisfied (the
matrix [A]is n x m; the variables and dimension names
differ from the ones defined in the main text). The dual
problem is stated as

by}

Maximize

subjectto  ‘[Al{y} + {s} = {c},

{s} = {0}, (37)

in terms of the n unknowns in the vector {y} and
the additional m slack variables in the vector {s}. The
optimal solutions, in terms of the objective function, are
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the same for the two problems as it can be shown by
computing the duality gap

gap = "{c}{x} = "{b}{y} = "{s}{x} = 0. (38)

The gap is always positive or nul and only nul if the
two systems of equalities in Egs. 36 and 37 are satisfied.
In that instance, the orthogonality condition ‘{s}{x} = 0
applies. It is the dual problem 37 which is used for all
examples in Section 3 whereas the primal problem 36
was set up in Section 2 from the maximum strength
theorem with a spatial discretization for the velocities
and the deformation components A.

Appendix 2: Generalization to 3D

The 3D discretization is constructed with ten-node
tetrahedra, as illustrated in Fig. 15. The midside nodes
are located at equal distances between the vertex nodes
and all sides are planar surfaces.

The pseudo-equilibrium matrix analogous to Eq. 25
is given by

3P, -P, —-P; —P, 4P,
_ 1|-P, 3P, —P; —P, 4P

e _ _
[BI = 24| -P, —P, 3P; —-P, O
-P -P, -P; 3Py O
0 4P; 4P, O 0
4P; 0 0 4P, O
4P, 4P, 0 0 4Py |~
0 0 4Py 4P, 4Ps
where
np 0 0 nhoni O
'P,=2A4; 0 n, 0 n 0 n|, (39)
0 0 ny 0 n n

1

Fig. 15 Quadratic tetrahedron element for 3D upper bound
analysis

&

Fig. 16 Discontinuity patch consisting of three zero-thickness
tetrahedra for constructing a discontinuity of known geometry
and zero thickness in 3D

with (n’, n"y, n') being the unit outward normal to face
i (opposite node i) and A; the area of that face.

The predefined discontinuities in 3D are constructed
by patches of zero thickness and composed of three
tetrahedra, as shown in Fig. 16. Again, this patch of
tetrahedra is treated in the same way as the regular bulk
elements and the fact that the element volume is equal
to zero does not pose any difficulty. Also, similar to
2D discontinuities, the internal discontinuity nodes are
eliminated by making appropriate assumptions about
the variation of the velocities across the discontinuity.

Appendix 3: Second-order cone programming

This last appendix presents the conversion of the gen-
eral nonlinear upper bound limit analysis problem 32
into second-order cone programming (SOCP) format.
The most common of these formats comes in the
form of the following generalization of the primal LP
problem 36:

e}
[Al{x} = {b},
{x}ieKi,i=1,...,n, (40)

minimize

subject to

where the total solution vector {x} is assumed to be
partitioned into »n subvectors {x};. For each of these sub-
vectors, a conic inequality constraint, given by the last
line in Eq. 40, is imposed. The mathematical definitions
of what constitutes a cone are relatively stringent and
cannot easily be circumvented (see, e.g., Ben-Tal and
Nemirovski [2], for details). However, for the present
application, it suffices to know that the Drucker—Prager
criterion, by a suitable transformation of variables, is
cast in the following quadratic cone:

(41)

@ Springer
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This transformation is achieved by introducing a new
set of variables {p}:

{p} =[Dl{o} +{d}, (42)
where
[ —app —app —app ] Cpp
1/v/6 —1/4/6 0
1/4/6 —1/4/6 0
[D]=|—-1/v/6 1/v/6 , =1 0
1 0
1 0
L 1_ 0
(43)

The Drucker—Prager criterion (Eq. 5) can then be
written as

Kpp = {{p} e R7| p; > , (44)

which is a quadratic cone. Hence, in the case where the
yield criterion is of the Drucker—Prager type, the SOCP
standard form of the general nonlinear upper bound
limit analysis problem 32 reads

maximize oy
BU&}="THI{ R} +ay{To}+{G)
{p} = [DI5} + (d}

{p}ie Kpp for i=1 to 3, for each
element in Q" . (45)

subject to

This problem is solved using the general purpose SOCP
solver MOSEK [17]. In some cases, it is possible
to eliminate the physical stress variables {6} to end
up with only problem unknowns {p} and {ay} (see
Krabbenhgft et al. [10] for details). This is exploited
for problems where app is nonzero which implies that
![D][ D] is nonsingular and the physical stress variables
are expressed entirely in terms of {p}.
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